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Abstract: The aim of the current work is twofold: to demonstrate the application of in situ non-
invasive imaging by portable atomic force microscopy (AFM) on the surfaces of a violin and to
integrate compositional and mechanical analysis at the nano scale level on model samples of varnished
wood. These samples were prepared according to traditional recipes by an Italian lute-maker family
well practised in the art. Samples of oil and spirit-based varnishes on maple wood, naturally and
accelerated light aged, were studied. AFM was used to measure the nanomechanical properties
of the model samples and established that the spirit-based varnish was stiffer than the oil-based.
Synchrotron radiation micro- Fourier Transform Infra-red analysis of the layer structure revealed
that stiffer spirit-based varnish showed less penetration into the wood than the oil-based. Further
PeakForce Quantitative Nanomechanical Mapping (QNM) demonstrated a difference in adhesion
values between the oil- and spirit-based samples.

Keywords: in situ imaging; AFM; SR micro-FTIR; violin; nanomechanics

1. Introduction

To date, in the conservation of musical instruments, it has been a challenge to under-
stand the effect of the varnishing process on wood and whether this process affects the
overall performance of varnished wooden instruments. A recent paper by Gilani showed
that laboratory varnishes with various compositions penetrated differently into the wood
structure [1] as recorded by non-destructive methods such as vibration tests and X-ray
tomography. A comprehensive review has also been made of the chemical composition
and multi-layered structure of varnishes of historical musical instruments, in particular
stringed instruments of the violin family from the 17th and 18th centuries [2]. In the current
paper, the information on depth penetration of varnishes of different chemical composition
is combined with their mechanical properties measured at the nano-scale. This follows on
from previous studies where attention was directed to the physicochemical state of varnish
and how this affects the mechanical response of wood [3–5]. It was observed that the
stiffness of the wood measured in tension in the radial direction increased in the presence
of the dammar varnish layer and these results were consistent with what was reported
previously using a theoretical approach on spruce plates with natural resins [6].There was
also difference in the mechanical properties and response to relative humidity (RH) of
varnished wood panels (pine) stored within protected enclosures such as micro-climate
frames and showcases and outside these enclosures together with a difference in the surface
topography of the varnished surfaces. It has recently been shown that even preparatory
treatments affect the properties of the wood and certainly influence subsequent penetration
of the varnish [7].
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Several papers reported analytical study on varnishes [4,8–10]. For example studies
on historical stringed musical instruments from the collection of the Vincenzo Bellini
Conservatory in Palermo (Italy) showed that the varnish on all the sampled instruments
has a consistent formulation containing a mixture of a diterpenoid resin, shellac and a
drying oil [11]. Chemical analysis at the molecular level using gas chromatography and
mass spectrometry (GC/MS) showed differences in the chemical composition of varnished
panels maintained within and outside the enclosures [12]. Recently, the composition
of the materials and the chemical composition of each varnish layer was reported by
using spatially resolved synchrotron radiation micro-FTIR spectroscopy (SR-FTIR), which
included studies on early 18th century musical instruments [13], a late 16th cent. Venetian
lute [14] and instruments which were undisputed representative examples of Stradivari’s
work [15].

An important consideration in the evaluation of the state of preservation of a string
instrument is the application of non-invasive and non-destructive techniques. For this
reason, optical coherence tomography (OCT) [16] has been applied. A recent in situ study
of the surface of an 18th century Italian violin provided important information for its con-
servation treatment and demonstrated that it was possible to characterize the thickness of
varnish layers and image the three-dimensional wood structures below the varnishes [17].
The relevance of the mechanical properties of varnishes has recently been highlighted [3].
To achieve a non-invasive non-destructive approach, the use of force spectroscopy with
Atomic Force Microscopy (AFM) could be considered, and, in this paper, a preliminary
study on model samples is included (Table 1, described in Section 4.1.2). Force spectroscopy
with AFM has emerged as a powerful technique as it is able to provide information on the
nanomechanical properties of a wide variety of materials at the nanometre/nanonewton
scale [18]. At this stage, in situ AFM imaging has been achieved on 18th cent parchment.
It was possible to detect changes in the collagen in parchment, which can cause surface
cracking resulting in loss of text and can increase the vulnerability of parchment to aqueous
cleaning agents [19]. In the literature, there are few studies using AFM to evaluate the
surface properties of woods. An early report by Vlad-Cristea et al. [20] used both nanoin-
dentation and atomic force microscopy to investigate whether the exterior durability of
waterborne coatings improved with inorganic nanosized UV-absorbers. In their study,
AFM was used to detect the very early stages of surface roughening and blistering that
occurs during weathering. The recent research by Mao et al. [21] presents an accurate
atomic force microscopy (AFM) method of investigating wood aging. The team’s work
demonstrated a novel AFM-based method of analysing wood aging. The technique was
able to characterize changes to the wood surface by measuring the relative adhesion force
between the wood sample and the AFM tips. It was concluded that the structures most
suitable for monitoring aging at early stages were the wood pits. Others have used AFM to
characterize the entire wood cell wall mechanically at the nanometre level [22,23]. Recently,
Czibula et al. [24] demonstrated a decreasing trend in the longitudinal and transverse
viscoelastic properties of wood pulp fibers at different relative humidity. However, they
hypothesised that the unknown microfibril angle (MFA) and the anisotropy of the material
could have an influence on the results.

The current work is aimed at evaluating the feasibility of in situ imaging by using
Atomic Force Microscopy (AFM) not only on reference systems simulating the stratigraphy
of a violin but also on a historical violin in order to obtain information on the preservation
of the varnished surface. In situ AFM does not require sampling as the instrument is fully
portable and would allow for in situ examination of the varnish surface at the nanoscale
level. To complement surface information, chemical analysis using micro-Fourier Transform
Infra-red analysis has also been performed. Actually, Infra-red specular reflection and
diffuse-transflection techniques have been reported as a method for in situ non-destructive
analyses of varnishes on historical violins with a view to indicate state of degradation of
varnishes [25,26]. A recent paper on modified asphalt binders [27] and on bamboo fibre cell
walls and their composites has demonstrated the value of these additional data as basic
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nanomechanistic properties, adhesion, energy dissipation, and deformation of the modified
asphalt binders were determined [28].

This paper reports the results obtained by in situ AFM imaging on a historical violin
bought in 1946 from Boosey & Co in London and Synchrotron radiation micro-FTIR spec-
troscopy (SR-FTIR) on model system samples (Table 1, described in Section 4.1.2) prepared
by a violin maker (Gabriele Carletti who continued the family tradition of constructing
and restoring string instruments) according to traditional recipes. In addition, force spec-
troscopy with AFM and peakForce QNM mode of AFM were used to measure the nano
mechanical properties of model violin samples and to provide information on adhesion
values of the surfaces.

2. Results and Discussion

Atomic force microscopy (AFM) was applied to violin surface analysis. The AFM head
was placed directly on the instrument as shown in Figure 1a, and the whole violin was
placed on an anti-vibration table. Figure 1b shows the tip in contact with the surface. To the
right side in Figure 1b it is possible to see one of the legs resting on a plastic spacer used to
protect the surface of the violin on which the AFM head rested. It was found that operation
in intermittent contact mode provided better images. Figure 1c,d show the resulting AFM
images taken in different locations on the surface of the violin. The surface shows the
directional nature of varnish application following the direction of the grain of the wood,
some small deformations, and some particulate matter. This is the first time that it has been
demonstrated that it is possible to image directly the surface of a violin using AFM. The
ability to visualise the surface at the nanoscale level provides information on the state of
preservation of the varnish and may indicate the type of preparation used. AFM has been
previously used in studies on violins, in particular in the study of structural changes in
cuticles on violin bow hair caused by wear and in comparison of synthetic hair and natural
horse tail as used in professional orchestras [29,30].
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Figure 1. (a) Nanosurf Easyscan 2 AFM head on a violin placed on an anti-vibration table (b) closer
view of AFM head on the violin placed on plastic spacers to protect the surface of the violin and
showing location of the AFM tip (black arrow) (c,d) AFM images (20 µm × 20 µm) recorded directly
on the violin surface in two different locations [location (c) z-scale image = 1.28 µm/Roughness Ra
0.176 µm; location (d) z-scale image = 2.03 µm/Roughness Ra 0.291 µm].
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The second aim of this study was to evaluate the mechanical properties of the var-
nished surfaces at the nanoscale level. For these measurements, a set of model varnish
samples was prepared according to traditional practices for violins. Table 1, described in
Section 4.1.2 shows the recipes used in the preparations. AFM has long been recognised as
a useful instrument for the evaluation of local mechanical properties of materials. A collec-
tion of force-distance curves at each pixel allows for mapping of the elastic properties [31].
Recent advances in Force spectroscopy with AFM have meant that additional material
properties such as dissipation, adhesion, and deformation are mapped simultaneously with
topography at nanoscale resolution [18,32]. Figure 2 shows corresponding AFM images
(10 µm × 10 µm) of the model samples. Several locations were tested. Naturally aged
samples (4 years) and accelerated aged samples (2 weeks of Solar box) were studied.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 12 
 

 

 

Figure 2. Model systems optical images together with AFM images of samples (1 to 6) before ageing: 

oil-based (1 and 5); AFM image 1, z scale image = 159.4 nm/Roughness 19.1 nm; AFM image 5, z 

scale image = 164.5 nm/Roughness 18.2 nm; and spirit-based varnish layers (2, 3, 4, 6); AFM image 

2 z scale image = 235.6 nm/Roughness 10.5 nm; AFM image 3, z scale image = 522.6 nm/Roughness 

33.6 nm; AFM image 4, z scale image = 823.9 nm/Roughness 18.6 nm; AFM image 6, z scale image = 

260.0 nm/Roughness 14.5 nm on top of maple wood over preparation layers of various compositions 

(Table 1). 

With regard to the mechanical properties of these samples measured at the nanoscale 

level, Young’s modulus values were calculated from the measured force distance curves 

obtained from AFM. This information was complemented with chemical analysis of the 

layers in the varnished wood samples’ cross-sections using synchrotron radiation micro-

Fourier Transform Infra-red analysis. Figures 3 and 4 show the spectral and the 

mechanical data for both naturally aged and accelerated aged oil based varnish sample 1 

(Figure 2), and spirit-based varnish sample 6 (Figure 2). 

 

Figure 3. (a–d) shows SR-micro-FTIR mapping for the naturally aged oil-based varnish (Figure 2 

sample 1): chemical image mapping of the absorbance at (a) 1000 cm−1 and (b) 1735 cm−1, respectively, 

and (c) photomicrograph of the microtomed cross-section of width 10 μm. (the squared area out-

lined in black has a depth of 250 μm and indicates depth of penetration of the oil into the wood); 

and (d) FTIR spectra of layers (1, 2, 3) as shown in (b) and corresponding to varnish, penetration 

areas of oil in wood, and oil, indicating high penetration into the wood porous structure (around 

200 µm). (e–f) shows mechanical data and distribution of Young’s modulus in the unaged which, at 

time of analysis, had undergone four years of natural ageing in the dark (e) and the artificially 

Sample 1

Sample 2

Sample 3 Sample 5

Sample 4 Sample 6

min max

Naturally aged

Artificially aged

3
4

1
3

2
9

2
4

2
8

6
7

1
7

3
5

1
4

5
2

1
3

7
3

3
4

1
3

(a) (c)(b) (d)

(e)

(f)

Figure 2. Model systems optical images together with AFM images of samples (1 to 6) be-
fore ageing: oil-based (1 and 5); AFM image 1, z scale image = 159.4 nm/Roughness 19.1 nm;
AFM image 5, z scale image = 164.5 nm/Roughness 18.2 nm; and spirit-based varnish layers
(2, 3, 4, 6); AFM image 2 z scale image = 235.6 nm/Roughness 10.5 nm; AFM image 3, z scale
image = 522.6 nm/Roughness 33.6 nm; AFM image 4, z scale image = 823.9 nm/Roughness 18.6 nm;
AFM image 6, z scale image = 260.0 nm/Roughness 14.5 nm on top of maple wood over preparation
layers of various compositions (Table 1, described in Section 4.1.2).

With regard to the mechanical properties of these samples measured at the nanoscale
level, Young’s modulus values were calculated from the measured force distance curves
obtained from AFM. This information was complemented with chemical analysis of the
layers in the varnished wood samples’ cross-sections using synchrotron radiation micro-
Fourier Transform Infra-red analysis. Figures 3 and 4 show the spectral and the mechanical
data for both naturally aged and accelerated aged oil based varnish sample 1 (Figure 2),
and spirit-based varnish sample 6 (Figure 2).
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Figure 3. (a–d) shows SR-micro-FTIR mapping for the naturally aged oil-based varnish (Figure 2 sam-
ple 1): chemical image mapping of the absorbance at (a) 1000 cm−1 and (b) 1735 cm−1, respectively,
and (c) photomicrograph of the microtomed cross-section of width 10 µm. (the squared area outlined
in black has a depth of 250 µm and indicates depth of penetration of the oil into the wood); and (d)
FTIR spectra of layers (1, 2, 3) as shown in (b) and corresponding to varnish, penetration areas of
oil in wood, and oil, indicating high penetration into the wood porous structure (around 200 µm).
(e,f) shows mechanical data and distribution of Young’s modulus in the unaged which, at time of
analysis, had undergone four years of natural ageing in the dark (e) and the artificially accelerated
aged sample (f) where median values of Young’s modulus are (7.04 +/− 1.75) GPa and (57.2 +/− 5.1)
GPa, respectively.
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Figure 4. (a–c) shows SR-micro-FTIR mapping of the naturally aged spirit-based varnish (Figure 2
sample 6): chemical image mapping the absorbance at 1000 cm−1 (a) and 1700 cm−1 (b) respectively.
FTIR spectra (c) representative of the varnish layer (1-blue line) and the underlying wood (2-red line)
in (b). The spirit-based varnish remains on the surface with a clear separation from the wood as
shown by the difference in spectra for layers 1 and 2. (d,e) shows mechanical data and distribution of
Young’s modulus in naturally aged (4 years) (d) and artificially accelerated aged (e) samples where
median values of Young’s modulus are 29.7 +/− 3.1 GPa and 75.7 +/− 9.1 GPa, respectively.

Oil-based varnish shows a characteristic C=O stretching vibration centred at 1735 cm−1

with a shoulder at 1708 cm−1, characteristic of the ester linkages of the triglycerides from
the drying oil and the free fatty acids formed during its ageing. FTIR spectra of the varnish



Molecules 2022, 27, 6378 6 of 12

layers of the oil-based sample in Figure 3d showed typical bands for oil-based varnish (i.e.,
the strong and broad carbonyl stretching absorption and some medium intensity absorption
bands at 1452 cm−1, 1373 cm−1 (from the resin component also present) and accompanying
alkyl stretching bands). Strong peaks with two maxima at 2924 cm−1 and 2867 cm−1 are
due to aliphatic C-H stretch of alkyl groups. The numbers (1 to 3) in Figure 3b,d refer to the
different composition areas: 1 contains oil varnish, 2 contains wood and oil varnish and
3 contains oil varnish on the layer of wood support, being the result of the penetration of
the varnish.

The FTIR data for the spirit-based sample (Figure 4c) show a C=O stretching band
centred at 1696 cm−1 and two medium intensity absorption bands at 1452 cm−1, 1373 cm−1

which highlight the presence of a terpenoid resin [13]. These spectra also show strong peaks
with two maxima at 2924 cm−1 and 2867 cm−1 corresponding to aliphatic C-H stretch of
alkyl groups, which are more intense in the varnish layer (blue line) than in the wood (red
line). Chemical maps of the spirit based model show that varnish remains on the surface
with a clear separation from the wood as shown by the difference in spectra for layers 1
and 2 (Figure 4c).

The FT-IR spectra of the wood layer in both Figures 3 and 4 show a broadening to
lower wavenumbers of the band at 3413 cm−1. This may be caused by the residual water
present in the wood layer due to the fact that the wood is a highly hygroscopic material but
also due to O-H stretching vibration from alcohols (3600–3300 cm−1) and carboxylic acids
(3300–2500 cm−1), present either in polysaccharides or lignin fractions of wood [33,34]. The
broad band between 900 and 1100 cm−1 in Figure 4c (red line) contains many signals from
cellulose vibrational modes, in particular, the band at 1024 cm−1 related to the C-O bond.
At 896 cm−1 the typical signal for C-H stretching involving C1 carbons in the glucose ring
is visible. The absorption band at 1508 cm−1, attributed to aromatic skeletal vibrations in
lignin as well as the band at 1220 cm−1 [33,35,36] is also present.

Figures 3 and 4a,b show the chemical images at 1000 cm−1 and 1700 cm−1 and the
distribution of the wood support and the varnish, respectively. From the FTIR maps,
it is possible to observe the degrees of penetration of the vanish layers into the wood
support. The oil-based varnish shows a high penetration into the wood porous structure
(around 200 µm) (Figure 3d) while the spirit based one remains on the surface with a clear
separation from the wood support (Figure 4c).

Figure 3d,e shows the distribution of Young’s modulus of the varnished wood oil-
based sample. In the accelerated aged sample, there is a clear shift in the maximum of the
distribution of Young’s modulus to higher values, i.e., 60 GPa (Figure 3f). There is also
a broader distribution in the aged sample. The maximum value of Young’s modulus for
the unaged sample, which had been naturally aged (4 years) at the time of analysis, lies in
the range 5–10 GPa, and this correlates with values found for maple (hardwood) (elastic
modulus 12.62 GPa) [37].

Figure 4d,e shows the distribution of Young’s modulus on the varnished wood spirit-
based sample, sample 6. In the unaged sample (Figure 4d), which had also been naturally
aged (4 years) at the time of analysis, the maximum value for the modulus is higher than in
the oil-based sample and is in the region 30–40 GPa. In the accelerated aged spirit-based
sample, there is also a shift in the maximum of the distribution of Young’s modulus to
higher values but the distribution of the aged sample (60–100 GPa) is broader (Figure 4e)
than in the oil-based sample.

Nanomechanical measurements were also performed on samples 2, 3, 4 and 5 (Figure 5).
The spirit-based samples (black bars) show similar values of modulus to that of sample 6.
The second oil-based sample (sample 5 grey bars) has a higher modulus value, unlike that
of the other oil-based sample (sample 1), and also differs from sample 6 as seen in the
adhesion data below.

Information on adhesion values of the surfaces of the model violin samples was also
obtained. The PeakForce Adhesion image of the naturally aged spirit-based sample (sample 6,
Figure 2) is shown in Figure 6a, and the image for the naturally aged oil-based varnish



Molecules 2022, 27, 6378 7 of 12

(sample 5, Figure 2) is shown in Figure 6b. These were recorded from PeakForce QNM
measurements. Bearing analysis showed that the two samples gave large differences in the
distribution of adhesion values, Figure 6c. The spirit-based sample has a higher maximum
adhesion value than the oil-based sample with a broader distribution of values. The oil-based
sample (sample 1, Figure 2) has a lower maximum adhesion value and a narrower range of
values. Figure 6b shows that the distribution of adhesion values for the spirit-based varnish can
be resolved into two contributions to the overall peak, corresponding to regions of lower and
higher adhesion values as seen in the image in Figure 6a. This could be a future marker that
can be used to characterise behaviour of spirit-based varnishes. Further work is in progress.
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in (a) and the image for naturally aged oil-based varnish sample is shown in (b). Bearing analysis gave
large differences in the distribution of adhesion values for the two samples (c): the oil-based varnish has
a narrow range of adhesion values while the spirit-based has a broad distribution and can be fitted to
2 curves, indicating the possibility of greater heterogeneity in the mechanical properties of the surface of
the spirit-based varnish.
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3. Conclusions

In this study it has been demonstrated for the first time that it is possible to obtain AFM
images in situ on the surface of a violin using the portable EasyScan 2 AFM instrument.
This opens possibilities for imaging on historical violins in collections and for assessment
at the nanoscale of the state of preservation of the varnish. Peak force tapping AFM with
quantitative nanomechanical analysis provides a tool for assessment of nanomechanical
properties of multiphase materials. AFM has provided information on the nano-mechanics
of oil-based and spirit-based varnishes and the changes that occur on accelerated ageing.
Peak Force AFM has provided additional information on adhesion values. Synchrotron
radiation micro-FTIR spectroscopy (SR-FTIR) has provided information on differences
in the chemical composition of the varnish layers over the wood and in the depth of
penetration of the two varnishes. Examination of the layer structure reveals that the stiffer
spirit-based varnish showed less penetration into the wood than the oil-based varnish. This
is in accord with observations made by X-ray tomography [1,38]. Information on the extent
of penetration into the wood and the change in physico-chemical and mechanical properties
with ageing is essential as these properties will contribute to the vibro-acoustical properties
of the coated wood as indicated in other papers [1,39,40]. The AFM and nanomechanical
studies open up a whole new area of investigation of varnished musical instruments and
will provide essential data. Though it has been recognised that the impact of vanish can
affect the final sound quality of violins via changes in mechanical properties, there are fewer
measurements of, for example, changes in stiffness of varnishes from historical instruments
and fewer studies made than of the chemical composition of varnishes from historical
instruments [41]. This is mainly due to the invasive nature of mechanical tests generally
used. In our study we have shown the potential of non-invasive imaging and the possibility
of future non-invasive mechanical measurements on historical instruments.

4. Materials and Methods
4.1. Samples
4.1.1. Violin Instrument

The violin which was made available for this study shown in Figure 1a,b had been
played for about 40 years. It was bought in 1946 from Boosey & Hawkes (Boosey & Hawkes
Music Publishers Limited, Aldwych House, London, UK,), and, thus, is likely to be no more
than 70 years old. It has never been re-varnished but has been polished with Hidersine 3V
violin wax and varnish cleaner (Barnes & Mullins Ltd., Morda, UK).

4.1.2. Model System Samples

For this project, luthier Gabriele Carletti prepared samples using traditional violin
varnish recipes. These model systems, shown in Figure 2 and described in Table 1, consist
of oil or spirit-based varnish layers on top of maple wood (6 cm × 1.2 cm × 2 cm) over
preparation layers of various compositions: water soluble potassium dichromate (also with
sodium bicarbonate), cherry gum, gamboge and saffron and then those that are soluble in
ethanol and contain dragon’s blood and sandalwood. The varnish layers were (a) oil-based
containing stand oil, spirit of turpentine, Venice turpentine, Mastic and Sandarac and
(b) spirit-based containing ethyl alcohol, Venice of turpentine, Mastic, Elemi, and Shellac
(Table 1). All products were Kremer-pigmente GmbH & Co., Aichstetten, Germany.
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Table 1. Preparation layer composition of a set of varnished wood samples (1 to 6) prepared by
Gabriele Carletti which, at the time of analysis, had been naturally aged for a period of four years.

Model System Preparation Layer
Type

Preparation Layer
Composition Varnish Layer Type

1

water soluble

K2Cr2O7 oil based

2 K2Cr2O7 + NaHCO3
spirit-based3 cherry gum

4 gamboge + saffron

5
ethyl alcohol soluble

dragon’s blood oil based

6 sandalwood spirit-based

4.2. Atomic Force Microscopy (AFM)

The portable Nanosurf Easyscan 2 AFM operating in intermittent contact mode was
used for in situ imaging of the surface of a violin instrument.

4.3. Nanomechanical Measurements

The nanomechanical measurements were performed on the naturally aged samples
(4 years after their preparation), which had been stored in the dark, and on the accelerated
aged samples.

4.3.1. Young’s Modulus Measurement

A Nanowizard 1 AFM (JPK, Bruker, Ettlingen, Germany) was used to measure the
Young’s Modulus of the model violin samples using a standard force-distance curve ap-
proach. The cantilever used for the measurements had a spring stiffness of k = 38 N/m
(RTESPA, Bruker, Camarillo, CA, USA) with a setpoint of 500 nN. Samples were adhered to
a glass slide using double-sided tape, with the varnish side exposed. Force-distance curves
(300) were obtained across three separate areas of 50 µm2 using a Nanowizard (JPK, Berlin,
Germany) in contact mode in the air. All FD curves were processed with the Hertzian
Model on the proprietary JPK analysis RampDesigner™ software (Budapest, Hungary).

4.3.2. Adhesion Measurement

A Bruker Dimension Icon with PeakForce QNM was used to perform adhesion mea-
surements on the model violin samples. The probe used for the measurements had a spring
stiffness of k = 6 N/m (TAP 150A, BudgetSensors, Izgrev, Sofia, Bulgaria) with a setpoint of
10 nN. QNM adhesion images of 10 × 10 um2 were obtained at 5 locations across each of
the samples. Using the QNM software (open-source Python package), we measured the
maximum adhesion for each pixel in the recorded images and pooled the data to plot the
Frequency distribution of adhesion for both the oil-based and spirit-based varnish samples.

4.4. Micro-FTIR Measurements

Synchrotron radiation Micro-Fourier Transform Infra-red Analysis (Micro-FTIR) was
carried out at the IRIS beamline (BESSY II) at Helmholtz-Zentrum, Berlin (Germany) on a
Thermo Nicolet Continuum™ microscope equipped with a mercury–cadmium–telluride
(MCT) detector. The sample was mounted on a diamond cell on a motorized microscope
stage and raster scanned through the synchrotron beam with a diameter of 15 µm collecting
a grid-like pattern of IR spectra spaced in 10 µm increments. Measurements were performed
in transmission mode at a magnification ×32 using confocal objectives. Infrared spectra
were registered between 4000 and 650 cm−1 with a spectral resolution of 4 cm−1. An
accumulation of 128 scans per point was used. Background spectra were collected under
identical conditions with only the BaF2 window on which the sections were placed. The
spectrum and mapping acquisition was performed by using the OMNIC Atlµs™ software
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(Waltham, MA, USA) [42]. The sample preparation protocol consisted of the microtoming at
10 µm of the samples with an embedding-free approach as described in the literature [43].

4.5. Accelerated Aging

Accelerated aging was performed for two weeks after 10 months’ natural aging in
a Solarbox 1500e RH (Erichsen Cofomegra Instruments, Milan, Italy) purchased from
Erichsen (Hemer, Germany). Ageing conditions were as follows: 20 ◦C, 50%RH, excitation
with Xenon lamp (wavelength 280–400 nm) power 400 W. A soda-lime glass UV filter was
used to simulate indoor exposure. Irradiation uniformity was guaranteed by a parabolic
reflector chamber with the Xenon lamp in focus.
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