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Abstract

Social media platforms with large user bases such as Twitter, Reddit, and online

health forums contain a rich amount of health-related information. Despite the ad-

vances achieved in natural language processing (NLP), extracting actionable health

information from social media still remains challenging.

This thesis proposes a set of methodologies that can be used to extract medical con-

cepts and health information from social media that is related to drugs, symptoms, and

side-effects. We first develop a rule-based relationship extraction system that utilises a

set of dictionaries and linguistic rules in order to extract structured information from

patients’ posts on online health forums. We then automate the concept extraction pro-

cess via; i) a supervised algorithm that has been trained with a small labelled dataset,

and ii) an iterative semi-supervised algorithm capable of learning new sentences and

concepts.

We test our machine-learning pipeline on a COVID-19 case study that involves patient

authored social media posts. We develop a novel triage and diagnostic approach to

extract symptoms, severity, and prevalence of the disease rather than to provide any

actionable decisions at the individual level.

Finally, we extend our approach by investigating the potential benefit of incorporating

dictionary information into a neural network architecture for natural language pro-

cessing.
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Chapter 1

Introduction

1.1 Problem settings

Patients’ experiences shared on social media platforms such as Twitter, Reddit, and

online health discussion forums are valuable sources of rich and timely health infor-

mation. These experiences concern many diseases and health conditions, including

diabetes, cancer, and mental health, to name a few. As the number of users continues

to grow on social media platforms, there is an abundance of health-related knowledge

contained within this domain [70]. Crucially, patients’ experiences written on social

media platforms provide opportunities to extract actionable information for health prac-

titioners and decision-makers. Furthermore, the real time nature of posts can be par-

ticularly useful in emergency situations. A relevant and current example would be the

COVID-19 pandemic. Researchers are investigating several broad categories of health

applications utilising Natural Language Processing (NLP) including but not limited to

pharmacovigilance [156, 102, 174], disease detection [30], and mental health surveil-

lance [186]. Specifically, extracting Adverse Drug Reactions (ADR) [143, 90], detecting

influenza epidemic [10], and monitoring mental health [186] from social media are

widely studied.

In addition to social media another major source of health related text is Electronic

Health Record (EHR) [70], which have different challenges. To process an unstructured

clinical document written in natural language, e.g. a radiological report or a hospital

20
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discharge summary, researchers have been using NLP tools specifically designed to

work with formal medical concepts [221] defined in a medical ontology such as Unified

Medical Language System (UMLS) [23, 12]. Several open source NLP tools exist for pro-

cessing medical and biomedical documents such as MetaMap [12], cTAKES [178], and

CLAMP [189]. Moreover, several benchmark datasets, for example the National NLP

Clinical Challenges (n2c2), exist in clinical and biomedical domains for a wide ranges of

information extraction tasks such as identifying drug, dose, and relation between them

from the EHR [82]. In contrast, health experiences shared on social media platforms

contain diverse topics in distinct languages [70]. While health professionals use formal

concepts, patients often share their experiences using informal medical terminology,

colloquial language, and in the form of a dialogue.

Sentiment analysis was widely studied to find drug/treatment’s efficacy from on-

line drug reviews [243]. More recently, aspect based sentiment analysis was investi-

gated [241, 242] on social media to find sentiment towards specific drug/treatment,

symptom, and side-effect. Most of the existing studies focused on processing a single

sentence [84]. Consider the following post from an online health forum:

• HI the neurologist started me with pramipexole. i did not like it. it made me sleepy

and didn’t seem to help with my movement.

In the above example, the negative sentiment towards pramipexole is signalled by the

phrase not like in the second sentence of the post. In addition to this, the patient experi-

ences feeling sleepy side-effect, and the drug is not effective for the movement symptom,

as stated in the third sentence. As can be seen in the above example, pramipexole has a

negative relation with movement a few sentences later. Therefore, a formal approach is

required to make sense of the whole post. Additionally, current supervised aspect-based

sentiment analysis methods are grounded on biomedical NLP tools such as MetaMap

[12] in order to recognise sentiment towards a specific concept [242]. However, Gupta

et al [77] previously found that MetaMap performed poorly on social media [77].
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Supervised machine learning models require a substantial amount of high-quality train-

ing data to extract medical concepts from social media content. Producing a large set of

annotated data is time-consuming and requires medical expertise. Although MacLean

et al [115] found that crowd-based non-expert annotations approximate expert annota-

tions after sufficient training, such annotations are highly dependent on the data source

and type of disease. In the past, Conditional Random Fields (CRF) [99] and Bidirectional

Long Short-Term Memory Networks (BiLSTM) [85] were applied to extract medical con-

cepts (e.g. drug/treatment, symptom, side-effect, and ADR) from social media. Most

notably, Nikfarjam et al [143] and Cocos et al [40] applied CRF and BilSTM, respec-

tively, for ADR extraction from a Twitter dataset. Specifically, Nikfarjam et al [143]

published a Twitter dataset and an ADR lexicon which they used with the CRF model.

Lexicons and/or dictionaries are found to be useful with machine learning, and more

recently, deep neural networks [130].

Recent advancements in neural network architectures and computational power have

allowed NLP methods to take advantage of unsupervised learning [68]. Specifically,

neural networks trained on a large corpus can encode distributional semantics [134].

Within the last few years, Transformer [201] based contextual language models such

as Bidirectional Encoder Representations from Transformers (BERT) [49] have outperformed

most of the machine learning models in many NLP tasks [164]. For example, a BERT

variant Bidirectional Encoder Representations from Transformers for Biomedical Text Min-

ing (BioBERT) [105], pre-trained on large biomedical corpora outperformed previous

state-of-the-art models in various biomedical text mining tasks [105]. Adapting BERT

to new datasets and tasks can follow either a fine-tuning or feature-based approach,

and only requires a small labelled dataset [49].
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1.2 Research hypothesis and questions

The main research hypothesis of this thesis is that NLP techniques can be harnessed

to extract actionable information from social media. More specifically, the research

questions addressed in this thesis are:

1. How can we build a rule-based concept relationship extraction system to ex-

tract a structured representation of drug/treatment’s sentiment from social me-

dia posts focusing on a chronic disease category (e.g. Parkinsons’)?

2. How to develop a machine learning method that uses minimal supervision to pro-

duce satisfactory results for concept extraction? How can it augment and update

labelled datasets and dictionaries?

3. Can we develop an end-to-end NLP pipeline applying a similar rule- and ma-

chine learning-based methodologies for an infectious disease category (e.g. COVID-

19) for extracting actionable information? Will the concept and relation extrac-

tion pipeline be able to triage and diagnose COVID-19 patients from their social

media posts?

4. Are concept dictionaries helpful for a deep learning network? Are they transfer-

able?

1.3 Aim and Objectives

The aim of this thesis is to develop a set of methodologies for extracting disease specific

actionable health information from social media in a principled manner. To achieve

this aim, we outline the following objectives:

1. To develop a methodology for extracting structured representations of sentiment

related to drugs and treatments for a chronic disease (i.e. Parkinsons’) that are

described in patient forum posts.
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2. To develop a concept extraction method that can be effective with minimal su-

pervision and adapted to change in data source and disease study.

3. To apply an end-to-end NLP pipeline capable to provide decision makers with

actionable information on the symptom severity and prevalence of a respiratory

disease (i.e. COVID-19) using social media at the population level.

4. To investigate utility and transferability of manually built dictionaries and pre-

trained word embeddings, respectively, by focusing on COVID-19 social media.

Specifically, we transfer dictionaries between two types of social media and use

them to produce weak labels for training neural networks.

1.4 Contributions

To attain the objectives of this thesis we made the following contributions:

1. We show that structured information can be extracted from posts found in an on-

line Parkinsons’ patient forum by forming relationships between a drug/treatment

and a symptom or a side-effect, including the polarity/sentiment of the patient’s

opinion.

2. We develop a novel semi-supervised methodology capable of augmenting and

expanding labelled dataset and concept dictionaries, respectively, by utilising a

base-line CRF algorithm.

3. We apply an end-to-end NLP pipeline using rule- and machine learning- based

methodology for COVID-19 patient-authored social media posts in order to gauge

symptom severity and prevalence at the population level by taking a diagnostic

approach.

4. We show that performance of a BiLSTM+CRF based deep learning model can be

improved by incorporating dictionaries. Moreover, we show transferability of
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the model first by producing weak labels using a dictionary from another source

and then by performing concept extraction.

1.5 Publications

The following publications by the author are related to this thesis:

1. A. Hasan, M. Levene, D.J. Weston. “Natural language analysis of online health

forums”. In: International Symposium on Intelligent Data Analysis. Springer, 2017,

pp. 125–137.

2. A. Hasan, M. Levene, D.J. Weston. “Learning structured medical information

from social media”. Journal of Biomedical Informatics, 2020 Oct;110:103568.

3. A. Hasan, M. Levene, D.J. Weston, R. Fromson, N. Koslover, T. Levene. “Moni-

toring COVID-19 on Social Media: Development of an End-to-End Natural Lan-

guage Processing Pipeline Using a Novel Triage and Diagnosis Approach”. Jour-

nal of Medical Internet Research, 550 24(2):e30397.

1.6 Thesis Structure and Overarching Methodology

This section provides both an overview of the thesis structure and a description of the

overarching methodology taken in this thesis.

1.6.1 Thesis Structure

The next chapter describes background information and literature reviews of the method-

ologies followed in this research focusing on medical social media. Specifically, it pro-

vides background and literature reviews on rule-, supervised-, semi-supervised-, and

deep learning- based information extraction methods. It also discusses different dis-

ease monitoring applications developed using social media focusing on infectious dis-

eases. Chapter 3 describes a rule-based concept relationship methodology to extract
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structured representations of patients’ sentiment regarding drug/treatment focusing

on Parkinsons’ disease. The method relies on different publicly available and manu-

ally built medical dictionaries. In addition, the methodology incorporates an anaphora

algorithm that links sentences in a post to extract coherent information. The focus of

Chapter 4 is to build a method that is not so reliant on manually curated dictionar-

ies as the rule-based approach described in the previous chapter. It presents a novel

semi-supervised methodology which incorporates a dictionary expansion method for

automating extraction of the said concepts from an online Parkinsons’ forum and from

a Twitter dataset. It shows how concept extraction tasks can be improved by augment-

ing labelled datasets and dictionaries. Chapter 5 describes a case study on a COVID-19

forum dataset where methodologies from the previous two chapters are combined to

construct an NLP pipeline. The case study shows how actionable information regard-

ing symptom prevalence and severity can be obtained from social media by taking a

triage and diagnostic approach using the pipeline. Chapter 6 extends the work from

previous chapters into deep learning, where a COVID-19 symptom extraction task is

performed on a large Twitter dataset by producing weak labels using symptom dictio-

naries. Finally, Chapter 7 revisits the research questions stated above. It also describes

the limitations of the proposed methods and potential for future work.

1.6.2 Overarching Methodology

This thesis presents novel methods for extracting actionable health information from

social media focusing on two disease categories; one a chronic disease and the other an

infectious disease. We selected Parkinsons’ disease due to the availability of social me-

dia data and the availability of clinical expertise. From the infectious disease category,

COVID-19 was chosen because of its prevalence at the population level at the time of

this research.

We developed several corpora from online health forums and Twitter related to

the diseases mentioned above. For extracting forum datasets we obtained permission
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from site administrators and then manually downloaded HTML pages to scrape them

automatically offline. For collecting Twitter datasets we used the Twitter Search API.

After collection, the datasets were manually annotated with concepts related to drug,

symptom, and side-effect using annotation tools developed by the author of this thesis.

An example of the annotation tool developed during the course of this research is

shown in Figure 1.1.

Figure 1.1: An annotation tool developed for annotating social media posts with

drug/treatment, symptom, and side-effect. A post is presented sentence by sentence to

an annotator. The screenshot is taken from a webpage which was used for validating

thesis authors’ annotations.

We decided to use words or tokens in a sentence as concept boundaries as opposed

to the beginning, inside, and outside (together called BIO) [143] encoding, since num-

ber of concepts in our experiments ranged from 5 to 13. This is a relatively large num-

ber and adapting to a BIO encoding scheme would double the number of concepts to

be recognised. This would have made the annotation procedure highly complex for an-

notators and potentially degrade the performance of the machine learning algorithms.

Moreover, it is possible to convert multi-tokens to the BIO scheme by using a sim-

ple mapping program. However, we note that such a program may produce an error
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when, for example, two multi-word concepts are mentioned consecutively. We closely

followed the annotation guidelines provided in MacLean et al [115] and Nikfarjam et

al [143]. Both studies used Cohen’s κ for measuring the agreement among annotators.

For training and testing of the models we developed repeated cross-validation strate-

gies were used in various experiments. Finally, for evaluating the models, we used

F1 score as a performance measurement and we also performed statistical significance

tests where applicable.



Chapter 2

Background and Related Work

The continual growth of social media platforms has enabled health professionals, re-

searchers, and decision-makers to monitor individual and population health both in

real time and retrospectively. In particular, health discussion forums and micro-blogging

sites, collectively referred to as medical social media, are valuable sources for actionable

information that can aid health professionals to make rapid decisions via the use of text

extraction processes. Although much progress is achieved through NLP, structured

and coherent information extraction from medical social media for decision-making

remains challenging. Previously researchers applied several NLP methodologies such

as text classification, sentiment analysis, and information extraction to analyse social

media text [70]. Broader ranges of tasks such as detecting flu [10], finding the effec-

tiveness of a treatment/medication [73], and extracting ADR [143] were investigated

by applying these methodologies, particularly through the use of NLP methods that

utilise supervised, semi-supervised, and unsupervised machine learning algorithms.

Sentiment analysis is widely studied on medical social media to analyse patients’ dis-

ease, vaccine, and drug/treatment experiences [243]. To produce an aggregated rep-

resentation of patients’ experience, analysis at both the sentence and post level is

required. Supervised machine learning, specifically deep neural networks, have ad-

vanced automatic extraction of medical concepts such as drugs, symptoms and ADR

[90, 8]. Producing a large, labelled dataset for the purpose of supervision is a highly

intensive and laborious task and the presence of noise in social media makes it chal-

29
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lenging to even find representative samples [70, 186]. Moreover, as new data continu-

ously arrives and novel terms appear, a methodology that works with a small labelled

dataset and detects new terms is required.

The remainder of this chapter is organised as follows. Section 2.1 describes social

media sources, NLP tasks studied, benchmark datasets and related shared tasks. Sec-

tion 2.2, describes relevant literature on rule-based concept extraction, relation extrac-

tion and anaphora resolution. Section 2.3, discusses supervised concept extraction

methods and relevant literature focusing on ADR extraction. Sections 2.4 describes

semi-supervised methods and their relevant literature. Section 2.5 describes literature

relevant to deep learning based concept extraction methods focusing on COVID-19,

incorporating dictionaries with neural architectures, transfer learning, and weak su-

pervision. Finally, in Section 2.6, we describe literature relevant to text classification

methods on social media focusing on ADR classification and infectious disease moni-

toring applications.

2.1 Medical social media sources, NLP tasks and datasets

Gonzalez-Hernandez et al [70] classify medical social media platforms based on user

base and length of posts into two categories; (i) generic platforms such as Twitter, Face-

book, and Instagram, and (ii) online health discussion forums such as PatientsLikeMe,

MedHelp, and Reddit. Generic platforms such as Twitter are targeted for population-

level health surveillance tasks such as monitoring flu or influenza [10, 86, 184], detect-

ing ADR [143, 38, 131], and predicting mental health [186]. Although online forums

(e.g. Parkinsons’ or Breast Cancer) have a smaller user base than Twitter, those are

utilised to provide information, not only for population-level surveillance but also at

the individual level for a specific disease, symptom, and drug/treatment. Within the

two broad categories, there are notable differences in content size and styles [70]. For

example, Twitter text has a restriction on word limit and contains shorter descriptions
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which sometimes lack context. On the other hand, though the scope of forum dis-

cussions is limited to a specific category of condition (e.g. Parkinsons’), they contain

individual experiences and opinions and span over multiple sentences.

2.1.1 NLP Tasks

NLP tasks on medical social media can broadly be categorised into sentiment analysis,

text classification, and information extraction. Herein, we provide an example of an

information extraction task to motivate the discussion.

An example of information extraction

Information extraction (IE) refers to the task of locating relevant entities, for example,

drug and/or symptom, in a collection of text documents, thereby extracting coherent

and structured information from the text [43]. In general, information extraction in-

volves named entity recognition (NER), which we call concept extraction in this thesis,

co-reference resolution, relation extraction, and event extraction. As shown in Figure

2.1, we demonstrate each of these tasks by providing an example from our Parkinsons’

dataset (described in Chapter 3).

Figure 2.1: An example of a social media post. Here, yellow, green, blue, and red

colours correspond to drug, symptom, side-effect, and positive polarity concepts, re-

spectively. Similarly, the labels D, SYM, SD, NG, and P also represent drug, symptom,

side-effect, negation, and positive polarity labels, respectively.

1. Concept extraction is the task of identifying a set of medical concepts and their

attributes from the text. In our running example in Figure 2.1 pramipexole, like,
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movement are drug, sentiment, and symptom concepts, respectively.

2. Co-reference resolution refers to the identification of multiple mentions of the

same concept. For example, in Figure 2.1, the pronoun it refers to the drug

pramipexole.

3. Relation extraction [71] is the task of identifying predefined relations between

two concept. In this example, several relations exist between pramipexole and

sleepy, pramipexole and movement.

4. Event extraction refers to filling up a predefined template representing struc-

tured information. In the running example, we can produce an ordered triple,

using sentiment and relations from the post, (pramipexole, negative, sleepy).

2.1.2 Datasets and shared tasks

In order to attain the objectives described in Chapter 1, we manually curate 5 datasets

focusing on two diseases; they are (i) Parkinsons’, and (ii) COVID-19. Table 2.1 pro-

vides a summary of the respective chapters, data sources, and tasks investigated in

this thesis, whereby the annotation process is discussed in the corresponding chapters

listed in the table.

Research related to medical social media has seen steady growth over the past decade.

Though many datasets are available, our focus is on those related to concept and rela-

tion extraction tasks. First, we discuss 3 benchmark datasets and then the Social Media

Mining for Health Applications (SMM4H) [177] shared tasks. The datasets, constructed

from Twitter and online medical forums, contain annotations from experts. Publicly

available Twitter datasets contain a Twitter identification number and corresponding

annotations. However, they exclude Twitter text as the publication of the text is pro-

hibited by the Twitter application program interface license agreement. It is possible

that some tweets were deleted by their producers. As a result, those tweets may no

longer be available in a benchmark dataset.
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Table 2.1: Datasets curated and NLP tasks investigated in this thesis.

Disease Medical social media Chapter Task

Parkinsons’ PatientsLikeMe [149] Chapter 3 Concept extraction, relation

extraction, sentiment analysis

Parkinsons’ MedHelp [126] Chapter 4 Concept extraction

Parkinsons’ Twitter Chapter 4 Concept extraction

COVID-19 Patient [148] Chapter 5 Concept extraction, relation

extraction, text classification

COVID-19 Twitter Chapter 6 Concept extraction

ADRMine

Nikfarjam et al [143] collected Twitter data about 81 drugs and published expert an-

notations for Drug, ADR, Beneficial Effect, and Indication (which refers to symptom

in our terminology). In addition to this, their corpus included corresponding UMLS

concept ID and UMLS semantic type. The dataset was released in 2015 as a part of

the ADRMine [143] system, hence, why we have decided to call it ADRMine in this

thesis. It was also shared in 2016 SMM4H for the concept extraction task and subse-

quently called PSB2016 Task 2; see [20]. As stated in [177], the PSB2016 Task 2 dataset

contains ADR and indication annotations. Cocos et al [40] compiled a supplementary

Twitter dataset for their experiment with ADRMine. The additional dataset contains

annotations related to Attention Deficit Hyperactivity Disorder (ADHD) drugs which is,

henceforth, collectively called ADRMine and ADHD dataset in this thesis.

CADEC

The CSIRO Adverse Drug Event Corpus (CADEC) [90] corpus, published in 2015, con-

tains social media posts related to 12 drugs from the AskAPatient [14] website and



2.1 Medical social media sources, NLP tasks and datasets 34

annotation for Drug (1800 concepts), ADR (6,318 concepts), Disease (283 concepts),

Symptom (275 concepts), and Findings (435 concepts). The annotations contain a total

of 1250 posts, 7,632 sentences, and 101,486 words.

Twimed

This corpus, published in 2017, consists of 1000 tweets and PubMed sentences anno-

tated with three primary concepts; they are Drug, Disease, and Symptom [8]. Addi-

tionally, the corpus has 3 relational annotations denoted Reason-to-use, Outcome-positive,

and Outcome-negative.

SMM4H shared tasks

The SMM4H shared tasks workshops have been running since 2016 and have been

publishing datasets related to text classification, concept extraction, and concept nor-

malisation for their competition. The ADR classification tasks ran for several years,

where ADR was defined as accidental injuries resulting from correct medical drug use

[177]. Though the overarching goal was to detect ADR concepts from tweets, Sarker

et al. [177] reported that only a small proportion of ADR tweets truly contained pa-

tients’ experiences. Manually separating a small portion of tweets from a large col-

lection for annotation was time-consuming and labour intensive [177]. To overcome

this challenge, the ADR extraction task was divided into three different tasks in the

first four years; they were (i) ADR classification, (ii) ADR extraction, and (iii) ADR

normalisation. The goal of ADR classification was to separate tweets that mentioned

ADR from those that did not mention it. ADR extraction and normalisation concerned

concept span detection and mapping spans to Medical Dictionary for Regulatory Activi-

ties Terminology (MedDRA) 1 terms, respectively. In the latest iteration of the SMM4H

shared tasks, participants were asked to perform three subtasks of ADR that built cu-

mulatively over the tasks. The final task was termed the Adverse Drug Event (ADE)

1https://www.meddra.org/
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detection task [116]. The highest F1 scores for three tasks in 2021 were 75.2%, 51.4%,

and 34.2%. The scores, in particular, the score of the ADE represented the underlying

complexity and challenges of the social media dataset. We discuss the shared tasks in

further detail in Section 2.6.1.

2.2 Rule-based information extraction

Rule-based systems, one of the earliest information extraction methods, are constructed

using syntactic and semantic rules or patterns in the text. Syntactic and semantic

rules usually utilise grammatical properties of words such as Parts-of-Speech (POS) tags

and dictionaries of semantic classes (i.e. drug, symptom, and side-effect), respectively

[165, 62]. The following subsections discuss past research related to rule-based concept

extraction, relation extraction, anaphora resolution, and sentiment analysis in medical

social media.

2.2.1 Rule-based concept extraction

MetaMap [12, 11] is one of the earliest rule-based automated systems in the biomed-

ical domain which was constructed for processing scientific documents from MED-

LINE/PubMed citations. It has an NLP pipeline for processing a piece of text and

mapping it into formal UMLS concepts. Several rule-based algorithms are built into

MetaMap, to generate candidate concepts for words and phrases in the text and to

provide rankings for generated concepts. Moreover, it can be configured to recog-

nise targeted semantic types such as Disease or Syndrome (DSYN), Sign or Symptom

(SOSY), and Body Part, Organ, or Organ Component (BPOC). For example, Wu et al

[220] target MetaMap to recognise ADR for the sentiment analysis. In this thesis, we

utilise MetaMap to recognise drug/treatment, symptom, and body parts in medical

social media. The recognition of semantic type is an important stepping stone for in-

formation extraction. Although MetaMap is very effective in retrieving concepts from
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documents written by experts, it is known to perform poorly on textual sources of so-

cial media [77].

Previously, researchers relied on various rule-based methodologies for the ADR recog-

nition task. Leaman et al. [103] were among the early researchers to extract ADR from

an online forum using an ADR dictionary. Their rule-based algorithm used a sliding

window approach to find concepts from the text. Nikfarjam et al [142] also created

an ADR dictionary to apply association rule mining for ADR recognition from social

media. Yang et al [225] utilised a similar methodology for extracting ADR from Med-

Help [126] website. Wu et al [219] proposed an early warning system to discover the

side-effects of a drug using co-occurrence statistics from web pages. They applied Side

Effect Resource (SIDER) [98] dictionary to locate drug-related web pages. To identify

ADR, Yates et al [226] developed a rule-based system using concept dictionaries and a

synonym set that included term variants. Researchers also devised methodologies for

linking ADRs to respective drugs. For example, Katragadda et al [91] extracted ADRs

and connected them to corresponding drugs using a graph algorithm. Moreover, Ru

et al [166] created an outcome dictionary to find the effectiveness of drugs from social

media.

In the past, researchers also applied unsupervised rule-based approaches to create

medical dictionaries automatically from formal and informal documents. Xu et al [223]

developed an unsupervised and iterative pattern learning approach for constructing a

medical disease dictionary from randomized clinical trial abstracts. On the other hand,

creating a dictionary that reflected different ways consumers expressed and thought

about health topics called Consumer Health Vocabularies (CHV) was the objective of sev-

eral studies such as in [227] and [203]. A recent relevant example of a colloquial term

was loss of smell -formally known as anosmia among health practitioners. Vydiswaran

et al [203] created a CHV by discovering pairs of medical terms and their common

alternate names from Wikipedia [203]. More recently, Sarker et al [176] constructed a

COVID-19 symptom dictionary of informal terms from Twitter using regular expres-
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sions.

Gupta et al [77] deployed a semi-supervised algorithm where they extracted symp-

toms and conditions (SCs), as well as, drugs and treatments (DTs) from online health

forums using lexico-syntactic patterns. At first, they labelled the concepts using dictio-

naries constructed from publicly available sources. They then created flexible patterns

by looking at two to four words before and after the labelled tokens. Patterns were

scored by a frequency measure, i.e. the top-k most occurring patterns were chosen.

They applied these patterns to all the sentences and extracted the matched phrases.

These learned phrases were added to the dictionary, and the process was repeated

until convergence occurred. This method resulted in an improvement of the F1-score

by approximately 5% over the base-line lexicon-based approach. The authors also re-

ported on the discovery of new DT- and SC- terms that were not present in the seed

dictionaries. Moreover, they found that their system outperformed MetaMap for pro-

cessing social media posts.

2.2.2 Relation extraction

Relation extraction aims to identify pre-defined relations between concepts from un-

structured text [15, 81]. For example, the Outcome-positive relation from the Twimed

corpus represents a positive outcome of a drug used for treating a symptom [8], where

both the drug and the symptom co-exist in a sentence. Research related to relation ex-

traction from social media are rare, only a handful of studies related to our work exist.

Doan et al [52] developed a rule-based system using a dependency parser, which rep-

resented binary grammatical relations between words [120], in order to extract cause-

effect relation from Twitter messages for three topics; i.e. stress, insomnia, and headache.

For instance, given a tweet Excessive over thinking leads to insomnia- their goal was to ex-

tract excessive over thinking as a cause for insomnia [52]. Recently, Ahne et al [1] applied

CRF for extracting causal relations from tweets related to Diabetes.

Closest to our work, are the n2c2 shared tasks [82] which uses an EHR dataset, an-
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notated with medications (drug/treatment in our terminology) and related concepts.

The tasks are: (i) extracting medications and their related concepts from EHR, (ii) es-

tablishing a link between a concept and the medication preceding it, and (iii) building

an end-to-end pipeline for tasks (i) and (ii). Some medication-related concept exam-

ples are strength and dosages, duration and frequency of administration, and reason

for administration. Although the shared task organisers reported that deep learning-

based models performed well for the relation extraction task, in a later study Alfattni

et al [4] found that rule-based systems outperformed a BiLSTM-based deep learning

model. Guan et al [75] found that Transformer [201] based models such as BERT [49]

improved ADE and Reason (indication) relations extraction task on the n2c2 corpus.

In a recent study by Mahendran et al [118], biomedical and clinical contextual lan-

guage models, BioBERT [105] and ClinicalBERT [7], respectively, outperformed other

models on the n2c2 dataset [24]. Research on the extraction of biomedical relations, e.g.

protein-protein interaction (PPI) and drug-drug interaction (DDI), from the biomedical

literature has seen explosive growth over the past decade thanks to advances in models

based on neural networks [232]. Several benchmark corpora exist such as ChemProt

[97] and DDI 2013 [182]. Neural approaches, such as hierarchical Recurrent Neural Net-

work (RNN) [233] and LSTM [235], achieved state-of-the-art results for the multi-class

biomedical relation extraction tasks.

2.2.3 Anaphora resolution

We note that extracting concepts from individual sentences in a post is an important

step towards analysing natural language in medical forums. However, we also came to

realise that linking the sentences in a post would allow a more comprehensive analysis

of the text. Disambiguation of semantic relations between two expressions (sentences

in our case) is known as anaphora resolution, where a later expression (the anaphora) has

some semantic relation to an earlier expression (the antecedent). The rule-based system

described in [71] is a knowledge-centric and pattern-based approach for disambiguat-
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ing anaphoric references in clinical records.

2.2.4 Sentiment analysis in medical social media

Sentiment analysis [87] has been widely used to mine opinions from various online

customer reviews. According to Deneck et al [48], the application of sentiment analysis

in health domains concerns patient’s health status, symptoms, and drug/treatments.

In addition to this, Bobicev et al [22] assert that sentiment analysis also enables to

recognize personal attitude in discussion of one’s health. Chee et al. [31] performed

sentiment analysis of online health forums using an ensemble of classifiers. Their mo-

tivation was to find drugs that could be included under the regulatory watch list. The

study in [124] investigated sentiment analysis of health forums in order to find the

effectiveness of alternative treatments for cancer (also known as Complementary and Al-

ternative Medicine (CAM)). More recently, Ng et at [140] investigated the effectiveness

of CAM treatments for COVID-19 from Twitter by applying a general purpose senti-

ment analysis tool. Furthermore, to quantify the sentiment of vaccines available for

the sexually-transmitted Human Papillomavirus (HPV), Massey et al [123] developed

a multi-class classification system for Twitter. The Twitter data was analysed to inves-

tigate the experience and outcome of chemotherapy in respective patients [230].

Na et al [138] performed a clause-level sentiment analysis by adopting a rule-based lin-

guistic approach. They first divided a sentence into clauses, then, using dependency

parsing, they established the relationship between aspects and sentiment. On the other

hand, the study in [3] analysed the performance of features for machine learning mod-

els on social media. Here we briefly discuss some of the commonly applied features in

supervised sentiment analysis tasks:

1. Word embeddings: Pre-trained word embeddings, e.g. Word2Vec [134] or GloVe

[152], are utilised to extract sentence and token level features.

2. Bag-of-Words (BOW): A sentence is represented as a TF*IDF vector, where TF
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and IDF respectively represent term frequency and inverse document frequency, col-

lected from the dataset.

3. Frequency of sentiment words: Number of positive and negative words in a

sentence recognised by a sentiment lexicon ( e.g. MPQA Subjectivity Lexicon

[214]), is used as a feature for sentiment classification.

4. POS tags: Frequency of selected POS tags, e.g. nouns, adverbs, and adjectives,

can also be added as features for sentiment classification.

5. Negation: Inclusion of this feature indicates presence of one or more negations,

e.g not, nor, neither, in a sentence [3].

In addition to the above features, the UMLS semantic type of a token is often incorpo-

rated as a feature in medical settings (refer to [3]). Incorporating emotionally-related

features was found to be effective in identifying Twitter users with self-reported men-

tal health conditions (i.e. Bipolar, Depression, PTSD, and SAD) [34, 187]. The study in

[163] developed a sentiment analysis tool known as Tweep to detect depression among

authors of tweets using rule-based, machine learning (Naive Bayes) and Convolutional

Neural Network (CNN). Yadav et al [224] applied CNN, to investigate sentiment on

different aspects. Such aspects included the severity of a medical condition, the effec-

tiveness of a drug, and ADR. Their model was applied to several disease categories

such as depression, anxiety, and asthma.

Moreover, the study in [73] investigated transferability of the supervised sentiment

analysis techniques. The researchers specifically created multiple annotations for a

drug review with regards to the overall drug rating, side-effects, as well as benefits.

Following this, three separate supervised Logistic Regression (LR) models were trained

for the sentiment analysis on the three said drug review tasks. They performed the

transferability experiment on two different data sources and multiple conditions (e.g.

pain, anxiety, diabetes). For all prediction tasks they applied a n-gram approach to ex-

tract features from the post. In the n-gram approach, single tokens or unigrams, and
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two or more adjacent tokens (bigrams, trigrams) are used to produce representation of

a post or comment.

In recent studies, Graph Convolution Network (GCN) was applied by taking account

of dependency structures of the sentences in a post [241]. Specifically in [241], each

sentence using a dependency parser was parsed to find its graphical representation.

Representations of vertices which were recognised as Sign or Symptom concepts by

UMLS were classified as sentiments. In a recent study, Žunić et al [242] applied BERT

to encode contextual representation of words, as well as to find sentiments for as-

pects grounded by UMLS. According Žunić et al [242], one of the limitations of their

approach was that its aspects (i.e. Sign or Symptom) were a priori known to the

deep learning models. In another study, Gupta et al [77] found that UMLS grounded

biomedical NLP tools such as MetaMap and that cTAKES performed poorly on social

media data. Our approach to sentiment analysis was rule-based and it linked clauses

and sentences using anaphoric relations; see Section 2.2.3 and 3.3 for relevant litera-

ture and our detailed algorithm. A systematic review of sentiment analysis in health

domain can be found in [243].

2.3 Supervised concept extraction

Although rules using dictionaries are effective for concept extraction tasks in the ab-

sence of labelled data, they suffer from scalability and portability issues. Nikfarjam

et al [143] report that less frequent concepts may be missed by a rule-based system.

It is possible that rules generated from a training set may not generalise to an unseen

test set constructed from a different type of disease and data source. For various se-

quence labelling tasks in NLP, e.g. NER or POS tagging, Hidden Markov Models (HMM),

CRF, and Neural Network-based models are widely used. In recent times, variants of

RNN and Transformers such as BiLSTM and BERT, respectively, have outperformed

other models in sequence labelling tasks. These models do not require explicit features
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due to the fact that such features are learnt in the training process. Moreover, recent

advances in pre-trained word embeddings enabled the researchers to extract features

from large unlabelled corpora. In the following, we first provide a discussion about

CRF graphical models showing examples for feature generation, and then we discuss

joint BiLSTM and CRF models, subsequently called BiLSTM+CRF.

2.3.1 Conditional random fields (CRF)

CRFs, are a family of undirected graphical models representing a conditional distri-

bution and can be applied to calculate the conditional probability of a label sequence

given a sentence represented as a sequence of tokens. In Figure 2.2 we have shown

a linear chain CRF. In the following, we provide a brief description of how CRF is ap-

plied for the concept extraction task, for details see [99, 125], and [193].

Let X = x0, . . . , xt, . . . , xT be a sequence of T tokens (in our case a token represents

Figure 2.2: Linear chain CRF

a word, we use token and word interchangeably), and Y = y0, . . . , yt, . . . , yT be their

corresponding labels (semantic type of the token). Let gk(yt, yt−1, xt) be k = 1, · · · , K

feature functions at position t, and xt be a vector of extracted features for the token at

location t. The conditional probability of the label sequence Y given the token sequence

X is calculated as follows [193]:

P(Y|X) =
1

Z(X)

T

∏
t=1

exp
K

∑
k=1

λkgk(yt, yt−1, xt). (2.1)
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Here, Z(X) is a normalisation factor, and λk is the weight of the kth feature function.

The goal of training is to estimate the weights of feature functions from the labelled

instances.

The inference algorithm for the CRF estimates the most likely labels for a token se-

quence by utilising a dynamic programming algorithm called the Viterbi algorithm.

The algorithm produces Viterbi probabilities [159] for each possible label sequence by

enumerating all labels. Viterbi probabilities are treated as the confidence of the pre-

diction for a label sequence. Finally, to estimate λ parameters in Equation 2.1, the

limited-memory BFGS [144] optimisation procedure is used; see [125, 193] for a de-

tailed description of the inference and training procedures for the CRF.

Example of feature processing:

There are two kinds of feature sets; label-label and label-word features; generating two

Figure 2.3: An example of annotated post where D, SYM, and P in brackets denote

drug, symptom, and positive polarity labels, respectively.

kinds of probabilities for each sentence; transition and emission probabilities. A template

for a label-label feature function, gLL
ij (yt, yt−1, xt) is as follows:

gLL
ij (yt, yt−1, xt) = 1yt=i1yt−1=j∀i, j ∈ L. (2.2)

Where, 1yt=i and 1yt−1=j denote indicator functions. gLL
ij corresponds to unique order-

ing for gk in Equation 2.1. L is the set of possible labels. In the example of Table 2.2,

the number of labels, L={D, SYM, P, O}, is 4, therefore number of label-label features

are 16. The second type of feature function, label-word, is defined similarly as follows:

gLW
iv (yt, yt−1, xt) = 1yt=i1xt=v∀i ∈ L, v ∈ V (2.3)
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Table 2.2: The sentence in Figure 2.3 is tagged with labels accordingly where D, SYM,

P, and O represent drug, symptom, positive polarity, and other concepts, respectively.

t xt yt

1 Roprineral D

2 tablets O

3 from O

4 the O

5 doc O

6 for O

7 restless SYM

8 leg SYM

9 , O

10 they O

11 are O

12 helping P

13 me O

14 . O

Here, V is the unique vocabulary of words; i.e. unique words in the total dataset.

However, one can add any number of feature templates of label-word features. Table

2.3provides a clear example that illustrates how contextual features can be collected

from a sentence by considering previous and next tokens for xt. Similarly, we can

process an arbitrary number of label-word features by considering many syntactic and

lexical patterns. These label-word features contribute to the emission probabilities of the

token.
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Table 2.3: Contextual feature extraction for the sentence in Table 2.2 using a window

size of 1.

t xt yt

1 (START, Roprineral, tablelts) D

2 (Roprineral, tablets, from) O

3 (tablets, from, the) O

4 (from, the, doc) O

5 (the, doc, for) O

6 (doc, for, restless) O

7 (for, restless, leg) SYM

8 (restless, leg, ,) SYM

9 (leg, ,, they) O

10 (,, they, are) O

11 (they, are, helping) O

12 (are, helping, me) P

13 (helping, me, .) O)

14 (me, ., END) O

2.3.2 Neural architectures

According to Collobert et al [41], feature selection is an empirical and task oriented pro-

cess implying additional research for each new NLP task. They propose a multilayer

neural network architecture whereby feeding it with word indices from a vocabulary.

Then the first layer of the network is initialised by mapping these word indices into

a feature vector via a lookup table operation. Despite the fact that the network is ini-

tialised with features, the internal representation of the subsequent layers is able to

generalise on multiple similar NLP tasks [41].

In 2013, Mikolov et al [133] proposed the Word2Vec algorithm to learn distributed
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representations of words by processing large unlabelled corpora using a simple feed-

forward neural network to predict a word given its context (or vice-versa). The result

is a dense vector representation for each word where words that have similar meaning

are likely to be close in this vector space. The reason derives from the assumption that

words that have similar context have similar meaning. Inspired by the success of the

word embeddings, Cho et al [37] proposed an RNN Encoder-Decoder neural network

architecture for statistical machine translation. It consisted of two RNNs that acted as

an encoder and a decoder pair. The encoder mapped a sequence of the source lan-

guage to corresponding word embeddings, and the decoder mapped it to a sequence

of the target language. The networks were trained together to calculate the conditional

probability of the target sequence [37].

To replace hand engineered features, in 2016 Lample et al [100] proposed BiLSTM

based encoder network for NER; see Figure 2.4. The network first mapped a token

sequence to word embeddings and then calculated emission probabilities using a Soft-

max layer. Herein, we follow the descriptions from [100] to calculate the probability of

a label sequence.

For a given sequence of words, X = x0, . . . , xt, . . . , xT, each word is represented as a

d dimensional vector. The forward LSTM takes this sequence and produces a hidden

representation for each xt, denoted
−→
ht , and the backward LSTM produces a hidden

representation by reversing the sequence denoted as
←−
ht . The representation of a word

using this model is obtained by concatenating its left and right context representations,

ht = [
−→
ht ;
←−
ht ]. The hidden representation ht contains the summaries of both the pre-

ceding words and the following words. Let the number distinct labels and the length

of the sequence be L and T, respectively. Let E be the matrix of scores output by the

BilLSTM network. Therefore, E is size of T × L, and Ei,j corresponds to the emission

score of jth label for the ith token. For a sequence of predictions Y = y0, . . . , yt, . . . , yT,

the score s is calculated as follows:
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Figure 2.4: BiLSTM+CRF architecture.

s(X, Y) =
T

∑
i=0

Ayi ,yi+1 +
T

∑
i=1

Ei,yi (2.4)

A is a matrix of transition scores, where Ai,j represents transition scores from label

i to label j. So, the probability of a label sequence is calculated as follows:

P(Y|X) =
exp(s(X, Y))

∑ŷ exp(s(X, Ŷ))
(2.5)

Finally, the joint network is trained using back propagation; see [100].

2.3.3 Contextual language models

Neural networks initialised with pre-trained word vectors encode prior knowledge of

word context which is useful in many NLP tasks including transfer learning. Static

embeddings such as Word2Vec and GloVe [152] have been influential in solving NLP

tasks. One key issue with them is that words can have more than one meaning, for

which static embeddings cannot easily identify. In contrast, deep neural networks,

such as a multilayer BiLSTM network trained on a large corpus for a language mod-

elling objective can capture different senses of a word at the sentence level [155]. For
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example, Embedding from Language Model (ELMo) was able to capture two different

senses of the word play in two different sentences; i.e. in the context of drama and game

[155]. Following the success of ELMo in encoding polysemy and homonym of words,

Devlin et al [49] developed BERT by pre-training a deep Transformer [201] network

using a cloze style learning objective. The core idea was called Masked Language Model

(MLM) which randomly masked words in the text. Later on the network was trained

to predict these masked words. Fine-tuning, which is training the pre-trained model

further for a specific task, has been found to be very computationally efficient. The

success of BERT inspired others to pre-train the BERT model with various domain spe-

cific corpora. For example, BioBERT [105] was trained on a vast biomedical literature.

This model significantly outperformed state-of-the-art models on various biomedical

information extraction tasks [105]. Müller et al [137] published a pre-trained COVID-

Twitter-BERT (CT-BERT) model trained on a corpus of Twitter messages related to

COVID-19. The authors reported that their model outperformed BERT models on sev-

eral sentiment analysis tasks on Twitter datasets [137]. The BERT model known as

ClinicalBERT was also trained using clinical notes from hospital admissions [7]. This

model outperformed both BERT and BioBERT on a hospital readmission prediction

task.

2.3.4 Supervised concept extraction in medical social media

In the past, sequence labelling was performed for ADR extraction from ADRMine,

CADEC and Twimed corpora; see Section 2.1.2 for a discussion related to these cor-

pora. A review of past research related to ADR extraction from social media can be

found in [174]. MacLean et al [115] in their 2013 study applied CRF successfully for ex-

tracting medical concepts from MedHelp [126] forum data. They asked two groups of

annotators, experts, as well as non-experts to annotate the text with words and phrases

relevant to medical concepts at the sentence level. Specifically, they asked them to ex-

tract concepts describing body parts, conditions, symptoms, and treatment. Relevant



2.3 Supervised concept extraction 49

Table 2.4: Past ADR extraction methods and results using three benchmark datasets.

Study Dataset Model P R F1

Nikfarjam et al [143] ADRMine CRF 0.76 0.68 0.72

Chowdhury et al [38] ADRMine BiLSTM 0.72 0.87 0.79

Cocos et al [40] ADRMine

and ADHD

RNN 0.70 0.82 0.75

Ding et al [50] ADRMine

and ADHD

BiGRU 0.78 0.91 0.84

Wang et al [206] ADRMine

and ADHD

BERT+CRF 0.85 0.92 0.88

Miftahutdinov et al [132] CADEC CRF 0.85 0.79 0.79

Tutubalina et al[196] CADEC BiLSTM+CRF 0.82 0.84 0.81

Scepanovic et al [179] CADEC BiLSTM+CRF 0.81 0.82 0.82

words and phrases were labelled either as medical or non-medical. Aside from creating a

gold standard dataset for training with a CRF, their study also included a comparison

between expert and non-expert annotations. They found that non-expert annotations

were overall an acceptable approximation for expert judgments in the case of social

media [115] which motivates our approach to the annotation process. In 2014, Ginn et

al [66] published a Twitter corpus annotated with ADR mentions. Note that the corpus

was released prior to ADRMine by the same group of researchers. Lin et al [108] in-

vestigated the corpus for the ADR extraction task utilising a CRF with Word2Vec [133]

and GloVe word vectors[152]. They demonstrated that including such word represen-

tations improved performance, moreover, Word2Vec had better clustering properties

than GloVe vectors.

Nikfarjam et al [143] achieved state-of-the-art performance for ADR extraction on ADR-

Mine and DailyStrength [47] corpora. Features such as contextual, lexical and semantic



2.3 Supervised concept extraction 50

POS tags were added to the CRF classifier. They also added word embedding features,

created from Word2Vec [134], trained on unlabelled Twitter and the DailyStrength cor-

pora. In another study, Korkontzelos et al. [96] analysed the effect of sentiment analy-

sis features in ADR classification, which made use of rules such as negation to improve

the performance of their system. Cocos et al [40] applied LSTM models on the ADR-

Mine and ADHD dataset. Chowdhury et al [38] applied a BiLSTM based multitask

framework and attention mechanism on the ADRMine dataset. Ding et al [50], de-

veloped Bidirectional Gated Recurrent Unit (BiGRU) with attention mechanism on the

ADRMine and ADHD dataset and reported improvements on Cocos et al [40]. Wang

et al [206] applied BERT combined with a CRF, henceforth called BERT+CRF, which

they used to address class imbalance on the same two datasets. Finally, a detailed

description of these deep learning models with a recent literature review on ADR ex-

traction in pharmaceutical setting is provided in [104]. Due to the fact that datasets

vary in size, we cannot directly compare these models. In Table 2.4 we have provided

the Precision (P), Recall (R), and F1 scores obtained via such methods. In case of the

ADRMine dataset, BiLSTM outperformed CRF; see first two rows of Table 2.4. How-

ever, precision (P) of CRF is substantially better than that of BiLSTM. For the combined

dataset, i.e. ADRMine and ADHD, recent BERT+CRF model outperformed all others.

Miftahutdinov et al [132] also applied CRFs to the CADEC corpus. Their system

created word embeddings, similar to those of Nikfarjam et al [143], from unlabelled

data by making use of the Word2Vec algorithm, and the resultant word vectors were

grouped in predefined clusters that were utilised as features. Tutubalina et al [196]

applied BiLSTM+CRF on the CADEC corpus. Scepanovic et al [179] also applied

BiLSTM+CRF initialised with Robustly Optimized BERT Pretraining Approach (RoBERTa)

[111] embeddings. BERT based models have also dominated in recent editions of the

SMM4H shared tasks [116]. In the latest three editions of the SMM4H, i.e. 2019 to 2021,

BiLSTM+CRF models initialised with BioBERT word embeddings concatenated with

dictionary features obtained the best performance [130, 131, 170] on the ADR extrac-
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tion tasks.

An HMM was implemented by Sampathkumar et al [171] for extracting ADR from a

social media corpus. The HMM provided statistical structure for the forum messages,

where drug and side-effects keywords representing the causal relation between the

drug, side-effects and other words, were encoded as hidden states. Concepts were

extracted from the messages using existing medical lexicons. The model was trained

with the positive samples of ADRs, and learnt the association between drugs and side-

effects through the presence of keywords. The most likely hidden state sequence is

used to provide the predicted labels. The authors conducted various experiments by

varying different components of the system. One of their findings was that the F1-

score of the supervised classification model is significantly lowered as the size of the

dictionaries is reduced.

2.4 Semi-supervised concept extraction

In a domain such as medical social media where labelled data is scarce, we require

a methodology that performs well on a small labelled dataset in conjunction with

an unlabelled dataset. Additionally, when data is continuously streamed, concept

drift occurs- where the underlying data stream distribution changes gradually over

time [72, 236]. The semi-supervised methodology can take advantage of both labelled

and unlabelled datasets to tackle the aforementioned challenges. Several categories

of semi-supervised methods exist in the literature; see [199] for descriptions of these

different categories. We focus on so-called wrapper methods. The simplest wrapper

method is called self-training and in this approach, a supervised model is first trained

with a labelled dataset. The model is then utilised to collect predictions on an un-

labelled dataset. In general, the most confident predicted data points are added to

the labelled dataset and the model is re-trained [199]. Co-training is an extension of

self-training to multiple supervised classifiers. In the case of co-training, two or more
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supervised models called base-learners are first trained on different views of the dataset

and then jointly used for predictions from the unlabelled dataset. In the case of boost-

ing, an ensemble of base learners is used for predicting from the unlabelled dataset.

Boosting operates by setting weights for each base learner depending on its perfor-

mance on an earlier iteration. In the following subsection, some of the relevant studies

are discussed.

2.4.1 Semi-supervised concept extraction in social media

An iterative semi-supervised active learning based method was proposed to recog-

nise drugs and their side-effects from Twitter data by [27] which includes human an-

notators in the training loop to augment representative and diversified labelled data.

Edo-Osagie et al. [56] used self-training and co-training semi-supervised methods to

train different binary classifiers for recognising tweets related to asthma. Lee et al.

[106] used a semi-supervised CNN to identify ADE from a publicly available Twitter

corpus. They gathered unlabelled corpora from various biomedical sources to learn

phrase embeddings using dictionaries. They also expanded a health condition dic-

tionary by selecting similar word vectors from an unlabelled corpus. However, this

dictionary expansion did not consider an incremental retraining framework for up-

dating the dictionary at each iteration of the semi-supervised methodology. A semi-

supervised methodology was also applied by combining Word2Vec with brown cluster-

ing [26] features extracted from unlabelled Spanish and Swedish EHRs. These features

boosted the performance of different base-line models, including a CRF [153]. More

recently, a Chinese drug event report corpus was utilised to compare the effectiveness

between the CRF and the BiLSTM+CRF models in recognising ADR concepts when

deployed within a co-training style tri-training [238] methodology [35]. Both CRF and

BiLSTM+CRF reported achieving comparable performances by leveraging the unla-

belled dataset.
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2.5 Deep learning for medical concept extraction

Deep learning models have achieved performance improvements on various NLP tasks

over traditional machine learning algorithms. Moreover, their utility in transfer learning

settings, where models trained in one data source are applied to a different data source

[72], are well known. In Chapter 6, we investigate the utility of employing manually

built COVID-19 dictionaries in deep learning and transfer learning settings. This in-

cludes both using dictionaries within the model and also to label the data for weak

supervision. In the following subsections, we discuss related literature focusing on

studies which performed COVID-19 medical concept extraction utilising social media,

dictionary incorporation into deep learning architectures, transfer learning utilising

social media, and weak supervision.

2.5.1 COVID-19 medical concept extraction

Since the start of the COVID-19 pandemic, medical social media have been extensively

used to track and monitor COVID-19 novel symptoms [94, 76, 176]. Hernandez et al.

[83] explored a large scale Twitter dataset [17] and automatically labelled tweets for

drugs, conditions/symptoms, and measurements using biomedical taggers such as

ScispaCy [139]. They found that existing biomedical/scientific text processing systems

for concept extraction do not generalize well when used with non-clinical data sources

like Twitter [83]. Batbaatar et al [19] developed a BiLSTM+CRF model to extract dis-

ease or syndrome, sign or symptom, and pharmacologic substance concepts from Twit-

ter messages. However, their corpus was annotated automatically using the UMLS

ontology which was known to miss concepts written in conversational language [77].

Wang et al [207] developed a tool called COVID-19 SignSym that extracted COVID-19

symptoms and their attributes such as body location, severity, and negation from the

EHR records. The tool, which was built using the CLAMP [189] software, employed a

hybrid approach of combining deep learning-based models, dictionaries and rules.
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2.5.2 Combining gazetteers with deep learning

The use of sentiment dictionary features was widespread in high-performing deep

learning based systems submitted to various SMM4H shared tasks. For example, Wu

et al. [218] utilised a sentiment dictionary with character and word embeddings and

combined them with various neural network architectures; this was the best perform-

ing system in the 2018 SMM4H ADR classification task. In 2019, the ADR classification

was improved significantly by concatenating contextual embeddings with various lex-

ical and syntactical features [211].

Several studies have demonstrated the utility of dictionaries for NER recognition tasks.

Chiu et al [36] proposed an LSTM-CNN architecture that incorporated boolean dictio-

nary features each of which indicated a word was part of an element included in a

dictionary. In general, there are two types of methods for dictionary matching in the

literature: (i) Partial match, and (ii) Full match. For example, consider the dictionary

entry heavy chest pain, partial matches could be pain and chest pain whereas the full

match is the total dictionary entry itself. Song et al [188] utilised both methods in

their BiLSTM+CRF -based architecture for the NER tasks in multiple languages. Mag-

nolini et al [117] demonstrated the use of dictionaries by concatenating such features

with the input embeddings of a BiLSTM+CRF architecture. Recent work on incorpo-

rating gazetteers/lexicons into neural models focused on creating gazetteer embed-

dings and gazetteer models [154]. Usually, the gazetteer embeddings are represented

as trainable parameters created from dictionary matches. Peshterliev et al [154] used

a self-attention mechanism to enhance gazetteer embeddings and concatenated them

with ELMo, character CNN and GloVe embeddings. Finally, Sun et al. [192] created

gazetteer embeddings using labels and related gazetteers and fused them to a BERT-

based encoder.
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2.5.3 Transfer learning

Transfer learning has been successfully used in a variety of applications both within

NLP and outside [210]. Here we focus on social media applications of transfer learning

specifically involving Twitter datasets.

Transfer learning involving Twitter datasets poses many challenges due to the na-

ture of the short sentences, frequent use of informal grammar, and irregular vocabulary

(e.g. abbreviations) [141]. Alhuzali et al [5] pre-trained a classifier on a corpus an-

notated with sentiment information and then successfully applied BiLSTM to extract

ADR on the ADRMine dataset. Han et al [80] proposed a domain-adapted fine-tuning

approach using contextual language models (i.e. BERT and ELMo) for NER and POS

tagging tasks in the domain of Early Modern English and Twitter, respectively. The

domain-adapted fine-tuning referred to the approach where the language model was

further pre-trained on large unlabelled corpora of the target domain. After this process,

the language model was fine-tuned on a task in the source domain and transferred to the

target domain. In [80], the base BERT model was further pre-trained on a large Twitter

corpus, which was the target domain. The pre-trained model was then fine-tuned util-

ising the standard CoNLL 2003 NER task [172] which was the source domain. This

model was then transferred to predict a NER task on the Twitter dataset published

by the 2016 Workshop on Noisy User Text (WNUT) [191]. Luo et al [113] first trained a

BERT+CRF model on an EHR dataset and transferred the model to extract symptoms

from a Twitter dataset that contained mentions of COVID-19. The performance against

the Twitter evaluation set achieved an F1 score of 0.86. Zhang et al [231] trained a BiL-

STM+CRF on the PubMed corpus and transferred the model to extract drug, disease

and symptom from the Twimed dataset. Nguyen et al [141] recently created a model

called BERTweet that was trained on a Twitter corpus of 850 million tweets using the

RoBERTa [111] pre-training approach. They achieved state-of-the-art performances on

several NLP tasks such as POS tagging, NER, and text classification on the WNUT
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datasets.

2.5.4 Weak supervision

Fine-tuning allows pre-trained models, e.g. Word2Vec and BERT, to adapt to a target

domain where a small amount of labelled data exists. In contrast, weak supervision,

which subsumes another approach called distant supervision, is studied widely in cases

where a labelled dataset is absent. Usually, the weak supervision approach utilises

multiple sources such as dictionaries, ontology, and rules that are collectively called

labelling functions, to annotate an unlabelled dataset automatically [162, 109]. Lison et

al. [109] collated annotations from multiple sources using an HMM, which captured

the varying accuracies and inconsistencies of the labelling functions.

While automatically annotating a dataset using labelling functions reduced human

labour and cost, the models suffered from noise introduced by imperfect rules and

dictionaries. Shang et al [183] proposed AutoNER that trained a BilSTM+CRF model,

where a modified CRF optimization procedure was used, by automatically produc-

ing labels using a domain dictionary. Additionally, the model made use of a tagging

scheme called tie-or-break which helped in de-noising label inconsistencies induced by

the dictionary. They performed experiments on several biomedical corpora and re-

ported to have achieved comparable results with supervised models. Another chal-

lenging problem with weak supervision is designing linguistic patterns or rules which

requires a considerable amount of manual effort and domain expertise for automatic

annotation. Zhao et al [234] approached the problem by constructing a GCN capable

of learning new rules from unlabelled corpora using a set of seed rules within a bio-

medical weak supervision task. Furthermore, in the biomedical domain, SwellShark

[64] used lexicons from different sources and rules to generate a labelled dataset for

training with the BiLSTM+CRF network. Recently, the WRENCH [229] benchmark

came up with a set of generalised functions to programmatically produce labels for a

diverse set of datasets.
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2.6 Text classification in social media

Figure 2.5: A COVID-19 patient’s social media post. Yellow, green, cyan, and red

colours denote duration, symptom, body parts, and severity, respectively.

Medical social media was successfully used to facilitate the detection of influenza

epidemics [10, 86] and more recently COVID-19 [184]. In Figure 2.5, we show a so-

cial media post from a COVID-19 patient where they share their experience regard-

ing COVID-19 symptoms, severity, duration, and affected body parts. Our objective

is to build a NLP pipeline for the classification of patients’ posts that incorporates a

triage and diagnostic approach in order to extract symptom severity and prevalence of

COVID-19 in the population. In the following subsections we first review the text clas-

sification tasks in the SMM4H and then NLP applications related to disease detection

and tracking focusing on infectuous diseases.

2.6.1 Twitter text classification tasks in SMM4H

In Table 2.5, we show year wise best F1 scores for ADR classification tasks achieved

in the SMM4H shared tasks. In the earlier iterations machine learning based classi-

fiers such as Support Vector Machines (SVM) [54, 122], LR, and Random Forest (RF) were

successful in creating state-of-the-art performance. However, in recent editions BERT

based models have dominated. The performance reduction in 2021 as can be seen from

Table 2.5, prompted organisers to have a closer look. They found that in addition

to the datasets being different, participants in SMM4H 2020 used additional corpora
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Table 2.5: Best performing ADR classification results in the SMM4H shared tasks for

each year.

Year Study Classification method P R F1

2016 Rastegar-Mojarad et al [161] Random Forest 0.36 0.50 0.41

2017 Kiritchenko et al [92] SVM 0.39 0.48 0.43

2018 Wu et al [218] CNN 0.44 0.63 0.52

2019 Chen [33] BERT 0.60 0.68 0.64

2020 Wang [205] RoBERTa 0.62 0.65 0.64

2021 Ramesh [160] RoBERTa 0.51 0.75 0.61

to train their systems [116]. In Table 2.6, we show various tweet classification tasks

from the SMM4H shared tasks starting from 2016 till 2020. In the most recent 2021

SMM4H shared tasks [116], BERT based models dominated in all categories. Relevant

tasks that ran in 2021 were: (i) classification of tweets self-reporting potential cases of

COVID-19, (ii) classification of COVID-19 tweets containing symptoms, and (iii) classi-

fication of self-reported breast cancer posts on Twitter [116]. For task (i), the study in [2]

achieved the highest F1 score of 0.79 among other competitors. They built an ensemble

model based on several domain-specific BERT models including BERTweet and CT-

BERT. Valdes et al [198] outperformed others in task (ii) by fine-tuning CT-BERT [137].

Finally, Zhou et al [237] achieved the highest F1 score in task (iii) by utilising BERTweet.

2.6.2 Infectious disease monitoring applications

Public health surveillance tools, which provide population-level mortality and inci-

dence data, are routinely managed by health institutions such as Centers for Disease

Control and Prevention (CDC), European Influenza Surveillance Scheme (EISS), and Na-

tional Health Services (NHS). For example, during the COVID-19 pandemic these insti-

tutions put a considerable effort into collecting and analysing COVID-19 clinical data
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Table 2.6: English tweet classification tasks ran in SMM4H shared tasks competitions

from 2016 to 2020. Table is constructed from [177, 175, 212, 211, 93]

No. Task Class description

1 Automatic classification of tweets men-

tioning an ADR (2016, 2017, 2018,

2019,2020)

(i) Presence of ADR, (ii) Absence of

ADR

2 Medication intake classification (2017,

2018)

(i) Definite intake, (ii) Possible in-

take, (iii) No intake

3 Vaccine behaviour classification (2018) (i) Positive, (ii) Negative

4 Automatic classification of personal men-

tions of health (2019)

(i) Personal health status, (ii) Opin-

ion

5 Automatic classification of tweets that

mention medications (2020)

(i) Mention a medication, (ii) Do not

mention a medication

6 Automatic characterization of prescrip-

tion medication abuse chatter in tweets

(2020)

(i) Potential abuse/misuse, (ii)

Non-abuse/misuse consumption,

(iii) Medication mention only with-

out any indication of consumption,

(iv) Unrelated

7 Automatic classification of tweets report-

ing a birth defect pregnancy outcome

(2020)

(i) Defect, (ii) Possible defect, (iii)

Non-defect

to publish the daily number of new cases, as well as predicting the number of future

COVID-19 cases. Social media and internet data can play a crucial role in supple-

menting such public health data by predicting the hidden tendency of an imminent

outbreak [184]. Shen et al [184] retrospectively performed a large-scale study to iden-

tify self-reported daily sick posts from a Chinese social media platform using NLP and
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machine learning algorithms. The daily count of COVID-19 cases from social media

was found to correlate with the data published by the Chinese government. Similarly,

Golder et al [69] in the United Kingdom analysed location-based COVID-19 Twitter

messages by employing an NLP and machine learning based classification approach

to categorise tweets into Probable, Possible, and Other classes. The weekly counts for the

first three months in 2020 yielded from the Twitter classification model was shown to

correlate with the weekly mortality and new case data published by the UK govern-

ment [69].

Previously Ginsberg et al [67] showed a correlation between the occurrence of search

queries containing flu-related words and Influenza Like Illness (ILI) rates published by

the CDC. Aramaki et al [10] trained an SVM model to label tweets as flu-related or

flu-unrelated and then evaluated the correlation of ILI rates from the Infection Dis-

ease Surveillance Center (IDSC) of Japan. Byrd et al [28] demonstrated an approach

that employed first a sentiment analysis method to identify authors of tweets affected

by influenza and then a visualisation tool to display the result of the analysis. Lin et

al [107] proposed a rule-based algorithm which utilised a dependency parser and a

NER tagger to filter self-reported tweets mentioning flu. They further deployed sev-

eral multi-class classification models using n-gram features for the same task. Their

experiments achieved a higher classification accuracy when they combined the rule-

based algorithm with the machine learning models.

Rudra et al [167] proposed to classify tweets related to Ebola and MERS in several cat-

egories related to disease detection using SVM, LR, and Naive-Bayes classifiers. They

built two types of models for each classifier using (i) MetaMap, where words of a tweet

were mapped to UMLS semantic types, or (ii) BOW, where uni-grams from tweets

were extracted. They reported that SVM based models outperformed other models.

In addition to this, they found that models built using MetaMap performed better in

the case of transfer learning. Serban et al [60] proposed SENTINEL, an end-to-end

NLP software system which combined various open source tools for processing pub-
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licly available social media data. The NLP system integrated data from heterogeneous

sources that are automatically processed for detecting disease outbreaks in real-time.

Infectious diseases aside, Esperanca et al [61] demonstrated an NLP and machine

learning based framework for tracking chronic diseases such as asthma, cancer, and

diabetes from social media. The framework consisted of an automated workflow de-

signed to collect data from social media platforms, filter the data based on geograph-

ical criteria (state and national level in the US), and extract tweets relevant to a target

disease by deploying an SVM classification model. They collected incidence and mor-

tality statistics from their classification results, despite low correlations with the CDC

data at a state level, their findings revealed that it was possible to track diseases using

social media at the national level. Finally, [30], [55], and [18] provided a thorough re-

view of the use of Twitter in public health surveillance for the purpose of monitoring,

detecting and forecasting ILI and other diseases.

2.7 Conclusion

In this chapter, we provided a broad overview of the information extraction method-

ologies and relevant literature reviews concerning medical social media. In Section 2.1,

we discussed different social media sources, broad categories of NLP tasks on medical

social media, benchmark datasets, and shared tasks related to social media. We also

provided a brief list of datasets curated for our tasks. Section 2.2 discussed relevant

literature on rule-based concept and relation extraction on social media, and sentiment

analysis methods on medical social media. One key observation is that anaphora was

not considered to analyse a full post comprising multiple sentences. In Section 2.3, we

described CRFs and BiLSTM networks, and discussed contextual language models.

In addition to this, we provided a literature review concerning supervised concept ex-

traction methodologies on social media. Section 2.4 described several semi-supervised

methodologies and relevant literature. We found that most supervised concept extrac-
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tion methods employed dictionary features and word embeddings. However, auto-

matically obtaining new concepts from social media posts has received little attention

despite the fact that social media is dynamic and concepts change over time. Sec-

tion 2.5 discussed relevant literature of deep learning models employed for COVID-19

medical concept extraction, gazetteer inclusion with deep learning, transfer learning,

and weak supervision. The literature review revealed that dictionaries were useful in

deep learning and transfer learning settings. However, specific dictionaries curated

for emergent diseases such as COVID-19 have not been investigated. Finally, Section

2.6 discussed various text classification techniques utilised in social media focusing

on the SMM4H shared tasks. We identified that at the time of this research no other

study took a triage and diagnostic approach to extract actionable information regard-

ing COVID-19 from social media.



Chapter 3

Rule-based Health Information

Extraction

The content of this chapter is adapted from our article published in:

A. Hasan, M. Levene, D.J. Weston. “Natural language analysis of online health fo-

rums”. In: International Symposium on Intelligent Data Analysis. Springer, 2017, pp.

125–137.

3.1 Overview

Health related posts in medical forums often contain factual information regarding

drug usage, the patients’ sentiment of a drug when used to treat a symptom, and the

experience of any adverse effects from the drug. In order to extract this type informa-

tion from free text in medical forums, natural language analysis of the text is required

[48]. As has been pointed out by Wang et al. [209], detecting, from unstructured text,

the disease, treatment and symptom entities, their attributes and existing relationships,

is a major research issue in the NLP domain. Although progress has been made in ex-

tracting entities, there is still the challenge of extracting specific relationships between

these entities [77]. In particular, here we are interested in extracting relationships of

the form (treatment, polarity/sentiment, symptoms/side-effects), which represent re-

lationships that provide us with information on patients’ sentiment of various treat-

63
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ments, especially medication. When aggregated over many forum posts such triples

could inform practitioners and/or patients on the effectiveness of treatments beyond

the information gathered from studies published in medical journals and by the phar-

maceutical companies.

In this chapter, we report on a base-line rule-based approach for extracting such triples

from about 1000 posts related to Parkinson’s disease from the PatientsLikeMe website

[149], providing details of the algorithm we deployed and the results from a compre-

hensive evaluation of the algorithm. It is important to note that patients’ comments in

a forum, such as the one we are analysing, will contain slang and verbose, informal, de-

scriptions of treatments and side-effects (for example, using “body shaking” instead of

the more formal “tremor”). Such informal terms are not normally present in standard

ontologies such as the (UMLS) [23]. As a result of this difficulty, much of the previous

research in this area has focused on extracting formal medical terms from the free text.

We now give a brief summary of our NLP relationship extraction system, whose aim

is to build triples, which can be aggregated to provide useful statistical medical infor-

mation relating to the patients’ sentiment of various treatments. Our model makes use

of the following concepts:

1. Drugs (X), or more generally, treatments.

2. Symptoms (Y), which the drug is meant to treat.

3. Side-effects (Z), which are caused by the drugs.

4. Polarity (P), which indicates how positive a treatment is or how negative a side-

effect is from the patient’s point of view.

The system first extracts different health related concepts from the forum posts, and

then creates structured information by forming a relationship between a drug and a

symptom or side-effect, through polarity analysis of the text. We termed such a rela-

tionship formally as a disease triple henceforth simply a triple.
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3.2 Contribution

Despite machine learning techniques such as CRF [99, 193, 125] being very effective

in NLP information extraction, we have chosen to build a rule-based system [120]. We

show that dictionaries and rules built here can be used to build a CRF model in the

next chapter. Our contributions are as follows:

1. To the best our knowledge, this is the first attempt to extract, from social me-

dia, relationships in the form of disease triples, which include patient sentiment.

There is no base-line system for such work and in order to attain deep knowledge

of the use of natural language, specialised rules are often needed.

2. Dictionaries, lexicons and ontologies in the medical domain are built for extrac-

tion tasks from documents written by experts [77]. However, patients are, in most

cases, not familiar with this terminology, so they tend to use commonly under-

stood terms. As a result matching to such pre-built dictionaries often results in

poor performance. In order to build common domain knowledge, it is first nec-

essary to manually analyse a significant number of posts, and extend publicly

available lexicons and gazetteers using a specifically designed set of generalised

rules for extracting structured information from the free text.

3. Once the base-line is established it is possible to export the set of designed rules

and resulting extended gazetteers to be used in a more sophisticated machine

learning such as CRF, to attain transferability and scalability when extracting

triples from other forums.

Our overall contribution is the summarisation of health related forum posts by

identifying relationship between concepts in the form of disease triples to provide a

coherent structure, which can be used to extract meaningful medical statistical infor-

mation.
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Table 3.1: Example of disease triples after processing a post. +, -, symp, side, drug ,

list, con and intens, denote positive polarity, negative polarity, symptom, side-effects,

drug/treatment, list of nouns, conjunction and intensifier, respectively

Sentence or Sentence Segment Disease triple

I take 600mg of gabapentindrug at bedtime,

helps+ me shakesymp andlist kicksymp less-;

(gabapentin,+,shake)

(gabapentin,+,kick)

andcon a donepezildrug 10mg, settles+ me down

allowing sleepsymp.

(donepezil,+,sleep)

Clonazapamdrug works+ greatintens (Clonazapam,+,?)

butcon I can’t take- the groggyside, foggy

headside the next day.

(Clonazapamdrug anaphora,-

,groggy)

(Clonazapamdrug anaphora,-

,foggy head)

A motivating example

Let us examine the following example post to motivate the research:

“I take 600mg of gabapentin at bedtime, helps me shake and kick less; and a donepezil 10mg,

settles me down allowing sleep. Clonazapam works great but I can’t take the groggy, foggy head

the next day.”

After various pre-processing steps and the application of linguistic rules, we create

the disease triples as shown in Table 3.1 . Most of the existing works concentrated on

processing a single sentence. However, our method is a formal approach to make sense

from the whole post which may contain several sentences by making use of anaphoric

relations [71] present in the sentences.
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3.3 Materials and Methods

The overall methodology is schematically shown in Figure 3.1 and the corresponding

pseudo-code of the algorithm is presented in Algorithm 1 below. In the following

subsections we describe the dataset, the procedure followed for verifying annotations,

and the methodology in more detail.

Figure 3.1: Text processing architecture for our rule-based approach.

3.3.1 Dataset

PatientsLikeMe [149] is an online health discussion forum, where patients with chronic

health conditions can share their experiences living with disease. The forum is organ-

ised in groups of patients experiencing similar health conditions. For our study, we

extracted user comments from the Parkinson’s disease group. After registering with

this website, web pages related to Parkinson’s were downloaded manually to conform

with terms and conditions of the website before being scraped offline. Finally, the posts

were anonymised by removing user IDs. A total of 1058 posts were collected from the
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Data: P is a list of Posts

1 foreach p in P do

2 Split p into a list of sentences, S;

3 foreach s in S do

4 Tokenise s into a list of tokens, T;

5 foreach t in T do

6 Append the POS information;

7 Identify the concept class, C matching with the gazetteers;

8 Let, C = {X, Y, Z, P} where X, Y, Z, P are drug, symptom,

side-effect, and polarity, respectively;

9 Disambiguate concepts t;

10 Calculate the polarity, p by applying linguistic rules for t in P;

11 end

12 Split s into a list of segments, G using conjunctions, and, but, until;

13 foreach g in G do

14 Compute polarity score, SC;

15 Create a list of triples, L;

16 A triple is either (X, Y, SC) or (X, Z, SC);

17 Where, “?” is the placeholder for a missing concept;

18 foreach l in L do

19 Perform anaphora resolution for missing X;

20 end

21 end

22 end

23 end

Algorithm 1: Text processing algorithm



3.3 Materials and Methods 69

period of April, 2016 to June, 2016.

500 posts were used for training and 400 for testing the system. The remaining posts

were used for the annotation validation, described in the next section, where 58 posts

were used to train the annotators and the remaining 100 posts for cross validation of

the annotations.

3.3.2 Annotation validation

The annotation for the dataset was carried out by the author of this thesis. In order

to verify the fidelity of these annotations an experiment was conducted using a small

subset of the data, where the level of agreement between the annotator and other an-

notators was measured.

Ten researchers from Birkbeck’s department of Computer Science and Information Sys-

tems volunteered for the validation experiment. Annotators were trained by showing

annotated posts (20 posts were chosen from the annotator training set of 58) and ex-

plaining each concept and triple types. The remaining 100 posts were divided ran-

domly into five sets of 20. Each of the ten annotators were randomly assigned two

sets such that each set would get two annotations from different annotators. We fol-

lowed Nikfarjam et al [143] who used Cohen κ statistic [215] to measure the agree-

ment between pairs of annotators, in addition we used accuracy. A very high level of

agreement in recognising drug, symptom, positive and negative strings was achieved.

However, agreement and accuracy in recognising triples and side-effects were some-

what lower (72.09% and 88.79% respectively). It was subsequently determined that

two of the annotators had not fully understood the task. Table 3.2 shows the results

with and without these two ‘outlier’ annotators. It can be seen that there is a bet-

ter agreement in identifying triples, however agreement in identifying side-effects has

been reduced. This is due to the small number of side-effect concepts in the validation

set (7 in total).
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Table 3.2: Annotation validation result. κ-O and Accuracy-O are the results after dis-

counting the 2 ‘outlier’ annotators.

Concept κ Accuracy κ-O Accuracy-O Support

Drug and Treatment 87.37% 94.40% 86.84% 94.16% 446

Symptom 91.49% 96.90% 92.73% 97.32% 162

Side-effects 76.18% 99.40% 71.05% 99.23% 7

Positive polarity 89.71% 96.26% 89.06% 95.97% 112

Negative polarity 90.72% 97.15% 89.77% 97.02% 146

Triples 72.09% 88.79% 76.18% 90.72% 1479

3.3.3 NLP pipeline

Text processing tools, e.g. General Architecture for Text Engineering (GATE) [45, 46], Stan-

ford Core NLP [121], and spacy [190], help in constructing an NLP pipeline for the lan-

guage processing tasks. Our text processing pipeline, constructed using GATE, splits

the posts into sentences, tokenises the text and labels the tokens with their POS tags. At

this stage, our system recognises drugs, symptoms, side-effects and opinions present

in the text by using different lexicons and plug-ins which were RxNorm terminology

[169], MetaMap [12], COSTART (Common Standard Thesaurus of Adverse Reaction

Terms) [42], and MPQA Subjectivity Lexicon [214], respectively. Apart from using

some publicly available resources, we constructed gazetteers using domain knowl-

edge and extended these by augmenting the terms during the training phase of the

system. To recognise a symptom from a span of text using dictionaries we produced

several java annotation patterns engine (JAPE) rules; an example of such a rule is shown

in Figure 3.2. The left-hand side (LHS) is the part preceding the ‘–>’ and the right hand

side (RHS) is the part following it. The LHS is the pattern and RHS specifies the an-

notation on that pattern. In Figure 3.2, Lookup.majorType=symptom is the pattern, and

symptom.Symptom is the annotation.
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Figure 3.2: An example of rule processing using GATE text processing tool. In this

rule, a text is annotated as Symptom if it is found by a look up operation on the text

span.

3.3.4 Rule processing

We disambiguate multiple concepts recognised in the previous stage by applying dif-

ferent linguistic rules, then split the sentences and compute the polarity score of each

resulting segment.

Disambiguation and extraction of concepts

We extracted four types of concepts from each sentence, i.e.: drugs, symptoms, side-

effects and polarities. We now briefly discuss the concept extraction and disambigua-

tion process.

• Drug extraction. We used a subset of the RxNorm terminology [169] as our drug

gazetteer, where the vocabulary consisted of drugs and treatments used for Parkin-

son’s disease; RxNorm is a normalised naming system for generic and branded

drugs. For our purpose, it is very important to recognise the synonymy of generic

and branded drug names to avoid extracting the same type of drug mention

multiple times. As such we have constructed two dictionaries for generic and

branded drugs. A feature is added to the drug token according to the drug
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gazetteer it is extracted from. If a sentence contains both prescription and generic

drug mentions, the generic drug mention is subsumed. Spelling mistakes in drug

names are corrected using a normalised edit distance of two based on Leven-

shtein’s edit distance [119].

• Symptom extraction. We used the MetaMap [12] annotation plug-in to annotate symp-

toms (sign or symptom semantic types) in sentences. We also constructed a sep-

arate symptom gazetteer using domain knowledge, and terms such as “voice”,

“smell” and “restless” were also added to the gazetteer. By default the polarity

feature of symptoms recognised by the MetaMap program are set to negative.

The symptoms gazetteer contains explicit polarity for each symptom. Not all the

symptoms present in the gazetteer are negative, for example concepts such as

“sleep” and “energy” are marked as positive. The polarity feature is extracted

from the gazetteer for each symptom.

• Side-effect extraction. For side-effects, a gazetteer using COSTART [42] is constructed.

We extended the dictionary by adding new terms during the training phase.

• Polarity extraction. We have collected the polarity terms from the MPQA Subjectiv-

ity Lexicon [214], which contains more than 8000 words annotated manually by

the authors as positive, negative or neutral. The lexicon also includes the POS in-

formation for the terms. Symptom and side-effect terms present in the dictionary

are not labelled as polarity terms. The prior polarity score for positive and nega-

tive terms are set to +1 and -1 respectively, and neutral words are given as score

0. Our system matches a token with the lexicon if the POS information present

in the lexicon is the same as the POS category of the token in the sentence.

Linguistic rules.

Matching polarity words is not enough in order to extract opinion from a sentence,

and it often produces wrong result. A description of how valence of a lexical item is
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modified by the presence of different lexical items such as “negation”, “modifiers” and

“presuppositionals” can be found in [157]. In similarity to [157] we applied following

heuristic linguistic rules:

• Negation. If a negation word such as “not”and “don’t” precedes in 0 to 3 tokens of

a polarity, symptom or side-effect concept, then the polarity of each concept is re-

versed and will generate the feature negation concept (for example, “doesn’t work”).

•Modifiers. Modifiers such as intensifying adverbs (for example, “very”, “strongly”),

diminishing adverbs (for example, “little”, “kind of”) increases or decreases the

sentiment value of a concept and generate a feature modifier concept (for ex-

ample, “very tired”). This rule modifies polarity of the first matched concept at

a distance of 0 to 3 tokens.

• Presuppositional. The polarity of presuppositional items such as “barely” is multi-

plied with that of the concepts and polarity is flipped as a result. A feature such

as pre concept (for example, “barely tremor”) is generated after applying this

rule. As for modifiers, this rule also changes the polarity of the first matched

concept at a distance of 0 to 3 tokens.

Split sentence

In this step, we first split a sentence and then calculate the final polarity score. These

two steps are described below:

• Sentence segmentation. We used common conjunctions (“and”, “but”) and “until”

to segment a sentence . Our analysis revealed that “and” is sometimes used to

connect two or more words to form a list rather than connecting two different

parts of a sentence. We constructed a rule to find such conjunctions. For example

if POS tags of the two tokens in either end of “and” are same, then it is denoted

as a list of tokens and we do not segment sentence in such cases.
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• Final polarity score. We add the polarity scores of all the opinion concepts in a sen-

tence or segment of a sentence. The polarity of a triple is positive if total score is

more than 0, negative if it is less than 0. If the score is 0, then polarity of the triple

will be that of the symptom or side-effect.

3.3.5 Triple formation

At this stage, we first perform anaphora resolution and then form triples. These two

steps are described in the following two paragraphs.

Anaphora resolution.

Messages in a forum contain sentences referring to the concepts mentioned earlier in

the text. Our rule for finding anaphoric references for drug is briefly: if the current

sentence has a drug mention, then the drug is carried forward to the next sentence in

the text. Using this rule, if a triple has a drug mention and a subsequent triple contains

the default drug concept (“?”), then we replace the default with the drug found, and

repeat the same process for all the sentences in text until we find a new drug mention.

If we find multiple mentions of drugs then multiple triples are created containing each

drug mention. However, we note there are limitations to this approach; for example,

when a sentence has multiple drug mentions with a single symptom mention such

triples will not capture the fact that the two drugs jointly lead to the symptom. We also

look for the patterns such as “from X to Y”, which indicates that the person actually

stopped using drug “X” and moved on to using “Y”. In such case, we add a feature to

the drug (“X”) token indicating that the algorithm should stop creating triple for this

drug in subsequent sentences.

Disease triples.

We create a list of concepts by ordering them according to their token offset from the

beginning of a sentence. Triples are formed using the following format:
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Table 3.3: Test set summary

Posts Sentences zero triples one triple more than one triple

400 2564 544 1447 449

1. Triple 1: Drug, Polarity, Symptom

2. Triple 2: Drug, Polarity, Side-effect.

The algorithm iteratively finds drug, polarity and symptom or side-effect concepts

using the order shown in the formation of triple. A triple is formed by taking three

consecutive concepts of a different kind. In our algorithm, consecutive concepts (for

example, drugs) of same kind, signals the starting point of a new triple. The algorithm

places a default concept which is “?” in case of missing concepts.

3.4 Results

The following subsections describe experiment and its results.

3.4.1 Evaluation

To evaluate our proposed approach the standard measures of accuracy (Acc), preci-

sion (P), recall (R) and F1 [215] were used. Each post was split into segmented sen-

tences as described in Section 3.3.4. Triples formed from a segmented sentence are

then merged with those from other segments and subsumed in case of repetition. A

sentence can contain zero of more concepts and consequently zero or more disease-

triples, as shown in Table 3.3. To evaluate concepts and triples predicted by the system

with those present in the actual annotated set. If a concept is correctly predicted by

the system, then it is a true positive case (TP). If a concept is predicted by the system,

but is missing in the annotation set, then it is a false positive case (FP). If the system

failed to recognise a concept, then it is a false negative (FN) case. Lastly, if there is no
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concept predicted by the system and same in the actual annotation, then it is a true

negative (TN) case. In case of triples, a sentence is segmented (see Section 3.3.4). Each

segmented sentence can have zero or more triples. The evaluation metric for triples

follows the same definition as concepts.

3.4.2 Training and Test Results

Training of the system was conducted incrementally over 5 iterations. The training

data was split into 5 sets of 100 posts each. At the beginning of the first iteration, we

analysed the posts from the first set. This meant we annotated them with the concepts

as discussed in Section 3.3.2. We then manually generated rules which are shown in

Section 3.3.4. The annotation produced new concepts which we included in our dic-

tionaries which we discussed in Section 3.3.4. The system was evaluated on the same

set of posts and more rules were manually added until we achieved a satisfactory per-

formance, which meant a precision of approximately 80% or above. After which we

then moved on to the next iteration and followed the same procedure. The evalua-

tion was carried out at each iteration by cumulatively adding a new set of posts to the

posts from previous iterations. It is interesting to see the overall performance from

the training data, Table 3.4. This was achieved in a principled manner, as described

in Section 3.3.4, involving the development of as few rules as possible. It should be

noted that without anaphora resolution very few triples would have been successfully

identified. In addition, dictionaries were extended when necessary.

At the end of training phase, we ran all 500 posts on the system built and evaluated

the performance which is shown in Table 3.4. We achieved high precision in recog-

nising drug, symptom and side-effects concepts. This is because, as described earlier

(see Section 3.3.4), we scaled the drug dictionary according to the drug and treatments

used for Parkinson’s, restricted MetaMap[12] to recognise sign and symptom semantic

types, extended COSTART[42] dictionary, and used set of generalised rules to disam-

biguate concepts. For testing the system was run over the remaining 400 post test
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Table 3.4: Training results for 500 posts

Concept Acc P R F1

Drug & Treatment 95.06% 99.63% 99.12% 97.29%

Symptom 95.71% 85.64% 99.06% 91.86%

Side-effects 99.06% 87.95% 98.50% 92.92%

Positive polarity 90.19% 80.98% 96.15% 87.92%

Negative polarity 90.61% 79.60% 94.04% 86.22%

Triple 1 83.06% 81.01% 95.23% 87.54 %

Triple 2 84.76% 82.28 % 94.96% 88.16%

dataset, without any modification to the system. The results are shown in Table 3.5.

We can see that the system has generalised well. Naturally the disease triple identifi-

cation has had the greatest fall in performance, since recognising these relationships is

dependent on accurately identifying the concepts from which they are comprised.

Table 3.5: Test results for 400 posts. Acc, P, R, F1 denote Accuracy, Precision, Recall,

and F1-score, respectively.

Concept Acc P R F1

Drug & Treatment 90.71% 88.29% 95.14% 91.59%

Symptom 94.26% 84.08% 87.36% 85.69%

Side-effects 98.42% 80.25% 93.53% 86.38%

Positive polarity 86.44% 72.68% 94.42% 82.13%

Negative polarity 87.08% 73.57% 88.52% 80.35%

Triple 1 73.93% 71.11% 96.02% 81.71%

Triple 2 74.47% 71.31% 96.81% 82.13%



3.5 Discussion 78

Table 3.6: Error analysis of triples created from the sentence in Example 1. Bold denotes

wrong triple. For details of subscripts see Table 3.1

Sentence or Sentence segment Actual Dis-

ease triple

Predicted

Disease

triple

My wife was on Rytarydrug 36.25/145 mg for 5 days

andcon returned to C/Ldrug today because it was not

working-

(Rytary,-,?)

(C/L,?,?)

(Rytary,-,?)

(C/L,-,?)

andcon she was getting side effects-

3.5 Discussion

Though we are very successful in recognising concepts, the system makes a few mis-

takes in disambiguating polarity terms. As a result, the performances at triple level

are lower, which resembles that of recognising positive and negative polarity terms.

This result is in line with our hypothesis (see Section 3.1) that we can establish a rela-

tion between drug and symptom and drug and side-effects through the polarity of a

sentence. Although the polarity dictionary [214] has been extended by incorporating

common phrases and is also supported by set of generalised rules, there is still room

for improvement.

3.5.1 Error analysis

In Table 3.6, the system makes a mistake as the reference to “it” in the second segment

refers to the previous drug mentioned in the sentence.

Example 1. “My wife was on Rytary 36.25/145 mg for 5 days and returned to C/L today

because it was not working and she was getting side effects”
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Table 3.7: Error analysis of triples created from the sentence in Example 2. Bold denotes

wrong triple. For details of subscripts see Table 3.1

Sentence or Sentence segment Actual Dis-

ease triple

Predicted

Disease

triple

My update- -I have settled+ out on Rytarydrug

23.75/95 (4 capsules) 4x a day–MUCHintense better+

than on Stalevodrug—no side effects+–except perhaps

a bit moreintense energeticside than I should be-lol

(Rytary,+,?)

(Rytary,-

,energetic)

(Stalevo,-,?)

(Rytary,+,?)

(Stalevo,+,energetic)

Example 2. “ My update- -I have settled out on Rytary 23.75/95 (4 capsules) 4x a day–

MUCH better than on Stalevo—no side effects–except perhaps a bit more energetic than I

should be-lol”

In Table 3.7 the system makes two mistakes by putting the side-effects concept with

the wrong drug/treatment mention.

3.6 Conclusion

In this chapter, we proposed representing potential useful medical information in free-

form unstructured text, with disease-triples. To attain our first objective outlined in

Section 1.3, we have developed a strong base-line system. We achieved an F1 score

of over 80%, in identifying these disease-triples using traditional NLP methods, and

have demonstrated that this approach can generalise successfully. In the next chapter,

our objective is to build a supervised and semi-supervised medical concept extraction

methods utilising labelled and unlabelled datasets.



Chapter 4

Supervised and semi-supervised

concept extraction

The content of this chapter is adapted from our article published in:

A. Hasan, M. Levene, D.J. Weston. “Learning structured medical information from

social media”. Journal of Biomedical Informatics, 2020 Oct;110:103568.

4.1 Overview

In the previous chapter, we built a framework for concept relation extraction using a

NLP methodology by utilising health related concepts augmented with sentiment as

expressed in the text. Medical social media such as MedHelp [126] and Twitter, often

contain experiential information from patients who share symptoms and side-effects

of the prescribed treatments. These shared experiences from a group of patients have

been proven to be useful for public health monitoring [150, 103]. To further advance

such findings, a group of researchers from the University of Pennsylvania has been

organising the SMM4H shared tasks to detect ADR from tweets [211]. However, as

shown in the examples of Figure 4.1, social media posts contain not just ADR men-

tions, they can also include other useful information such as a patients’ sentiment re-

garding their medical condition. In this chapter, we wish to identify not just ADRs but

also effects of a drug that may not be the intended therapeutic outcome and indeed

80
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might be considered beneficial, hence we use the term side-effect, [57].

The methodology, developed in Chapter 3, was rule-based together with lexicon match-

ing. It is possible that terms contained in social media text may not exist in the publicly

available dictionaries and ontologies such as UMLS [23]. Consequently, recognising

concepts from such colloquial text using lexicon matching algorithms often produce

poor results [143]. To address this challenge, researchers have applied supervised ma-

chine learning methods, which requires manually annotated training data.

In this chapter, we present a semi-supervised methodology based on CRFs [99, 193,

125], which classifies tokens in a sentence belonging to one of the categories shown in

Table 4.1. We believe these classes cover the semantics pertaining to the objective of the

research. The rules in Chapter 3 Section 3.3.4 were, heavily dependent on the lexicon

matching, and inferred from the training dataset by manually analysing the text. Some

lexicons were publicly available, and others were curated manually from the training

set. Whereas in this chapter, the aim is to automate, with minimal supervision, the

dependency on the labelled data and the manually created lexicon.

First, a small number of posts and tweets are sampled and annotated. The CRF

model was trained on a proportion of the sample, and then this model was applied

to the unlabelled data iteratively in order to tag and collect highly confident labelled

sentences, symptom and side-effect terms. In an online setting, where data becomes

available continuously, as the language changes, the semi-supervised methodology

would allow us to automate the incorporation of new terms into dictionaries and be

able to adapt to the domain changes with minimal human effort. Here we show that

within a single disease category, i.e. Parkinson’s, such a continuous training process

will either improve or maintain the F1 score. We thus believe that our method has the

additional potential to be used across disease categories with minimal effort, and can

be scaled to the practical use needed in medical applications.

In contrast to studies in [143, 132], which focused on medical social media, we

deal with more classes and extend the self-training technique [239, 59] to enlarge the
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Figure 4.1: T1, T2 and T3 are examples from Twitter and M1, M2 and M3 are those

from the MedHelp dataset. The class label of a token is given inside a square bracket.

The description of labels is listed in Table 4.1.

training dataset within a semi-supervised framework. Moreover, our methodology

involves in minimal human supervision as opposed to the study in [27]. Our system

architecture is relatively simple, each class label is coupled with a dictionary feature,

and in addition MetaMap [23] is used to determine a small number of useful UMLS
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semantic types from the text.

Accumulating structured information in the form of a dictionary, which is another

point of difference with previous research in this area, has direct impact on the pre-

diction of concepts in a supervised classification task. For example, in 2019 SMM4H

shared task, the KFU-NLP team, combined contextual word embeddings and BERT

[49] with dictionary features, and achieved the top result in the identifying ADR ex-

traction task [211]. Other supervised methodologies such as [143] also rely heavily

on lexicons for the improvement in the classification task. Moreover, in Chapter 6,

we show that a COVID-19 symptom lexicon is able to produce weak labels. Thus, we

believe that automatic expansion of dictionaries will allow us to perform incremental

learning which is a different task from ontology population [223] and expansion of

consumer health vocabulary [74].

4.2 Contribution

We make several contributions, as follows:

1. We show that with a small amount of manually labelled training data we ob-

tain very good performance, and this can be achieved using a semi-supervised

methodology which add labelled sentences to the training data in an iterative

fashion.

2. Our methodology incrementally augments symptom and side-effect dictionaries

by collecting the most confident terms classified by the model. To the best of

our knowledge no other previous work attempted to collect learnt health related

concepts from the unlabelled data and reuse them in the dictionaries.

3. We combine the above contributions to extend the traditional self-training method

[239], by sharing the knowledge in the training data and dictionaries so that sen-

tences, which were rejected at an earlier iteration can still be added when terms
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Table 4.1: Class label, description of the class, and the number of words in the class

with the percentage inside a bracket are shown separately for MedHelp and Twitter

dataset.

Class Description Medhelp Twitter

D Drug/Treatment 1233(0.93%) 1822(5.59%)

P Positive polarity 3453(2.6%) 989(3.04%)

N Negative polarity 4101(3.0%) 1088(3.34%)

NG Negation 2265(1.7%) 851(2.61%)

PRE Pre-suppositionals 325(0.24%) 82(0.25%)

INT Intensifiers 2514(1.89%) 620(1.9%)

SYM Symptom 5505(4.14%) 1105(3.39%)

SD Side-effect 756(0.57%) 580(1.78%)

BPOC Body parts 2475(1.86%) 233(0.72%)

TMCO Temporal functions 3572(2.69%) 871(2.67%)

CD Numbers 3347(2.52%) 564(1.73%)

DOSE Dosage information 206(0.15%) 211(0.65%)

O Other 103194(77.62%) 23549(72.31%)

Total 132946 32565

are correctly classified at a later iteration.

We tested our methodology on two datasets: the first with posts on Parkinson’s

from MedHelp, and the second with tweets from Twitter. We then evaluated the per-

formance of the semi-supervised methodology on both data sources by using 100 runs

with repeated cross validation; see Section 4.4.1. To compare the models, we have

devised a methodology that can detect potential improvement of the semi-supervised

algorithm over the base-line.
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Figure 4.2: The semi-supervised text processing framework. MM denotes the

MetaMap plug-in for UMLS, LD denotes the labelled dataset, UD denotes the unla-

belled dataset, DICT denotes the different publicly available dictionaries used, TD

denotes the tagged data using the base-line model trained on UD, and UDICT de-

notes the dictionaries learnt with the semi-supervised algorithm from the unlabelled

dataset. Arrows labelled 1 and 2 denote UDICT and TD are augmented to DICT and

LD. All other arrows denote sequence order.

4.3 Materials and Methods

Our overall methodology is shown schematically in Figure 4.2 and the corresponding

pseudo-code of the semi-supervised algorithm is presented in Algorithm 2. In the

following subsections, we first describe the data collection and annotation procedures

of the text and then describe the methodology in more detail.
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4.3.1 Data collection and annotation

We collected 1000 user posts discussing Parkinson’s disease from the MedHelp forum

[126] and the same number of tweets from Twitter. MedHelp posts were manually

collected from January 2018 to March 2018 using the search system provided by the

website 1. To collect tweets, we used the Twitter search API providing it with a list

of known Parkinson’s drugs; tweets containing links and photos were excluded from

the dataset. The posts and tweets were then anonymised and annotated using the

labels shown in Table 4.1. For the semi-supervised learning algorithm, we collected an

additional 4,000 tweets and 15,000 MedHelp posts. The sample size for labelled data

was calculated at a 95% confidence interval with 4%-6% error margin, which gave

us the size of 600-400 posts/tweets, respectively. Here, the labelled and unlabelled

datasets are denoted as LD and UD, respectively; see Figure 4.2.

Annotation Validation

In order to verify the fidelity of the annotations carried out by the author of this the-

sis, an experiment was conducted using a small subset of the data, where the level of

agreement between the annotator and other annotators was measured. Eight annota-

tors were trained by showing them annotated posts explaining drug, symptom and

side-effect concepts. Each annotator received an average of 18 posts and tweets from a

total of 150. The agreement between the first author and the annotators was calculated

using Cohen’s κ statistic [215]. The overall agreement reached was 75% after discount-

ing an outlier. Though we achieved a very high level of agreement (81%) for the drug

concept, the agreement for the symptom and side-effect concepts were lower at 69%

and 74% respectively. However, when we combined the symptom and side-effect into

a single class, Cohen’s κ reached 75%.

1https://www.medhelp.org/search?&query=parkinsons Accessed: March 2018

https://www.medhelp.org/search?&query=parkinsons
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Data: LD: Labelled data divided in train0, test, and valid sets

DICT: Existing dictionaries

UD: Unlabelled data

α: Confidence interval threshold

n: Number of sentences

imax: Maximum number of iterations

1 UDICT0 ← Empty dictionary to store symptom and side-effect predicted from

UD;

2 f0: base-line model trained on train0 and DICT;

3 i← 0;

4 repeat

5 TD ← Tag UD by fi;

6 viterbii ← The set of n highest viterbi sentences from TD;

7 traini ← traini−1 ∪ viterbii;

8 UDi ← UDi−1 − viterbii;

9 UDICTi+1 ←UDICTi ∪ Symptom and side-effect terms predicted;

10 from TD by fi according to α;

11 TDmark ←Mark sentences from TD using UDICTi;

12 if i > 0 then

13 marki ← The set of n highest Viterbi sentences from corrected TDmark;

14 traini ← traini ∪marki ;

15 UDi ← UDi −marki;

16 fi+1 ← Re train base-line model using traini;

17 Extract features from UD using UDICTi;

18 Test fi+1 on valid and store F1 score;

19 until i < imax;

Algorithm 2: Semi-supervised training assuming separate symptom and side-

effect classes, where train0 is the base line model trained using the labelled

dataset.
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4.3.2 Training the base-line model

We pre-processed the labelled and unlabelled data, LD and UD respectively, through

a built-in feature extraction program in GATE [45] using an NLP pipeline. The NLP

pipeline splits the text into sentences and tokens, performs POS tagging, applies lexi-

cons and gazetteers (denoted as DICT in Figure 4.2) to find the membership of a token

and integrate it with MetaMap (denoted as MM in Figure 4.2) to infer the UMLS se-

mantic class. The labelled dataset, LD, is divided into training, test and validation sets

denoted train, test, and valid respectively. We built a model denoted as the base-line

model by applying a linear-chain CRF [193]; see Chapter 2 Section 2.3 for a detail de-

scription. Let X = x0, . . . , xt, . . . , xT be a sequence of tokens. Then our linear chain

CRF relies on the following boolean features for each token t:

1. Word based features: There are three word based features; the first is the token

itself, t, and two context tokens which are its predecessor and successor namely

t− 1 and t + 1. This differs from [132] who used a wider context and also differs

from Nikfarjam et al [143] who built seven features based on six nearest neigh-

bours to the token, t.

2. Lexicon features: These features represents whether t is a member of one of the

following publicly available lexicons. A token can be a member of multiple dic-

tionaries. We make use of the following lexicons:

(a) The MPQA Subjectivity Lexicon [214] for polarity detection.

(b) The RXNORM [169] drug lexicon.

(c) Prepositional, negation and intensifier lexicons built from Chapter 3 Section

3.3.4. These dictionaries were built using common language usage. Prepo-

sitionals flip the polarity of a symptom (e.g., hardly, barely), intensifiers are

used to intensify the polarity of an expression (e.g., more), and negations

change the positive polarity to negative and vice versa. A token is matched
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with all these dictionaries to set these features on/off.

(d) Symptom dictionary with 180 terms commonly used with Parkinson’s dis-

ease.

(e) The SIDER [98] dictionary extended with the terms that occurred frequently

in the training sequences.

3. MetaMap mapping: The feature extraction program integrates MetaMap to map

tokens to their corresponding semantic classes. We set three features depending

on the semantic class the token is mapped to:

(a) Organic Chemical, ORCH and Pharmacologic Substance, PHSU,

(b) Sign or Symptom, SOSY, and Disease or Syndrome, DSYN, and

(c) Body Part, Organ, or Organ Component, BPOC.

4. Rule-based: Our feature extraction program identifies whether:

(a) The token, t is a member of the built-in temporal gazetteer in GATE, and

(b) The POS tag of t is CD type.

Once features are extracted from the text, the base-line model is trained and tested

using the train and test datasets, respectively by using a Python wrapper [44] for CRF-

suite, see [147]. For training , we used the limited-memory BFGS [144] gradient descent

technique, which is in-built. The training procedure is set with the default regularisa-

tion parameters and a maximum of 100 iterations. See Section 4.4.1 for a discussion

on the distribution of the training and test datasets and procedure for cross-validation

followed in this study.

The pre-trained base-line model is applied to the unlabelled data, UD, to obtain the

tagged sentences, TD, and new symptom and side-effect terms in UDICT, as shown

in Figure 4.2. TD and UDICT are then selected by the semi-supervised algorithm

to augment the original training data and the existing dictionaries, train and DICT,

respectively.
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4.3.3 The semi-supervised algorithm

Semi-supervised learning involves using both labelled and unlabelled data to train

a model [239]. In our approach we first build a CRF based purely on the labelled

training data (the base-line model). This model is then used to predict the labels for

the unlabelled training data. We then analyse these predicted labels to identify new

words to be included in the dictionaries, which are described in the previous section.

We also identify sentences to be included in the labelled training data and removed

from the unlabelled set. The CRF is then rebuilt using these updates and the process

is repeated until a stopping criterion has been met. We first summarise our semi-

supervised method as follows:

1. Train the base-line model using the labelled data which we call train0 in Algo-

rithm 2.

2. Repeat the following steps until the stopping criteria is satisfied:

(a) Tag the unlabelled data using the base-line model.

(b) Identify most confident sentences from the tagged data, add them to the

labelled set.

(c) Identify new symptom and side-effect terms, add them to their relevant dic-

tionary.

(d) Flag sentences where newly identified symptom and side-effect terms are

misclassified.

• Identify any flagged sentences that subsequently have had their mis-

classified terms correctly classified. Add these sentences to the labelled

set.

(e) Rebuild the base-line CRF model with the above updates and record the

performance on the validation set.

The method is shown in Algorithm 2 and is described in more detail as follows.
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Identifying new dictionary terms

We are interested in identifying new symptoms and side-effects, consequently we re-

strict our search for new terms to these two labels. For each unique word, that does not

already exist in a dictionary and is not a known stop word, we collate all the predicted

labels. A word will be added to the dictionary corresponding to its most frequent la-

bel provided we are confident of that predicted label. Our confidence is measured by

estimating the standardised Wald confidence interval, CI, [204] at at the 95% level i.e.,

CI = p̂− 1.96
√

p̂(1− p̂)/n, (4.1)

where p̂ is estimated probability that the word is assigned its most frequent label and

n is the number of instances of the word. If the lower bound of the confidence interval,

p̂ − CI, is greater than a threshold (set to 0.5), denoted by α in the Algorithm 2, we

proceed to augment the dictionary with this word.

Identifying sentences

The linear-chain CRF produces the best tagged sequence for a sentence with a score

similar to the inference probability produced by a HMM known as the Viterbi proba-

bility [159, 193]. We use this probability to rank sentences and select at most the top five

that have a probability above a threshold of 0.9. Ideally we wish to include only one

sentence per iteration, however due to computational constraints we increase this fig-

ure to five. There are notable shortcomings of using the Viterbi probability for ranking

sentences. First sentences with short length will tend to have a high Viterbi probabil-

ity and second class label imbalance (the Other label dominates) in our data generally

results in higher probabilities for sequences labelled with Other. To mitigate this bias,

we only consider sentences of length greater than 3 that also contain at least one of the

drug, symptom or side-effect labels.

The set of highest Viterbi sentences are likely to be similar to sequences that are

in the labelled training set [39]. As a result, the augmented training data may lack
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in diversity. To overcome this, we introduce an additional approach for identifying

sentences to include in the labelled training set. As described above, a word will be

added to a dictionary provided there is sufficient consistency in the predicted labels.

The sentences that contain the word but which have been mislabelled (i.e. not pre-

dicted the most frequent label) are flagged. At any subsequent iteration, all flagged

sentences are checked to see if any new dictionary word has now been relabelled cor-

rectly. These corrected sentences are ranked by their Viterbi probability and the top

five are transferred to the labelled training set.

Stopping Criterion and Model Selection

The model parameters of the CRF are recorded after each iteration and the model that

provides the highest F1 score on the validation set is selected as the final model. The

maximum number of iterations is fixed at 100. In our experiment, we found that typ-

ically the model converges in 30 iterations for the MedHelp data and 15 iterations for

the Twitter data. We believe this difference is due to the difference in size of these

datasets.

4.4 Results

We evaluate the performance of the basline and semi-supervised algorithms using pre-

cision (P), recall (R) and F-score (F1). True positives (TP), false positives (FP) and false

negatives (FN) are calculated by comparing the model’s extracted concept with the ac-

tual annotation via exact matching at the individual token level. Here we report both

macro and micro averaged F1 scores. Macro scores are computed by considering the

score independently for each class and then taking the average, while micro scores

are computed by considering all the classes together. The F1 scores are calculated by

averaging over 100 runs of repeated cross validation [200] described next.
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4.4.1 Repeated cross-validation

We permuted our dataset to produce 100 different runs to estimate the average F1 score,

see Table 4.2. The F1 score is calculated for each run using a 5-fold cross validation

strategy of 20% training and 80% test. This is different from the traditional 80%-20%

train-test split because we wish to emulate the situation where there is minimal la-

belled data. From the test set, which is 80% of the total dataset, one-third is reserved

as a validation set to be used with the semi-supervised model.

We make use of fractional training sets which are a subset of the full 20% training

set. These smaller subsets have sizes 10%, 25%, 50%, and 75% are used as separate

training sets and the F1 score is averaged over them. For example, 10% of the training

data yielded 10 disjoint sets from the full training set, which were ran independently

to get the F1 score and then averaged. This evaluation procedure is repeated starting

with empty symptom and side-effect dictionaries, and then incrementing the size of

the dictionaries by 25%, 50%, 75% and 100%.

Repeated cross-validation is a time and space constrained procedure, which re-

quired runs over a network of multiple machines using the Condor [194] distributed

batch computing system. More specifically, we employed a network of 135 machines

simultaneously, where each machine had 8 to 12 CPU cores, and the algorithm ran

over several days.

The base-line CRF produces high macro F1 scores of 88.90% and 84.3% for MedHelp

and Twitter dataset respectively at larger(>=50%) training and dictionary sizes. The

score is further improved to 90.90% and 87.2% for MedHelp and Twitter respectively

when we combine symptom and side-effect classes to one single class; see the bottom

part of Table 4.2. For micro F1 scores see Table 4.3. It is also evident that the improve-

ment of the macro and micro F1 score by the semi-supervised model is about 1% when

we do not use symptom and side-effect dictionaries and the training size is less than

50%. Although, this improvement is not significant at larger dictionary and training
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Table 4.2: Macro-average F1 scores are calculated omitting the Other class. Averages

of 100 runs of repeated cross-validation across different dictionary sizes are shown.

Here, Base and Semi denote the results from the base-line and semi-supervised models,

respectively.

Training Size

10% 25% >=50%

Dataset Dictionary size Base Semi Base Semi Base Semi

MedHelp

0% 0.773 0.786 0.839 0.844 0.873 0.875

25% 0.797 0.807 0.859 0.863 0.887 0.888

>=50% 0.800 0.811 0.863 0.867 0.889 0.891

Twitter

0% 0.597 0.606 0.732 0.738 0.809 0.813

25% 0.629 0.640 0.773 0.780 0.841 0.844

>=50% 0.631 0.643 0.775 0.782 0.843 0.846

All classes after combining symptom and side-effect to one single class

MedHelp

0% 0.822 0.833 0.880 0.885 0.906 0.908

25% 0.832 0.841 0.888 0.891 0.909 0.910

>=50% 0.833 0.842 0.889 0.892 0.909 0.911

Twitter

0% 0.645 0.656 0.786 0.794 0.859 0.862

25% 0.671 0.682 0.807 0.814 0.871 0.874

>=50% 0.673 0.684 0.808 0.815 0.872 0.875

sizes, it shows that the performance of the semi-supervised model dominates that of

the base-line model. Next, by running an accuracy test on both models, we quantify

more precisely how much more accurate is the semi-supervised model in comparison

to the base-line model, and whether the difference is significant. See Table 4.5 and

4.6 for macro and micro accuracy scores, respectively. We discuss this comparison in

Section 4.4.3. In the next section, we compare our results with some of the previous

studies.
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Table 4.3: Micro-average F1 scores are calculated omitting the Other class. Averages

of 100 runs of repeated cross-validation across different dictionary sizes are shown.

Here, Base and Semi denote the results from the base-line and semi-supervised models,

respectively.

Training Size

10% 25% >=50%

Dataset Dictionary size Base Semi Base Semi Base Semi

MedHelp

0% 0.815 0.823 0.846 0.852 0.875 0.878

25% 0.831 0.836 0.86 0.863 0.882 0.883

>=50% 0.834 0.838 0.863 0.866 0.884 0.886

Twitter

0% 0.723 0.728 0.790 0.793 0.838 0.840

25% 0.742 0.749 0.813 0.817 0.856 0.858

>=50% 0.745 0.751 0.815 0.819 0.858 0.860

All classes after combining symptom and side-effect to one single class

MedHelp

0% 0.827 0.833 0.858 0.863 0.886 0.888

25% 0.845 0.848 0.871 0.872 0.890 0.892

>=50% 0.848 0.850 0.873 0.875 0.892 0.894

Twitter

0% 0.734 0.74 0.802 0.807 0.854 0.856

25% 0.773 0.779 0.834 0.837 0.873 0.875

>=50% 0.777 0.783 0.837 0.840 0.876 0.877

4.4.2 Comparison with related work

The proposed semi-supervised model builds on our work from Chapter 3. Our method

is not directly comparable with other methods in the literature due to it having differ-

ent objectives (see Section 4.1). The ADRmine system [143] achieved an F1 score of

82.1% and 72.1%, on DailyStrength 2 and on Twitter, respectively, for an ADR detec-

2http://www.dailystrength.org/
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tion task. Miftahutdinov et al. [132] attained 79.9% for a multi-label classification task

using the CADEC corpus. For a discussion, related to the objectives and the method-

ologies utilised by these two related works, see Chapter 2 Section 2.3.4. In the 2019

SMM4H shared task [211] for ADR detection from Twitter, the KFU NLP team [130]

reached the best F1 score of 65.8% in the competition. The team reported to have used

the readily available BioBERT-CRF implementation from [105] with standard parame-

ters deployed for BERT-based models. The results from these studies suggest that our

proposed semi-supervised model’s performance is competitive, see Table 4.2 and 4.3.

4.4.3 Comparing the base-line and semi-supervised models

The difference in performance between the base-line and the semi-supervised mod-

els is small, to investigate this difference further we constructed a 2× 2 contingency

table, as shown in Table 4.4. Here, X11 denotes the total count when base-line and

semi-supervised models both predicted a concept correctly, whereas, X12 represents

the number of times the base-line model predicted a concept correctly but the semi-

supervised did not. On the other hand, X21 is the total count of correct prediction

by the semi-supervised model when the base-line model was incorrect. Finally, the

cell containing X22 represents number of times both models’ predictions were incor-

rect. If N is the number of tokens in the test set, then the accuracy percentage for the

semi-supervised model over the base-line model is 100×X21/N, and similarly the per-

centage of accuracy for the base-line over the semi-supervised model is 100× X12/N.

To assess the significance of improvement, we computed the χ2 value for 1 degree of

freedom by making use of X12 and X21, which is known as McNemar’s non-parametric

test [65].

We ran the accuracy test along with the repeated cross validation strategy described

above, and the calculated average macro and micro percentages are shown in Table

4.5 and 4.6, respectively. In the case of micro average accuracy, we considered all the

tokens in the test set by ignoring their class labels. To calculate the macro average accu-
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Table 4.4: Contingency table template for comparing accuracy between the semi-

supervised and the base-line model.

Semi-supervised model

Base-line model Correct Incorrect Total

Correct X11 X12 X1,

Incorrect X21 X22 X2,

Total X,1 X,2 N

racy, the score is considered separately for all the classes and then averaged. The result,

shown in Table 4.5 and 4.6, suggests that the semi-supervised model is generally 1-2%

more accurate than the base-line model at every division of dictionary and train sizes

over 100 runs. This implies that the semi-supervised model always improves the pre-

diction of base-line model. We now discuss the significance of this improvement by

the semi-supervised model.

4.5 Discussion

In order to compute the statistical significance of a possible improvement of the semi-

supervised model over the base-line model we made use of the McNemar’s test, as

described above, with respect to the symptom and side-effect classes and the combined

symptom and side-effect class. The results show that the difference is significant for

the symptom class for all dictionary and training sizes. Regarding the side-effect class

for Twitter, although the semi-supervised model performed better than the base-line

model, it is not generally significant, probably due to the imbalance between the side-

effect and symptom classes; in particular the side-effect class is much smaller in size

than the symptom class, which gives a priori preference to the symptom class over

the side-effect during the classification process. Moreover, for MedHelp, the symptom

class is also larger than the side-effect class, even greater than in Twitter. In this case
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Table 4.5: Macro-average Accuracy Test: Scores are calculated omitting the Other class.

Averages of 100 runs of repeated cross-validation across different dictionary sizes are

shown. Here, Base and Semi denote the result from the base-line and semi-supervised

models, respectively.

Training Size

10% 25% >=50%

Dataset Dictionary size Base Semi Base Semi Base Semi

MedHelp

0% 0.968 3.457 0.818 2.031 0.661 1.317

25% 0.815 2.337 0.697 1.503 0.658 1.151

>=50% 0.799 2.304 0.711 1.534 0.666 1.177

Twitter

0% 1.164 2.362 1.242 2.237 0.955 1.557

25% 1.360 3.003 1.160 2.519 0.872 1.515

>=50% 1.260 2.885 1.455 2.635 0.937 1.442

All classes after combining symptom and side-effect to one single class

MedHelp

0% 0.806 2.665 0.564 1.582 0.429 0.942

25% 0.621 1.915 0.440 1.162 0.417 0.817

>=50% 0.614 1.910 0.426 1.162 0.414 0.811

Twitter

0% 1.365 3.151 1.336 2.681 0.881 1.457

25% 1.127 2.995 1.091 1.952 0.659 1.156

>=50% 1.031 2.781 0.939 2.018 0.616 1.091

it seems that the misclassification of side-effects as symptoms by the semi-supervised

model is accentuated further due to this large class imbalance.

In Figures 4.3, 4.4 and 4.6, we have shown the comparison between the models in

predicting symptom, side-effect and the combined symptom and side-effect classes at

different dictionary sizes. As described earlier, the averages of X12 and X21 from 100

repeated cross validated runs are plotted on y-axis against different training sizes on x-

axis. These averages are used as input for McNemar’s test. In addition, we considered
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Table 4.6: Micro-average Accuracy Test: Scores are calculated omitting the Other class.

Averages of 100 runs of repeated cross-validation across different dictionary sizes are

shown. Here, Base and Semi denote the result from the base-line and semi-supervised

models, respectively.

Training Size

10% 25% >=50%

Dataset Dictionary size Base Semi Base Semi Base Semi

MedHelp

0% 0.078 0.287 0.067 0.169 0.054 0.110

25% 0.066 0.190 0.057 0.124 0.053 0.096

>=50% 0.065 0.187 0.058 0.126 0.054 0.099

Twitter

0% 0.348 0.688 0.375 0.675 0.29 0.463

25% 0.408 0.887 0.347 0.743 0.263 0.453

>=50% 0.376 0.846 0.444 0.791 0.286 0.430

All classes after combining symptom and side-effect to one single class

MedHelp

0% 0.060 0.202 0.042 0.12 0.032 0.072

25% 0.046 0.142 0.033 0.088 0.031 0.062

>=50% 0.046 0.141 0.032 0.087 0.031 0.062

Twitter

0% 0.289 0.754 0.247 0.552 0.174 0.306

25% 0.385 0.88 0.384 0.783 0.25 0.419

>=50% 0.299 0.811 0.282 0.557 0.187 0.314

the minimum of both X12 and X21, which calculates a conservative estimate for the said

significance test.

4.5.1 Symptom prediction

For the MedHelp dataset the semi-supervised model correctly predicted, on average,

100 symptom terms more than the base-line model; see Figure 4.3a. This difference

is significant for the symptom class at the 95% confidence level using Mcnemar’s test;
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(a) Symptom class (b) Side-effect class

Figure 4.3: MedHelp: Comparison of base-line and semi-supervised models in pre-

dicting (a) symptom and (b) side-effect classes by using MedHelp dataset. Lines and

dots represent base-line and semi-supervised model, respectively.

(a) Symptom class (b) Side-effect class

Figure 4.4: Twitter: Comparison of base-line and semi-supervised models in predicting

(a) symptom and (b) side-effect classes using Twitter dataset. Lines and dots represent

base-line and semi-supervised model, respectively.

the test makes use of the conservative estimate as described above. Although for the

symptom class, the margin of difference for Twitter dataset is smaller, as seen in Figure
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4.4a, this difference is also significant. In Figure 4.5 we see an example of improvement

over the base-line model. In this case, the semi-supervised model correctly recognises

shakes as symptom while the base-line model classifies shakes as Other.

4.5.2 Side-effect prediction

In the case of the MedHelp dataset, we found that the accuracy of predicting side-

effect degrades slightly. In general many symptom and side-effect terms are com-

mon in both respective dictionaries creating ambiguity and possible misclassification.

The cause of the ambiguity is most likely due to symptom and side-effect often ap-

pearing in common contexts. We found that in such cases, even a human annotator

may find it difficult to distinguish between these classes. The large class imbalance

for MedHelp, as shown in Table 4.1, causes the transition probabilities of symptom

terms to be higher than those of side-effect terms. Thus during test phase, the semi-

supervised model gives priority to symptom over side-effect. As a consequence, the

semi-supervised model collects more symptom terms than side-effects and the misclas-

sification of side-effect as symptom occurs occasionally. In Figure 4.5, we can see this

in action; the semi-supervised model misclassified the term pain as symptom, denoted

by SYM, where as the underlying base-line model classified it correctly as side-effect,

denoted as SD. The term pain, exists simultaneously in the symptom and side-effect

dictionaries. Moreover, as the transition probability is higher for symptom classes, the

model marginally predicts an incorrect label. However, this problem is not present in

case of Twitter dataset as the symptom classes are only about twice more in size than

side-effect. Though, in the case of Twitter, the improvement over the base-line model is

not significant in the conservative estimate; in the average case, it is significant except

at larger dictionary and training sizes. Next, we combined the symptom and side-

effect terms into a single term and reran the whole procedure again. The result of this

process is described next.
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Figure 4.5: Examples of (a) an improvement and (b) a misclassification made by the

semi-supervised model. Here, at 1, we have a sentence with annotated labels in the

subscript, at 2 and 3 the predicted labels by the base-line and semi-supervised models

are, respectively, given. The boldface letters signal either an improvement or a mis-

classification.
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(a) MedHelp (b) Twitter

Figure 4.6: Comparison of base-line and semi-supervised models in predicting after

combining symptom and side-effect classes in (a) MedHelp and (b) Twitter dataset.

Lines and dots represent base-line and semi-supervised model, respectively.
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4.5.3 Combining symptom and side-effect

When we combine the symptom and side-effect classes into a single class, the F1 score

for the base-line model improved significantly for both datasets, even more for the

semi-supervised model; see the bottom part of Tables 4.2 and 4.3. McNemar’s test

shows a significant difference between the models, and the semi-supervised model is

generally more accurate than the base-line, see Table 4.5. For MedHelp the predic-

tion of the combined symptom and side-effect class by the semi-supervised model is

significantly better than that of the base-line model; see Figure 4.6a. Although the ex-

periment with Twitter dataset shows slightly less improvement, it is also significant in

most cases; see Figure 4.6a, except at the 50% of training and dictionary sizes in conser-

vative estimate. In the average case, the semi-supervised improves over the base-line

model significantly for all cases; see Figure 4.6b.

4.6 Conclusion

We have proposed a semi-supervised algorithm, designed to enhance an underlying

pre-trained base-line model, for extracting health related concepts from social media.

This algorithm improves on the base-line model when a small amount of labelled data

is available, this means that manual annotation can be kept to a minimum. Central to

our approach is a procedure for automatically expanding dictionaries of medical con-

cepts, in particular, symptoms and side-effects. These additional words/phrases are

also used to identify a diversified set of sentences with which to augment the training

data. Although the performance of our method does not drastically improve on that

of the base-line model, this process has the potential to be applied in practical usage

where the language changes continuously. In such a setting the proposed model will

be able to adapt to the changes, as is shown in our experiments. In the next chapter,

we build on this methodology to develop an end-to-end NLP pipeline for analysing

COVID-19 social media posts.



Chapter 5

Case Study

The content of this chapter is adapted from our article published in:

A. Hasan, M. Levene, D.J. Weston, R. Fromson, N. Koslover, T. Levene. “Monitoring

COVID-19 on Social Media: Development of an End-to-End Natural Language Pro-

cessing Pipeline Using a Novel Triage and Diagnosis Approach”. Journal of Medical

Internet Research, 550 24(2):e30397.

5.1 Overview

In Chapter 3, we developed a concept relational extraction method in order to extract a

structured representation of patients sentiment regarding Parkinsons’ drug/treatment.

Moreover, in Chapter 4, we proposed a semi-supervised method using a base-line

CRF algorithm that is capable to work with a small labelled dataset. In this chapter, we

make use of the these methodologies, to attain the third objective set out in the Chapter

1. Specifically, our goal is to build an actionable information extraction method using

medical social media related to COVID-19.

During the coronavirus pandemic, hospitals were continuously at risk of being

overwhelmed by the number of people developing serious illness. People in the UK

were advised to stay at home if they had coronavirus symptoms and to seek assistance

through the NHS helpline if they needed to [195]. Consequently, there is an urgent

need to develop novel practical approaches to assist medical staff. A variety of meth-

105
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ods have been recently developed that involve NLP; the concerns of these methods

range from the level of the individual, see for example [146, 181], up to the population

level [176, 158].

Herein, we take a diagnostic approach and propose an end-to-end NLP pipeline to au-

tomatically triage and diagnose COVID-19 cases from patient-authored medical social

media posts. The triage may inform decision-makers about the severity of COVID-19,

and diagnosis could help in gauging the prevalence of infections in the population.

Attempting a clinical diagnosis of influenza, or in our case a diagnosis of COVID-19,

purely on the information provided in a social media post is unlikely to be sufficiently

accurate to be actionable on an individual level, since the quality of this information

will be typically noisy and incomplete. However, it is not necessary to have actionable

diagnoses at the individual level in order to identify interesting patterns at the popula-

tion level, which may be useful within public health surveillance systems. One of our

key concerns is in the production of a high-quality human labelled dataset on which to

build our pipeline. In Section 5.2, we address this issue by providing an overview of

our pipeline and the development procedure of our dataset. Section 5.3 discusses the

contribution made in this chapter. In Section 5.4 we discuss prior research related to

COVID-19 symptom tracking tools, prediction models from clinical features, and di-

agnosis using textual sources. Section 5.5 describes the dataset and its annotation and

our methodology. Section 5.6 discusses evaluation procedures, experimental setup,

and the outcome of the evaluation of our NLP pipeline. Section 5.7 provides discus-

sions related to our findings and comparison with a prior work. Finally, Section 5.8

provides concluding remarks.

5.2 The NLP pipeline

The first step in the NLP pipeline is attained by developing an annotation application

that detects and highlights COVID-19 related symptoms with their severity and dura-
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tion in a social media post. During the second step relations between symptoms and

other relevant concepts are also automatically identified and annotated. For example,

breathing hurts is a symptom which is related to a body part upper chest area.

The author of this thesis manually annotated the data with concepts and relations. An-

notation allowed us to present posts highlighted with identified concepts and relations

to three experts along with several questions, as shown in Figure 5.1. The first ques-

tion asked the experts to triage a patient into one of the following three categories: Stay

at home, Send to a GP, and/or Send to hospital. The second question asked to diagnose

the likelihood of COVID-19 in a Likert Scale of 1 to 5 [145].

The three experts are junior doctors working in the UK who were redeployed to work

on COVID-19 wards during the first wave of the pandemic, between March and July

2020. Their roles involved the diagnosis and management of patients with COVID-19,

including patients who were particularly unwell and required either non-invasive or

invasive ventilation. There were some training sessions organised for doctors working

on COVID-19 wards. However, these were only provided towards the end of the first

wave, as there was initially little knowledge of the virus and how to treat it. In the

hospital the doctors followed local protocols, which were adjusted as more experience

was gained about the virus.

We also asked the doctors to indicate whether the highlighted text presented is suffi-

cient in reaching their decision, in order to understand its usefulness when we incor-

porate them in the annotation interface. The annotations were found to be sufficient

in as many as 85% of the posts, on average, as indicated by the doctors’ answers to

Q3 in Figure 5.1. The posts labelled by the doctors were then used to construct two

types of predictive machine learning model using SVM [54, 122]; see Step 4 Subsection

5.5.3. The triage models employ multi-stage binary classifiers, which consider the risk

averseness or tolerance of the doctors when making the diagnosis [13]. The diagnostic

models first calculate the probability of a patient having COVID-19 from doctors’ rat-

ings. The probabilities are then used to construct three different decision functions for
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Figure 5.1: A patient-authored social media post is annotated with symptoms (light

green), affected body parts (pale blue), duration (light yellow) and severities (pink).

The phrases in the square brackets show relations between a symptom and a body

part/duration/severity, when the distance was greater than 1. This annotated post was

presented to three doctors to triage and diagnose the author of the post by answering

Questions 1 and 2, respectively.

classifying COVID and NO COVID classes; these are detailed in the Problem setting

section in Material and Methods (Subsection 5.5.2).

We trained the SVM models in two different ways, first with ground truth annota-

tions, and second using predictions from the concept and relation extraction step de-

scribed above. Predictions obtained from the concept extraction step make use of CRF

[99]; see Step 1 of the Methodology Subsection in Materials and Methods (Subsec-

tion 5.5.3) for implementation details. Relations are obtained from these predicted

concepts using an unsupervised Rule-Based (RB) classifier; see Step 2 in the Materials
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and Methods section (Subsection 5.5.3). We also discuss the feature importance ob-

tained from the constructed COVID-19 diagnostic models, and compare them with the

most frequent symptoms from [176] and our dataset. We found that symptoms such

as anosmia/ageusia (loss of taste and smell) rank in the top 5 most important features,

whereas they do not rank in the top 5 most frequent symptoms; see Discussion.

5.3 Contribution

Overall, we make several contributions as follows:

1. We show that it is possible to take an approach which aims at disease detection

to augment public health surveillance systems, by constructing machine learning

models to triage and diagnose COVID-19 from patients’ natural language narra-

tives. To the best of our knowledge, no other previous work has attempted to

triage or diagnose COVID-19 from social media posts.

2. We also build an end-to-end NLP pipeline by making use of automated con-

cept and relation extraction. Our experiments show that the models built using

predictions from concept and relation extraction produce similar results to those

built using ground truth human concept annotation.

5.4 Related work

In this chapter, we focus on features extracted from a textual source to triage and diag-

nose COVID-19 for the purpose of providing population level statistics in the context

of public health surveillance. We discussed several NLP applications used for track-

ing infectious diseases in Chapter 2. In the following subsections we provide related

COVID-19 symptom tracking tools, machine learning based prediction models using

clinical features, and diagnostic models using features extracted from textual sources.
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5.4.1 COVID-19 symptom tracking tools

Since the start of the COVID-19 pandemic, a number of mobile app-based self-reported

symptom tools have emerged, to track novel symptoms [228, 6, 53, 95]. The mobile

application in [127] applied LR to predict the percentage of probable infected cases

among the total app users in the US and UK combined. A recent review on mobile

symptom trackers used for COVID-19 can be found in [180]. The authors in [135]

performed a statistical analysis on primary care EHR records to find longitudinal dy-

namics of symptoms prior to and throughout the infection. Sarabadani et al [173] ex-

tracted COVID-19 symptoms from Reddit discussion forums utilising an active learn-

ing methodology to understand the longitudinal impact of COVID-19 symptoms be-

fore and after recovery. In addition, researchers analysed Twitter messages to conduct

studies on self reported long-term post-COVID symptoms [16] known as Long COVID.

Recently, Miao et al [129] published a study that analysed Long COVID symptoms

from Twitter messages utilising a combination of rule- and machine learning- based

methods. Specifically, the hybrid method extracted symptoms, gender, symptom du-

ration, and locations from a bulk collection of Twitter messages.

5.4.2 COVID-19 prediction models from clinical features

In general, COVID-19 clinical prediction models can broadly be categorised into risk,

diagnosis and prognosis models [222]. In Judson et al [89], a portal-based COVID-

19 self-triage and self-scheduling tool was employed to segment patients into four risk

categories: emergent, urgent, no-urgent and self-care. Whereas, the online telemedicine

system in [110] used LR to predict low, moderate and high risk patients, by utilis-

ing demographic information, clinical symptoms, blood tests and Computed Tomogra-

phy (CT) scan results. Moreover, machine learning algorithms, such as decision trees,

have shown promising results in detecting COVID-19 from blood test analyses [25]. In

Schwab et al [181], various machine learning models were developed to predict patient
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outcome from clinical, laboratory and demographic features found in EHR [58]. They

reported that Gradient Boosting (XGB), RF and SVM are the best performing models for

predicting COVID-19 test results, and, hospital and ICU admissions for positive pa-

tients, respectively. A detailed list of clinical and laboratory features can be found in

[208], where they developed predictive models for the inpatient mortality in Wuhan,

using an ensemble of XGB models. Similarly, in Vaid et al [197], mortality and crit-

ical events for patients using XGB classifiers were predicted. Zoabi et al [240] used

machine learning models to retrospectively predict COVID-19 test results using eight

binary features (i.e. sex, age 60 years or above, known contact with an infected in-

dividual, and five initial clinical symptoms) collected from patients during their PCR

testing. A critical review on various diagnostic and prognostic models of COVID-19

used in clinical settings, can be found in [222]. Finally, Alyasseri et al [9] provided a

thorough review on machine learning and deep learning based COVID-19 diagnostic

models.

5.4.3 COVID-19 diagnosis using textual sources

EHR records contain valuable patient information that can be harnessed to build strong

disease prognosis models. Izquierdo et al [88] applied deep learning to extract various

medical concepts, which were used as features for a decision tree model, to predict

ICU admissions for COVID-19 in-patients.

Meystre et al [128] analysed patients’ unstructured notes from a telemedicine system

to predict COVID-19 test results using an NLP system. The NLP system first extracted

several features such as demographics and social history, medical risk factors, labo-

ratory tests, medications, and environmental risk factors; for a description of these

features see [128]. Then, the system utilised these features with two machine learning

models to predict COVID-19 test results. Both machine learning models, i.e. LR and

SVM, achieved comparable performance. Notably, the NLP system employed both

rule-based and deep learning methods for feature extraction from textual sources.
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López et al [112] utilised radiological text reports from lung CT scans to diagnose

COVID-19. Similar to our approach, they first extracted concepts using a popular

medical ontology [23] and then constructed a document representation using word

embeddings [134] and concept vectors [112]. However, our methodology differs from

theirs with respect to the extraction of relations between concepts, and moreover, our

dataset, comprising posts obtained from medical social media, is more challenging to

work with, since social media posts exhibit greater heterogeneity in language than ra-

diological text reports.

Figure 5.2: Frequency distribution of annotated classes/concepts from the text are

shown. We also show the percentage of each class after discounting the OTHER labels.

The average number of tokens per post is 130.17(SD = 97.83). Here, SYM, DURATION,

INTENSIFIER, SEVERITY, BPOC and NEGATION denote symptoms, duration, inten-

sifiers, severity, body parts and negations, respectively.
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5.5 Materials and Methods

5.5.1 Data

We collected social media posts discussing COVID-19 medical conditions from a fo-

rum called Patient [148]. This is a public forum that was created at the onset of the

coronavirus outbreak in the United Kingdom. We obtained permission from the site

administrator to scrape publicly available posts dated between April and June 2020. In

addition, all user IDs and metadata were removed from the posts for the purpose of the

study. After the posts were anonymized, and duplicates were removed, we randomly

selected 500 distinct posts. The thesis author annotated these posts with the classes

shown in Figure 5.2. The class labels represent symptoms and the related concepts:

(1) duration; (2) intensifier, which increases the level of symptom severity; (3) severity;

(4) negation, which denotes the presence or absence of the symptom or severity; and

(5) affected body parts. We also annotated relations between a symptom and other

concepts that exist at the sentence level. For example, the relation between a symptom

and a severity concept is denoted as (SYM, SEVERITY). The posts were then marked

with concepts in different colours, and the relations were placed right after the symp-

tom in square brackets, as shown in Figure 5.1. Each marked post was presented to

the doctors using a web application, and they were asked 3 questions independently;

see Figure 5.1. We called the doctors’ answers to questions 1 and 2 as the COVID-19

symptom triage and diagnosis, respectively. Thus, for each post, we had 3 indepen-

dent answers from 3 doctors, which we denoted as A, B, and C, respectively; these

corresponded to the last 3 authors of the paper and were assigned randomly.

Measurement of agreement

To measure the agreement between the answers (recommendations and ratings) of the

3 doctors to questions 1 and 2 of Figure 5.1, we first calculated the proportion of ob-

served agreement (po), as suggested by de Vet et al. [202], who stipulated that Cohen
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Table 5.1: Pair-wise agreement between pairs of doctors answers for Question 1 and 2;

see Figure 5.1 for an example.

Question 1 Question 2

Pair po κ AC1 po κ AC1

AB 0.65 0.26 0.55 0.73 0.64 0.67

BC 0.63 0.14 0.53 0.73 0.64 0.67

AC 0.77 0.28 0.72 0.51 0.40 0.40

Average 0.68 0.22 0.60 0.66 0.56 0.58

κ is actually a measure of reliability rather than than agreement, and observe that po is

high in all cases as can be seen in Table 5.1. We noted that the paradoxical behavior

of Cohen κ can arise when the absolute agreement (po) is high [63]. This may occur

when there is a substantial imbalance in the marginal totals of the answers, which we

observed in the answers to question 1. Consequently, in addition to Cohen κ, we de-

ployed a common solution to this problem, called the AC1 statistic devised by Gwet

and coworkers [78, 217].

We found that for question 1 the AC1 measure shows moderate agreement (in the

middle of the moderate range) between A and B (0.55), between B and C (0.53), and

substantial agreement between A and C (0.72); see [101] for benchmark scale for the

strength of agreement. For question 2 it turns out that the said paradox did not oc-

cur, resulting in similar values for Kappa and AC1. The agreement between A and B

(κ=0.64, AC1=0.67) and between B and C (κ=0.64, AC1=0.67) are substantial, while the

agreement between A and C (κ=0.40, AC1=0.40) is on the boundary of fair and moder-

ate; see Table 5.1.

It is important to note that COVID-19 is a novel virus, for which the doctors did not

have prior experience or training before the first wave of the pandemic, and thus one

would expect some difference of opinion. (We bear in mind that in our setting the doc-
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tors can only see the posts and thus cannot interact with the patients as they would in a

normal scenario.) Moreover, there are probable differences in risk tolerances between

the doctors, which would lead to potentially different decisions and diagnoses.

5.5.2 Problem setting

Triage classification for Question 1

We map the doctors’ recommendation from question 1 to ordinal values; the options

Stay at home, Send to a GP, or Send to hospital are transformed to the values 1, 2, and

3, respectively. To combine recommendations from 2 or more doctors, we first took

their average. This result is rounded to an integer in one of two ways, either by taking

the floor or the ceiling. Considering the risk attitude prevalent among medical prac-

titioners [13], we categorise the ceiling of the average to be risk averse, denoted by, for

example, AB(R-a), and the floor to be risk tolerant, denoted by, for example, AB(R-t).

Thus for each patient’s post, we have in total eleven recommendations from three doc-

tors for question 1. We construct a multi-stage classification model for each of these

recommendations, where the goal is to classify a post into 1 of the 3 options.

Diagnosis classification for Question 2

To diagnose whether a patient has COVID-19 from his or her post, we first estimate

the probability of having the disease by normalising the rating, i.e given a rating, r, the

probability of COVID-19, Pr(COVID|r), which we termed as the ground truth probabil-

ity (abbreviated GTP), was simply:

Pr(COVID|r) = r− 1
4

.

Given our ground truth probability estimates are discrete we investigated 3 decision

boundaries, denoted by LE, LT, and NEQ, based on a threshold value of 0.5 to classify

a post as follows:
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LE: If Pr(COVID|r) <= 0.5, then NO COVID, else COVID.

LT: If Pr(COVID|r) < 0.5, then NO COVID, else COVID.

NEQ: If Pr(COVID|r) < 0.5 then NO COVID,

else if Pr(COVID|r) > 0.5 then COVID.

Note that NEQ ignores cases on the 0.5 boundary. Each of the three decision functions

shown above is a stand-alone algorithm which is applied to construct a dataset for the

classification task. This implies that there are three datasets, and each post may exist

in multiple datasets.

5.5.3 Methodology

A schematic of our methodology to triage and diagnose patients from their social posts

is shown in Figure 5.3. We now detail each of the steps in COVID-19 triage and diag-

nosis pipeline shown in the figure.

Step 1: Concept extraction

In the first step, we pre-process each patient’s post by splitting it into sentences and

tokens using the GATE software [45] built-in NLP pipeline. For each token in a sen-

tence we build discrete features that signal whether the token is a member of one of the

following dictionaries: (1) Symptom, (2) Severity, (3) Duration, (4) Intensifier, and (5)

Negation. The dictionaries were built by analysing the posts while annotating them.

We also utilise the MetaMap system [12], assuming that it contains all the necessary

technical terms, to map tokens to three useful semantic categories: Sign or Symptom;

Disease or Syndrome; Body Part, Organ, or Organ Component. Due to the assumption

regarding medical terms, the system does not expect any new additional terms, and

thus we are justified in extracting concepts and relations in pre-processing steps. The

pre-processed text is then used to build a concept extraction module to recognise the

classes, shown in Figure 5.2, by applying a CRF [193]. A detailed description of our
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Figure 5.3: A block diagram of COVID-19 triage and diagnosis text processing pipeline.

Here, CRF, RB classifier and SVM are acronyms for Conditional Random Fields, Rule-

Based classifier and Support Vector Machine, respectively.

CRF training methodology can be found in Chapter 2 Section 2.3 and Chapter 4

Section 4.3.2. The extracted concepts are then used for our next step to recognise the

relations between concepts.
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Step 2: Relation extraction

The semantic relation between a symptom and other concepts, which we formally

termed as modifiers, is resolved using an unsupervised RB classifier algorithm. A rela-

tion can be defined as an ordered pair of concepts (c1, c2) that exist in a sentence, where

c1 is a symptom, formally the principal entity, and c2 could be a body parts, severity, or

a duration [15]; more formally, the c2 concepts are called modifiers [51]. To retrieve such

relations, we first find all pairs of (c1, c2) from a sentence, where c1 and c2 are within a

distance D of each other; we set the allowable distance to be between D = 2 and D = 7

based on observation. Then we apply the following rules:

[Rule 1] Filter (c1, c2) pairs from a sentence by choosing the closest symptom (c1) to a

modifier (c2) within the distance D.

[Rule 2] Once a candidate modifier, c2 is chosen for the relation with a symptom, c1, it

cannot be used with other symptoms in the same sentence.

The relations extracted in the form of (c1, c2) allow a formal semantic representation

[51] of a post. We also consider the relation (c1, ?), in cases where a suitable modifier

cannot be found for a symptom in the sentence. To retrieve such relations, we first

find all pairs of (c1, c2) from a sentence, where c1 and c2 are within a distance D of

each other; we set the allowable distance to be between D = 2 and D = 7. We do not

consider D = 1 here; it misses a lot of modifiers and performs poorly in compare to

other distances.‘

In total, we extracted 5 kinds of relations as follows: (SYM, SEVERITY), (SYM,

DURATION), (SYM, BPOC), (SYM, NEGATION) and (SYM, ?)—here, SYM and BPOC

refer to symptoms, and body part, organ, or organ component, respectively.

The severity modifiers are mapped to a scale of 1-5. The semantic meaning of the

scale is: very mild, mild, moderate, severe and very severe, respectively. The duration

modifiers are also mapped to real values in chunks of weeks. So, for example, 10 days
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is mapped to the value 1.42.

Step 3: Vector representation

Fixed length vector representations suitable as input for SVM classifiers are built as

follows.

Symptom-only vector representation

Let ⟨s0, s1 . . . , sn⟩ be a vector of symptoms constructed from the symptom vocabulary,

for our dataset the number of unique symptom words/phrases n = 871. To construct

the vector representation for a post, we extract the concept, SYM, and the relation

(SYM, NEGATION), and set si to 1, 0, or -1, according to whether the symptom is

present, not present, or negated, respectively.

Symptom-modifier relation vector representation

The symptom-modifier relation vector is a much larger vector than the symptom-only

and comprises 3 appended vectors containing: (1) the absence or presence of 110

unique body parts, (2) the absence or value of a symptom duration, and (3) the ab-

sence, negation or value or a symptom severity. The construction of the representation

is described as follows:

First, the symptom-only vector, ⟨s0, s1 . . . , sn⟩, is transformed by setting its default val-

ues to−2; this initially represents the non-existence of a symptom in the post. For each

symptom, si, if there exists a severity modifier, or in other words, if a (SYM, SEVERITY)

relation is found for the said concept, then its value is set to that of the modifier. More

specifically, the value in this case is in between 1 and 5. We also consider negations

here; if there exist a (SYM, NEGATION) relation in the post for a symptom, then the

default value is subsumed by −1. In addition, it is 0, when the symptom is mentioned

but no severity or negation modifier relation exist; in other word, here, we consider

the (SYM, ?) relation. Let, the modified vector be ⟨ss0, ss1 . . . , ssn⟩.
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Similarly, we construct another vector from ⟨s0, s1 . . . , sn⟩ by transforming it to re-

flect (SYM, DURATION) relations in a post. Here, if there exists a duration modifier of

a symptom, si, then its value is set to that of the modifier, otherwise it is set to 0. Thus

we modify the symptom-only vector to ⟨sd0, sd1 . . . , sdn⟩.

Next, we take the body parts vocabulary and construct a discrete vector of 110

dimensions; the number of terms in the body parts vocabulary. Let this vector be

⟨bp0, bp1, . . . , bpm⟩, where 1 and 0 represent, respectively, the presence and absence of

a body part mentioned in the post.

Finally, we concatenate the vectors, ⟨ss0, ss1 . . . , ssn⟩,

⟨sd0, sd1 . . . , sdn⟩, and ⟨bp0, bpn, . . . , bpm⟩, which forms Symptom-modifier relation vector

representation for the post.

Step 4: Triage and diagnosis

We utilised SVM classification and regression models to triage and diagnose patients’

posts, respectively, from the vector representations described earlier. For question 1,

the recommendation from a doctor or combination of doctors is the class label of the

post; see section Problem setting in Materials and Methods (see Subsection 5.5.2) for

a description. To build a binary classifier, we first combine the Send to a GP and Send

to hospital recommendations to represent a single class, Send. The SVM is trained to

distinguish between the Stay at home and the Send options; we call this SVM Classifier

1. Next, the posts labelled as Stay at home are discarded and SVM Classifier 2 is built

utilising the remaining posts to classify the Send to GP and Send to hospital recommen-

dations. This results in a multi-stage classifier for COVID-19 triage.

For diagnosing COVID-19 cases, we deploy a variant of SVM, called Support Vector

Regression (SVR) [54], to estimate the probability of COVID-19. We use the GTP that

is derived from answers to question 2 as the dependent variable. SVR takes as input

a high dimensional feature vector such as a symptom-only or symptom-modifier relation

vector representation, as described above. Classification is performed using the three
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decision functions, LE, LT, and NEQ, described previously.

Table 5.2: The concept extraction using CRF on 3-fold cross validation.

Label P R F1 Support

SYM 0.94 0.97 0.95 1300

SEVERITY 0.80 0.79 0.79 437

BPOC 0.92 0.83 0.87 356

DURATION 0.87 0.91 0.89 667

INTENSIFIER 0.88 0.97 0.92 494

NEGATION 0.83 0.89 0.86 338

OTHER 0.99 0.98 0.98 16892

Macro-average 0.89 0.89 0.89

Table 5.3: Relation extraction using RB classifier on 3-fold cross validation.

Distance P R F1 P R F1

2 0.74 0.63 0.68 0.74 0.64 0.69

3 0.75 0.67 0.71 0.75 0.67 0.71

4 0.75 0.69 0.72 0.75 0.69 0.72

5 0.75 0.71 0.73 0.74 0.71 0.73

6 0.74 0.72 0.73 0.74 0.72 0.73

7 0.73 0.73 0.73 0.73 0.73 0.73
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Table 5.4: Question 1: Multi-stage classification results for RBF kernel using the

symptom-modifier relation vector trained on the ground truth.

SVM Classifier 1 SVM Classifier 2

Model P R F1 P R F1

A 0.82 0.91 0.86 0.73 0.95 0.83

B 0.73 0.77 0.75 0.81 0.99 0.89

C 0.85 0.98 0.91 — — —

AB(R-a) 0.70 0.75 0.72 0.80 0.96 0.88

AB(R-t) 0.84 0.96 0.89 0.85 1.00 0.92

BC(R-a) 0.72 0.75 0.73 0.92 1.00 0.96

BC(R-t) 0.86 0.99 0.92 — — —

AC(R-a) 0.79 0.87 0.83 0.89 1.00 0.94

AC(R-t) 0.88 0.98 0.93 — — —

ABC(R-a) 0.70 0.76 0.73 0.89 0.99 0.93

ABC(R-t) 0.88 0.99 0.93 — — —

5.6 Results

Evaluation

We evaluate the performance of the CRF and SVM classification algorithms using the

standard measures of precision (P), recall (R) and macro- and micro-averaged F1 scores

[120]. macro-averaged scores are computed by considering the score independently

for each class and then taking the average, while micro-averaged scores are computed

by considering all the classes together. As our dataset was not balanced with COVID

and NO COVID classes, as can be seen in Figure 5.4, and we wished to give equal

weight to all instances, we reported micro-averaged scores for the SVR classification.

In contrast, in the case of concept extraction, the Other class dominated. So, in this



5.6 Results 123

Table 5.5: Question 1: Multi-stage classification results of two classifiers for RBF kernel

using the symptom-modifier relation vector trained on the CRF prediction.

SVM Classifier 1 SVM Classifier 2

Model P R F1 P R F1

A 0.81 0.89 0.85 0.72 0.91 0.80

B 0.74 0.74 0.74 0.81 0.99 0.89

C 0.85 0.96 0.90 — — —

AB(R-a) 0.73 0.71 0.71 0.81 0.96 0.88

AB(R-t) 0.84 0.94 0.88 0.84 1.00 0.92

BC(R-a) 0.74 0.71 0.72 0.92 1.00 0.96

BC(R-t) 0.88 0.98 0.93 — — —

AC(R-a) 0.81 0.85 0.83 0.89 1.00 0.94

AC(R-t) 0.88 0.98 0.93 — — —

ABC(R-a) 0.72 0.72 0.72 0.89 1.00 0.94

ABC(R-t) 0.89 0.98 0.93 — — —

case, we reported the macro-averaged scores for the CRF classification results.

Experimental setup

For the CRF we report 3-fold cross validated macro-averaged results. Specifically, we

trained each fold by a Python wrapper [44] for CRFsuite, see [147]. For relation extrac-

tion, we ran our unsupervised rule-based algorithm on the 500 posts and calculated

the F1 scores by varying distances considering the two cases with and without stop

words.

We constructed SVM binary classifiers, SVM Classifier 1 and SVM Classifier 2, using

the Python wrapper for LIBSVM [29] implemented in Sklearn [151] with both Linear

and Gaussian Radial Basis Function (RBF) kernels [122]. Similarly, the SVR [114], imple-
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Table 5.6: Question 1: Multi-stage classification results of two classifiers for RBF kernel

using the symptom-only relation vector trained on the ground truth.

SVM Classifier 1 SVM Classifier 2

Model P R F1 P R F1

A 0.83 0.91 0.87 0.74 0.85 0.79

B 0.71 0.81 0.76 0.81 0.98 0.89

C 0.87 0.97 0.92 — — —

AB(R-a) 0.69 0.75 0.72 0.83 0.96 0.89

AB(R-t) 0.85 0.94 0.89 0.85 1.00 0.92

BC(R-a) 0.71 0.79 0.75 0.92 0.99 0.95

BC(R-t) 0.88 0.98 0.93 — — —

AC(R-a) 0.80 0.86 0.83 0.89 1.00 0.94

AC(R-t) 0.90 0.98 0.94 — — —

ABC(R-a) 0.68 0.74 0.71 0.90 1.00 0.95

ABC(R-t) 0.90 0.98 0.94 — — —

mented using LIBSVM, is built with both Linear and RBF kernels. The hyperparame-

ters (C = 10 for the penalty, γ = 0.01 for the RBF kernel, and ϵ = 0.5 for the threshold)

were discovered using grid search [151].

We simulated two cases for COVID-19 triage and diagnosis. First SVM and SVR

models were trained with the ground truth examine the predictive performance when

they are deployed as stand-alone applications. Second, when trained with the predic-

tions from CRF and RB classifier, they resembled an end-to-end NLP application. To

obtain a comparable result, the models were always tested with the ground truth. As

a measure of performance, we report macro and micro-averaged F1 scores for SVM

classifiers and SVR, respectively.
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Table 5.7: Question 1: Multi-stage classification results for RBF kernel using the

symptom-only relation vector trained on the CRF prediction.

SVM Classifier 1 SVM Classifier 2

Model P R F1 P R F1

A 0.84 0.89 0.87 0.74 0.82 0.78

B 0.74 0.79 0.77 0.82 0.98 0.89

C 0.86 0.95 0.90 — — —

AB(R-a) 0.72 0.76 0.73 0.83 0.92 0.87

AB(R-t) 0.87 0.93 0.90 0.84 0.98 0.90

BC(R-a) 0.72 0.78 0.75 0.92 0.99 0.95

BC(R-t) 0.87 0.97 0.92 — — —

AC(R-a) 0.80 0.86 0.83 0.89 1.00 0.94

AC(R-t) 0.89 0.95 0.92 — — —

ABC(R-a)0.71 0.76 0.73 0.89 0.99 0.93

ABC(R-t) 0.90 0.95 0.92 — — —

Evaluation outcomes

The concept and relation extraction phases produce excellent and very good predictive

performances, respectively; see Table 5.2 and 5.3. The triage classification results from

Q1 are shown in Table 5.4, 5.5, 5.6 and 5.7; the full enumeration can be seen in the

first column. When we trained the models with the Symptom-modifier vector represen-

tations from the ground truth, the results of SVM Classifier 1 and 2 are in the range of

72-93% and 83-96%, respectively (see Table 5.4 and 5.5). The Symptom-only vector

representations produces results in the range of 71-94% and 79-95%; see Table 5.6 and

5.7. These results suggest that we can achieve very good predictive performance for

classifying Stay at home and Send, and for Send to a GP and Send to hospital. In general,
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Table 5.8: Question 2: Micro-averaged F1 results for different models and decision

functions trained on ground truth. Here A, B, C are three medical doctors (abbreviated

as Dr) who took part in the experiment.

Symptom-modifier Symptom-only

Model LE LT NEQ LE LT NEQ

A 0.72 0.61 0.78 0.70 0.59 0.74

B 0.78 0.61 0.76 0.78 0.62 0.77

C 0.87 0.75 0.87 0.88 0.75 0.87

AB 0.72 0.66 0.74 0.74 0.65 0.75

BC 0.84 0.76 0.84 0.85 0.79 0.86

AC 0.81 0.73 0.81 0.83 0.74 0.83

ABC 0.74 0.67 0.76 0.75 0.67 0.77

risk-tolerant models achieve better performance than the risk-averse models. How-

ever, since, in the test set, posts with the label Send to hospital are missing for some

models (as can be seen from Figure 5.5) we cannot report them. We report macro-

averaged F1 score results since question 1 was framed as a decision problem, where

weights for the classes are a priori equal. The results obtained after training with CRF

predictions were in similar ranges for both representations and classifiers. This is im-

portant, because it indicates that an end-to-end NLP application is likely to produce

similar predictive performance.

Regarding Q2, when we trained the models with the symptom-modifier vector rep-

resentation from ground truth, the results of COVID-19 diagnosis were in the range of

72-87%, 61-76%, and 74-87% for the LE, LT, and NEQ decision functions, respectively;

see Table 5.8. The symptom-only vector representation produce results in the range

of 70-88%, 59-79%, and 74-87%. In general, NEQ models perform better due to the

omission of borderline cases where the GTPs are exactly 0.5. The support ratios for
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Table 5.9: Question 2: Micro-averaged F1 results for different models and decision

functions trained on the CRF predictions. Here A, B, C are three medical doctors (ab-

breviated as Dr) who took part in the experiment.

Symptom-modifier Symptom-only

Model LE LT NEQ LE LT NEQ

A 0.68 0.64 0.76 0.50 0.79 0.74

B 0.76 0.64 0.77 0.78 0.57 0.74

C 0.86 0.75 0.87 0.87 0.74 0.86

AB 0.70 0.65 0.73 0.71 0.66 0.74

BC 0.83 0.76 0.83 0.85 0.78 0.86

AC 0.80 0.74 0.82 0.80 0.73 0.81

ABC 0.72 0.69 0.76 0.74 0.69 0.77

each model for different decision functions, is shown in Figure 5.4. When we trained

the models with the symptom-modifier vector representation from the CRF predic-

tions, the results were in the range of 68-86%, 64-76%, and 73-87% for the LE, LT, and

NEQ decision functions, respectively; see Table 5.9. This indicated that, for diag-

nosis as well as triage, an end-to-end NLP application is likely to perform similarly

to stand-alone applications. Here, we report micro-averaged F1 scores since, in our

dataset, NO COVID cases dominated; this largely resembled the natural distribution

in the population, where people tested positive for coronavirus are relatively a low

percentage in the whole population even when the prevalence of the virus is high.

Finally, we trained our models using a Linear kernel, but found that RBF dominates

in most of the cases; however, Linear kernels are useful in finding feature importance

[213].



5.6 Results 128

Figure 5.4: Support ratio of triage classes across models for Question 1 classification

tasks. Absolute numbers for the Send to hospital class in test sets are as follows: A=10,

B=12, AB(R-a)=14, AB(R-t)=5, BC(R-a)=6, CA(R-a)=5, ABC(R-a)=9; the value for the

remaining models is zero.

Figure 5.5: Support ratio of diagnosis classes across models and three decision func-

tions for Question 2 classification tasks.
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Figure 5.6: Feature comparison between our most important features and Sarker’s

most frequent symptoms (top row), and between our most important features and our

most frequent symptoms (bottom row). The feature importance rankings are obtained

from an SVM linear kernel using the symptom-only vector representation.

5.7 Discussion

Principal findings

This study demonstrates the potential to triage and diagnose COVID-19 patients from

their social media posts. We have presented a proof of concept system to predict a
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patient’s health state by building machine learning models from their narrative. The

models were trained in two ways; using (i) ground truth labels, and (ii) predictions

obtained from the NLP pipeline. Trained models were always tested on the ground

truth labels. We obtained good performances in both cases which indicates that an

automated NLP pipeline could be used to triage and diagnose patients from their nar-

rative; see Evaluation outcomes in the Results section. In general, health professionals

and researchers could deploy, triage models to determine the severity of COVID-19

cases in the population, and diagnostic models to gauge the prevalence of the pan-

demic.

Comparison with prior work

To quantify the important predictive features in the training set, we experimented

with COVID-19 diagnosis using Linear Kernel SVR regression. More specifically, we

used the symptom-only vector representation constructed from the ground truth. We

summed feature weights for each si in ⟨s0, s1 . . . , sn⟩ from 7 models and 3 decision

function; see Problem Settings in Materials and Methods (see Subsection 5.5.2). The

features are then mapped to the categories found in the Twitter COVID-19 lexicon

complied by Sarker et al. [176]. We rank the mapped features, select the top 5 highest

weighted features (which we refer to as the important features), and the weights are

then normalised. The top 5 important features in our dataset are: cough, anosmia/agusia,

dyspnea, pyrexia, and fatigue. Mizrahi et al. [135] quoted 4 of these symptoms as the most

prevalent Coronavirus symptoms, strongly correlating with our findings.

To compare our importance ranking with that of Sarker et al’s [176] frequent cat-

egories, we compiled the corresponding frequencies of our 5 most important symp-

toms. Normalised weights and frequencies are then plotted in Figure 5.6. The top-left

stacked bar chart compares our 5 most important features with Sarker et al’s [176] fre-

quencies. Cough was the most important symptom from our dataset, where it was the

second-most frequent. Anosmia/ageusia ranked second in our importance list, while it
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was seventh in the most frequent list. Pyrexia came first and fourth in both the frequent

and importance lists, respectively.

The top-right chart in Figure 5.6 shows a comparison between Sarker et al’s [176]

frequent ranking and our importance ranking. Here, we selected top 5 most frequent

symptoms from Sarker et al’s [176] frequency list and normalise them. These are:

pyrexia, cough, body ache, fatigue, and Headache. We took the corresponding importance

weights of these symptoms and plotted them in a stacked bar chart. Here, headache

ranked 22nd in our importance ranking, while it was 5th in the frequent ranking. We

found a large difference between the 2 rankings, implying that the top most frequent

symptoms are not necessarily the most important ones.

Next we compared our most important feature weights with our dataset’s fre-

quency ranking using the methods described above. From the bottom-left stacked bar

chart of Figure 5.6, we observed that anosmia/ageusia are a relatively low in order in

the frequency ranking (ie, 11th). As in Sarker et al’s [176] ranking, cough came 2nd in

our dataset’s frequency ranking.

Finally, the bottom-right chart in Figure 5.6 refers to the comparison between our

dataset’s frequency and importance rankings of the corresponding symptoms. We ob-

served that anxiety ranked 4th in the most frequent list, where it was low, (ie, 23rd) in

the most importance ranking.

5.8 Conclusion

The coronavirus pandemic has drawn a spotlight on the need to develop automated

processes to provide additional information to researchers, health professionals and

decision-makers. Medical social media comprises a rich resource of timely informa-

tion that could fit this purpose. We have demonstrated that it is possible to take an

approach that aims at the detection of COVID-19 using an automated triage and di-

agnosis system in order to augment public health surveillance systems, despite the



5.8 Conclusion 132

heterogeneous nature of typical social media posts. The output of such an approach is

actionable information for decision makers as it will enable them to estimate severity

and prevalence of the disease in the population. In the next chapter we investigate the

transferability of the concept extraction model and the dictionaries built for this case

study.



Chapter 6

Deep learning for concept extraction

6.1 Overview

Extracting COVID-19 symptoms both from social media and from medical documents

has been found to be useful for tracking this disease [94] and for building prognosis

models to predict mortality in hospitals [185].

In Chapter 4, we developed a CRF that included manually created dictionary fea-

tures to extract medical concepts from social media. In contrast, a BiLSTM network

initialised with word and character embeddings [100] demonstrated improvements

in concept extraction over a feature based CRF from a variety of formal document

datasets [79]. More recently, BERT [49] achieved state-of-the-art performance in a va-

riety of NLP tasks including biomedical text mining [105]. However, one of the bot-

tlenecks for deploying such architectures is the need for labelled data. Recent work

in medical concept extraction such as [192], utilised dictionaries/gazetteers with deep

learning models to leverage external knowledge when labelled datasets are scarce.

Herein, we investigate two variants of a BiLSTM based deep learning architecture that

essentially differ in the type of input provided. In Figure 6.1. the input sequence is

replaced with vectors from a pre-trained static word embedding. In Figure 6.2 the

input static word embedding vector is concatenated with a vector from a contextual

word embedding. We are interested in the effect of including dictionary features to

these models. In this chapter, we investigate the effect of appending a dictionary vec-

133
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Figure 6.1: BiLSTM+CRF architecture for extracting COVID-19 medical concepts from

social media.

Figure 6.2: BERT+BiLSTM+CRF architecture for extracting COVID-19 medical con-

cepts from social media.
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tor (which we describe in Section 6.3) to either the input of the first or second BiLSTM

layer. The figures show the case where the dictionary vector is injected into the in-

put of Layer 2. The investigation is performed using a COVID-19 discussion forum

[148] dataset which was annotated with several medical concepts (see Dataset descrip-

tion in Section 6.3.1). The results show that models built incorporating dictionaries

perform better than those without them. Furthermore, in order to check the transfer-

ability of the models and dictionaries to a publicly available COVID-19 Twitter dataset

[32], weak supervision methodology is developed. Specifically, we utilise the manually

built symptom dictionary from the previous chapter and a publicly available COVID-

19 symptom dictionary from [176]. These are termed as (i) Our dictionary, (ii) Sarker

dictionary, and (iii) Combined dictionary. The combined dictionary is the merger of the

former two dictionaries. First, two base-line models are trained using labelled dataset

by Our and Sarker dictionaries separately. Then the models are retrained by incre-

mentally adding terms from either dictionaries; i.e. the coverage of Our dictionary is

increased by Sarker’s and vice-versa. These models are tested with the dataset tagged

by Our, Sarker, and Combined dictionaries, respectively. Furthermore, they are tested

with a manually annotated ground truth data. For the Twitter dataset, we use COVID-

19 version of BERTweet [141], and for the forum dataset we use BERT base model [49].

6.2 Contributions

Our contributions are as follows:

1. With combination of static and contextual word embeddings and by leveraging

dictionary features, we obtain a very good performance in extracting COVID-19

medical concepts from social media text.

2. We show that dictionaries are useful as weak learners and the neural model

achieve a very good performance when we transfer it to extract COVID-19 symp-
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Figure 6.3: An example post and its feature matrix for a selected sequence. Here, green,

yellow, and red denote symptom, duration, and severity concepts. Moreover, d1 to d6

denote symptom, severity, duration, intensifier, negation, and body parts dictionaries,

respectively, and d7 represents MetaMap.

toms from a larger Twitter dataset.

6.3 Materials and Methods

Schematics of our architectures are shown in Figures 6.1 and 6.2. In the following

subsections we demonstrate our data collection procedure and the architectures of the

models.

6.3.1 Data

We extracted 3000 posts related to COVID-19 from a patient social media forum called

Patient [148], from this we randomly selected 500 social media posts to manually an-

notate. These posts were annotated with the class labels representing symptoms and
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the related concepts: (1) duration; (2) intensifier, which increases the level of symptom

severity; (3) severity; (4) negation, which denotes the presence or absence of the symp-

tom or severity; and (5) affected body parts. The details of data collection procedure

can be found in Chapter 5 Section 5.5.1.

We collected tweets from the first 3 months of 2020 that contained at least one

symptom, amounting to 36204 tweets, from a multilingual COVID-19 dataset pub-

lished through the Github 1 repository by the authors of [32], we manually annotated

1000 randomly selected tweets.

6.3.2 Neural Network Architecture

In this chapter, we develop two variants of the BiLSTM+CRF architecture. Each archi-

tecture comprises Input Processing, Encoder Layer, and Decoder Layer. They differ in

Input Processing unit, where we add a BERT layer, hence the architecture in Figure 6.1

is denoted as BiLSTM+CRF and the one in Figure 6.2 is denoted as BERT+BiLSTM+CRF.

We now give details of these units as follows.

Input Processing

The input processing unit consists of (i) input sequence, (ii) wordpiece tokenization,

(iii) dictionary vector, (iv) embedding layer, and (v) frozen BERT layer. The units

(i), (iii), and (iv) are common in both architectures whereas (ii) and (v) are used with

BERT+BiLSTM+CRF architecture.

Input Sequence: An input sequence is either a sentence (from the forum dataset) or

a complete tweet (from the Twitter dataset). The sequences are tokenized using the

GATE [45] software package. For a given sequence, S of length l, from this tokeniza-

tion procedure we obtain w1, w2, . . . , wl tokens. The vocabularies are constructed from

the unique tokens of these datasets.

Dictionary Vector: The sequences of a post or a tweet is processed to construct a dic-

1https://github.com/echen102/COVID-19-TweetIDs

https://github.com/echen102/COVID-19-TweetIDs
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tionary vector. The dictionary vector for token wi consists of 7 bits of information,

where each bit is denoted as di, and represent either a dictionary or UMLS semantic

types. The example of a dictionary matrix for a selected sequence is shown in Fig-

ure 6.3. Here, after tokenization, we processed the sequence using a NLP pipeline

constructed using the GATE software. For dictionary/gazetteer matches we config-

ure the pipeline for full match. We have five dictionaries in our pipeline. They are as

follows:(d1) Symptom, (d2) Severity, (d3) Duration, (d4) Intensifier, and (d5) Negation.

The dictionaries were built by analysing the posts while annotating them. We also uti-

lized the MetaMap, to map tokens to Body Part, Organ, or Organ Component, and Sign

or Symptom, and Disease or Syndrome semantic concepts to represent d6 and d7 bits in

our dictionary vector. Thus, for a given sequence, S, we collect d⃗1, d⃗2, . . . , d⃗l vectors.

BERT Tokenization: BERT uses wordpiece tokenization. In this procedure known sub-

word tokens are iteratively merged based on maximum likelihood. Here, we denote

the tokens of S as wp1, wp2, . . . , wpm after the wordpiece tokenization. Note that l and

m may not match and m >= l. For example the word “COVID“ splits into two sub

words [“CO“, “#VID“] in the case of wordpiece tokenization.

Embedding Layer: If a token is wordpieced at position i, then the token and dictionary

vector, wi and d⃗i, respectively, are repeated for the same number of times it is pieced.

As a result, for the architecture in Figure 6.2, the length of S is extended to m. We col-

lected pre-trained word embeddings v⃗1, v⃗2, . . . , v⃗m for the sequence S from the google

news corpus [134]. If a word is not present in the vocabulary, the embedding is initial-

ized randomly. Similarly the dictionary vectors are mapped to d⃗1, d⃗2, . . . , d⃗m for S.

Frozen BERT Layer: For BERT+BiLSTM+CRF architecture in Figure 6.2, we utilize

BERT models by freezing their parameters and fed wordpieced tokens into the layer

before inputting them to the encoder layer. This produces contextual BERT vectors for

a sequence and denoted as b⃗1, b⃗2, . . . , b⃗m. Specifically, we took representations from the

last BERT layer.
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Encoder Layer

The encoder in our architecture is a 2 layered BiLSTM network which is similar to the

architecture presented in [100]. The BiLSTM Layer 1 in the BiLSTM+CRF architecture

is fed with pre-trained word vectors v⃗1, v⃗2, . . . , v⃗l . For BERT+BiLSTM+CRF architec-

ture, we feed concatenation of v⃗1, v⃗2, . . . , v⃗m and b⃗1, b⃗2, . . . , b⃗m. After processing, the

first BiLSTM layer produces hidden representations h⃗1
i . This representation is concate-

nated with d⃗i and fed into the second layer. Let the output of the second layer is h⃗2
i . We

also incorporated an attention layer on top of the last hidden layer for BiLSTM+CRF

architecture. We examined two types of attention: (i) self attention, and (ii) cross at-

tention. In case of self attention, the query, key and value vectors come from the same

hidden representations for each token. Whereas, in case of cross attention, the query

is the last hidden representation of the BiLSTM which is deemed as the sentence rep-

resentation, and the key and value vectors are each token‘s hidden representations.

We found that cross attention works well the BiLSTM+CRF architecture, however, the

BERT+BiLSTM+CRF architecture are found to perform worse when attention is added.

So we removed them from BERT+BiLSTM+CRF architecture.

Decoder Layer

Our decoder layer comprises a Softmax layer and a neural CRF. The hidden repre-

sentations, h⃗2
i , of a token from the final encoder layer is fed into a Softmax layer to

produce the emission probability of a tag j, Ei,j. The transition scores are calculated

using the neural CRF [100]. Finally, the probability of a label sequence is calculated

using Equation 2.4 from Chapter 2 Section 2.3.2.

6.3.3 Models

From BiLSTM+CRF architecture we build the following models:

1. BiLSTM+CRF: The BiLSTM Layer 1 is initialised with pre-trained word vectors
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v⃗i.

2. +DICT(1): The BiLSTM Layer 1 is initialised with the concatenation of dictionary

and word vectors d⃗i, v⃗i, respectively.

3. +DICT(2): The BiLSTM Layer 1 is initialised with pre-trained word vectors v⃗i to

produce h⃗1
i . The dictionary vector d⃗i is concatenated with h⃗1

i and fed into BiLSTM

Layer 2.

From BERT+BiLSTM+CRF architecture we build the following models:

1. BERT+BiLSTM+CRF: Concatenation of v⃗i and b⃗i are fed in to BiLSTM Layer 1.

2. +DICT(1): Concatenation of v⃗i, b⃗i, and d⃗i are fed in to BiLSTM Layer 1.

3. +DICT(2): Concatenation of v⃗i and b⃗i are fed in to BiLSTM Layer 1 to produce h⃗1
i .

The dictionary vector d⃗i is concatenated with h⃗1
i and fed into BiLSTM Layer 2.

BiLSTM+CRF +DICT(1) +DICT(2)

Label P R F1 P R F1 P R F1

SYM 0.84 0.77 0.80 0.92 0.94 0.93 0.93 0.95 0.94

SEVERITY 0.67 0.51 0.58 0.74 0.77 0.75 0.75 0.80 0.77

BPOC 0.82 0.89 0.85 0.91 0.88 0.89 0.90 0.90 0.90

INTENSIFIER 0.82 0.90 0.86 0.87 0.94 0.91 0.88 0.94 0.91

DURATION 0.79 0.79 0.79 0.81 0.91 0.86 0.85 0.89 0.87

NEGATION 0.81 0.88 0.84 0.83 0.83 0.83 0.81 0.87 0.84

O 0.96 0.97 0.97 0.98 0.98 0.98 0.99 0.98 0.98

MACRO 0.82 0.82 0.81 0.87 0.89 0.88 0.87 0.90 0.89

Table 6.1: Results of concept extraction from forum dataset using BiLSTM+CRF archi-

tecture. For the descriptions of BiLSTM+CRF, +DICT(1), and +DICT(2) models see

Subsection 6.3.3
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BERT+BiLSTM+CRF +DICT(1) +DICT(2)

Label P R F1 P R F1 P R F1

SYM 0.79 0.86 0.82 0.92 0.92 0.92 0.93 0.97 0.95

SEVERITY 0.70 0.38 0.49 0.75 0.66 0.69 0.75 0.85 0.80

BPOC 0.91 0.77 0.83 0.87 0.92 0.89 0.93 0.90 0.91

INTENSIFIER 0.82 0.80 0.81 0.84 0.95 0.89 0.87 0.94 0.90

DURATION 0.78 0.82 0.80 0.83 0.87 0.84 0.84 0.91 0.87

NEGATION 0.83 0.90 0.86 0.84 0.89 0.86 0.83 0.93 0.88

O 0.96 0.96 0.96 0.98 0.97 0.98 0.99 0.97 0.98

MACRO 0.83 0.78 0.80 0.86 0.88 0.87 0.88 0.92 0.90

Table 6.2: Results of concept extraction from forum dataset using

BERT+BiLSTM+CRF architecture. For the descriptions of BERT+BiLSTM+CRF,

+DICT(1), and +DICT(2) models see Subsection 6.3.3. In all cases BERT parameters

are frozen.

6.3.4 Transfer learning/Weak supervision

For investigating how well our dictionaries based on the forum data can transfer to

another dataset, we focus on extracting symptoms only. We introduce one further

dictionary that has been developed by analysing the same Twitter dataset we use in

our forthcoming experiments which was published by Sarker et al. [176]. We prune

this dictionary by removing terms related to anxiety, stress & general mental health

symptoms and some phrases related to pyrexia or fever such as 102 fever, 103+ fevers,

and fever spiked to 107. The number surrounding the term fever is annotated as Severity

in our forum dataset.

To distinguish between the two dictionaries we call the forum built dictionary, Our

dictionary and the Twitter based dictionary the Sarker dictionary.

From the Twitter dataset we extracted tweets which had at least one symptom. We
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did this by simply using Sarkar’s dictionary to identify them. We removed 1000 tweets

and annotated them which we used for our ground truth experiments. We used weak

learning to train models in two ways:

1. Our base-line: The train dataset is tagged using Our dictionary.

2. Sarker base-line: The train dataset is tagged by the Sarker dictionary.

We also looked at the effect of incrementally combining the dictionaries. Starting with

Our dictionary we include 20% of Sarker’s dictionary, which we then use to tag the

training data. We repeatedly add a further 20% of Sarker’s dictionary and tag the data

again until we have the union of both dictionaries. We repeat the process of tagging

the training data starting with the Sarker dictionary and incrementally including 20%

of Our dictionary. For test set we not only evaluate on the ground truth but also on a

weakly learnt test set that is generated by tagging using the union of both dictionaries,

i.e. Combined dictionaries. This latter test set is useful to see how well each individual

dictionary can represent a dictionary that is generated from the combined datasets. For

completeness we also look at the performance when we tag the test set using only the

individual dictionaries separately.

6.4 Results

6.4.1 Experimental setup

For both datasets we reported a 3-fold cross-validated F1 scores. Training is done with

the batch size of 16. The maximum sequence length for forum posts and tweets are

512 and 130, respectively. The number of features in the hidden state for each BiLSTM

layer is 100. We use the Adam optimizer with a learning rate of 0.01 and a weight

decay of 1e-5. The experiments were performed using the transformers library [216]

and all models were trained on an NVIDIA Tesla P100.
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Test datasets

Dictionary Combined Our Sarker

Size % P R F1 P R F1 P R F1

0% 1.00 0.83 0.90 1.00 1.00 1.00 0.63 0.72 0.67

20% 1.00 0.93 0.96 0.94 1.00 0.97 0.67 0.88 0.76

40% 1.00 0.96 0.98 0.92 1.00 0.96 0.68 0.94 0.79

60% 1.00 0.98 0.99 0.91 1.00 0.95 0.69 0.96 0.80

80% 1.00 1.00 1.00 0.89 1.00 0.94 0.70 1.00 0.82

100% 1.00 1.00 1.00 0.89 1.00 0.94 0.70 1.00 0.82

Table 6.3: Results of weakly supervised symptom extraction task using Our base-line

BiLSTM+CRF+DICT(2) model and for incremental additions from the Sarker dictio-

nary.

Test datasets

Dictionary Combined Our Sarker

Size % P R F1 P R F1 P R F1

0% 1.00 0.59 0.74 0.81 0.51 0.63 1.00 1.00 1.00

20% 1.00 0.88 0.94 0.88 0.86 0.87 0.77 1.00 0.87

40% 1.00 0.92 0.96 0.88 0.90 0.89 0.74 1.00 0.85

60% 1.00 0.92 0.96 0.88 0.89 0.89 0.73 0.97 0.84

80% 1.00 0.98 0.99 0.89 0.98 0.93 0.71 1.00 0.83

100% 1.00 1.00 1.00 0.89 1.00 0.94 0.70 1.00 0.82

Table 6.4: Results of weakly supervised symptom extraction task using Sarker base-line

BiLSTM+CRF+DICT(2) model and for incremental additions from Our dictionary.
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Test datasets

Dictionary Combined Our Sarker

Size % P R F1 P R F1 P R F1

0% 1.00 0.82 0.90 1.00 1.00 1.00 0.63 0.72 0.67

20% 1.00 0.92 0.96 0.94 1.00 0.97 0.67 0.87 0.76

40% 1.00 0.96 0.98 0.91 1.00 0.96 0.69 0.94 0.79

60% 1.00 0.98 0.99 0.91 1.00 0.95 0.69 0.96 0.81

80% 1.00 1.00 1.00 0.89 1.00 0.94 0.70 1.00 0.82

100% 1.00 1.00 1.00 0.89 1.00 0.94 0.70 1.00 0.82

Table 6.5: Results of weakly supervised symptom extraction task using Our base-line

BERT+BiLSTM+CRF+DICT(2) model and for incremental additions of the Sarker dic-

tionary. All experiments are performed using COVID-19 version of BERTweet.

Test datasets

Dictionary Combined Our Sarker

Size % P R F1 P R F1 P R F1

0% 1.00 0.60 0.75 0.81 0.52 0.63 1.00 1.00 1.00

20% 1.00 0.88 0.94 0.87 0.86 0.86 0.77 1.00 0.87

40% 1.00 0.92 0.96 0.88 0.90 0.89 0.75 1.00 0.85

60% 1.00 0.93 0.96 0.88 0.92 0.90 0.74 1.00 0.85

80% 1.00 0.98 0.99 0.89 0.98 0.93 0.71 1.00 0.83

100% 1.00 1.00 1.00 0.89 1.00 0.94 0.70 1.00 0.82

Table 6.6: Results of weakly supervised symptom extraction task using Sarker base-

line BERT+BiLSTM+CRF+DICT(2) model and for incremental additions of Our dic-

tionary. All experiments are performed using COVID-19 version of BERTweet.
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6.4.2 Evaluation

Supervised Concept Extraction

Results for the supervised experiments of the forum dataset are shown in Table 6.1 and

6.2 for BiLSTM+CRF and BERT+BiLSTM+CRF models, respectively. In both cases,

incorporating the dictionary information into the input of the second BiLSTM layer,

+DICT(2), performs better than incorporating it into the first layer,+DICT(1). Includ-

ing BERT performs marginally better than not having it.

Weak Supervision

For weak supervision results we focus only on the +DICT(2) models since that was

the best performing location for a dictionary in the supervised extraction experiments.

Tables 6.3 and 6.4 show the result from the BiLSTM+CRF model when Our and Sarker

dictionary is used as the base-line, respectively. We note the final row from each table

is the same, since the training labels are identical. We note also for the Combined test

set, the labels for both the training and test are generated using the same dictionaries,

hence we get an F1 of 1.

Overall we see from Tables 6.3 and 6.4 that combining the dictionaries, even incre-

mentally, improves performance. Focussing on the first row and final column of Table

6.3 we see that our dictionary performs favourably (F1 of 0.67) when the test data has

been weakly labelled using a dictionary derived from that data compared to when we

swap the roles of the dictionaries, which can be seen in Table 4 first row middle column

(F1 of 0.63).

Tables 6.5 and 6.6 show results for when we include BERT features. We see that we

achieve similar results which suggests that the information that BERT provides does

not contribute much more than we already have through the static embedding and our

dictionary features.
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Ground truth

For the experiments involving the ground truth we found that replacing BERT with

a COVID-19 version of BERTweet produced better results, which we report here in

Tables 6.7 and 6.8. As one would expect the results are lower than the experiments

performed with weakly labelled test sets, nevertheless the performance is still good.

Notably the finding that including a language model does not appreciably improve

performance is observed here too.

BiLSTM BERTweet

% P R F1 P R F1

0% 0.80 0.56 0.66 0.82 0.57 0.68

20% 0.82 0.65 0.72 0.83 0.65 0.73

40% 0.83 0.72 0.77 0.84 0.70 0.77

60% 0.82 0.74 0.78 0.84 0.73 0.78

80% 0.83 0.78 0.80 0.84 0.76 0.80

100% 0.83 0.78 0.81 0.84 0.76 0.80

Table 6.7: Results of symptom extraction from the ground truth test set using Our

base-line with incremental additions from Sarker dictionary. BiLSTM, and BERTweet

correspond models with and without the language model, see main text.

6.5 Discussion

We show some example tweets with tagging results from our models in Table 6.9.

All the examples are taken from the BiLSTM model when Sarker dictionary is used

as a base line and and for incremental additions from our dictionary. The test data is

labelled with the ground truth. The Example 1 shows that the tweet contain COVID-

19 symptoms such as headache, fatigue, soar throat, and cough which are common in both
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BiLSTM BERTweet

% P R F1 P R F1

0% 0.92 0.60 0.72 0.92 0.57 0.70

20% 0.87 0.74 0.80 0.88 0.72 0.79

40% 0.86 0.75 0.80 0.87 0.73 0.80

60% 0.85 0.75 0.80 0.87 0.74 0.80

80% 0.84 0.78 0.81 0.85 0.76 0.80

100% 0.83 0.78 0.81 0.84 0.76 0.80

Table 6.8: Results of symptom extraction from the ground truth test set using Sarker

base-line with incremental additions from Our dictionary. BiLSTM, and BERTweet

correspond models with and without the language model, see main text.

dictionaries. In the Example 2, the concept blood oxygen levels does not have a presence

in the Sarker dictionary. However, when it reaches 100% with our dictionary, the model

finds the symptom. Similarly, in Example 3, with the addition of our dictionary the

model finds out digestive symptoms. In Example 4, we show that though loss of taste and

smell exist in the Sarker dictionary, due to the longest match operation, the dictionary

does tag the single word smell as symptom. However, since our dictionary has smell in

it, the model is able to correctly find it when its coverage is increased.

Table 6.9: Examples of mistakes made by the models. Green and red background

colours denote correct and incorrect predictions, respectively.

Example 1

Ground truth: headache , fatigue , sore throat , cough and chest pressure since

sunday night. no fever though! but if its not covid, i dont know what it is.

Sarker base-line: headache , fatigue , sore throat , cough and chest pressure

since sunday night. no fever though! but if its not covid, i dont know what it

is.
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Sarker base-line + Our dictionary: headache , fatigue , sore throat , cough and

chest pressure since sunday night. no fever though! but if its not covid, i dont

know what it is.

Example 2

Ground truth: he left the house, got off sick bed, hardly able to stand,

muscle spasms , not cognisant enough to remember speaking to pm, extremely

low blood oxygen levels enough to be in hospital, broke lock down and self iso-

lating rules and probable road traffic laws drove to hospital.

Sarker base-line: he left the house, got off sick bed, hardly able to stand,

muscle spasms , not cognisant enough to remember speaking to pm, extremely

low blood oxygen levels enough to be in hospital, broke lock down and self iso-

lating rules and probable road traffic laws drove to hospital.

Sarker base-line + Our dictionary: he left the house, got off sick bed, hardly able

to stand, muscle spasms , not cognisant enough to remember speaking to pm, ex-

tremely low blood oxygen levels enough to be in hospital, broke lock down and

self isolating rules and probable road traffic laws drove to hospital.

Example 3

Ground truth: covid - 19 patients experience loss of appetite , diarrhoea and other

digestive symptoms .

Sarker base-line:covid - 19 patients experience loss of appetite , diarrhoea and

other digestive symptoms.

Sarker base-line + Our dictionary:covid - 19 patients experience loss of appetite ,

diarrhoea and other digestive symptoms .

Example 4

Ground truth: smell that? if not, you should probably call your doctor study finds

loss of taste and smell can indicate covid-19.
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Sarker base-line: smell that? if not, you should probably call your doctor study

finds loss of taste and smell can indicate covid-19.

Sarker base-line + Our dictionary: smell that? if not, you should probably call

your doctor study finds loss of taste and smell can indicate covid-19.

6.6 Conclusion

Our experiments have shown that building a small domain specific set of dictionaries

can be beneficial for COVID-19 medical concept extraction. These dictionaries have

the advantage that they are easy to produce and are interpretable. Moreover, models

built using these dictionaries can generalize well and it is possible to transfer them to

different datasets on a similar task. The results are encouraging in that a small domain

specific set of dictionaries based on forum data can perform commensurately with

BERTweet on Twitter data when they are included as features in a model.



Chapter 7

Conclusion

People use everyday conversational language when they discuss health conditions on

social media platforms. To extract actionable health information from these platforms,

researchers have been using NLP techniques employing rule- and machine learning-

based methodologies. Despite advances in these areas, extracting meaningful, coher-

ent, and structured medical information from social media still remains challenging.

We approached this problem in a principled manner, first by building a rule-based NLP

pipeline utilising dictionaries and linguistic rules and then by automating the concept

extraction process using machine learning. We also applied a hybrid NLP pipeline

by combining rule-based and machine learning approaches in a case study to extract

actionable health information regarding COVID-19. Moreover, we demonstrated the

utility of dictionaries by incorporating them within deep neural architectures. Finally,

we showed the transferability of our dictionaries within a weak supervision approach.

In this chapter, we revisit the research questions from Chapter 1 and provide conclud-

ing remarks.

7.1 Revisiting research questions

In Chapter 1, we described our research questions which led us to propose a set of rule-

based, supervised, semi-supervised, and weakly supervised methodologies to extract

actionable health information from social media. Those questions also had a one-to-

150
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one correspondence to the objectives set in Chapter 1 Section 1.3. In this section, we

link our research questions back to the objectives, summarise them, and discuss their

limitations.

Q1 How can we build a rule-based concept relationship extraction system to ex-

tract a structured representation of drug/treatment’s sentiment from social me-

dia posts focusing on a chronic disease category (e.g. Parkinsons’)?

The above question links to our first objective in Chapter 1 Section 1.3 which

states the following:

• To develop a methodology for extracting structured representation of sen-

timent related to drug/treatment from a chronic disease (i.e. Parkinsons’)

patient forum posts.

In Chapter 3, we developed a text processing pipeline for extracting structured

information regarding sentiment of Parkinsons’ drug/treatment from a forum

dataset. We demonstrated how actionable information can be extracted from

posts by forming relationships between a drug/treatment and a symptom or

side-effect, including the polarity/sentiment of the patient. In particular, we

made use of several publicly available and manually built dictionaries to recog-

nise drug/treatment, symptom, and side-effect concepts. Using various linguis-

tic rules we calculated polarity at the sentence level. In order to create relations

we segmented a sentence using common conjunctions(and, but, and until) and se-

lected the closest symptom and side-effect concept to a drug. Thus we formed

two types of disease triples; they are (i) (Drug, Polarity, Symptom), and (ii) (Drug,

Polarity, Side-effect). Finally, we linked the sentences using anaphora resolution

[71]. Our methodology is detailed in Algorithm 1.

We annotated our dataset with concepts and relations and validated the anno-

tation by several researchers from Birkbeck. Our NLP relationship extraction

system achieved an F1 score of 81.71% and 82.13%, respectively, on an unseen
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test dataset in discovering the said relationships.

A key limitation of our system was that we did not record useful temporal/quantitative

data such as dosages or frequency of recurrence of side-effects. Consider the fol-

lowing example:

• My wife was on Rytary 36.25/145 mg for 5 days and returned to C/L today because

it was not working and she was getting side effects.

Here, information regarding dosage, i.e. 36.25/145 mg, of the drug Rytary to-

gether with its duration, i.e. 5 days, will complement the structured medication

information that can be obtained from such social media posts, allowing a more

thorough assessment of side-effects.

Another key limitation is the limited size and number of datasets used, this ap-

plies to all our methodologies. However, this is somewhat mitigated by using

formal statistical testing.

Q2 How to develop a machine learning method that uses minimal supervision to pro-

duce satisfactory results for concept extraction? How can it augment and update

labelled datasets and dictionaries?

The above question links to our second objective in Chapter 1 Section 1.3 which

states the following:

• To develop a concept extraction method that can be effective with minimal

supervision and adapted to change in data source and disease study.

In Chapter 4, we first developed a feature-based CRF algorithm, which we called

the base-line model, utilising dictionaries and rules from the relationship extrac-

tion system of Chapter 3. The base-line model made use of a small number

of targeted UMLS semantic types as features; see Section 4.3.2 for a detailed

description of features. Next, a semi-supervised algorithm, capable of learning
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new concepts from a large unlabelled corpus, was developed using the base-

line model. It iteratively augmented highly confident labelled sentences to the

training set. Our methodology differed from previous studies in two ways, it ex-

panded the concept dictionaries (i.e. symptom and side-effects) and then reused

them in the training procedure; see Section 4.3.3. In addition to this, new terms

identified were utilised further to select diversified labelled sentences to augment

the training data. Thus, it allowed us to devise a methodology that will adapt to

continuous training and changes of concept over time.

We performed extensive experiments using two data sources; (i) MedHelp [126]

medical forum, and (ii) Twitter. Our repeated cross-validation strategy, contain-

ing 100 different runs, followed a 5-fold cross-validation for each run. The semi-

supervised model outperformed the base-line models by 1% when the base-line

did not use any dictionary. The base-line model produced high macro F1 scores

of 88.90% and 84.3% for MedHelp and Twitter dataset; see Table 4.2. Though the

improvement of the semi-supervised model over the base-line was not signifi-

cant over larger training and dictionary size, it showed that the semi-supervised

model always dominated. In order to measure the performance of the dictio-

nary expansion procedure, we used McNamer’s test [65]; see Section 4.5. This

test showed that for the MedHelp dataset the semi-supervised model correctly

predicted, on average, 100 symptom terms more than the base-line model; see

Figure 4.3a. The results validated that the semi-supervised methodology was

successful in augmenting labelled datasets and expansion of dictionaries.

This work did not investigate the utility of using word embeddings to improve

the dictionary expansion procedure. Distributional vectors or word embeddings

represent lexical items such as words according to the context in which they occur

in a corpus of documents. Such a methodology can recognise words with simi-

lar meanings from an unlabelled corpus by deploying a similarity measure [136].

In addition, word embeddings could further be investigated for improving the



7.1 Revisiting research questions 154

augmentation procedure of diversified training data within the semi-supervised

methodology. Furthermore, an active learning methodology, where a human be-

ing feeds low confident sentences back into the supervised model, has potential

to improve the proposed semi-supervised model.

Q3 Can we develop an end-to-end NLP pipeline applying a similar rule- and ma-

chine learning-based methodologies for an infectious disease category (e.g. COVID-

19) for extracting actionable information? Will the concept and relation extrac-

tion pipeline be able to triage and diagnose COVID-19 patients from their social

media posts?

The above question links to our third objective in Chapter 1 Section 1.3 which

states the following:

• To apply an end-to-end NLP pipeline capable to provide decision makers

with actionable information on the symptom severity and prevalence of a

respiratory disease (i.e. COVID-19) using social media at the population

level.

In Chapter 5, we developed an NLP pipeline which applied concept and rela-

tionship extraction methods to provide decision-makers information regarding

COVID-19 severity and prevalence at the population level. The extraction of such

information required us to design a study using an expert labelled dataset. We

asked three doctors two questions by showing posts from COVID-19 patients to

rate the likelihood of COVID-19 on a Likert Scale of 1 to 5, and segment them into

three risk categories; see Section 5.1. The expert annotations allowed us to build

text classification models by taking a triage and diagnostic approach. The inputs

to the models were represented by the concepts and relations extracted using

our the CRF and RB classifiers. We tested the models using the NLP pipeline in

two ways, first by providing human labelled data, and then by predictions from

CRF and RB classifiers. The tests were always performed on the ground truth
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datasets. Our NLP pipeline achieved 71%-96% and 61%-87%, respectively, for

the triage and diagnosis of COVID-19 when the models were trained on human-

labelled data. It achieved similar results when tested on the joint predictions

from CRF and RB classifier. Moreover, we discussed important features of the

diagnostic machine learning models and compared them with the most frequent

symptoms revealed in the study from Sarker et al [176]. We found that the most

important COVID-19 symptoms are cough, anosmia/ageusia, dyspnea, pyrexia,

and fatigue, whereas the most frequent ones are pyrexia, cough, body ache, fa-

tigue, and headache.

Social media posts, which are known to be noisy, are not on a par with the con-

sultation that a patient would have with a doctor. The aim of this study was to

extract useful information at a population level, rather than to provide an action-

able decision for an individual via social media posts. Our manually annotated

dataset has 2 main limitations. First, having only 3 experts limited the qual-

ity of our labelling, although we deem this study to be a proof of concept. A

larger number of experts, including more senior doctors would be beneficial in

a follow-up study. The robustness of our results could be further improved by

both increasing the size of our dataset and introducing posts from several alter-

nate sources. Given that the posts come from social media, it is not clear whether

the results could be used as such in a diagnostic system, without combining them

with actual consultations. However, it is worth noting that medical social me-

dia such as the posts we used herein, may uncover novel information regarding

COVID-19.

Q4 Are concept dictionaries helpful for a deep learning network? Are they transfer-

able?

The above question links to our fourth objective in Chapter 1 Section 1.3 which

states the following:
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• To investigate utility and transferability of manually built dictionaries and

pre-trained word embeddings, respectively, by focusing on COVID-19 so-

cial media. Specifically, we transfer dictionaries between two types of social

media and use them to produce weak labels for training neural networks.

To investigate the utility of dictionaries in neural network settings, we constructed

two BiLSTM+CRF based architectures in Chapter 6. They differed in their in-

puts where the first was initialised with a pre-trained Word2Vec embedding and

the second was initialised with a concatenation of Word2Vec and a pre-trained

BERT embedding. Each token of the sequence was represented by a fixed size

boolean vector where each element represented dictionary membership. The

dictionary vector was appended to the architecture, and several models were

constructed. We found that models built with dictionaries performed better than

those without them. For a supervised concept extraction task on the COVID-19

forum data, our best model achieved a macro F1 score of 90%. Furthermore, to

check the transferability of our models and dictionaries, we investigated Twitter

data. Specifically, we produced a large labelled set automatically by utilising our

symptom dictionary and then tested the models with a ground truth set built

for COVID-19 symptom extraction from Twitter. Additionally, another publicly

available symptom dictionary [176] was investigated together with a domain-

dependent variant of BERTweet. We found that models built using our dictionary

produced similar results to those built using publicly available domain dictionar-

ies and contextual language models. Our models produced an F1 score of 80% on

these transfer learning settings. Thus, we successfully built deep learning mod-

els using dictionaries without a labelled dataset and showed their transferability

to a different data source.

The experiments focused on one disease and we extracted useful information

arising from two different unstructured datasets. Although this was necessary

in order to develop the experiments, we note that a stronger case could be made
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if we analysed other diseases and datasets. In addition, the weak supervision

methodology did not consider other possible sources and rules for generating

automatic labels.

7.2 Future work

There are several ways in which the work presented in this thesis can be extended in

addition to addressing the limitations presented in the previous section. Employing

a multi-sense approach would be useful since people use the same words to express

different meanings. For example, people may use temp to express fever/temperature or

a temporary job in the context of COVID-19. Our investigation shows that a deep con-

textual language model such as BERTweet fails to encode such homonyms. Therefore,

encoding different senses of a term into a language model requires further research.

Our models do not consider abbreviations, spelling mistakes, and different stem-

ming variants. In future research, we want to investigate models that are robust against

such variants.

For our deep learning models, we apply a simple weak learning methodology us-

ing a single source. This methodology could be extended further by incorporating

multiple dictionary sources. Similarly, linguistic and pattern rules are other good can-

didate sources for automatic annotation. In addition, learning good word representa-

tions for out of vocabulary terms requires further investigation.

7.3 Conclusion

This thesis investigated information extraction tasks from health related social media

focusing on Parkinson’s and COVID-19. While there has been a great deal of previous

research into extracting information from social media narratives, to the best of our

knowledge, no previous study applied a triage and diagnostic perspective for detect-

ing COVID-19 in order to provide researchers and decision-makers with the symptom
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severity and prevalence in the population. Specifically, we proposed a set of super-

vised and semi-supervised machine learning methods as well as deep learning models

in a principled manner for medical concept extraction tasks. We believe such concept

extraction methodologies utilising social media will generalise and can be applied to

other diseases.
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of the BioCreative VI chemical-protein interaction Track. In: Proceedings of the

sixth BioCreative challenge evaluation workshop. vol. 1, pp. 141–146 (2017)

[98] Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and

side effects. Nucleic Acids Research 44(1), 1075–1079 (2015)

[99] Lafferty, J., McCallum, A., Pereira, F.C.: Conditional Random Fields: Probabilis-

tic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the

18th International Conference on Machine Learning 2001 (ICML 2001). pp. 282–

289 (2001)



Bibliography 172

[100] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural

Architectures for Named Entity Recognition. In: Proceedings of the 2016 Con-

ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. pp. 260–270. Association for Com-

putational Linguistics, San Diego, California (2016)

[101] Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical

data. Biometrics pp. 159–174 (1977)

[102] Lavertu, A., Vora, B., Giacomini, K.M., Altman, R., Rensi, S.: A New Era in

Pharmacovigilance: Toward Real-World Data and Digital Monitoring. Clinical

Pharmacology & Therapeutics 109(5), 1197–1202 (2021)

[103] Leaman, R., Wojtulewicz, L., Sullivan, R., Skariah, A., Yang, J., Gonzalez, G.:

Towards Internet-Age Pharmacovigilance: Extracting Adverse Drug Reactions

from User Posts in Health-Related Social Networks. In: Proceedings of the 2010

Workshop on Biomedical Natural Language Processing. pp. 117–125. Associa-

tion for Computational Linguistics, Uppsala, Sweden (2010)

[104] Lee, C.Y., Chen, Y.P.P.: Prediction of drug adverse events using deep learning in

pharmaceutical discovery. Briefings in Bioinformatics 22(2), 1884–1901 (2021)

[105] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J.: BioBERT: a pre-

trained biomedical language representation model for biomedical text mining.

Bioinformatics 36(4), 1234–1240 (2020)

[106] Lee, K., Qadir, A., Hasan, S.A., Datla, V., Prakash, A., Liu, J., Farri, O.: Adverse

Drug Event Detection in Tweets with Semi-Supervised Convolutional Neural

Networks. In: Proceedings of the 26th International Conference on World Wide

Web. pp. 705–714 (2017)



Bibliography 173

[107] Lin, G., Zaeem, R.N., Sun, H., Barber, K.S.: Trust Filter for Disease Surveillance:

Identity. In: 2017 Intelligent Systems Conference (IntelliSys). pp. 1059–1066. IEEE

(2017)

[108] Lin, W.S., Dai, H.J., Jonnagaddala, J., Chang, N.W., Jue, T.R., Iqbal, U., Shao,

J.Y.H., Chiang, I.J., Li, Y.C.: Utilizing Different Word Representation Methods for

Twitter Data in Adverse Drug Reactions Extraction. In: 2015 Conference on Tech-

nologies and Applications of Artificial Intelligence (TAAI). pp. 260–265. IEEE

(2015)

[109] Lison, P., Barnes, J., Hubin, A., Touileb, S.: Named entity recognition without

labelled data: A weak supervision approach. In: Proceedings of the 58th An-

nual Meeting of the Association for Computational Linguistics. pp. 1518–1533.

Association for Computational Linguistics, Online (2020)

[110] Liu, Y., Wang, Z., Ren, J., Tian, Y., Zhou, M., Zhou, T., Ye, K., Zhao, Y., Qiu, Y.,

Li, J., et al.: A COVID-19 Risk Assessment Decision Support System for Gen-

eral Practitioners: Design and Development Study. Journal of Medical Internet

Research 22(6), e19786 (2020)

[111] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-

moyer, L., Stoyanov, V.: Roberta: A Robustly Optimized BERT Pretraining Ap-

proach. arXiv preprint arXiv:1907.11692 (2019)
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[137] Müller, M., Salathé, M., Kummervold, P.E.: Covid-Twitter-BERT: A Natural

Language Processing Model to Analyse COVID-19 Content on Twitter. arXiv

preprint arXiv:2005.07503 (2020)

[138] Na, J.C., Kyaing, W.Y.M.: Sentiment Analysis of User-Generated Content on

Drug Review Websites. Journal of Information Science Theory and Practice 3(1),

6–23 (2015)

[139] Neumann, M., King, D., Beltagy, I., Ammar, W.: ScispaCy: Fast and Robust

Models for Biomedical Natural Language Processing. In: Proceedings of the 18th

BioNLP Workshop and Shared Task. pp. 319–327. Association for Computational

Linguistics, Florence, Italy (2019)

[140] Ng, J.Y., Abdelkader, W., Lokker, C.: Tracking discussions of complementary, al-

ternative, and integrative medicine in the context of the COVID-19 pandemic:

a month-by-month sentiment analysis of Twitter data. BMC Complementary

Medicine and Therapies 22(1), 1–15 (2022)

[141] Nguyen, D.Q., Vu, T., Tuan Nguyen, A.: BERTweet: A pre-trained language

model for English Tweets. In: Proceedings of the 2020 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations. pp. 9–14.

Association for Computational Linguistics, Online (2020)



Bibliography 178

[142] Nikfarjam, A., Gonzalez, G.H.: Pattern Mining for Extraction of mentions of

Adverse Drug Reactions from User Comments. In: AMIA Annual Symposium

Proceedings. vol. 2011, p. 1019. American Medical Informatics Association (2011)

[143] Nikfarjam, A., Sarker, A., O’Connor, K., Ginn, R., Gonzalez, G.: Pharmacovigi-

lance from social media: mining adverse drug reaction mentions using sequence

labeling with word embedding cluster features. Journal of the American Medical

Informatics Association 22(3), 671–681 (2015)

[144] Nocedal, J.: Updating quasi-Newton matrices with limited storage. Mathematics

of Computation 35(151), 773–782 (1980)

[145] Norman, G.: Likert scales, levels of measurement and the “laws” of statistics.

Advances in Health Sciences Education 15(5), 625–632 (2010)

[146] Obeid, J.S., Davis, M., Turner, M., Meystre, S.M., Heider, P.M., O’Bryan, E.C.,

Lenert, L.A.: An artificial intelligence approach to COVID-19 infection risk as-

sessment in virtual visits: A case report. Journal of the American Medical Infor-

matics Association 27(8), 1321–1325 (07 2020)

[147] Okazaki, N.: CRFsuite: a fast implementation of Conditional Random Fields

(CRFs) (2007), http://www.chokkan.org/software/crfsuite/

[148] Patient: https://patient.info/forums/discuss/browse/

coronavirus-covid-19--4541 (2021), accessed: 2021-01-18

[149] PatientsLikeMe: https://www.patientslikeme.com/, accessed: 2017-04-21

[150] Paul, M., Dredze, M.: You Are What You Tweet: Analyzing Twitter for Public

Health. In: Proceedings of the International AAAI Conference on Web and Social

Media. vol. 5, pp. 265–272 (2011)

http://www.chokkan.org/software/crfsuite/
https://patient.info/forums/discuss/browse/coronavirus-covid-19--4541
https://patient.info/forums/discuss/browse/coronavirus-covid-19--4541
https://www.patientslikeme.com/


Bibliography 179

[151] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

[152] Pennington, J., Socher, R., Manning, C.D.: GloVe: Global Vectors for Word Rep-

resentation. In: Proceedings of the 2014 conference on empirical methods in nat-

ural language processing (EMNLP). pp. 1532–1543 (2014)

[153] Perez, A., Weegar, R., Casillas, A., Gojenola, K., Oronoz, M., Dalianis, H.: Semi-

supervised medical entity recognition: A study on Spanish and Swedish clinical

corpora. Journal of Biomedical Informatics 71, 16–30 (2017)

[154] Peshterliev, S., Dupuy, C., Kiss, I.: Self-Attention Gazetteer Embeddings for

Named-Entity Recognition. arXiv preprint arXiv:2004.04060 (2020)

[155] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-

moyer, L.: Deep contextualized word representations. In: Proceedings of the

2018 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 1 (Long Papers). pp.

2227–2237. Association for Computational Linguistics, New Orleans, Louisiana

(2018)

[156] Pilipiec, P., Liwicki, M., Bota, A.: Using Machine Learning for Pharmacovigi-

lance: A Systematic Review. Pharmaceutics 14(2), 266 (2022)

[157] Polanyi, L., Zaenen, A.: Contextual Valence Shifters. In: Computing Attitude

and Affect in Text: Theory and Applications, pp. 1–10. Springer (2006)

[158] Qin, L., Sun, Q., Wang, Y., Wu, K.F., Chen, M., Shia, B.C., Wu, S.Y.: Prediction

of Number of Cases of 2019 Novel Coronavirus (COVID-19) Using Social Me-

dia Search Index. International Journal of Environmental Research and Public

Health 17(7) (2020)



Bibliography 180

[159] Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications

in Speech Recognition. In: Proceedings of the IEEE. pp. 257–286 (1989)

[160] Ramesh, S., Tiwari, A., Choubey, P., Kashyap, S., Khose, S., Lakara, K., Singh,

N., Verma, U.: BERT based transformers lead the way in extraction of health

information from social media. In: Proceedings of the Sixth Social Media Mining

for Health (#SMM4H) Workshop and Shared Task. pp. 33–38. Association for

Computational Linguistics, Mexico City, Mexico (2021)

[161] Rastegar-Mojarad, M., Elayavilli, R.K., Yu, Y., Liu, H.: Detecting signals in noisy

data - can ensemble classifiers help identify adverse drug reaction in tweets? In:

Proceedings of the Social Media Mining Shared Task Workshop at the Pacific

Symposium on Biocomputing (2016)

[162] Ratner, A., Bach, S.H., Ehrenberg, H., Fries, J., Wu, S., Ré, C.: Snorkel: Rapid
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