
BIROn - Birkbeck Institutional Research Online

Charalampopoulos, Panagiotis and Gawrychowski, P. and Mozes, S. and
Weimann, O. (2022) On the hardness of computing the edit distance of
shallow trees. Lecture Notes in Computer Science 13617 , pp. 290-302.
ISSN 0302-9743.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/49968/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/49968/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

On the Hardness of Computing the Edit Distance
of Shallow Trees

Panagiotis Charalampopoulos1[0000−0002−6024−1557], Pawe l
Gawrychowski2[0000−0002−6993−5440], Shay Mozes3,⋆[0000−0001−9262−1821], and

Oren Weimann4,⋆[0000−0002−4510−7552]

1 Birkbeck, University of London, London, UK
p.charalampopoulos@bbk.ac.uk

2 University of Wroc law, Wroc law, Poland
gawry@cs.uni.wroc.pl

3 Reichman University, Herzliya, Israel
smozes@idc.ac.il

4 University of Haifa, Haifa Israel
oren@cs.haifa.ac.il

Abstract. We consider the edit distance problem on rooted ordered
trees parameterized by the trees’ depth. For two trees of size at most
n and depth at most d, the state-of-the-art solutions of Zhang and
Shasha [SICOMP 1989] and Demaine et al. [TALG 2009] have runtimes
O(n2d2) and O(n3), respectively, and are based on so-called decomposition
algorithms. It has been recently shown by Bringmann et al. [TALG 2020]
that, when d = Θ(n), one cannot compute the edit distance of two trees
in O(n3−ϵ) time (for any constant ϵ > 0) under the APSP hypothesis.
However, for small values of d, it is not known whether the O(n2d2) upper
bound of Zhang and Shasha is optimal. We make the following twofold
contribution. First, we show that under the APSP hypothesis there is
no algorithm with runtime O(n2d1−ϵ) (for any constant ϵ > 0) when
d = poly(n). Second, we show that there is no decomposition algorithm
that runs in time o(min{n2d2, n3}).

1 Introduction

Let F and G be two rooted and ordered trees of size n where each node is
assigned a label from an alphabet Σ. The edit distance between trees F and G
is the minimum cost of transforming F into G by a sequence of elementary edit
operations: changing the label of a node v, deleting a node v and setting the
children of v as the children of v’s parent (in the place of v in the left-to-right
order), and inserting a node v (defined as the inverse of a deletion); see Figure 1.
The cost of these elementary operations is given by two cost functions: cdel(x) is
the cost of deleting or inserting a node with label x, and cmatch(x, y) is the cost
of changing the label of a node from x to y.

⋆ Supported by Israel Science Foundation grant 810/21.

2 P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann

x

A

B
C

D
A

B
C

D
A

B
C

D

relabel node x to y

y

delete node y

insert node yrelabel node y to x

Fig. 1. The three edit operations on a node-labeled tree.

Tree edit distance is the most common similarity measure between labeled
trees. It is instrumental in computational biology [7,17,25,31], structured text
processing [10, 11, 16], programming languages [18], computer vision [6, 19], char-
acter recognition [23], automatic grading [3], answer extraction [33], and many
more (see the popular survey of Bille [7] and the books of Apostolico and Galil [4]
and Valiente [29]).

The tree edit distance (TED) problem was introduced by Tai [27] as a
generalization of the well known string edit distance problem [30]. Zhang and
Shasha [35] showed that the classical dynamic-programming algorithm for string
edit distance naturally extends to tree edit distance. Namely, to compute the
edit distance of two forests F and G, consider the rightmost roots of F and G:
they are either matched or (at least) one of them is deleted. Checking all these
options generates a constant number of (smaller) recursive subproblems. Zhang
and Shasha [35] showed that when the depths of F and G are bounded by d
the total number of generated recursive subproblems (and hence the algorithm’s
running time) is O(n2d2). This is appealing for shallow trees, but can be as high
as Ω(n4) for trees of large depth.

Obviously, the choice of recursing on the rightmost root (and not the leftmost)
is arbitrary. Klein [20] observed that if we carefully alternate between recursing
on the rightmost and the leftmost roots the running time improves to O(n3 log n)
(regardless of d). Dulucq and Touzet [14] called such algorithms (i.e., that are based
on the same dynamic programming but only differ in their choices of rightmost and
leftmost) decomposition algorithms and showed that there is no o(n2 log2 n)-time
decomposition algorithm. Demaine et al. [12] gave an O(n3)-time decomposition
algorithm and showed that for trees of depth d = Ω(n) there is no o(n3)-time
decomposition algorithm. Of course there may be a faster TED algorithm that
is not a decomposition algorithm. This however is probably not the case for
trees of depth d = Ω(n). For such trees, it was shown in [9] that: (1) assuming
the APSP hypothesis, there is no O(n3−ϵ) algorithm for TED with alphabet-
size |Σ| = Ω(n), and (2) assuming the stronger k-Clique hypothesis, there is
no O(n3−ϵ) algorithm for TED with alphabet-size |Σ| = O(1). An important
exception is the special case of unweighted TED where cdel(a) = cmatch(a, b) = 1
and cmatch(a, a) = 0 (aka the Levenshtein distance) for which very recently

On the Hardness of Computing the Edit Distance of Shallow Trees 3

a non-decomposition strongly subcubic algorithm (for any d) was devised by
Mao [21]; the exponent of n was further reduced to 2.9149 by Dürr [15].

To sum it up, the fastest known algorithm for (weighted) TED runs in
O(min{n3, n2d2}) time, it is a decomposition algorithm, and its cubic runtime
when d = Ω(n) can probably not be improved by any polynomial factor. However,
for smaller values of d = poly(n) (i.e., d = nδ for some constant 0 < δ < 1) we
do not yet know the right complexity. This raises the following questions:

1. Is there an O(n2d2−ϵ)-time decomposition algorithm?
(The lower bound of [12] does not rule this out.)

2. Is there an O(n2d2−ϵ)-time algorithm that is not a decomposition algorithm?
(The lower bound of [9] does not rule this out.)

We show that the answer to the first question is no. As for the second question,
we do not yet know if an O(n2d2−ϵ)-time algorithm exists, but we show that an
O(n2d1−ϵ)-time algorithm does not (assuming the APSP hypothesis).

Related work. Pawlik and Augsten [22] developed a decomposition algorithm
whose performance on any input is not worse (and possibly better) than that of
any of the existing decomposition algorithms. Other attempts achieved better
running times by restricting the edit operations or the scoring schemes [1, 11, 21,
24, 26, 28, 34], or by resorting to approximation [2, 5, 8]. However, in the worst
case no algorithm currently beats O(min{n3, n2d2}) (not even by a logarithmic
factor). Finally, the edit distance between edge-labeled unrooted trees, first
studied by Klein [20], can be computed in O(n3) time as shown by Dudek and
Gawrychowski [13]. In addition, Dudek and Gawrychowski [13] presented a simple
O(|input|)-time reduction from TED on node-labeled rooted trees to TED on
edge-labeled unrooted trees. This reduction replaces the two rooted trees by
unrooted trees with the same size and diameter asymptotically, and hence our
lower bounds also apply to the TED problem on edge-labeled unrooted trees
parameterized by the trees’ diameter.

2 Preliminaries

We denote the tree edit distance of two trees F and G by TED(F,G). The
alphabet is denoted by Σ.

Now, let us look more closely at the allowed edit operations. First, observe that
the insertion operation is redundant: an insertion to one of the trees is equivalent
to a deletion in the other. We can thus consider the problem of computing a
minimum-cost sequence of deletions and relabelings to both F and G that yields
identical trees. Further, as we argue next, without loss of generality, we can
assume that cdel(x) = 0 for all x ∈ Σ. Starting from general cost functions, we
can define new cost functions c′match(x, y) := cmatch(x, y) − cdel(x) − cdel(y), for
all x, y ∈ Σ, and c′del(x) := 0, for all x ∈ Σ, that preserve the tree edit distance
up to a linear-time computable additive constant equal to the cost of deleting

4 P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann

both trees with the original cdel function. Intuitively, we pay for the deletion of
all nodes up front and get refunded for nodes that are not deleted.

A left comb (resp. right comb) of depth n is a tree with 2n − 1 nodes that
consists of a path P of length n, with one endpoint of the path being the root of
the tree and the other one being a leaf, and n− 1 more leaf nodes, each being
the right (resp. left) child of a distinct node of P . We call a pair of left and a
right combs opposing combs. See Fig. 2 for an illustration.

Fig. 2. Two opposing combs of depth 5; the left comb is shown in the left.

3 Lower Bound Conditioned on the APSP Hypothesis

In this section we present a hardness proof of TED on trees of depth d = poly(n),
conditioned on the All-Pairs Shortest Paths (APSP) hypothesis.

Conjecture 1 (APSP hypothesis). For any ϵ > 0, there exists c > 0 such that
APSP on n-vertex graphs with edge weights in {1, . . . , nc} cannot be solved in
time O(n3−ϵ).

Instead of reducing APSP to TED, we will reduce from the equivalent (see [32])
NegativeTriangle problem:

NegativeTriangle

Input: A complete tripartite graph H = (V,E) with three parts I, J , and
K, each of size at most n, and a weight function w : E → {−nc, . . . , nc}.

Output: Yes if and only if there exist vertices i ∈ I, j ∈ J , and k ∈ K such
that w(i, j) + w(j, k) + w(k, i) < 0.

Lemma 1. Consider an instance of NegativeTriangle comprised of a com-
plete tripartite graph H = (V,E) with parts of size at most n and a weight-function
w : E → {−nc, . . . , nc}. For any integer d ≤ n, this instance can be reduced to
deciding whether any of O((n/d)3) complete graphs on 3d vertices contains a
negative triangle. The time required for this reduction is O(n2 + n3/d).

On the Hardness of Computing the Edit Distance of Shallow Trees 5

Proof. Let us split each of the three parts I, J , and K into ⌈n/d⌉ subsets,
each of size at most d. Then, it suffices to solve separately, for each of the
O((n/d)3) triplets of subsets A ⊆ I, B ⊆ J , and C ⊆ K, an instance of the
NegativeTriangle problem for the subgraph of G induced by A ∪B ∪ C. We
consider each such induced subgraph and pad it with dummy vertices and edges
so that it is a complete graph on 3d vertices, ensuring that we do not introduce
any negative triangles. The latter can be achieved by setting the weights of
dummy edges to be twice as large as the largest absolute value of an edge-weight
in H. This reduction requires time linear in the total size of the input and the
output and hence the stated bound follows. ⊓⊔

We will use the following reduction from NegativeTriangle to TED that
was presented in [9].

Lemma 2 ([9, Lemma 2 and Theorem 2]). Given a complete undirected
n-vertex graph H = (V,E) and a weight function w : E → {1, . . . , nc}, we can
construct, in linear time in the output size, an instance of TED of size O(n)
such that the minimum weight of a triangle in H can be extracted from the edit
distance. In particular, the constructed instance of TED satisfies the following:5

– cdel is an all-zeroes function;
– the trees are two opposing combs of depth 2n+ 1;
– the edit distance of the two trees is equal to −3M2 plus the minimum weight

of a triangle in H, where M is a (sufficiently large) integer parameter that is
used to define cmatch.

In particular, the fact that the (shapes of the) trees in the above lemma are
fixed means that information about the NegativeTriangle instance (H,w)
is only encoded in the assignment of letters to nodes and the cost function
cmatch(·, ·). Hence, given t instances of NegativeTriangle of the same size,
one can construct

√
t left combs and

√
t right combs, such that each of the t

pairs of left and right combs corresponds to one of the NegativeTriangle
instances. We can then assign a distinct letter to each node in each of the combs
and define the cost function so that its restriction to any particular pair of left
and right combs coincides with the cost function that Lemma 2 would yield for
the NegativeTriangle instance corresponding to this pair.

In the following lemma, we combine the above idea with Lemma 1 into a
subcubic-time reduction from NegativeTriangle to TED.

Lemma 3. NegativeTriangle reduces in O(n2 + n3/d) time to an instance
of TED over O(n1.5/

√
d)-size and O(d)-depth trees.

Proof. We first apply Lemma 1 to reduce our NegativeTriangle instance to
the problem of deciding whether any of t = O((n/d)3) complete graphs on 3d

5 Not all of these properties are explicitly stated in [9, Lemma 2 and Theorem 2], but
they are evident from their proofs.

6 P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann

#

$ $ $ $ $ $ $ $ $

6d + 1

.

#

Fig. 3. A depiction of the instance of TED from the proof of Lemma 3 with t = 4
(and s = 2). Available nodes (in F) and selector nodes (in G) are colored yellow and
purple, respectively. A comb of depth 6d+ 1 is attached to each of the available/selector
nodes—we only show a few of them for clarity.

vertices contains a negative triangle. Our goal is to efficiently reduce the latter
problem to a TED instance with trees of depth O(d).

Let us denote the obtained graphs by H1, H2, . . . ,Ht. We construct a TED
instance as follows. Let s =

√
t and assume that it is an integer in order to avoid

clutter. F consists of a root with 3s children, which we call available nodes. Each
of these available nodes has a left comb of depth 2 · 3d + 1 = 6d + 1 attached
to it. G consists of a root with s children, which we call decider nodes. Each of
the decider nodes has a right comb of depth 6d+ 1 attached to it; see Figure 3.
Observe that the sizes and the depths of these trees are as desired.

Our goal is to define a cost function cmatch(·, ·) that ensures the following:

– the roots of the two trees are matched;
– each decider node is matched with an available node;
– the restriction of the cost function to the pair that consists of the (s+ i)-th

left comb in F and the j-th comb in G, for i = 1, . . . , s and j = 1, . . . , s is
identical to the one yielded by Lemma 2 for Hm, where m = s · (i− 1) + j;

– the restriction of the cost function to each other pair that consists of a left
comb in F and a right comb in G is identical to the one yielded by Lemma 2
for some undirected graph on 3d vertices in which the minimum weight of
a triangle is zero, where all such applications of Lemma 2 use the same
(sufficiently large) integer parameter M .

To ensure the above properties, let us label the roots of both trees by # and
all decider/available nodes by $. In addition, let us label each other node with a
unique letter from an alphabet Σ that is disjoint from {#, $}. We populate a
table that corresponds to the cmatch function as follows:

– For all (x, y) ∈ Σ2 with x being a label of a node in F and y being a label
of a node in G, i.e., pairs of labels of nodes from opposing combs, the cost

On the Hardness of Computing the Edit Distance of Shallow Trees 7

cmatch(x, y) is given by an application of Lemma 2. Let us denote the sum of
the absolute values of all these costs by ψ.

– cmatch(#,#) = cmatch($, $) = −2ψ;
– cmatch(#, $) = ∞;
– cmatch(x, y) = ∞ for all pairs (x, y) ∈ {#, $} ×Σ.

Claim. There is a negative triangle in at least one of H1, H2, . . . ,Ht if and only
if TED(F,G) < η := −2ψ · (s+ 1) − 3M2 · s.

Proof. Let us denote the comb attached to the i-th available node by Fi and the
one attached to the j-th decider node by Gj .

Now, the optimal solution must match the roots of the two trees and match
every decider node with an available node. This is because these yield a cost of
−2ψ · (s + 1), while the cost of any sequence of operations that do not match
these nodes cannot be smaller than −2ψ · s − ψ. Thus, the edit distance of F
and G equals

TED(F,G) = min
p

−2ψ · (s+ 1) +

s∑
j=1

TED(Fp(j), Gj)

where the minimization is over all increasing functions p : {1, 2, . . . , s} →
{1, 2, . . . , 3s}. We therefore have two cases:

– If none of the graphs Hi contains a negative triangle, we might as well set
every p(j) to be j since the pairs (Fj , Gj) correspond to a graph in which
the minimum triangle is of zero weight. So in this case we have

TED(F,G) = −2ψ · (s+ 1) +

s∑
j=1

TED(Fj , Gj) = η.

– Else, some graph Hi contains a negative triangle of weight −w. Let q = ⌈i/s⌉
and r be an integer in {1, . . . , s} satisfying r ≡ i (mod s). Notice that
matching the pair (Fs+q, Gr) is cheaper than matching a pair corresponding
to a minimum weight triangle of value zero. We therefore have

TED(F,G) ≤ −2ψ · (s+ 1) +

r−1∑
j=1

TED(Fj , Gj) + TED(Fs+q, Gr)

+

s∑
j=r+1

TED(Fj+2s, Gj) = η − w < η.

This completes the proof of the claim. ⊓⊔

The lemma follows. ⊓⊔

Theorem 1. There exists no algorithm that solves TED for trees of size at most
n and depth at most d = poly(n), with node labels from an alphabet of size Ω(n),
in O(n2d1−ϵ) time, for any constant ϵ > 0, unless the APSP hypothesis fails.

8 P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann

Proof. To the contrary, suppose that there is such an algorithm with ϵ < 1. Let
N denote the size of an APSP instance. Using Lemma 3 with d = poly(N), we
obtain an algorithm for APSP with runtime O(N2 +N3/d+(N1.5/

√
d)2 ·d1−ϵ) =

O(N3/dϵ), contradicting the APSP hypothesis. ⊓⊔

4 Lower Bound for Decomposition Algorithms

Let us recall that the decomposition algorithm paradigm for the computation
of tree edit distance is based on the following observation: given two forests F
and G, the rightmost (or leftmost) roots of F and G are either matched or (at
least) one of them is deleted. This observation leads to a dynamic programming
approach: consider all three such options and recurse. The algorithm of Zhang
and Shasha [35] proceeds by always considering the rightmost roots of the forests,
while the algorithms of Klein [20] and Demaine et al. [12] use more intricate
strategies (based on heavy-path decompositions) to decide whether to consider
the rightmost or the leftmost roots of the forests in each step. In general, we
call a mapping S from pairs of forests to the set {left, right} a strategy. Previous
lower bounds on decomposition algorithms were established by proving a lower
bound on the number of different pairs of forests F ′ of F and G′ of G that
a decomposition algorithm will consider irrespective of the strategy S that it
follows; we do not deviate from this approach.

Let us introduce some more terminology and notation. For a node v in a tree
T , we denote by Tv the subtree of T rooted at v. Further, we call v’s child u
such that Tu is largest heavy, resolving ties arbitrarily; all other children of v are
called light. If a node v in T has two children, this allows us to naturally refer to
the two subtrees of the children of v as v’s heavy and light subtrees. Further, for
a tree T , we denote by T ◦ the forest obtained by deleting the root of T .

We next specify our hard instance of TED. It consists of trees of size Θ(n) and
depth Θ(d) for any parameters d, n ∈ Z+ with n > 100d ≥ 300. For simplicity,
we assume that d divides n. Each of the trees that we will consider in this lower
bound consists of a path (also called spine) P of length d+ 1, with one endpoint
of the path being the root of the tree and the other one being a leaf, and d trees
of size ⌈n/d⌉ and depth O(d), each attached to a distinct non-leaf node of P ,
in an alternating fashion with regards to being left/right subtrees. (The exact
shape of these trees is not important.) See Figure 4 for an illustration. We call a
non-leaf spine node u of F and a non-leaf spine node v of G opposing if and only
if their children that lie on the corresponding spine are in different directions
(i.e., left and right); two such opposing nodes are indicated in Figure 4.

Let us fix an arbitrary strategy S and denote by U(S) the set of subproblems
that a decomposition algorithm with strategy S will encounter. Our goal is to
give an Ω(min{n2d2, n3}) lower bound on |U(S)|.

Consider a subproblem (F ′, G′) ∈ U(S). Suppose that the strategy S for this
subproblem is right. In this case, the subproblems obtained by (i) deleting the
root of the rightmost tree in F ′, (ii) deleting the root of the rightmost tree in
G′, and (iii) matching the roots of the rightmost trees in F ′ and G′, all belong

On the Hardness of Computing the Edit Distance of Shallow Trees 9

Fig. 4. An illustration of our hard instance for decomposition algorithms over shallow
trees. Here, d = 6 and each of the subtrees attached to a spine node is of size O(⌈n/6⌉) =
O(n) and depth O(1). A pair of opposing spine nodes is colored.

to U(S). In what follows, when we say that in such a scenario we delete from F
(resp. G), we mean that we concentrate our attention on the subproblem created
in option (i) (resp. (ii)) above. We stress that in reality both these subproblems
(as well as those created in option (iii) above) belong to U(S), but that for our
purposes it suffices to focus on a particular subproblem.

We rely on the following lemma from [12], stating that any strategy must
consider matching every pair of nodes.

Lemma 4 ([12, Lemma 2.3]). For any strategy S, for all u ∈ F , v ∈ G,
(F ◦

u , G
◦
v) ∈ U(S).

Our plan is to start from such subproblems (F ◦
u , G

◦
v) ∈ U(S), and, by choosing

an appropriate sequence of deletions from F and from G, to obtain sufficiently
many new subproblems. To make sure we do not double count subproblems
obtained in this way, we will charge a subproblem consisting of a pair of forests
F ′ and G′ to the pair of spine nodes p ∈ F and q ∈ G that are the lowest
common ancestors (LCAs) of the nodes of F ′ in F and of the nodes of G′ in G,
respectively. For a node v in a tree T , and for a positive integer x (resp. y) smaller
than the size of the left (resp. right) subtree of Tv, we denote by LxRy(Tv) the
forest obtained from T ◦

v by x deletions of the leftmost root and y deletions of
the rightmost root—we stress that the root of Tv has already been deleted prior
to these x + y deletions. Observe that v is the LCA of the nodes in LxRy(Tv).
In what follows, we refer to deletions of the leftmost and rightmost root as left
deletions and right deletions, respectively.

Lemma 5. Consider a spine node p in F of depth at most d/2 whose right child
c is heavy. Let q be an opposing spine node in G of depth at most d/2 whose
heavy child is w. Then, the total number of subproblems charged to (p, q), (c, q),
and (p, w) is Ω(min{n2, n3/d2}).

Proof. Observe that the heavy subtree of each of p, c, q, and w has at least n/3
nodes. Let ∆ := {1, . . . , ⌈n/4d⌉}. We distinguish between two cases.

10 P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann

Case I : For every (k, ℓ) ∈ ∆2, there is a subproblem in U(S) with exactly k
deletions in the left subtree of Fp and exactly ℓ deletions in the right subtree
of Gq, at least ⌊n/8⌋ nodes in the heavy (i.e., right) subtree of Fp, and at least
⌊n/8⌋ nodes in the heavy (i.e., left) subtree of Gq. In this case, starting from
each of these ⌈n/4d⌉2 = Ω(n2/d2) pairs of forests, we consider the subproblems
generated by always performing deletions only in the heavy subtrees of both Fp

and Gq, i.e., deleting from F if and only if S = right. As each of these subtrees
has at least ⌊n/8⌋ nodes, we obtain Ω(n) distinct subproblems of the form
(LkRx(Fp), LyRℓ(Gq)) for each fixed k, ℓ. Since k, ℓ < ⌈n/4d⌉, LkRx(Fp) (resp.

LyRℓ(Gq)) contains nodes from both the left and right subtrees of Fp (resp. Gq).

Hence the LCA of the nodes of LkRx(Fp) (resp. LyRℓ(Gq)) is p (resp. q). We thus
obtain a total of Ω(n3/d2) subproblems that are charged to the pair (p, q) of
spine nodes. We are therefore done in this case.

For the remainder of the proof we can thus focus on the complementary case.
Case II : There is some pair (k, ℓ) ∈ ∆2 for which we do not have a subproblem

with k deletions in the left subtree of Fp and ℓ deletions in the right subtree
of Gq, and at least ⌊n/8⌋ nodes in both heavy subtrees of Fp and Gq.

Claim. One of the following holds:

– for every integer y ∈ [n/16, ⌊n/8⌋), there exists ℓ′ < ℓ such that

(Lk(Fp), LyRℓ′(Gq)) ∈ U(S),

– for every integer y ∈ [n/16, ⌊n/8⌋), there exists k′ < k such that

(Lk
′
Ry(Fp),Rℓ(Gq)) ∈ U(S).

Proof. Consider applying the following sequence of operations starting from the
pair (F ◦

p , G
◦
q), which is in U(S) by Lemma 4: delete from F whenever S = left

until we have reached Lk(Fp) and delete from G whenever S = right until we

have reached Rℓ(Gq). Let us only consider the case where the strategy says left k
times before it says right ℓ times as the other case is symmetric.

Let A denote the subproblem obtained by performing k left deletions from Fp

and some number ℓ′′ < ℓ right deletions from Gq. That is, A = (Lk(Fp),Rℓ′′(Gq)).
Since we are in Case II, for every integer y ∈ [n/16, ⌊n/8⌋) we can, starting from A,
only make deletions in Gq, making y left deletions from Gq and making less than

ℓ−ℓ′′ right deletions from Gq, thus obtaining the subproblem (Lk(Fp), LyRℓ′(Gq))
for some ℓ′ satisfying ℓ′′ ≤ ℓ′ < ℓ. ⊓⊔

Let us assume without loss of generality that we are in the first case of
the above claim, as the other case is symmetric. Let us fix some value of y ∈
[n/16, ⌊n/8⌋) and the corresponding subproblem (Lk(Fp), LyRℓ′(Gq)), where ℓ′ <
ℓ. We prove the following claim.

Claim. There exist Ω(min{n, n2/d2}) quadruples (x,m, s, v) where x, m, and s
are integers, and v ∈ {p, c}, such that

(LxRm(Fv), LyRs(Gq)) ∈ U(S).

On the Hardness of Computing the Edit Distance of Shallow Trees 11

Proof. Starting from our fixed subproblem (Lk(Fp), LyRℓ′(Gq)), we consider mak-
ing all left deletions in F . However, for each t ∈ ∆, we consider making the first
t right deletions in G and the remaining ones in F . We distinguish between two
cases depending on whether, for each pair (m, t) ∈ ∆2, we obtain a subproblem
of the form:

(LxRm(Fv), LyRℓ′+t(Gq)), for some integer x and v ∈ {p, c}.

1. If this is the case, we obtain Ω(n2/d2) of the desired quadruples, and we are
thus done.

2. Else, let (m′, t′) ∈ ∆2 be a pair for which there is no integer x and node

v ∈ {p, c} such that (LxRm′
(Fv), LyRℓ′+t′(Gq)) ∈ U(S). This can only be the

case if we eliminate the entire heavy (i.e., left) subtree of Tc prior to making
the intended m′ + t′ right deletions. In other words, this can only happen if
along this computational path of the recursion, S says left Ω(n) times before
it says right m′ + t′ times. In this case, for each x ∈ [n/16, ⌊n/8⌋), there exist

m′′, t′′ ∈ ∆2 such that (LxRm′′
(Fc), L

yRℓ′+t′′(Gq)) ∈ U(S). In this case, we
thus obtain Ω(n) quadruples of the desired form.

This completes the proof of the claim. ⊓⊔

Thus, for each of Ω(n) values of y, we obtain Ω(min{n, n2/d2}) subproblems.
Over all such y, we thus obtain Ω(min{n2, n3/d2}) subproblems charged to (p, q)
and (c, q), thus completing the analysis of Case II. ⊓⊔

As our instance of TED has Ω(d2) pairs of spine nodes p and q that satisfy
the conditions of Lemma 5, we obtain the main result of this section:

Theorem 2. Any decomposition algorithm for tree edit distance on trees of size
at most n and depth at most d requires Ω(min{n3, n2d2}) time.

Acknowledgement

This version of the contribution has been accepted for publication, after peer
review but is not the Version of Record and does not reflect post-acceptance
improvements, or any corrections. The Version of Record is available online at:
https://doi.org/10.1007/978-3-031-20643-6_21. Use of this Accepted Ver-
sion is subject to the publisher’s Accepted Manuscript terms of use https://www.
springernature.com/gp/open-research/policies/accepted-manuscript-terms.

References

1. Akmal, S., Jin, C.: Faster algorithms for bounded tree edit distance. In: 48th ICALP.
pp. 12:1–12:15 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.12

2. Akutsu, T., Fukagawa, D., Takasu, A.: Approximating tree edit distance through
string edit distance. In: 17th ISAAC. pp. 90–99 (2006). https://doi.org/10.1007/
11940128_11

https://doi.org/10.1007/978-3-031-20643-6_21
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.4230/LIPIcs.ICALP.2021.12
https://doi.org/10.4230/LIPIcs.ICALP.2021.12
https://doi.org/10.1007/11940128_11
https://doi.org/10.1007/11940128_11
https://doi.org/10.1007/11940128_11
https://doi.org/10.1007/11940128_11

12 P. Charalampopoulos, P. Gawrychowski, S. Mozes, and O. Weimann

3. Alur, R., D’Antoni, L., Gulwani, S., Kini, D., Viswanathan, M.: Automated grading
of dfa constructions. In: 23rd IJCAI. pp. 1976–1982 (2013), http://dl.acm.org/
citation.cfm?id=2540128.2540412

4. Apostolico, A., Galil, Z. (eds.): Pattern matching algorithms. Oxford University
Press, Oxford, UK (1997)

5. Aratsu, T., Hirata, K., Kuboyama, T.: Approximating tree edit distance through
string edit distance for binary tree codes. Fundam. Inform. 101(3), 157–171 (2010).
https://doi.org/10.3233/FI-2010-282

6. Bellando, J., Kothari, R.: Region-based modeling and tree edit distance as a basis
for gesture recognition. In: 10th International Conference on Image Analysis and
Processing, ISIAP 1999. pp. 698–703 (1999). https://doi.org/10.1109/ICIAP.

1999.797676
7. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer

Science 337(1-3), 217–239 (2005). https://doi.org/10.1016/j.tcs.2004.12.030
8. Boroujeni, M., Ghodsi, M., Hajiaghayi, M., Seddighin, S.: 1+ϵ approximation of

tree edit distance in quadratic time. In: 51st STOC. pp. 709–720. ACM (2019).
https://doi.org/10.1145/3313276.3316388

9. Bringmann, K., Gawrychowski, P., Mozes, S., Weimann, O.: Tree edit distance
cannot be computed in strongly subcubic time (unless APSP can). ACM Trans.
Algorithms 16(4), 48:1–48:22 (2020). https://doi.org/10.1145/3381878

10. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: VLDB.
pp. 141–152 (2003). https://doi.org/10.1016/B978-012722442-8/50021-5

11. Chawathe, S.: Comparing hierarchical data in external memory. In: VLDB. pp.
90–101 (1999), http://www.vldb.org/conf/1999/P8.pdf

12. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6(1), 2:1–2:19 (2009).
https://doi.org/10.1145/1644015.1644017

13. Dudek, B., Gawrychowski, P.: Edit distance between unrooted trees in cubic time.
In: 45th ICALP. pp. 45:1–45:14 (2018). https://doi.org/10.4230/LIPIcs.ICALP.
2018.45

14. Dulucq, S., Touzet, H.: Decomposition algorithms for the tree edit distance problem.
J. Discrete Algorithms 3(2-4), 448–471 (2005). https://doi.org/10.1016/j.jda.
2004.08.018

15. Dürr, A.: Improved bounds for rectangular monotone min-plus product and appli-
cations. Arxiv 2208.02862v1 (2022)

16. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and indexing
labeled trees, with applications. J. ACM 57, 1–33 (2009). https://doi.org/10.
1145/1613676.1613680

17. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press (1997)

18. Hoffmann, C.M., O’Donnell, M.J.: Pattern matching in trees. J. ACM 29(1), 68–95
(1982). https://doi.org/10.1145/322290.322295

19. Klein, P.N., Tirthapura, S., Sharvit, D., Kimia, B.B.: A tree-edit-distance algorithm
for comparing simple, closed shapes. In: 11th SODA. pp. 696–704 (2000), http:
//dl.acm.org/citation.cfm?id=338219.338628

20. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: 6th
ESA. pp. 91–102 (1998). https://doi.org/10.1007/3-540-68530-8_8

21. Mao, X.: Breaking the cubic barrier for (unweighted) tree edit distance. In: 62nd
FOCS. pp. 792–803 (2021). https://doi.org/10.1109/FOCS52979.2021.00082

22. Pawlik, M., Augsten, N.: Efficient computation of the tree edit distance. ACM Trans.
Database Syst. 40(1), 3:1–3:40 (Mar 2015). https://doi.org/10.1145/2699485

http://dl.acm.org/citation.cfm?id=2540128.2540412
http://dl.acm.org/citation.cfm?id=2540128.2540412
https://doi.org/10.3233/FI-2010-282
https://doi.org/10.3233/FI-2010-282
https://doi.org/10.1109/ICIAP.1999.797676
https://doi.org/10.1109/ICIAP.1999.797676
https://doi.org/10.1109/ICIAP.1999.797676
https://doi.org/10.1109/ICIAP.1999.797676
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/3313276.3316388
https://doi.org/10.1145/3313276.3316388
https://doi.org/10.1145/3381878
https://doi.org/10.1145/3381878
https://doi.org/10.1016/B978-012722442-8/50021-5
https://doi.org/10.1016/B978-012722442-8/50021-5
http://www.vldb.org/conf/1999/P8.pdf
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.4230/LIPIcs.ICALP.2018.45
https://doi.org/10.4230/LIPIcs.ICALP.2018.45
https://doi.org/10.4230/LIPIcs.ICALP.2018.45
https://doi.org/10.4230/LIPIcs.ICALP.2018.45
https://doi.org/10.1016/j.jda.2004.08.018
https://doi.org/10.1016/j.jda.2004.08.018
https://doi.org/10.1016/j.jda.2004.08.018
https://doi.org/10.1016/j.jda.2004.08.018
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.1145/322290.322295
https://doi.org/10.1145/322290.322295
http://dl.acm.org/citation.cfm?id=338219.338628
http://dl.acm.org/citation.cfm?id=338219.338628
https://doi.org/10.1007/3-540-68530-8_8
https://doi.org/10.1007/3-540-68530-8_8
https://doi.org/10.1109/FOCS52979.2021.00082
https://doi.org/10.1109/FOCS52979.2021.00082
https://doi.org/10.1145/2699485
https://doi.org/10.1145/2699485

On the Hardness of Computing the Edit Distance of Shallow Trees 13

23. Rico-Juan, J.R., Micó, L.: Comparison of AESA and LAESA search algorithms using
string and tree-edit-distances. Pattern Recognition Letters 24(9-10), 1417–1426
(2003). https://doi.org/10.1016/S0167-8655(02)00382-3

24. Selkow, S.: The tree-to-tree editing problem. Information Processing Letters 6(6),
184–186 (1977). https://doi.org/10.1016/0020-0190(77)90064-3

25. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using
tree comparisons. Computer Applications in the Biosciences 6(4), 309–318 (1990).
https://doi.org/10.1093/bioinformatics/6.4.309

26. Shasha, D., Zhang, K.: Fast algorithms for the unit cost editing distance between
trees. Journal of Algorithms 11(4), 581–621 (1990). https://doi.org/10.1016/
0196-6774(90)90011-3

27. Tai, K.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979). https:
//doi.org/10.1145/322139.322143

28. Touzet, H.: Comparing similar ordered trees in linear-time. J. Discrete Algorithms
5(4), 696–705 (2007). https://doi.org/10.1016/j.jda.2006.07.002

29. Valiente, G.: Algorithms on Trees and Graphs. Springer-Verlag (2002)
30. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM

21(1), 168–173 (1974). https://doi.org/10.1145/321796.321811
31. Waterman, M.: Introduction to computational biology: maps, sequences and

genomes, Chapters 13, 14. Chapman and Hall (1995)
32. Williams, V.V., Williams, R.R.: Subcubic equivalences between path, matrix, and

triangle problems. J. ACM 65(5), 27:1–27:38 (2018). https://doi.org/10.1145/
3186893

33. Yao, X., Durme, B.V., Callison-Burch, C., Clark, P.: Answer extraction as sequence
tagging with tree edit distance. In: HLT-NAACL 2013. pp. 858–867 (2013), http:
//aclweb.org/anthology/N/N13/N13-1106.pdf

34. Zhang, K.: Algorithms for the constrained editing distance between ordered labeled
trees and related problems. Pattern Recognition 28(3), 463–474 (1995). https:
//doi.org/10.1016/0031-3203(94)00109-Y

35. Zhang, K., Shasha, D.E.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989). https:
//doi.org/10.1137/0218082

https://doi.org/10.1016/S0167-8655(02)00382-3
https://doi.org/10.1016/S0167-8655(02)00382-3
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.1016/0196-6774(90)90011-3
https://doi.org/10.1145/322139.322143
https://doi.org/10.1145/322139.322143
https://doi.org/10.1145/322139.322143
https://doi.org/10.1145/322139.322143
https://doi.org/10.1016/j.jda.2006.07.002
https://doi.org/10.1016/j.jda.2006.07.002
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
https://doi.org/10.1145/3186893
http://aclweb.org/anthology/N/N13/N13-1106.pdf
http://aclweb.org/anthology/N/N13/N13-1106.pdf
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1016/0031-3203(94)00109-Y
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082

	On the Hardness of Computing the Edit Distance of Shallow Trees

