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Abstract. We introduce subsequence covers (s-covers, in short), a new
type of covers of a word. A word C is an s-cover of a word S if the
occurrences of C in S as subsequences cover all the positions in S.
The s-covers seem to be computationally much harder than standard
covers of words (cf. Apostolico et al., Inf. Process. Lett. 1991), but, on
the other hand, much easier than the related shuffle powers (Warmuth
and Haussler, J. Comput. Syst. Sci. 1984).
We give a linear-time algorithm for testing if a candidate word C is an s-
cover of a word S over a polynomially-bounded integer alphabet. We also
give an algorithm for finding a shortest s-cover of a word S, which in the
case of a constant-sized alphabet, also runs in linear time. Furthermore,
we complement our algorithmic results with a lower and an upper bound
on the length of a longest word without non-trivial s-covers, which are
both exponential in the size of the alphabet.

Keywords: String algorithms · Combinatorics on words · Covers · Shuf-
fle powers · Subsequence covers

1 Introduction

The problem of computing covers in a word is a classic one in string algorithms;
see [1,2,11] and also [5] for a recent survey. In its most basic type, we say that
a word C is a cover of another longer word S if every position of S lies within
some occurrence of C as a factor (subword) in S [1].

In this paper we introduce a new type of cover, in which instead of subwords
we take subsequences (scattered subwords). Such covers turn out to be related to
shuffle problems [13,12,4]. Formally the new type of cover is defined as follows:

Definition 1. A word C is a subsequence cover (s-cover, in short) of a word
S if every position in S belongs to an occurrence of C as a subsequence in S.
We also write S ∈ C⊗, where C⊗ is the set of words having C as an s-cover.

⋆ Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
⋆⋆ Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
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We say that an s-cover C of a word S is non-trivial if |C| < |S|. A word S is
called s-primitive if it has no non-trivial s-cover.

An example s-primitive word is the Zimin word Sk [10], that is, a word over
alphabet {1, . . . , k} given by recurrences of the form

S1 = 1, Si = Si−1iSi−1 for i > 1.

The word Sk has length 2k − 1.
Clearly, if a word C is a (standard) cover of a word S, then C is an s-cover

of S. However the converse implication is false: ab is an s-cover of aab, but is not
a standard cover. For another example of an s-cover, see the following example.

Example 1. Fig. 1 shows that C = abcab is an s-cover of S = abcbacab. In fact
C is a shortest s-cover of S.

a b c a b

a b c a b

a b c a b

a b c b a c a b

Fig. 1: An illustration of the fact that C = abcab is an s-cover of S = abcbacab.

We now provide some basic definitions and notation. An alphabet is a finite
nonempty set of elements called letters. A word S is a sequence of letters over
some alphabet. For a word S, by |S| we denote its length, by S[i], for i =
0, . . . , |S| − 1, we denote its ith letter, and by Alph(S) we denote the set of
letters in S, i.e., {S[0], . . . , S[|S| − 1]}. The empty word is the word of length 0.

For any two words U and V , by U · V = UV we denote their concatenation.
For a word S = PUQ, where P , U , and Q are words, U is called a factor of S;
it is called a prefix (resp. suffix ) if P (resp. Q) is the empty word. By S[i . . j]
we denote a factor S[i] . . . S[j] of S; we omit i if i = 0 and j if j = |S| − 1.

A word V is a k-power of a word U , for integer k ≥ 0, if V is a concatenation
of k copies of U , in which case we denote it by Uk. It is called a square if k = 2.

Remark 1. If a word S contains a non-empty square factor U2, then S has a
non-trivial s-cover resulting by removing any of the two consecutive copies of U .
Further, if a word S has a factor being a gapped repeat UV U (see [9]), such that
Alph(V ) ⊆ Alph(U), then S has a non-trivial s-cover resulting by removing V U
from the gapped repeat. Moreover, if C is an s-cover of S, then C is an s-cover
of S concatenated with any concatenation of suffixes of C.

A different version of covers, where we require that position-subsequences are
disjoint, is the shuffle closure problem. The shuffle closure of a word U , denoted
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by U⊙, is the set of words resulting by interleaving many copies of U ; see [13].
The words in U⊙ are sometimes called shuffle powers of U .

The following problems are NP-hard for constant-sized alphabets:

(1) Given two words U and S, test if S ∈ U⊙; see [13].

(2) Given a word S, check if there exists a word U such that |U | = |S|/2 and
S ∈ U⊙ (this was originally called the shuffle square problem); see [4]. An
NP-hardness proof for a binary alphabet was recently given in [3].

(3) Given a word S, find a shortest word U such that S ∈ U⊙; its hardness is
trivially reduced from (2).

The following observation links s-covers and shuffle closures.

Observation 1 Let S be a word of length n. Then

S ∈ C⊗ ⇔ ∃ r0, r1 . . . , rn−1 ∈ Z+ : S[0]r0S[1]r1 . . . S[n− 1]rn−1 ∈ C⊙.

In this paper we show that problems similar to (1) and (3) for s-covers, when
we replace ⊙ by ⊗, are tractable: notably, the first one is solved in linear time
for any polynomially-bounded integer alphabet; and the last one in linear time
for any constant-sized alphabet.

Our results and paper organization:

– In Section 2 we present a linear-time algorithm for checking if a word C is
an s-cover of a word S, assuming that C and S are over a polynomially-
bounded integer alphabet {0, . . . , |S|O(1)}. We also discuss why an equally
efficient algorithm for this problem without this assumption is unlikely.

– Let γ(k) denote the length of a longest s-primitive word over an alphabet of
size k. In Section 3 we present general bounds on this function as well as its
particular values for small values of k.

– In Section 4 we show that computing a non-trivial s-cover is fixed-parameter
tractable for parameter k = |Alph(S)|. In particular we obtain a linear-time
algorithm for computing a shortest s-cover of a word over a constant-sized
alphabet.

– Finally in Section 5 we explore properties of s-covers that are significantly
different from properties of standard covers. In particular, we show that a
word can have exponentially many different shortest s-covers, which implies
that computing all shortest s-covers of a word (over a superconstant alpha-
bet) requires exponential time.
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2 Testing if a word is an s-cover

Consider words C = C[0 . .m− 1] and S = S[0 . . n− 1]. We would like to check
whether C is an s-cover of S.

Let sequences FirstOcc = (p1, p2, . . . , pm) and LastOcc = (q1, q2, . . . , qm)
be the lexicographically first and last position-subsequences of S containing C,
where p1 = 0 and qm = n − 1. If there are no such subsequences of positions
then C is not an s-cover, so we assume they exist and are well defined.

For all i ∈ {0, . . . , n− 1}, we define

Right [i] = min({j : qj > i} ∪ {m+ 1}),
Pref [i] = max({j : pj ≤ i ∧ S[pj ] = S[i]} ∪ {0}).

Intuitively, if position i is in any subsequence occurrence of C in S, then there is a
subsequence occurrence of C in S that consists of the prefix of FirstOcc of length
Pref [i] and an appropriate suffix of LastOcc. All we have to do is check, for all
i, whether such a pair of prefix and suffix exists. See Fig. 2 for an illustration of
the argument and Lemma 1 for a formal statement of the condition that needs
to be satisfied.

p1 p2 q1 p3 i p4 q2 p5 q3 q4 p6 q5 q6

Fig. 2: Assume that for some words C and S the sequences FirstOcc (red) and
LastOcc (green) are as in the figure. Further assume that Pref [i] = 2 (i.e.,
we have S[i] = S[p2] ̸= S[p3]). As shown, we have Right [i] = 2. Thus, we have
Right [i] ≤ Pref [i]+1 and consequently the position i is covered by an occurrence
of C as a subsequence using positions (p1, i, q3, q4, q5, q6).

Lemma 1. Let us assume that FirstOcc and LastOcc are well defined. Then
C is an s-cover of S if and only if for each position 0 ≤ i ≤ n − 1 we have:
Pref [i] > 0 and Right [i] ≤ Pref [i] + 1.

Proof. First, observe that if Pref [i] = 0 for any i, then C is not an s-cover of S.
This follows from the greedy computation of FirstOcc, which implies that the
prefix of C that precedes the first occurrence of S[i] in C does not have a subse-
quence occurrence in S[0 . . i− 1]; else, i would be in FirstOcc, a contradiction.

We henceforth assume that Pref [i] > 0 for every i and show that, in this case,
C is an s-cover of S if and only if Right [i] ≤ Pref [i]+1 for all i ∈ {0, . . . , n− 1}.

(⇐) Assume that Right [i] ≤ Pref [i]+1. In this case position i can be covered by
a subsequence occupying positions p1, . . . , pj−1, i, qj+1, . . . , qm, for j = Pref [i].
As S[pj ] = S[i] this subsequence is equal to C, and as pj ≤ i and qj+1 > i
(j+1 ≥ Right [i]) those positions form an increasing sequence (that is, we obtain
a valid subsequence).
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(⇒) On the other hand assume that for some j there exists an increasing se-
quence

r1, r2, . . . , rj−1, i, rj+1, . . . , rm,

such that S[r1]S[r2] . . . S[rj−1]S[i]S[rj+1] . . . S[rm] = C.
By induction for k = 1, . . . , j, rk ≥ pk (including rj = i) and for k =

m, . . . , j + 1, rk ≤ qk. But this means that Pref [i] ≥ j and Right [i] ≤ j + 1.
Hence Right [i] ≤ Pref [i] + 1. This completes the proof. ⊓⊔

The sequence FirstOcc can be computed with a simple left-to-right pass over
S and C; the computation of LastOcc is symmetric. The table Right can be
computed via a right-to-left pass. The table Pref [i] is computed on-line using an
additional table PRED indexed by the letters of the alphabet. The algorithm is
formalized in the following pseudocode.

Algorithm 1: TEST (C, S)

Input: word C = C[0 . .m− 1] and word S = S[0 . . n− 1]
Output: true if and only if C is an s-cover of S

compute FirstOcc = (p1, . . . , pm) and LastOcc = (q1, . . . , qm)

▷ compute Right
k := m+ 1
for i := n− 1 down to 0 do

Right [i] := k
if k > 1 and i = qk−1 then k := k − 1

▷ compute Pref
PRED [c] := 0 ∀c ∈ Σ
k := 1
for i := 0 to n− 1 do

if i = pk then
PRED [S[i]] := k
if k < m then k := k + 1

Pref [i] := PRED [S[i]]

return ∀i=0,...,n−1 (Pref [i] > 0 and Right [i] ≤ Pref [i] + 1 )

The correctness of the algorithm follows from Lemma 1 (inspect also Fig. 2).
Note that, under the assumption of a polynomially-bounded integer alphabet,
the table PRED can be initialized and updated deterministically in linear total
time by first sorting the letters of S. We thus arrive at the following result.

Theorem 1. Given words C and S over an integer alphabet {0, . . . , |S|O(1)},
we can check if C is an s-cover of S in O(|S|) time.

In the standard setting (cf. [2]), one can check if a word C is a cover of
a word S—what is more, find the shortest cover of S—in linear time for any
(non-necessarily integer) alphabet. We show below that the existence of such an
algorithm for testing a candidate s-cover is rather unlikely.
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Let us introduce a slightly more general version of the s-cover testing problem
in which, if C is an s-cover of S, we are to say, for each position i in S, which
position j of C is actually used to cover S[i]; if there is more than one such
position j, any one of them can be output. Let us call this problem the witness
s-cover testing problem. In particular, our algorithm solves the witness s-cover
testing problem with the answers stored in the Pref array. Actually it is hard to
imagine an algorithm that solves the s-cover testing problem and not the witness
version of it. We next give a comparison-based lower bound for the latter.

Theorem 2. The witness s-cover testing problem for a word S of length n re-
quires Ω(n log n) time in the comparison model.

Proof. Let us consider a word C of length m that is composed of m distinct
letters and a family of words of the form S = CTC, where T is a word of length
m such that Alph(T ) ⊆ Alph(C). Then C is an s-cover of each such word S.
Each choice of word T implies a different output to the witness s-cover testing
problem on C and S. There are mm different outputs, so a decision tree for this
problem must have depth Ω(logmm) = Ω(m logm) = Ω(n log n). ⊓⊔

Let us further notice that even if C turns out not to be an s-cover of S,
our algorithm actually computes the positions of S that can be covered using
occurrences of C (they are exactly the positions i for which Pref [i] > 0 and
Right [i] ≤ Pref [i]+1). Hence our algorithm may be useful to find partial variants
of s-covers, defined analogously as for the standard covers [6,7,8].

3 Maximal lengths of s-primitive words

Let us recall that γ(k) denotes the length of a longest s-primitive word over an
alphabet of size k. It is obvious that γ(2) = 3; the longest s-primitive binary
words are aba and bab. The case of ternary words is already more complicated;
we study it in Section 3.1. General bounds on the function γ(k) are shown in
Section 3.2. A discussion on computing γ(k) for small k > 3 is presented in
Section 3.3. In particular, we were not able to compute the exact value of γ(5).

3.1 Ternary alphabet

Fact 1 γ(3) = 8.

Proof. The word S = abcabacb is of length 8 and it is s-primitive, hence γ(3) ≥ 8.
We still have to show that each 3-ary word of length 9 is not s-primitive

(there are 19683 ternary words). The number of words to consider is substantially
reduced by observing that relevant words are square-free and do not contain the
structure specified in the following claim.

Claim. If a word S over a ternary alphabet contains a factor of the form abXbc
for some (maybe empty) word X and different letters a, b, c, then it is not s-
primitive.
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a b

a

c
a

b a c
c

b a b c
c

c

a

b

a c
a

b a
c

c

b a
b

c ac

b

a
b

c

c a
b c

abacabac

abacabc

abacbabc

abacbc

abcabaca

abcabacba

abcabacbc

abcacbab

abcacbaca
abcacbc

abcbabc

abcbaca

abcbacbc

Fig. 3: A trie of all ternary square-free words starting with ab, truncated at words
that are not s-primitive (in leaves). Only one word in a leaf (abcabacba) does
not contain the structure specified in the claim inside the proof of Fact 1, but it
still has a non-trivial s-cover abcba. The trie has depth 9 (the leaves with words
of length 9 are shown in frames and the internal nodes of depth 8 corresponding
to s-primitive words are drawn as green circles), so γ(3) = 8.

Proof. The factor abXbc has abc as its s-cover, and thus it is not s-primitive.
Consequently, the whole word S is not s-primitive. ⊓⊔

Fig. 3 shows a trie of all ternary square-free words starting with ab, truncated
at words that are not s-primitive (in leaves). The words in all leaves but one
contain the structure from the claim, and for the remaining word, a non-trivial
s-cover can be easily given. The trie shows that words of length 9 over a ternary
alphabet are not s-primitive. ⊓⊔

3.2 General alphabet

Definition 2. For a word S over alphabet Alph(S) of size k, let first(S) (resp.
last(S)) denote the length-k word containing all the letters of Alph(S) in the
order of their first (resp. last) occurrence in S.

Example 2. first(abadbcd) = abdc, last(abadbcd) = abcd.

Lemma 2. Let C be an s-cover of S. Then first(C) = first(S) and last(C) =
last(S).

Proof. Assume that letter a appears before letter b in first(S), but after letter
b in first(C). Then Pref [i] = 0 (see Section 2 for the definition) for i = min{j :
S[j] = a}. This proves that first(C) = first(S); a proof that last(C) = last(S)
follows by symmetry. ⊓⊔
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Example 3. Using a computer one can check that S = abacadbabdcabcbadac is
an s-primitive word of length 19 over a quaternary alphabet. Thus γ(4) ≥ 19.

For a word X we define X− (resp. X−) as the word obtained from X by
deleting the first (resp. last) letter.
By shrink(S) we denote the word obtained from S by merging any non-zero
number of consecutive copies of the same letter into just one copy. For example
shrink(abbacccbdd) = abacbd. We define

FaLaFeL(S) = shrink(F · L− · F− · L), where F = first(S), L = last(S).

Example 4. For S = ababbacbcaabb we have

F = first(S) = abc, L = last(S) = cab, F− = bc, L− = ca, and

shrink(F L) = abcab, FaLaFeL(S) = shrink(abc ca bc cab) = abc a bc ab.

Observation 2 The word shrink(F L) is an s-cover of FaLaFeL(S). However,
it is possible that shrink(F L) is an s-cover of S, while FaLaFeL(S) is not (as in
the example).

Lemma 3. If the word FaLaFeL(S) is a subsequence of S, then shrink(FL) is
an s-cover of S.

Proof. We need to show that each position i of S is covered by an occurrence of
shrink(FL) as a subsequence.

There exists a position j in S such that shrink(FL−) is a subsequence of
S[. . j] and shrink(F−L) is a subsequence of S[j . .]. We can assume that i ≤ j;
the other case is symmetric.

Let p be the index such that F [p] = S[i]. It suffices to argue that:

(1) F [. . p− 1] is a subsequence of S[. . i− 1]; and

(2) shrink(FL)[p+ 1 . .] is a subsequence of S[i+ 1 . .].

Point (1) follows by the definition of F = first(S).
As for point (2), if i < j, then S[i+ 1 . .] has a subsequence shrink(F−L) by

the definition of j and shrink(FL)[p+ 1 . .] is a suffix of shrink(F−L).
If p > 0, then S[i . .] has a subsequence shrink(F−L) and so S[i+ 1 . .] has a

subsequence shrink(FL)[2 . .].
Finally if i = j and p = 0, then S[i + 1 . .] has a subsequence shrink(F−L)

because F−[0] ̸= F [0] = S[i]. ⊓⊔

We will apply the following lemma for Z = FaLaFeL(S).

Lemma 4. Let S, Z be words and x be a positive integer such that |Alph(S)| =
k, |S| = 2kx + 1 and |Z| ≤ 4k − 2. We assume that each factor of S of length
x + 1 contains all k letters, and the length-(x + 1) prefix/suffix of S contains,
as a subsequence, the length-k prefix/suffix of Z, respectively. If shrink(Z) = Z,
then S contains Z as a subsequence.
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x + 1

. . .

contains C

contains B

contains A

2k blocks

S :

Fig. 4: Illustration of the proof of Lemma 4. Let Z = ABC where |A| = |C| = k.
Each block represents a factor of length x+1 containing all letters and starting
at a given position. The blocks overlap by one letter. We have |S| = 2kx+ 1.

Proof. Let us cover S with 2k blocks, each of length x+ 1, with overlaps of one
position between consecutive blocks; see Fig. 4.

Let Z = ABC where |A| = |C| = k. By the assumption of the lemma, the first
and the last block in S contain A and C as a subsequence, respectively. Let us
choose some 2k positions in S that form these occurrences. Each of the remaining
2k− 2 blocks contains a copy of each of the letters in Alph(S); in particular, we
can choose the letters from the word B in them. No two consecutive letters in
B are the same, so we will not choose the same position twice. ⊓⊔

Observation 3 If a letter a occurs in a word S = S′aS′′ only once, then every
s-cover of S has a form C ′aC ′′, where C ′, C ′′ are s-covers of S′, S′′, respectively.

Theorem 3. For k ≥ 4 we have

5 · 2k−2 − 1 ≤ γ(k) ≤ 2k−1 k!.

Proof. We separately prove the lower and upper bounds.

Lower bound. We can take the sequence of words S4 = abacadbabdcabcbadac,
and for k > 4:

Sk = Sk−1akSk−1, where ak is a new letter.

We have |Sk| = 5·2k−2−1, and Sk has no non-trivial s-cover, due to Observation 3
and Example 3. Hence γ(k) ≥ 5 · 2k−2 − 1.

Upper bound. We will show that

γ(k) ≤ 2k · γ(k − 1). (1)

Let us assume that |Alph(S)| = k and |S| > 2k · γ(k − 1) + 1. Let x = γ(k − 1).
If any factor U of S of length x+ 1 does not contain all k letters, then U is not
s-primitive by the definition of γ. If S = PUQ where U has a non-trivial s-cover
C, then PCQ is a non-trivial s-cover of S and, consequently, S is not s-primitive.
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Otherwise, by Lemma 4 applied for a prefix of S of length 2kx + 1 and
Z = FaLaFeL(S), FaLaFeL(S) is a subsequence of S. By Lemma 3, shrink(FL)
is an s-cover of S. It is non-trivial as for k ≥ 3, shrink(FL) is shorter than
FaLaFeL(S). In either case, S is not s-primitive and (1) holds. Using a simple
induction we get γ(k) ≤ 2k−1k!. ⊓⊔

3.3 Behaviour of the function γ(k) for small k

The values of γ for small k are as follows (see also Table 1):

– γ(1) = 1 – trivial;
– γ(2) = 3 – using square-free words;
– γ(3) = 8 – due to Fact 1 and Fig. 3;
– γ(4) = 19 – through computer experiments5;
– 39 ≤ γ(5) ≤ 190 – due to Inequality (1) and γ(4) = 19.

k γ(k) examples of s-primitive words

1 1 a

2 3 aba

3 8 abcabacb

4 19
abacadbabdcabcbadac
abcdabacadbdcbabdac

5 ≥ 39 abacadbabdcabcbadaceabacadbabdcabcbadac

Table 1: The values of γ for small alphabet-size k.

Remark 2. There are 2·3! = 12 s-primitive words of length γ(3) = 8 over ternary
alphabet (cf. Section 3.1 and Fig. 3, for each pair of distinct letters there are two
s-primitive words starting with these letters). This accounts for less than 0.2%
among all 38 ternary words of length 8. For a 4-letter alphabet, our program
shows that the relative number of s-primitive words of length γ(4) = 19 is very
small. There are exactly 2496 such words, out of 419, which gives a fraction
less than 10−8. This suggests that s-primitive 5-ary words of length γ(5) are
extremely sparse and finding an s-primitive word over a 5-letter alphabet of
length γ(5), if γ(5) > 39, could be a challenging task.

4 Computing s-covers

The following observation is a common property of s-covers and standard covers.

Observation 4 If C is an s-cover of S and C ′ is an s-cover of C, then C ′ is
an s-cover of S.

Theorem 4. Let S be a length-n word over an integer alphabet of size k = nO(1).

5 The optimized C++ code used for the experiments can be found at https://www.

mimuw.edu.pl/~jrad/code.cpp. The program reads k and computes γ(k); it finishes
within 1 minute for k ≤ 4.

https://www.mimuw.edu.pl/~jrad/code.cpp
https://www.mimuw.edu.pl/~jrad/code.cpp
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(a) A shortest s-cover of S can be computed in O(n ·min(2n, kγ(k))) time.
(b) One can check if S is s-primitive and, if not, return a non-trivial s-cover of

S in O(n+ 2γ(k)γ(k)) time.
(c) An s-cover of S of length at most γ(k) can be computed in O(n2γ(k)γ(k))

time.

Proof. (a) By Theorem 3, there are O(kγ(k)) s-primitive k-ary words and, by
Observation 4, the shortest s-cover of S must be one of them. On the other
hand, there are 2n subsequences of S. Hence, there are min(2n, kγ(k)) candidates
to be checked. With the aid of the algorithm from Theorem 1 we can check each
candidate in O(n) time. This gives the desired complexity.

(b) If n ≤ γ(k), we can use the algorithm from (a) which works inO(2γ(k)γ(k))
time. Otherwise, we know by Theorem 3 that S is not s-primitive. We can find a
non-trivial s-cover of S as follows. Let S = S′S′′ where |S′| = γ(k) + 1. We can
use the algorithm from (a) to compute a shortest s-cover C of S′ in O(2γ(k)γ(k))
time. By Theorem 3, C is a non-trivial s-cover of S′. Then, we can output CS′′

as a non-trivial s-cover of S. This takes O(n+ 2γ(k)γ(k)) time.
(c) By Observation 4, any s-cover of an s-cover of S will be an s-cover of S. We

can thus repeatedly apply the algorithm underlying (b); apart from outputting
the computed non-trivial s-cover. As each application of this algorithm removes
at least one letter of S, the number of steps is at most n− γ(k). Each step takes
O(2γ(k)γ(k)) time and hence the conclusion follows. ⊓⊔

Corollary 1. A shortest s-cover of a word over a constant-sized alphabet can be
computed in linear time.

5 The number of distinct shortest s-covers

In the case of standard covers, if a word S has two covers C,C ′, then one of
C,C ′ is a cover of the other. This property implies, in particular, that a word
has exactly one shortest cover.

In this section we show that analogous properties do not hold for s-covers.
There exist words S having two s-covers C,C ′ such that none of C,C ′ is an
s-cover of the other; e.g. S = abcabcabcb, C = abcb and C ′ = abcacb. Moreover,
a word can have many different shortest s-covers, as shown in Theorem 5.

a b c a d c b a

a b c a d c b a

a b c a d b c a c b d a c b a

Fig. 5: C1 = abca d cba is a shortest s-cover of S = abca d bcacb d acba. S is a
palindrome, hence C2 = abc d acba is also its s-cover.
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Theorem 5. For every positive integer n there exists a word of length n over

an alphabet of size O(log n) that has at least 2⌊
n+1
16 ⌋ different shortest s-covers.

Proof. We start with an example of a word with two different shortest s-covers
and then extend it recursively.

Claim. The word S = abca d bcacb d acba has two different s-covers of length 8,
C1 = abca d cba and C2 = abc d acba (cf. Fig. 5). It does not have any shorter
s-cover.

Proof. Any s-cover of this word must contain the letter d and before its first
occurrence letters a, b, c (in that order) must appear. Symmetrically, after this
letter, letters c, b, a must appear. The only word of length smaller than 8 which
satisfies this property is abc d cba; however, this is not an s-cover of S (as it does
not cover the middle letter a in S). ⊓⊔

We now construct a sequence of words Ti such that T0 = S and Ti = Ti−1aiTi−1

for i > 0, where ai is a new letter.

The word Ti has length 16 ·2i−1 = 2i+4−1. Let us consider an infinite word
T = limi→∞ Ti (this word is well defined as each Ti is a prefix of Ti+1).

We show by induction, using Observation 3, that T [0 . . n − 1] has at least

2⌊
n+1
16 ⌋ different shortest covers.

The base case for n ≤ 15 holds as every word has a shortest s-cover and for
n = 15 we apply the previous claim as T [. . n − 1] = S. Assume that n > 15.
Let i be a non-negative integer such that 2i+4 ≤ n < 2i+5. Then T [0 . . n− 1] =
Ti+1[. . n−1] = Ti ai Ti[. . n−2i+4−1]. By Observation 3, the number of shortest
s-covers of T [. . n− 1] is the number of shortest s-covers of Ti times the number
of shortest s-covers of T [. . n− 2i+4 − 1], that is, at least

2
2i+4

16 · 2⌊n−2i+4+1
16 ⌋ = 2⌊

n+1
16 ⌋, as desired. ⊓⊔

6 Final remarks

There are several natural questions concerning the following problems:

1. Is a given word s-primitive?

2. What is its shortest s-cover?

3. What is the number of its different s-covers?

4. What is the exact value of γ(5)?

5. Let us define γ′(1) = 1, γ′(k + 1) = 2 γ′(k) + k for k > 1.

We have γ(k) = γ′(k) for 1 ≤ k < 5. Is it always true?

6. Is there a really short, understandable and computer-avoiding proof of s-
primitiveness of the word a b a c a d b a b d c a b c b a d a c ?

We believe that the first three problems are NP-hard for general alphabets.
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