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ABSTRACT 5G is inherently prone to security vulnerabilities. We witness that many today’s networks
contain 5G security flaws due to their reliance on the existing 4G network core. A lack of security standards
for 5G IoT devices means network breaches and malware threats might run uncontrolled. The future 6G
network is predicted to be implemented with artificial intelligence-driven communication via machine
learning, enhanced edge computing, post-quantum cryptography and so forth. With the activation of edge
computing, the computing power available at supercomputing servers is to be integrated directly into the
devices at the entry point of a network in a distributed manner (e.g., antennas, routers, IoT sensors, etc). This
feature brings an equal quality of service everywhere including remote regions (a.k.a service everywhere)
which will trigger an exponential growth of associated applications. In this intricate environment, malware
attacks are becoming more challenging to detect. This paper thus reviews the theoretical and experimental
data-driven malware detection literature, in the large-scale data-intensive field, relating to: (1) continuous
learning, including new concepts in multi-domain to multi-target learning and the challenges associated
with unseen/unknown data, imbalance data and data scarcity, and (2) new explainability via visualisation
concepts with a multi-labelling approach which allows identifying malware by their recipes while improving
the interpretability of its decision process.

INDEX TERMS Malware detection, dynamic/hybrid/static analysis, malware images, segmentation, machine
learning, continuous machine learning and explainability.

I. INTRODUCTION
Today, it is no surprise that cyber-risk is top priority for
businesses, governments and societies across the globe. It
is widely known that malware is one of the greatest se-
curity threats today’s enterprises face. The most recent US
Treasury report [1] states that suspicious ransomware-related
transactions in the US alone were worth $590 million in the
first half of the year 2021. Although there has been great
effort in the development of malware detection/prevention
techniques adopting various cutting-edge technologies, so-
phisticated malware variants have been developed using such
technologies.

It is evident that we will witness the networked connec-
tion of people, process, data and things (a.k.a Internet of
Everything or IoE) in the near future. This would mean that
‘everything’ will soon be a potential target for cyber adver-
saries. With the deployment of more and more 5G networks,
the security concerns of the connected 5G physical things
have largely been reported which triggered the exploratory
study of 6G networks. In the foreseeable future, 6G will make
these linked things evolve into the connected intelligence
via real-time/distributed intelligence edge computing. With
6G, it is anticipated that the today’s service-based architec-
ture will evolve into ‘service everywhere’ (SE) which will
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dramatically increase the number of associated applications.
To deal such exponential growth, the organisational issues
of frequency/spectrum allocation and memory access for in-
teroperability among the many different services will need
to be resolved. In such complex SE environment, however,
detecting malware will be more challenging. Security ser-
vices, for example, should be able to quickly plug into and
detach from a huge number of microservices in distributed
computing nodes. Attacks of various dimensions and network
technologies necessitate a more sophisticated defence mecha-
nism [72].

As a result of the integration of information technology
(IT) systems with operational technology (OT) systems in 6G
networks, it is anticipated that OT network sensors could have
zero-day vulnerabilities while Supervisory Control and Data
Acquisition (SCADA) systems may have vulnerabilities and
endpoints may be targeted by malware, ransomware, DDoS,
and spear fishing [84]. Many 6G conventional risks include
DDoS, malware injection, and side channel attacks, which
could be traced all the way back to prior generations. Mean-
while, the rapid spread of Artificial Intelligence (AI) exposes
the 6G network to new threats manipulating AI’s availability
and integrity [74]. Learning on various edge devices intro-
duces 6G networks to distributed AI vulnerabilities such as
data poisoning. A malicious user could insert a few correctly
labeled, minimally perturbed samples into the training set
thereby affecting its ability to produce accurate predictions
although deep probabilistic machine learning has recently
demonstrated its potential in detecting such attacks by lever-
aging uncertainty estimates [94].

As the number of IoT-enabled devices in 6G era is expected
to grow significantly, more and more malwares targeting such
devices will prevail. IoT generally refers to dynamic and
ever-evolving environments generating high-volume streams
of heterogeneous data, in that complex, abnormal patterns
could evolve considerably as time passes. As a result, we
envision that new security mechanisms must be capable of
detecting unknown malware variants while rapidly adapting to
changes over time. However, conventional machine-learning-
based methods are in isolation. If a change occurs in its
feature-space distribution, the model needs to be re-built.
Lifelong machine learning (LML) could assist in overcoming
such limitation as its core is built on a continuous learning
concept. At the same time, the development of a multi-label
solution using machine learning, identifying malwares by
their recipes or DNA is another under-researched area in the
literature. This will not only provide transparency in deci-
sion making but also bring faster adoption by building user
trust.

Nowadays, there is a greater need to develop accurate,
flexible, scalable, and transparent data-driven methods to cope
with future demands that are in line with similar 6G security-
related initiatives. Such data-oriented modelling is important
for a number of cyber defence and security areas, as they
affect many related industries. Despite the fact that there is
a demand for such data-driven and intelligent methods for

the new large and complex data-intensive fields, very few of
these literatures have addressed the recent and promising con-
cepts such as continuous learning, federated/transfer learning,
zero-/few-shot, multimodal learning and Explainable Artifi-
cial Intelligence (XAI) approaches [2], [3].

This paper, hence, provides a comprehensive review of
the state-of-the-art data-driven literatures in malware detec-
tion including theoretical, empirical, and experimental studies
pertaining to the various needs and recommendations. The
objective of this paper is to introduce a new perspective for
engineers, scientists and researchers in security, communica-
tions, and computer science domains, as well as to provide
its roadmap for future research endeavours. To the best of our
knowledge, this is the first study that investigates the data-
driven malware detection problem from the perspective of
continuous, explainable, and visualisable machine-learning-
based strategy for creating a next-level malware solution for
6G networks.

This paper is organised as follows. Section II discusses
the current developments in malware data, features and algo-
rithms pointing out known/unknown issues. Section III exam-
ines the suitability of the continuous learning while discussing
the limitations of current machine-learning-based methods.
Section IV gives recommendations from a new explainability
via visibility perspective. Section V concludes the paper.

II. A ROADMAP
A. DATASETS
In data-driven malware detection, data does matter. Choosing
the right data to learn models from can make or break your
analysis. Firstly, the volume of data relating to data update-
ness is an important criterion. VirusTotal [6], VirusShare [7],
and MalwareBazaar [8] contain nearly all known malware,
and they are continuously growing in terms of size as newly
detected ones are added. EMBER [9] is another large dataset
which has over 1 million records, however, the samples were
collected in 2018 only. VX Heaven [10] and DREBIN [11]
released before 2015, are out of date.

Secondly, if the target class of data has an uneven dis-
tribution of observations (i.e., imbalance), then it may not
be an accurate representation of the population, or it can
discard useful information about the data itself which could
be necessary for learning models. To learn an accurate
malware detector, using a balanced data for malware and
benign, as well as for each malware family is of great
importance.

Malimg dataset [5] contains 9,339 malware images from
25 families and seems to be suitable for multi-class categori-
sation. Ahmed et al. [86] developed a CNNs architecture with
the Malimg dataset for classifying malware in 5G-enabled In-
dustrial Internet of Things (IIoT). There is also no requirement
for pre-processing with Malimg for image-based analysis,
however, in terms of number of observations, malware fam-
ilies are significantly imbalanced. DREBIN contains 5,560
malware samples out of 12K in total. Although it is still
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imbalanced, Comodo Cloud Security Centre [13] has an equal
amount of malicious and non-malicious samples with 22,500
malware and 22,500 benign raw files. MalwareBazaar hold a
greater diversity of known malware families and number of
samples across categories is well balanced. MalwareBazaar
also gives family labels.

Thirdly, to build a quality dataset, we need to identify raw
data and add one or more meaningful and informative labels
in order to provide context that a model could be learned
from. Adding a label to each observation which determines
whether its malicious or not and which family it belongs to
is time-consuming and costly. To detect malicious Windows
portable executable (PE) formatted files, EMBER provides a
publicly labelled dataset of 900K training samples (300K ma-
licious, 300K benign, 300K unlabelled) along with 200K test
samples. These are either collected privately or via VirusTotal
and VirusShare. However, the raw binaries are not provided,
and as a result, it is not feasible to apply deep learning or
extract new features from these executables [14]. Microsoft’s
Malware Classification Challenge [12] announced in 2015
provides a rich dataset of labelled and unlabelled samples
from nine different malware types. It contains over 20K mal-
ware samples’ disassembly and bytecode although its raw data
is not publicly available. The malicious files of VirusShare
are not labelled – no information on which family they are
belong to. While VirusTotal API [15] which provides antivirus
engines to label samples is widely used today. Rhode et al.
[16] collected malicious and benign files from VirusTotal and
other free software websites. When new malicious samples
were found, the labels were verified with VirusTotal. All other
samples were, however, labelled as benign. This, thus, does
not seem to be a reliable method for labelling unseen mal-
wares.

Some of the most popular applications available in Google
Play Store collect benign samples. Unfortunately, this does
not guarantee that there is no malware sample within the
collected samples. While VirusShare makes their malicious
samples publicly available, legitimate binaries cannot be
shared freely due to copyright restrictions.

All in all, having a sufficient number of up-to-date samples
for each malware class is of great importance. This allows
detecting newly released malware attacks with machine learn-
ing which is notoriously data hungry. As previously noted,
MalwareBazaar contains labelled samples. This could be
combined with VirusShare and VirusTotal which are being
constantly updated, in order to have a sufficient collection of
well-balanced and up-to-date malware samples.

B. FEATURES
To detect malware, structural and behavioural features of files
are examined. This allows understanding of the intent of
malware. There are primarily three different approaches for
extracting features, namely, static, dynamic and hybrid. Static
analysis examines PE files without executing samples. It is
fast and straightforward, yet, prone to code obfuscation. Dy-
namic analysis which runs malware in a virtual environment

TABLE 1. Feature Extraction

can avoid such obfuscation techniques. It, however, is time-
consuming and can be deceived by anti-virtualisation tech-
niques. Meanwhile, hybrid analysis which combines static
and dynamic analysis has gained attention recently. Some
recent studies [17], [18], [19] have implemented hybrid anal-
ysis and demonstrated a great performance throughout the
detection process. Rafiq et al. [85] suggested an adversarial-
based evasion approach to defend against evasion attempts.
To prevent malicious adversaries from evading detection in
IIoT with the combination of a 5G/6G network, a hybrid
strategy was used. This employed dynamic features, system
call features, and static features, as well as android intents and
permissions for malware detection. Details of these analysis
approaches along with their feature extraction methods and
extracted features are summarised in Table 1.

1) STATIC ANALYSIS
Static analysis essentially examines files without executing
them. With this analysis, it is difficult to predict a file’s be-
haviour. It is, however, possible to approximate the actions
it may eventually perform [20]. Static analysis extracts the
features to obtain insight into the intent and structure of a
malware (e.g., strings, headers and opcodes).

Strings hold essential semantic data and reveal produced
and modified filenames in addition to registry-related infor-
mation. Strings may also reveal IP addresses used by malware
authors for communication, URLs for command-and-control
centres, malware author and group signatures, as well as group
memberships. By analysing these data, the intent of a mal-
ware could be identified. Changing all interpretable strings
is impractical in majority of programmes regardless of the
type of malware created through recompilation or obfuscation
techniques. Strings feature is, thus, regarded as one of the
most important features for malware detection [21].

A PE file comprises many sections and headers that assist
the dynamic linker on how to map the file into memory. Re-
searchers often use header information where multiple fields
holding structural information such as API import/export ta-
bles, references to dynamic libraries, several file sections, and
type of metadata [20]. It is important to be able to process
the header information in order to locate and disassemble
the binary code that is commonly utilised in static analysis
[22]. Wang et al. [23] used the PE header to identify several
types of malware and they concluded that PE headers’ entries
are helpful for detecting virus and email worms. Although
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the detection performance could be maintained or improved
with a small number of features from headers, they deter-
mined that they were insufficient for detecting trojan and
backdoor. Manavi et al. [24] used the images generated from
PE header to detect ransomware with a CNN model. Using
the PE header, they achieved a detection accuracy of 93%.
Due to its destructive effects, ransomware differs structurally
from benign files and the header images could demonstrate
this difference. The header of an executable file gives a useful
structural information. Balram et al. [25] analysed the detec-
tion performance using strings feature and PE header feature.
Their experimental results confirmed that string features are
more informative than PE header features.

Machine language instruction consists of opcodes that is
an indicator of the operation executed by CPU which can be
used as a feature for testing opcode frequency or analysing
similarities between opcode sequences [14]. Haddadpajouh
et al. [83] developed a new malware detection method on
cloud edge gateway devices to identify malware at an early
stage and successfully decreased the damage caused by it. The
model was trained using IoT malware samples’ Opcode and
Bytecode. Malware samples developed with the same source
code or belonging to the same family share a substantial num-
ber of instruction blocks/segments. The frequency distribution
of malware opcodes appears to deviate greatly from that of
non-malicious software as rarer opcodes appear to explain
greater variance in frequency than common opcodes [21].
Although the opcode feature can be beneficial for malware
classification, it is limited by its incapability to define the
invocation connections between instructions [26].

Static analysis provides a variety of structural information
that assists in understanding the behaviour of programmes.
In addition, it assures many additional information presenting
samples such as export table, file resource information and file
property [5]. Although static analysis is a fast analysis tool,
obfuscation techniques could make it unreliable.

2) DYNAMIC ANALYSIS
Dynamic analysis examines a programme’s behaviour by ex-
ecuting it in an isolated environment (e.g., virtual machine).
In contrast to static analysis, it can monitor what malware
does in real time, and extract information every step. Con-
sequently, dynamic analysis produces reliable findings. It can
also identify any modifications made to the code while avoid-
ing obfuscation techniques.

Function calls are used by the programmes for various
purposes. An application programming interface (API) gives
a way for computer programmes to communicate with each
other (e.g., between software and operating system). The be-
haviour of the application can be examined by tracing API
or system calls meaning malware’s suspicious behaviour can
also be identified. The feature of API functions allows users
to keep track of critical functions and API/system calls can
be extracted via both static and dynamic analysis. However,
several faulty API calls in the executable header inserted to

confuse malware analysts could cause static analysis to be
inefficient. Ding et al. [27] suggested an association mining
approach for detecting malware based on API call traces. They
saved time and cost by improving the rule quality and using
different API selection criteria. Salehi et al. [28] introduced
a malware detection approach based on APIs. They observed
that a feature set combining API names, API return values,
and/or input arguments increases the performance of a model
that uses return values, and API calls features in the identi-
fication of unseen behaviour. When return value was used in
the feature set with API calls and their parameters, a specific
behaviour model and robust results was produced.

API function calls are used by programmes to perform
various operations associated with networks, registry keys and
files [17]. Kakisim et al. [29] experimentally proved that API
calls, use of system libraries, and operation sequences are
critical features for malware analysis.

Registry key provides important information about down-
loaded software, hardware, values, and options operated by
processes. Dynamic analysis extracts info on registry modifi-
cations (e.g., written/opened registry) are utilised by malware
to avoid detection by security systems such as firewalls.

File system activity, on the other hand, extracts info on
changes of a file such as deletion, creation and modification.
Mohaisen et al. [30] suggested a new method for malware
classification and automated labelling based on such be-
havioural characteristics. This method uses extracted features
from memory, file system, registry and network activities.
Han et al. [31] examined the outcomes of the models with
various feature profiles including fundamental structural fea-
tures, low-level behavioural characteristics (API calls and
DLLs), and high-level behavioural characteristics are formed
from files, registries, and network-behaviours. This high-level
behaviour-based model outperformed other approaches. Their
experiment demonstrated that the detection accuracy of using
the combination of basic-structure and low-level behaviour
profiles reached the peak.

Malware can download, upload, or configure data through
the internet. By monitoring network traffic, associated IP
addresses, HTTPs and DNS requests and URLs could be
collected. These features are useful in comprehending the
malicious intent. Malware needs to communicate with a re-
mote server over the internet in order to carry out malicious
actions. For example, most spam botnets are connected with
their command and control (C&C) server using HTTP [32].

Dynamic analysis is a popular method as is thought to be
more effective than static analysis. This is due to the fact that it
can analyse programmes without having to disassemble them.
Dynamic analysis can also detect both known and unknown
malware [21]. Nevertheless, it is a slow method that requires
more relevant resources.

3) HYBRID ANALYSIS
It is well-referenced that runtime-packed malware cannot be
detected via static analysis. Dynamic techniques may not
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identify all malware capabilities. For this reason, static anal-
ysis is an essential complement to dynamic analysis. Hybrid
analysis combines static and dynamic characteristics to bene-
fit from the advantages of both. Eskandari et al. [33] proposed
a new hybrid-based malware detection technique. In their
learning phase, static and dynamic analysis were merged,
however, only static analysis was employed in the scoring
phase. This hybrid approach not only improved the detection
performance but also shorten the testing process.

Ma et al. [34] proposed an ensemble malware classifier with
the goal of reducing false positives. They employed the inte-
grated features and the import functions extracted statically
and dynamically and trained with a support vector machine
and a classification and regression tree. Both classifier outputs
were combined into a single final output. They concluded that
their ensemble model enhanced their detection performance
by decreasing false positives. Hadiprakoso et al. [17] observed
that adding dynamic features to static features can improve the
accuracy of their android malware detection model by 5%.
Shijo and Salim [19] compared the results of static, dynamic,
and hybrid analysis. The accuracies of their static analysis
using the PCI feature and dynamic analysis using the API calls
feature were 95.8% and 97.1%, respectively. Their accuracy
increased to 98.7% when the static feature vector and dynamic
feature vector were combined.

C. ALGORITHMS
Traditional machine-learning-based approaches for malware
detection have utilised Random Forest [77], Navies Bayes
[79], Decision Trees [80], SVM [30], and Logistic Regres-
sion [25]. In a study of [78], the performance of classifiers
such as k-Nearest Neighbour (kNN), Naive Bayes, Decision
Tree, Support Vector Machine (SVM), and Multi-Layered
Perceptron (MLP) were compared for malware detection.
J48-based decision tree demonstrated the highest accuracy
(96.8%) based on this comparison of all experimental data
from the 5 classifiers while providing a human-understandable
rules. One of the greatest challenges with learning models
using traditional machine-learning algorithms is the process
of feature engineering. Deep learning circumvents these chal-
lenges as it is capable of extracting features in an automated
fashion. Without much guidance from the programmer, deep
learning algorithms focus on the right features by themselves.
Although deep learning algorithms are classified as a su-
pervised learner, unsupervised learners perform greatly in
detecting unknown/unseen malwares.

1) UNSUPERVISED LEARNING
Unsupervised learning finds patterns in data without labels. In
malware detection, autoencoder has widely been used to re-
duce the data dimension and to identify unknown threats. The
bottleneck layer of an autoencoder could give a compressed
representation of its input data. Its decoder layer reconstructs
the data from the encoding representation in an unsupervised
fashion.

Yousefi-Azar et al. [36] proposed a feature learning frame-
work utilising an autoencoder for cybersecurity tasks. Their
study not only generated a small number of latent features
that capture semantic similarities between feature vectors but
also learned semantic similarity from input features automati-
cally. By reducing the dimension of the features, the memory
requirement was subsequently reduced. Naway and Li [37] in-
troduced a new android malware detection approach in which
an autoencoder is utilised for classifying malwares rather than
feature reduction. Their autoencoder was modified to learn in
a semi-supervised fashion.

Restricted boltzmann machine (RBM) is an algorithm for
describing all training samples in a more meaningful and
compact manner by capturing their internal structure and reg-
ularities [41]. Its goal is to reduce the error between the input
data and the reconstruction generated by their weights and the
hidden units [42]. Ye et al. [43] suggested a heterogeneous
deep learning architecture that combines an autoencoder and
a multilayer RBM with an associative memory layer. Within
this semi-supervised learning approach, the features were
learned in an unsupervised fashion while malware and be-
nign files were classified by a supervised model. A modified
RBM which generates new features based on probability was
proposed by Benchea and Gavrilut [44]. These features are
network, registry and file system activities. The generated
features were used to train a one-sided perceptron (OSP) algo-
rithm. Their experiment was performed using 1.2 million files
with 31,507 files containing malware. With newly generated
300 features, this was failed to outperform OSP-MAP model
on a detection task, however, it successfully reduced the false
positive rate.

Deep belief network (DBN) is composed of stacked RBMs,
each of which is trained on the previous one. It is a type of a
probabilistic generative model with numerous hidden and vis-
ible layers. DeepSign [38] is a DBN-based malware detection
model learned from an unlabelled dataset. DBN was used to-
gether with a deep stack of denoising autoencoders to build an
invariant representation of malware behaviour. Hou et al. [39]
compared the performance of four different shallow machine-
learning algorithms (SVM, multi-layered perceptron, decision
tree and naïve base) and a DBN-based detection model us-
ing unknown android-based malwares. DBN outperformed all
other shallow models. Ding et al. [40] developed a DBN-based
malware detection algorithm and compared its performance
with three machine-learning algorithms namely, SVM, deci-
sion tree and k-nearest neighbour. Their experimental results
confirmed that the performance of their DBN-based model
outperforms when more unlabelled data is included. Chen
et al. [76] proposed a malware detection method for mobile
edge computing (MEC). This method used a deep belief net-
work, actively extracted attack features on MEC devices on
the Android system. Comparing their model to four exist-
ing machine-learning-based detection techniques, the active
feature learning of the model offered an advantage in the
detection accuracy improvement.
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2) SUPERVISED LEARNING
As supervised learning employs labelled data to learn a model,
it generally gives lower false alarm rate than unsupervised
learning. As a signature-based approach, supervised learning
performs poorly in classifying novel or unseen malwares or
variants [45].

Convolutional neural network (CNN) has widely been used
for image classification tasks. To use a CNN for malware
classification, features need to be transformed into images.
Kalash et al. [46] proposed a CNN-based malware detection
method. A decimal vector representation was generated by
translating the binary values that were split into 8-bit se-
quences to decimal values. It was then reshaped into a 2D
matrix to be displayed as a grayscale image. Their experiment
demonstrated that the malwares from the same family could
have the same visual representation. With the dataset from
Microsoft’s Malware Classification Challenge, they achieved
a classification accuracy of 99.97%.

Abdelsalam et al. [47] compared the performance of a 2D
CNN with a 3D CNN and their 3D CNN model outperformed
2D CNN model. Jeon et al. [48] introduced a new IoT malware
detection technique based on 3D CNN. Features of memory
data, integrated feature data (network, system call, process,
and VFS) and behaviour frequency table were transformed
into red, green, and blue channels and combined into a sin-
gle RGB image. Their 512x512 vector size model achieved
99.28% accuracy. Yet, their dataset included only 1,401 sam-
ples that have not been cross validated.

Recurrent neural network is designed to learn a model from
sequential or time series data by allowing previous outputs
to be used as input while having hidden states [35]. Sun and
Qian [49] studied to see if amount of labelled data could
influence the performance of deep learning algorithms such
as CNN and RNN. Here, RNN showed much improved per-
formance in malware detection. Rhode et al. [50] compared
the performance of RNN-based malware detection model with
traditional machine-learning algorithms. Their ensemble of
RNNs successfully identified whether an executable is ma-
licious or benign within the first 5 seconds of running with
94% accuracy. Wang and Yiu [51] developed RNN-based
autoencoders to address the interpretability issue. Multi-task
learning was used to categorise malware as well as to develop
file access patterns (FAPs) for API call sequences.

Vinayakumar et al. [52] used static and dynamic analysis
to develop a long short-term memory (LSTM)-based android
malware detection method. Their experiment showed that
their stacked LSTM layer with 32 memory blocks which has a
high number of epochs improved its performance. Fang et al.
[53] used a LSTM model for detecting malicious JavaScript
and its performance was compared with those of LSTM, naive
bayes, SVM, and random forest models using bytecode se-
quences. LSTM showed the highest accuracy rate of 99.53%.
An effective malware detection framework for Android de-
vices on 5G networks is shown in the study of [82], which
uses CNN and LSTM along with the opcodes feature called

DLAMD for both rapid detection and the deep detection
phase of malware detection.

Semi-supervised learning has also been popular as it may be
able to tackle the limitations of supervised and unsupervised
methods. Santos et al. [75] recommended using partially la-
belled data to limit the utilisation of labelled input data. They
empirically showed that as the number of labelled data grows,
the detection performance improves. Gamage and Samara-
bandu [54] compared the performance of two different semi-
supervised learning algorithms (i.e., autoencoder+multi-
layered perceptron and DBN+multi-layered perceptron) and
observed that semi-supervised learning does not improve the
performance over the supervised models.

Relating to the fact that cyber threats greatly vary depend-
ing on the type of devices, operating systems, and networks
used. A comparison table (Table 2) considering different API,
datasets, analysis, and approaches is provided.

III. CONTINUOUS LEARNING
As discussed, deep learning allows the learning of complex
and useful features in an automated fashion due to its extended
capacity to mimic the human brain. However, it is evident that
it could be assessed solely from the outside meaning that it
is very difficult to understand how it makes decision [55].
With transfer learning, however, the learning process and per-
formance could be improved when there is isolated learning
paradigm by utilising related data. Li et al. [56] proposed a
new concept that employs adaptive regularisation along with
transfer learning that could transfer the learned model from its
training to testing domain to identify unknown malicious sam-
ples. Although they first used this approach, their experiment
was limited to one source domain to one target domain.

Lifelong machine learning (LML) gains attention in various
areas these days due to its capability to transfers the knowl-
edge of pre-learned models from different sources to multiple
targets. One of the key requirements in data-driven malware
detection is that the model should be adaptable to new mal-
ware variants and families as they change over time. In this
sense, retaining and accumulating the knowledge learned in
the past via LML’s memory concept is vital. Fig. 1. depicts
LML’s key concepts. As indicated, the learned data is accu-
mulated and used seamlessly in future learning.

Since Thrun and Mitchell’s [57] first introduction of LML,
the concepts used in LSM have been adopted in many different
fields. Kozik et al. [58] proposed an LML-based intrusion
detection system named B-ELLA which extends the ELLA
[59] framework to overcome the problem of its imbalanced
network data. Du et al. [60] developed a new LML-based
anomaly detection method that uses unlearning to update
their model. Their experimental results demonstrated the ef-
fectiveness of their method by reducing false positive and
false negative rates significantly. Hong et al. [61] proved the
usefulness of LML when there is insufficient labelled data.

Detecting malware with LML brings certain challenges
when learning from i) unseen/unknown, and ii) imbalance
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FIGURE 1. The concept of lifelong machine learning (LML). With utilising
transfer learning and domain adaptation as a function, the learner has
performed learning on a sequence of tasks, from t1 to t(n-1). When faced
with the nth task, it uses the relevant knowledge gained in the past n-1
tasks to help learning for the nth task.

and scarcity data. In a typical machine learning problem,
models are learned purely from a given training data meaning
that the models are unlikely to perform well when there are
unseen/unknown samples in their testing data. During the
LML phase, if the models are learned in an open environ-
ment where unseen/unknown samples appear unexpectedly
then their learned models should be capable to classify such
data accurately. As previously stated, LML could be seen as
a continuous transfer learning procedure which accumulates
the previously learned knowledge to assist or use new future
learning. If a new LML-based malware detection mechanism
learns in an open environment, it can detect novel or unknown
malware variants accurately.

Obtaining a sufficient amount of labelled data for each class
in malware detection is another challenge. Existing malware
datasets have varying number of samples in each class. Ma-
chine learning in general performs well when it sees sufficient
and balanced number of samples in each class. When limited
labelled data, it would also be difficult to maintain a good per-
formance of LML. The problem of few-shot recognition with
unlabelled target data is largely unaddressed in the literature.
Most recently, however, new concepts that could improve few-
show learning with unlabelled dada have been proposed and
showed promising results. STARTUP [62] is the first method
that tackles this problem using self-training while it uses a
fixed teacher pretrained on a labelled base dataset to create
soft labels for the unlabelled target samples. Bateni et al [63]
developed a transductive meta-learning method that uses unla-
belled instances to improve the few-shot image classification
performance.

IV. EXPLAINABILITY VIA VISUALISATION
Machine-learning-based methods seem to be most effective in
malware detection, however, they are associated with a lack
of transparency and explainability. When they can explain
their predictions at an individual level accurately, it makes
their models trustworthy. We believe the model trustworthi-
ness could be achieved via several visualisation techniques
reported in the literature.

Since numerous non-linear transformations performed dur-
ing the network training, learning millions of parameters
is too complex to make the model mathematically explain-
able. Feature and network visualisation techniques have been
used to investigate the causes of exceptional performance.
Saliency maps [64] and their modifications, Grad-CAM [65]
and Smoothgrad [66] visualise where each input data arrives
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in the individual unit via gradient-based sensitivity maps. The
outputs of Grad-CAM [65] determines ‘where’ and ‘what’ a
learned model is looking at via identifying bias in the model’s
predictions. While feature visualisation can provide inter-
pretable data at the unit level, it is difficult to interpret at the
layer level. Kim et al. [67] successfully vectorised the training
dataset prior to the learning process with convolution neural
networks (CNNs) and identified common features of API
call graphs with a high weight. Following the completion of
the learning phase, they employed Grad-CAM that produces
visual explanations from CNN-based models for malware
detection. Caforio et al. [68] also employed the Grad-CAM
approach to generate coarse localisation maps that emphasise
the most critical regions of the traffic data representation that
are likely to be explained with identical localisation maps
for the same class for forecasting cyber-attacks. Iadarola et
al.’s [69] Grad-CAM assisted the interpretation of the output
malware classification by verifying the prediction reliability
via exploiting activation maps – the samples belonging to the
same family exhibit the same malicious payload (i.e., the same
malicious behaviour), that can be related to the areas inter-
ested by the activation maps as symptomatic of the malicious
payload.

Understanding what a model has learned and how it makes
its decision is essential for decoding the inner process of
machine learning. As discussed, the most promising strate-
gies are based on examining the activation process to identify
relevant properties in a neuron level. It should, however, be
noted examining activation process may restrict layer-level
concepts. In terms of comprehending what a neural net-
work learns at the layer level, concept-based approaches have
shown favourable results [70].

Cao et al. [71] developed a neuron-level representation
of learned features and a layer-level visualisation of feature
maps in order to illustrate the misclassification of adver-
sarial instances, a multi-level visualisation comprising of a
network-level view of data flows. By identifying the paths
for adversarial and benign data, they visualised the prediction
process of a DNN successfully.

In cyber security, malware is generally identified in a
monocular manner to express the attacking goals of their de-
velopers like Adware, Spyware, or Ransomware. Regardless
of the composition of used paths or the attacking chain to
achieve this goal, the categorisation process is not as simple
as the definition of black and white colour. By investigat-
ing the development of a multi-label solution using machine
learning, identifying malwares by their recipes or DNA is
another under-researched area in the literature. Every malware
type/class possesses certain characteristics, and if the regions
of these characteristics could be segmented in a malware
image, the resulting images of the samples from a particular
class should reflect some common patterns. With the afore-
mentioned development using Grad-CAM, we believe that
common features could be located as in Fig. 2, that could be
used to learn a model for prediction and for identifying their
recipes or DNA.

FIGURE 2. The concept of extracted highlighted regions. Malware image
(left), Grad-CAM visualisation (middle) indicating informative areas within
the image and extracted highlighted regions for learning a model for
identifying malwares by recipes (right).

V. CONCLUDING REMARKS
In this survey, we provided an overview of the current state
of the art of research in data-driven malware detection for 6G
network. In particular, we discussed its theoretical and exper-
imental aspects in the large-scale data-centric field, relating
to: (1) continuous learning, including new concepts in multi-
domain to multi-target learning and the challenges associated
with unseen/unknown, imbalance data and data scarcity, and
(2) new explainability via visualisation concepts with a multi-
labelling approach which allows identifying malware by their
recipes while improving the interpretability of its decision
process. It is also envisaged that such data-modelling rev-
olution in malware detection can be readily extended to
various areas in cyber security. These newly designed con-
tinuous, explainable, and visualisible machine-learning-based
approaches will not only be able to cope with the emerging is-
sues associated with data-centric paradigm, but also provide a
means in maximising its return for the various data modelling
areas in which transparency in learning is required.
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