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Abstract: In the era of big data, the data in many business scenarios are characterized by a small 

number of labelled samples and a large number of unlabelled samples. It is quite difficult to classify 

and identify such data and provide effective decision support for a business. A commonly employed 

processing method in this kind of data scenario is the disagreement-based semisupervised learning 

method, i.e., exchanging high-confidence samples among multiple models as pseudolabel samples 

to improve each model’s classification performance. As such pseudolabel samples inevitably 

contain label noise, they may interfere with the subsequent model learning and damage the 

robustness of the ensemble model. To solve this problem, a semisupervised classification algorithm 

based on noise learning theory and a disagreement cotraining framework is proposed. In this model, 

first, the probably approximately correct (PAC) estimation theory under label noise conditions is 

applied, the relationship between the label noise level and model robust estimation in the process of 

multiround cotraining is discussed, and a disagreement elimination algorithm framework based on 

multiple-model (feature argument and select (FANS) algorithm and L1 penalized logistics 

regression (PLR) algorithm) cotraining is constructed based on this theoretical relationship. The 

experimental results show that the algorithm proposed in this paper gives not only a high-confidence 

sample set that meets the upper bound constraint of the label noise level but also a robust ensemble 

model capable of resisting sampling bias. The work performed in this paper provides a new research 

perspective for semisupervised learning theory based on disagreement. 

Keywords: semisupervised classification, noise learning theory, disagreement cotraining, feature 

argument and select algorithm, L1 penalized logistics regression algorithm 

 

1. Introduction 

The rapid development of the digital economy provides great convenience for the collection 

and recording of various business data. For example, in addition to various identity information 

actively uploaded by users, customer information collection systems also include all types of 

electronic information automatically collected by intelligent devices, e.g., geographical location and 

path, application (app) installation list, social records, and hundreds or even thousands of other 

features [1-2]. However, in many business scenarios, it is extremely difficult to automatically 

identify data samples and assign category labels. Although manual labelling may be introduced, it 

has the disadvantages of high cost and low efficiency. Such scenarios include financial risk 

prediction [3], text classification [4-5], medical image recognition [6] and potential customer 
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classification [7]. The data collected in such scenarios show that the number of labelled samples is 

quite small, while the number of unlabelled samples is quite large, showing typical characteristics 

of semisupervised learning problems [8]. The way to maximize the use of data with this structure 

and to build a robust machine learning system is an urgent problem to be solved. 

The semisupervised learning method is applied to solve the problem of combining a large 

amount of unlabelled data with a small amount of labelled data for learning [9-11]. In this method, 

the learner automatically modifies the statistical model constructed based on a small amount of 

labelled data with unlabelled data. Currently, there are four mainstream paradigms of 

semisupervised learning methods, i.e., generative model-based methods [12-14], graph-based 

methods [15-17], semisupervised support vector machine methods [18-20], and disagreement-based 

methods [21-23]. The disagreement-based method is the main form discussed in this paper. Such a 

form is less affected by model assumptions and loss function forms and has the characteristics of 

wide applicability [23]. Disagreement-based semisupervised learning begins with the cotraining 

model proposed by Blum and Mitchell [24]; such a model naturally requires data to have a variety 

of full views. For example, image data include two views: graphics and their accompanying text 

descriptions. Based on these two views, two different models are constructed. After completing the 

model training, the models select a part of specific samples (high-confidence samples, that is, the 

probability prediction given by the model is close to 0 or 1), attach the category labels predicted by 

the model (pseudolabel samples), and add them to each other's training set to mutually improve the 

model performance. This process of "mutual learning and common progress" will continue to iterate 

until the two learners do not change or reach the predetermined number of learning rounds. The 

method of building multiple models based on multiple views for alternate learning also derives the 

collaborative regularization method [25] and collaborative expectation-maximization method [26]. 

The precondition of this method is that sufficient multiple views are provided. However, in most 

scenarios, the data do not have the feature of multiple views. Even if there are multiple views, it is 

difficult to ensure their sufficiency for estimating the probably approximately correct (PAC) learner. 

The single view scenario is relative to the multiple view scenario. The typical case of 

disagreement-based, semisupervised learning in the single view scenario is the ‘tri-training method’ 

proposed by Zhou and Li [27]. The core idea of this method is to build three different learners on 

the same dataset and label the sample points that can be reached by any two learners with category 

labels to train the third learner. Motivated by this idea, the "co-forest method" has been derived [27-

30]. In this method, multiple classifiers are utilized for simultaneous learning. For a certain 

unlabelled sample point, class label labelling by the majority model group and learning by the 

minority model group are performed. Various mechanisms are introduced to ensure that there is 

significant disagreement between two classifiers. Based on this approach, many scholars have 

proposed multicotraining (MCT) to improve the performance of document classification [31]; deep 

multiplanar cotraining [32]; cotraining-based, semisupervised, attribute reduction algorithms [33]; 

a deep cotraining method by ensemble of deep segmentation models [34]; a self-paced cotraining 

framework [35]; and cotraining-based noise correction [36]. 

According to the comparison of the abovementioned two different styles of the single view 

method and multiple view method, the premise for the performance of the disagreement-based 

method is that there are enough disagreements among multiple learners and that it is required to 

continuously maintaining the disagreements among learners during the learning process, regardless 

of whether the disagreements originate from differences in views or differences in model principles. 



A disagreement between two learners is vitally important to the performance of the constructed 

ensemble model. Under the cotraining framework, if the disagreement between two learners is 

eliminated too early, it is difficult to improve the performance of the ensemble model. In addition, 

in this process, the category labels marked by the learners will always make mistakes. If the mistakes 

are not correctly handled, the impact of such label noise will continue to spread and amplify, 

eventually leading to a significant decline in the performance of the constructed ensemble model. 

Therefore, there are two core topics in the disagreement-based, semisupervised learning method, 

namely, disagreements among learners and pseudolabel sample noise. 

In terms of a disagreement between two learners, it is relatively simple to create a disagreement 

between two initial models. The feasible methods include view-difference-based methods, feature-

grouping-based methods, data-grouping-based methods, and model-principle-based methods [21-

23]. However, it is extremely difficult to maintain this disagreement for a long time during the 

process of exchanging samples and updating models. In view of the abovementioned problems, the 

collaborative forest method deliberately adopts a variety of difference introduction mechanisms to 

slow the premature fitting of the learning process and thus to maintain the disagreement between 

two models [29-30]. Moreover, Malach and Shalev-Shwartz also proposed the decoupling method 

[37]. In this method, only those samples with inconsistent predictions are used to learn the model to 

strengthen the difference between the two models and to ensure the performance of the ensemble 

model. In terms of the noise of pseudolabel samples, the way to deal with the label noise introduced 

by "pseudolabel samples" is more complex. Angluin [38] was an early scholar who discussed how 

to effectively learn when the samples were mixed with noise. Angluin [38] proposed a compromise 

formula between the number of noise samples and the noise level under the condition that the label 

noise and the observation characteristics are independent. Wang and Zhou [39] pointed out that in 

the insufficient feature space, the learning process of the disagreement-based method would be 

restricted by "label noise" and "sampling bias". It is difficult to learn the PAC model only by 

providing pseudolabel samples to each other in the way of cotraining. However, if the base learner 

can provide additional confidence estimation results about the relatively accurate probability by 

providing prediction categories, the interference of labelling noise and sampling bias can be 

alleviated to a certain extent by “adaptively” adjusting the number of pseudolabel samples in 

different rounds, and then the performance of the ensemble model can be improved by effectively 

utilizing unlabelled samples. The essence of this method is to combat pseudolabel noise by fixing 

the confidence level and adjusting the number of pseudolabel samples. In addition, MentorNet [40-

41], Coteaching [42-43], and other methods proposed by other scholars update the model based on 

the fixed number of samples with the highest confidence level. These two methods reduce the noise 

level in the pseudolabel samples from two perspectives with the confidence estimation of the model. 

The two core topics on semisupervised learning discussed above triggered our assessment. 

Regarding the handling of disagreement, previous work focused on the creation and maintenance of 

disagreement, disregarding the information gathered in the process of exchanging pseudolabel 

samples among models to eliminate their disagreement. Why can one set of pseudolabel sample 

models be exchanged to eliminate disagreement, while another set of pseudolabel sample models 

cannot be exchanged to eliminate disagreement? What are the properties of the pseudolabel sample 

set that may eliminate disagreements among models? For the treatment of pseudolabel noise, a 

previous work used an empirical method; however, there is no systematic solution associated with 

the specific data status. If it is conservative and the number of samples exchanged in each round is 



small, the higher the sample confidence level is, the stronger the consistency of different models on 

these samples, leading to slow model improvement and fast disagreement elimination among 

models. However, if it is more radical and the number of samples exchanged in each round is large, 

the label noise caused by the mislabelling will be quite large due to the low sample confidence level, 

thus destroying the robustness of the model estimation and causing the performance of the 

subsequent ensemble model to be inferior to that of the initial base learner. Considering the 

differences in the characteristics of different datasets, it is clear that there is no unified sample 

exchange quantity. How can we correctly set the exchange sample quantity according to the dynamic 

characteristics in the learning process? 

Based on the consideration of these two problems, this paper focuses on the process from 

disagreement to agreement between the two models in cotraining. From the perspective of the nature 

of the high-confidence sample set exchanged in this process, a disagreement elimination algorithm 

framework based on the cotraining of feature argument and select (FANS) algorithm and L1 

penalized logistics regression (PLR) algorithm is constructed. Then, the noise level of the 

accumulated high-confidence sample set in the exchange process is detected and used as a guide to 

correctly adjust the number of samples exchanged according to the characteristics of the dataset. 

The core contributions made by this research are as presented as follows: first, the static PAC 

estimation theory under noise conditions is deduced to the dynamic PAC estimation theory under 

multiple round cotraining scenarios, thereby providing a solid theoretical foundation for the 

disagreement-based cotraining method; second, by accurately limiting the proportion of the 

expanded number of pseudolabel samples to the number of current labelled samples (initial labelled 

samples and previous pseudolabel samples) in each round of update, the upper bound of the noise 

level of the high-confidence sample set accumulated in previous exchanges at the time of final 

convergence (multimodel agreement) is calculated; third, by forcing multiple models to achieve 

convergence, the "safety problem" of semisupervised learning can be solved, that is, the resulting 

ensemble model can resist "label noise" and "sampling bias" and give robust classification results; 

fourth, combining the noise of the biased statistical learning theory with the FANS and PLR 

algorithms, we give the upper bound of error for the results of the classification criteria, which is 

not involved in the existing related methods and has significant application value in some fields 

sensitive to discrimination accuracy, such as the risk control or investment fields. We also propose 

a method to control the upper bound of the error of the final classification results by adjusting the 

amplification coefficient. This adjustment method is often reflected as the penalty coefficient for 

the estimated parameters in existing algorithms, but existing works only qualitatively describe how 

the adjustment penalty coefficient can increase or decrease the reliability of the classification results, 

while our method provides a quantitative description of this degree of reliability of specific values. 

The remainder of the content is arranged as follows: in Section 2, the dynamic noise PAC 

estimation in the cotraining scenario is introduced; in Section 3, a disagreement elimination 

algorithm architecture based on noise learning is proposed; in Section 4, empirical results and 

discussions are conducted, this method is tested on two different datasets, and relevant conclusions 

are verified; and in Section 5, conclusions and prospects are presented. 

2. Dynamic noise PAC estimation in the cotraining scenario 

The essence of machine learning is to define a hypothesis space via the model structure and 



then obtain a hypothesis that best matches the training data in this hypothesis space by utilizing the 

training data. Notably, the larger the amount of training data is, the closer the matched assumptions 

are to the real system law. If the assumptions that we have estimated are not much different from 

the real system law, it can be concluded that the current estimation result is the PAC identification 

[44]. If the training data are mixed with label noise, the sample size required to achieve PAC 

estimation will be greatly increased. PAC estimation theory under noise conditions describes the 

mathematical law of this issue. In the process of cotraining, the pseudolabel samples exchanged 

between two models inevitably contain label noise, and the relationship between noise and model 

estimation is alternately evolving and dynamically changing. Noise will affect model estimation, 

and the affected model estimation will cause more noise. This situation is referred to as "dynamic 

noise PAC estimation in the cotraining scenario". In this chapter, the three level-by-level PAC 

estimation will be discussed in turn, providing a theoretical basis for the subsequent construction of 

a disagreement elimination algorithm based on noise learning theory. 

2.1 PAC Identification 

 In the field of machine learning, the hypothesis refers to a discriminant rule. If a sample meets 

this discriminant rule, it will be labelled class 1. If the sample does not meet this rule, it will be 

labelled class 0 [45]. The essence of machine learning is to select hypothesis 𝐻 that best matches 

the data in hypothesis space ℋ  by using a dataset {𝑥𝑖 , 𝑦𝑖} . Data {𝑥𝑖 , 𝑦𝑖} are derived from a 

potential hypothesis 𝐻∗. A good machine learning method should be able to minimize a certain 

distance between  𝐻  and 𝐻∗ based on data {𝑥𝑖 , 𝑦𝑖}. 

For the mathematical description, several definitions should be made. First, assuming the data 

population 𝑈 = {𝑥𝑖}  and that different assumptions will cause different discrimination results for 

the same sample point 𝑥𝑖, the set constructed by all sample points in the data population that meet 

hypothesis 𝐻 is referred to as the hypothesis response set, recorded as 𝑆𝐻: 

 ( ) 1H i iS x H x= =                            (1) 

Second, based on the hypothetical response set, the distance between two assumptions is 

defined as the difference between their response sets: 
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where 𝑆𝐻1
△ 𝑆𝐻2

 is the symmetric difference operation between two sets and 𝑃𝑟𝑈(𝑥) represents 

the probability of extracting sample x from data population U. 

 Third, if the probability of the distance between hypothesis H and the potential real hypothesis 

H∗ greater than ε is less than 𝛿, 

*( , )Pr d H H                                 (3) 

then assume that H is the PAC identification of the potential real hypothesis 𝐻∗. It can be considered 

with great confidence (the probability greater than 1 − 𝛿) that the difference between hypothesis H 

and the potential real hypothesis 𝐻∗ is very small (less than 𝜀). 

 A certain number of samples are required to realize PAC estimation. If the hypothesis space is 

limited and there are at least N assumptions in total, 

1
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samples are required for the realization of PAC estimation [44]. 

2.2 PAC identification under noise conditions 

 In some special cases, for a group of samples {𝑥𝑖 , 𝑦𝑖}  labelled by the potential real 

hypothesis 𝐻∗ , its label 𝑦𝑖  will be disturbed by noise, and the probability of 𝜂(< 0.5)  will be 

reversed, that is, from class 1 to class 0 or from class 0 to class 1. Here, we record the data disturbed 

by label noise as {𝑥𝑖 , 𝑦𝑖
+} . The research results by Angluin [38] showed that if the number of 

samples m containing noise of level 𝜂 reached the following formula, 
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then any hypothesis 𝐻̂ that best matches the sample data is the PAC identification of the potential 

real hypothesis 𝐻∗: 

*( , )Pr d H H                                   (6) 

where N is the assumed quantity in the hypothesis space [38]. 

2.3 Dynamic noise PAC estimation theory in the cotraining scenario 

 In the process of disagreement-based learning, the pseudolabel samples exchanged by the two 

algorithms are always bound to have label errors, i.e., label noise, making the subsequent rounds of 

learning to be performed in a noisy learning environment. Starting from the PAC recognition 

theorem under the condition of noise, we know that if we want to combat the noise introduced by 

the exchange of pseudolabel samples, the number of pseudolabel samples exchanged this time 

should reach the required scale m. However, the calculation of this specific quantity m depends on 

the noise level 𝜂 and hypothesis space scale N, and these two parameters can hardly be measured. 

If the problem is stated in the opposite way, i.e., if the training samples are expanded to 𝛽 times 

the original samples in this round of update, what is the noise level that the sample expansion can 

resist? Therefore, this paper further analyses the PAC recognition process under noise conditions as 

follows: 

 Step 1: the formula of PAC recognition under noise conditions is transformed to obtain 
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 Step 2: As  𝜀 represents the distance between the poor estimation result and the potential real 

hypothesis in the case of a small probability, some pseudolabel samples are expanded so that the 

training set of the same learning model reaches β times the original set, and the distance becomes: 
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where 𝛽 is referred to as the expansion ratio. 

 Step 3: As the expected distance between the estimated hypothesis and the potential real 

hypothesis after sample expansion is smaller than the original distance, that is, 𝜀+
2 < 𝛾𝜀2, 𝛾 < 1, 

𝛾 is referred to as the convergence rate. Thus, it is required that: 
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    The common terms are deleted to perform the conversion accordingly: 

1
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 Step 4: Assume that there is no noise in the initial training set, that is, 𝜂 = 0. If the training set 

is expanded 𝛽 times in some way and the distance between the estimated hypothesis and the 

potential real hypothesis is shortened 𝛾 times, the noise level of the training set used in this round 

is: 

1
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As it is assumed that there is no noise in the initial training set, the new noise sample points are 

completely introduced by the pseudolabel samples; thus, the noise level 𝜂̂ of these pseudolabel 

sample points is: 
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Step 5: It is explained in step 4 that if the convergence ratio is 𝛾 after sample update, the noise 

level 𝜂̂ of the newly added pseudolabel samples will have an upper bound. However, the potential 

real hypothesis is unknown; thus, there is no way to test the distance between the estimated 

hypothesis and the potential real hypothesis. However, the sample expansion and hypothesis 

learning can be repeated from the two hypotheses with large differences in the hypothesis space, 

forming two trajectories in the hypothesis spaces. If these two trajectories meet the hypothesis space 

and the distance is reduced to almost 0, it can be held that these two trajectories effectively approach 

the potential real hypothesis. If the distance between the two hypotheses is less than 0.001 and this 

approximation is completed in n update rounds, as long as (0.001)1/𝑛 ≤ 𝛾, there is ample reason 

to believe that the convergence rate of each update round does not exceed 𝛾. If the two models 

reach an agreement during the disagreement cotraining, the pseudolabel samples exchanged during 

this period have a noise level upper bound of 

1 1
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4
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For example, the convergence ratio 𝛾 is required to be 0.7 and the expansion ratio is required to be 

2. If convergence is achieved under this condition, the upper bound of the noise level of the 

exchanged pseudolabel group 𝜂̅=15.5%. 

 Based on the abovementioned analysis, the following two conclusions are drawn: First, if the 

disagreement cotraining converges in a specific round according to a certain expansion ratio, the 

lower bound of the prediction accuracy of a part of the unlabelled samples (pseudolabel group) can 

be given without using the verification set. Second, in general, we have identified an effective 

method to test semisupervised learning. If the test is passed, it is proven to be a robust model closer 

to the real hypothesis. Such a method basically solves the problem of "safe" semisupervised learning 



proposed by Li and Zhou [46]: how to ensure that the ensemble model constructed by 

semisupervised learning is robust in the absence of a verification set rather than overfitting on a 

limited number of labelled samples. 

3. Framework of the disagreement elimination algorithm based on noise learning theory 

Next, an algorithm framework to realize dynamic noise PAC estimation theory in a cotraining 

scenario is constructed. 

First, the selection of two base learners is introduced. In most cases, only a small number of 

labelled samples are provided for semisupervised learning; thus, any nonlinear model will usually 

fall into the problem of overfitting on such small sample data, and consequently, the high-confidence 

sample points are not reliable. Therefore, two linear models are selected here as the base learners, 

namely, FANS [47] and L1 penalized logistics regression (PLR) [48]. 

Second, the FANS and PLR algorithms classify data from the perspectives of kernel space and 

feature space, respectively. The FANS algorithm classifies data from the perspective of kernel space 

as the FANS algorithm will first construct Gaussian kernel density estimation on a single feature 

and then convert the feature information to density ratio information. The subsequent classification 

model is set based on the density ratio information. This approach is similar to the principle of the 

SVM algorithm; thus, we refer to it as classification in the kernel space. The kernel space and feature 

space carry the neighbourhood information and pattern information, respectively, of the sample 

group, which are relatively independent. Therefore, strong disagreement exists between the two 

linear classifiers. In this paper, the default Silver rule is adopted as the calculation method of the 

bandwidth parameter, and the penalty parameter is determined by the leave-one-out cross-validation 

method. 

The pseudocode of the disagreement elimination algorithm framework under noise learning 

theory is described as follows: 

1. Initialization operation: 

a) Labelled sample set 𝐿 and unlabelled sample set 𝑈 are set 

b) Expansion ratio 𝛽 and upper iteration limit  𝑁 are set 

c) The training set of the FANS algorithm and PLR algorithm are initialized as an empty 

set: 

𝑇𝐹,0 = {}; 𝑇𝐿,0 = {} 

Then, the labelled sample set L is merged with the training sets of the two algorithms. 

𝑇𝐹,0 ← 𝑇𝐹,0 ∪ 𝐿 

𝑇𝐿,0 ← 𝑇𝐿,0 ∪ 𝐿 

d) An empty set of high-confidence samples is initialized: 𝜙 = {} 

e) The training status label Δ = 1 and iteration count 𝑘 = 0 are initialized 

2. Main process: The following operations are performed in the iteration until the iteration is 

exited or the upper iteration limit is reached, as shown in Fig. 1: 

Step 1: The FANS algorithm is trained based on the FANS algorithm training set 𝑇𝐹,𝑘. 

Step 2: 

1. Probabilistic prediction of unlabelled sample set U is performed based on the 

trained FANS model. 

2. The samples are sorted according to the confidence level. 



3. The number of samples 𝑁(𝑇𝐿,𝑘) in the PLR algorithm training set at this time is 

calculated, the (𝛽 − 1) ∗ 𝑁(𝑇𝐿,𝑘)  unlabelled samples with the highest 

confidence ranking are removed, the category labels given by the FANS 

algorithm are attached to form the pseudolabel sample set 𝜌𝐹,𝑘, and this group 

of samples is merged with the high-confidence sample set and the PLR algorithm 

training set, namely: 

𝑇𝐿,𝑘+1 ← 𝑇𝐿,𝑘 ∪ 𝜌𝐹,𝑘 

𝜙 ← 𝜙 ∪ 𝜌𝐹,𝑘 

4. The number of samples 𝑁(𝑇𝐿,𝑘+1) in the training set of the PLR algorithm after 

expansion are determined. If 
𝑁(𝑇𝐿,𝑘+1)

𝑁(𝑇𝐿,𝑘)
< 1.001, the training status label Δ = 0, 

and the iteration will stop normally. 

 Step 3: The PLR algorithm is trained based on the PLR algorithm training set 𝑇𝐿,𝑘. 

 Step 4: 

1. Probabilistic prediction of the unlabelled sample set based on the trained PLR 

model is performed. 

2. The samples are sorted according to the confidence level. 

3. The number of samples 𝑁(𝑇𝐹,𝑘) in the FANS algorithm training set at this time 

are calculated, the (𝛽 − 1) ∗ 𝑁(𝑇𝐹,𝑘)  unlabelled samples with the highest 

confidence ranking are removed, the category labels given by the PLR algorithm 

are attached to form the pseudolabel sample set 𝜌𝐹,𝑘, and this group of samples 

is merged with the high-confidence sample set and FANS algorithm training set, 

namely: 

𝑇𝐹,𝑘+1 ← 𝑇𝐹,𝑘 ∪ 𝜌𝐿,𝑘 

𝜙 ← 𝜙 ∪ 𝜌𝐿,𝑘 

4. The number of samples 𝑁(𝑇𝐹,𝑘+1) in the training set of the FANS algorithm 

after expansion are determined. If 
𝑁(𝑇𝐹,𝑘+1)

𝑁(𝑇𝐹,𝑘)
< 1.001 , the training status label 

Δ = 0, and the iteration will stop normally. 

5. The sample quantity 𝑁(𝜙) in the high-confidence sample set 𝜙 is checked. If 

𝑁(𝜙)

𝑁(𝑈)
> 0.9, Δ = 1, and the iteration will stop abnormally. 

6. 𝑘 ← 𝑘 + 1 

3. If the training status label Δ = 0, agreement is reached between the two models under the 

specified conditions; then, the following conclusion is obtained: 

a) The upper bound of the noise level of the high-confidence sample set is: 

1 1
(0.5 ) (1 )

4



= − −  

where the assumed convergence ratio is 𝛾 = √0.001
𝑘

. 

b) The current ensemble model composed of two models is a robust estimation model. 

If the training status label is Δ = 1, no agreement is reached between the two models 

under the specified conditions, and the parameter setting needs to be adjusted for 

retraining. Generally, the corresponding operation is to reduce the expansion ratio 𝛽. 



 

 

Fig. 1 Logic block diagram of the proposed algorithm framework 

 

There are five points to explain in the algorithm framework: 

First, the expansion ratio 𝛽 should not exceed 2; otherwise, the number of new pseudolabel 

samples will always be greater than the number of existing training samples, inevitably leading to 

the failure to trigger the normal stop condition of iteration. 

Second, if the expansion ratio 𝛽 is set to be small and the algorithm stops iterating normally 

early, the size of the high-confidence sample set will be small, even though its error level is relatively 

low, which is not conducive to improving the performance of the ensemble model to the greatest 

extent. Therefore, the expansion ratio 𝛽  should be further increased to make the algorithm 

converge to a larger high-confidence sample set and to simultaneously improve the performance of 

the ensemble model. 

Third, if the two models fail to reach an agreement and exit the iteration, this indicates the 

noise level of the samples exchanged is higher than the upper bound of the theoretical calculation 

result. At this time, reducing the expansion ratio 𝛽 and retraining may usually promote the two 

models to reach an agreement For the following reasons: first, the noise level in the sample set is 

proportional to its confidence; thus, reducing the number of samples exchanged in each round will 

significantly reduce the noise level; second, the consistency of different models is stronger in the 

higher confidence region. Therefore, the test should start with a larger expansion ratio 𝛽 (generally 

1.99) and then gradually reduce to obtain the maximum expansion ratio 𝛽, making the two models 

reach an agreement. 

Fourth, the criteria for the agreement between the two models are presented as follows: whether 

the number of samples added to the training set exceeds a very small threshold after one base learner 

updates the training set for the other base learner. If this threshold is not exceeded, the important 

reference sample points considered by learner A are already the reference sample points for building 

learner B, and learners A and B have almost reached an agreement. As there are no new training 



sample points and learner B will not change, the reference sample points learner B gives to learner 

A will also be the same as those in the previous round, showing no need for iterative processing. In 

addition, if the algorithm still fails to reach an agreement between the two models when the 

unlabelled sample set U is almost exhausted or if the number of iterations reaches the upper bound, 

the two hypothesis trajectories will not intersect. It is indicated that the noise level of the high-

confidence sample set generated in the exchange process exceeds the upper bound specified in the 

formula, and the ensemble model may also have the problems of overfitting the labelled sample 

group L and random label noise. 

Fifth, the FANS algorithm is more inclined to robust estimation in principle. Therefore, before 

the first sample exchange, the number of samples is extremely small. The FANS algorithm should 

be trained and then should provide pseudolabel samples for the PLR algorithm. In the comparative 

test, it is determined that the training from the FANS algorithm is significantly better than that from 

the PLR algorithm. 

4. Empirical results and discussion 

To verify whether the disagreement elimination algorithm based on noise learning theory can 

effectively achieve the two preset goals, i.e., to provide a high-confidence sample group with a 

distinct upper bound of noise level and to ensure a robust ensemble model that can combat sampling 

bias, we have performed an empirical analysis of the algorithm on two different training datasets. 

The two datasets have a large gap in all aspects; thus, the effectiveness of the method proposed in 

this paper will be comprehensively reflected. 

4.1 Dataset 

Repurchase user classification of the internet credit platform: The machine learning model 

should determine whether the user will apply for a loan on the platform again based on a group of 

user personality characteristics, which is a typical binary classification. There are 285 features in 

this dataset, including both continuous features and category features. There are 200 labelled 

samples and 25,000 unlabelled samples (this part actually has labels to facilitate the verification of 

model performance). When only based on 200 labelled samples, the highest accuracy and the area 

under the curve (AUC) value of various learning algorithms for this classification are 63% and 0.72, 

respectively. Later, we will refer to this test as test A. 

Spam identification: This step requires a machine learning model to determine whether the 

email is spam based on the lexical features of the email content, which is a binary classification. 

The dataset has 57 features, including both continuous features and category features. There are 20 

labelled samples and 3,400 unlabelled samples (this part actually has labels to facilitate the 

verification of the model performance). When only based on 20 labelled samples, the highest 

accuracy and AUC value of various learning algorithms for this classification are 85% and 0.93, 

respectively. Later, we will refer to this test as test B1. 

4.2 Analysis of experimental results 

 In semisupervised learning, the small number of labelled samples will inevitably lead to the 

                                                   
1The datasets and code for this paper are included in https://github.com/xiaojianyang820/DiEliRecog  

https://github.com/xiaojianyang820/DiEliRecog


problem of “sampling bias”. This problem is one of the main factors that perplex the generalization 

ability of the machine learning model in the semisupervised learning scenario. In the empirical test, 

several different labelled sample sets are randomly selected for the same classification problem to 

test whether the disagreement elimination algorithm based on noise learning theory can overcome 

the sampling bias and achieve the two preset goals. The corresponding test results are recorded in 

Tables 1 and 2. 

 

Table 1 Test A - Summary statistics of multiple group tests 
Test ID * Expansion 

ratio 𝛽 

Rounds of 

convergence 𝑛 

(convergence rate 

𝛾) 

Upper bound 

of theoretical 

noise  𝜂̅ 

Size of high-

confidence 

sample set 

Measured 

noise level 

AUC value of base 

learner 

AUC value 

of ensemble 

learner 

A-500 1.95 21(0.720) 0.160 5105 0.067 0.679/0.713 0.716 

A-501** 1.50 -(-) - - - 0.663/0.661 - 

A-502 1.99 17(0.666) 0.132 4920 0.086 0.698/0.715 0.715 

A-503 1.95 25(0.759) 0.182 4073 0.173 0.676/0.664 0.677 

A-503+ 1.90 15(0.631) 0.091 3042 0.085 0.676/0.664 0.684 

A-503++ 1.85 15(0.631) 0.081 2916 0.081 0.676/0.664 0.677 

A-504 1.97 21(0.720) 0.163 4313 0.083 0.686/0.708 0.705 

Note: *The test ID consists of two parts. The capital letters in the front represent the test dataset, and the numbers in the back represent the random seeds used 

in this test. The random seeds will affect the random sampling results. 

**In the A-501 test, the quality of the labelled samples is too poor, leading to the failure of convergence, although the expansion ratio is already set to the lower 

bound. 

+/++A specific experiment was added to further analyse the influence of the expansion ratio on the whole algorithm. 

 

Table 2 Test B - Summary statistics of multiple group tests 
Test ID * Expansion 

ratio 𝛽 

Rounds of 

convergence𝑛 

(convergence rate 

𝛾) 

Upper bound of 

theoretical 

noise  𝜂̅ 

Size of high-

confidence 

sample set 

Measured 

noise level 

AUC value of 

base learner 

AUC value 

of ensemble 

learner 

B-500 1.99 26(0.767) 0.191 1342 0.112 0.878/0.889 0.887 

B-501 1.99 38(0.834) 0.225 2339 0.058 0.929/0.916 0.937 

B-502 1.95 26(0.767) 0.187 2121 0.148 0.860/0.800 0.842 

B-503 1.90 40(0.841) 0.228 2511 0.100 0.936/0.881 0.910 

B-504 1.98 36(0.825) 0.220 2208 0.114 0.799/0.770 0.897 

B-504+ 1.92 20(0.708) 0.148 1012 0.060 0.799/0.770 0.914 

B-504++ 1.86 14(0.681) 0.067 742 0.056 0.799/0.770 0.901 

Note: *The test ID consists of two parts. The capital letters in the front represent the test dataset, and the numbers in the back represent the random seeds used 

in this test. The random seeds will affect the random sampling results. 

+/++A specific experiment was added to further analyse the influence of the expansion ratio on the whole algorithm. 

  

As shown by the two groups of experiments, the proposed algorithm has basically achieved two 

preset goals. First, the upper bound of noise given by the algorithm is consistent with the measured 

noise level. Although the measured noise levels of the A-503++ tests approach the upper bound, the 

measured noise level is calculated based on one sample, and there is an estimation deviation. 

Therefore, this situation is acceptable. However, this closeness also shows that the upper bound 

estimation is quite compact. Second, this algorithm effectively ensures the robustness of the 

ensemble model. When the quality of labelled samples is poor, the recognition performance of the 

ensemble model remains at a high level. 

 Furthermore, three different tests around the random seed B-504 are designed. The randomly 

labelled sample set corresponding to this random seed may probably have a large sampling bias; 

thus, the generalization performance of the base learner based on these data is poor. In the first test 



B-504, the largest expansion ratio 𝛽 that makes the two models reach agreement is selected, and 

in the subsequent two tests B-504+ and B-504++, the expansion ratio 𝛽  is reduced. From the 

theoretical analysis of the algorithm framework proposed in this paper, reducing the expansion ratio 

𝛽 will reduce the noise level of the pseudolabel samples exchanged and improve the consistency 

of multiple models. Therefore, the model proposed in this paper reflects the decrease in the 

measured noise level, convergence rounds and the size of the high-confidence sample set in the 

measured data. The comparison of the results of these three tests basically verifies this conclusion. 

Similarly, this phenomenon was also observed in the control group composed of three tests: A-503, 

A-503+ and A-503++. 

 
Note: After arranging the samples according to the classification confidence from large to small, the classification accuracy of the first n sample points is 

calculated, wherein n is the scale on the x-coordinate. The position of the grey vertical line is the size of the high-confidence sample set. 

Fig. 2. Comparison curve of classification accuracy of B-501 (left) and B-504 (right) 

 
Note: After arranging the samples according to the classification confidence from large to small, the classification accuracy of the first n sample points is 

calculated, wherein n is the scale on the x-coordinate. The position of the grey vertical line is the size of the high-confidence sample set. 

Fig. 3 Comparison curve of classification accuracy of A-503+ (left) and A-503++ (right) 

 

 In test A-501, the expansion ratio 𝛽 is reduced to the greatest extent, and there is still no way 

to reach an agreement between the two models. After inspection, it is determined that the noise level 

of the two base learners fitted by this randomly labelled sample set reaches 0.221 at the 100 sample 

points with the highest confidence. This finding indicates that the sample set with an unreasonably 

large sampling bias cannot support disagreement-based semisupervised learning, and the first 

sample exchange will destroy the model estimation due to the excessive noise of pseudolabel 

samples, causing a vicious circle. 

In addition to the overall statistical indicator comparison, the comparison curve between the 



ensemble model and the base learner in the classification accuracy is drawn, as shown in Fig. 2. The 

two figures compare the classification accuracy comparison curves of B-501 (best sample 

representativeness) and B-504 (worst sample representativeness). The confidence of the sample 

points in the high-confidence sample set is set to the maximum; thus, the corresponding accuracy at 

the grey vertical line is the overall accuracy of the high-confidence sample set. The figure shows 

that the accuracy of the ensemble model is higher than that of the base learner at this specific point. 

Viewed from the overall data, the accuracy of the ensemble model is also slightly better than that of 

each base learner. Figure 3 also shows the classification accuracy in test A, which is similar to that 

in test B. 

4.3 Effect of the expansion ratio 

To introduce in more detail the role of the expansion ratio 𝛽 in the algorithm and the dynamic 

characteristics of the change curve between the observable size and the unobservable accuracy of 

the high-confidence sample set, we set the expansion ratio 𝛽 as 1.99, 1.95, 1.90 and 1.85 based on 

a group of randomly labelled sample sets and draw the change curve between the size and the 

accuracy of the high-confidence sample set in multiple rounds, as shown in Figs. 4 and 5. 

 

 Fig. 4 Dynamic curve of the number and accuracy of high-confidence sample sets (test A) 



 
Fig. 5 Dynamic curve of the number and accuracy of high-confidence sample sets (test B) 

 

It is observed that as the expansion ratio 𝛽  decreases, the algorithm converges faster, the 

accuracy of the high-confidence sample set increases, and the size of the high-confidence sample 

set decreases. Simultaneously, the scale change curve and accuracy change curve of the high-

confidence sample set are almost symmetrical. In both tests, 𝛽 = 1.95  is the critical value of 

convergence and divergence of the algorithm. When 𝛽 > 1.95 , the size of the high-confidence 

sample set will continue to linearly increase without any tendency to converge; thus, the 

corresponding accuracy will also linearly decrease. When 𝛽 < 1.95, the growth curve of the high-

confidence sample set size will slow early and become a horizontal line, and the accuracy will also 

stay at a high level. The accuracy curve cannot be observed in the practical application of the 

algorithm; thus, the expansion ratio 𝛽  can be adjusted by observing the curve of the high-

confidence sample set size. 

5. Conclusion 

 In this study, the research perspective of cotraining is changed from maintaining the 

disagreements among models to eliminating the disagreements among models for the first time. The 



role of noise learning theory in this process is discussed in detail, and the dynamic noise PAC 

estimation theory under the cotraining scenario is given. Based on this theory, a new disagreement-

based, semisupervised classification algorithm is proposed: a disagreement elimination algorithm 

under noise conditions. Under the framework of the algorithm, it is confirmed that if the two models 

with great disagreement eliminate their disagreement and reach an agreement by exchanging high-

confidence samples, the set of high-confidence samples exchanged will have a certain upper bound 

of noise and that the algorithm can effectively combat the problem of sampling bias of small set 

samples. Otherwise, the two models can reach an agreement at another level by reducing the 

expansion ratio 𝛽 and adjusting the high-confidence sample exchange process. Different from the 

premise of other disagreement-based semisupervised learning methods, the core skill of this 

algorithm framework is to eliminate the disagreements among multiple models in a planned way 

rather than to maintain these disagreements, thereby determining the quality level of the samples 

exchanged. The algorithm gives a high-confidence sample set with an upper bound of the noise level 

and a robust ensemble model. 

This algorithm is an effective semisupervised learning framework that provides a reliable set 

of high-confidence samples. In addition, this algorithm is applicable to semisupervised problems in 

various fields, in which the number of labelled samples is small and the number of unlabelled 

samples is large. When a large number of unlabelled samples are employed to assist labelled samples 

in constructing classification models and in evaluating the reliability of classification results, the 

method proposed in this paper can be employed. 

In future studies, these pseudolabel samples can be put into other models with higher 

complexity to further study the data. In the algorithm framework proposed in this paper, the base 

learner is a linear algorithm (FANS model and PLR model), and disagreement is created through 

different algorithm principles. In future studies, attempts may be made to replace the base learner 

in this paper with a neural network and then extend it from a double model to multiple models. In 

addition, if subsequent researchers discovered that the data distribution of the dataset was a Gaussian 

distribution and subject to other distributions, then the FANS algorithm of the Gaussian kernel can 

also be replaced with other kernel functions, such as the polynomial kernel function or triangle 

kernel function, to obtain meaningful results. 
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