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Abstract. In the classic Target Set Selection problem, we are asked
to minimise the number of nodes to activate so that, after the application
of a certain propagation process, all nodes of the graph are active. Bazgan
and Chopin [Discrete Optimization, 14:170–182, 2014] introduced the
opposite problem, named Harmless Set, in which they ask to maximise
the number of nodes to activate such that not a single additional node is
activated.

In this paper we investigate how sparsity impacts the tractability of
Harmless Set. Specifically, we answer two open questions posed by the
aforementioned authors, namely a) whether the problem is FPT on planar
graphs and b) whether it is FPT parametrised by treewidth. The first
question can be answered in the positive using existing meta-theorems on
sparse classes, and we further show that Harmless Set not only admits
a polynomial kernel, but that it can be solved in subexponential time.
We then answer the second question in the negative by showing that
the problem is W[1]-hard when parametrised by a parameter that upper
bounds treewidth.

1 Introduction

How information and cascading events spread through social and complex net-
works is an important measure of their underlying systems, and is a well-researched
area in network science. The dynamic processes governing the diffusion of infor-
mation and “word-of-mouth” effects have been studied in many fields, including
epidemiology, sociology, economics, and computer science [21, 22, ?,?].

A classic propagation problem is the Target Set Selection problem,
first studied by Domingos and Richardson [12, ?], and later formalised in the
context of graph theory by Chen [3, ?]. Chen defines the problem as how to find
k initial seed vertices that when activated cascade to a maximum; this model is
called standard independent cascade model of network diffusion. It has also been
studied under the name of Influence Maximization [28, 27] in the context
of lies spreading through a network [4, ?], bio-terrorism [14], and the spread of
fires [32]. Information propagation is modelled as an activation process where
each individual is activated if a sufficient number of its neighbours are active.
Sufficient here means that the number of active neighbours of an individual v
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exceeds a given threshold t(v) which is assigned to each individual to capture
their resilience to being influenced.

Motivated by cascading of information we study vertices that are harmless, i.e.,
a set of vertices that can be activated without any cascades whatsoever. However,
activating all vertices in a graph is a trivial solution in the standard diffusion
model, since we cannot cascade further. We therefore want to differentiate between
initially activated vertices and vertices that have been activated by a cascade. In
this setting, we can therefore say that we want a largest possible set of initially
activated vertices that do not cascade at all, even to itself. It was first studied
by Bazgan and Chopin [1] under the name Harmless Set, who showed that
it is W[2]-complete in general and W[1]-complete if thresholds are bounded by
a constant. They observe (see Observation 1 below) that one can bound the
maximum threshold by the solution size and thus obtain a simple FPT algorithm
when parametrised by the solution size k and the treewidth. Bazgan and Chopin
conclude their work with the following open questions:

Open question (Bazgan and Chopin [1]). Is Harmless Set fixed-parameter
tractable on

1. general graphs with respect to the parameter treewidth?
2. on planar graphs with respect to the solution size?

Here we answer both these problems: no and yes, and simultaneously discover
surprising connections between Harmless Set and Dominating Set in sparse
graphs.

Our results. Let us distinguish two flavours of this problem: p-Bounded Harm-
less Set, where we consider the bound p a constant, and Harmless Set where
the threshold is unbounded.

Input: A graph G with a threshold function t : V (G)→ N>0 and an
integer k.

Problem: Is there a vertex set S ⊆ V (G) of size at least k such that
every vertex v ∈ G has fewer than t(v) neighbours in S?

Harmless Set

Input: A graph G with a threshold function t : V (G)→ [p] and an
integer k.

Problem: Is there a vertex set S ⊆ V (G) of size at least k such that
every vertex v ∈ G has fewer than t(v) neighbours in S?

p-Bounded Harmless Set

Note that harmless sets are hereditary in the sense that if S is a harmless set of
an instance (G, t), then any subset S′ ⊆ S is also harmless for (G, t). Therefore
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instead of searching for a harmless set of size at least k, we can equivalently
search for a harmless set of size exactly k. In this scenario we can replace all
thresholds above k with k + 1:

Observation 1. Harmless Set parametrised by k is equivalent to (k + 1)-
Bounded Harmless Set parametrised by k.

Let us begin by briefly answering the first question of Bazgan and Chopin in
the positive. It turns out that a simple of application the powerful machinery of
first-order model checking4 in sparse classes [20] is enough (see Appendix for a
short proof):

Proposition 1. Harmless Set parametrised by k is fixed-parameter tractable
in nowhere dense classes.

We will briefly discuss the notion of nowhere denseness below, in this context it
is only important that planar graphs are nowhere dense.

These previous results and our observation regarding tractability in sparse
classes leave two important questions for us. First, does the problem admit a
polynomial kernel in sparse classes? And second, is there a chance that the problem
could be solved on e.g. graphs of bounded treewidth without parametrising by
the solution size? In the following we answer the kernelization question in the
affirmative:

Theorem 1. Harmless Set admits a polynomial sparse kernel in classes of
bounded expansion. p-Bounded Harmless Set, for any constant p, admits a
linear sparse kernel in these classes.

Classes with bounded expansion include planar graphs (and generally graphs
of bounded genus), graphs of bounded degree, classes excluding a (topological)
minor, and more. The term sparse kernel is explained below in Section 2.1; It
alludes to the fact that the constructed kernel does not necessarily belong to the
original graph class but is guaranteed to be “almost” as sparse.

Bazgan and Chopin give an algorithm for Harmless set parametrised by
treewidth and the solution size running in time O(kO(tw) · n), when provided
a tree decomposition as part of the input5. They conclude by asking whether
the problem is “fixed-parameter tractable on general graphs with respect to the
parameter treewidth [alone]” [1]. We answer this question in the negative:

Theorem 2. Harmless Set is W[1]-hard when parametrised by a modulator
to a 2-spider-forest6.

4 There exist some intricacies regarding the type of nowhere dense class and whether
the resulting FPT algorithm is uniform or not. This is just a technicality in our
context and we refer the reader to Remark 3.2 in [20] for details.

5 This can be relaxed using a constant factor, linear time approximation for computing
tree decompositions [2]

6 A 1-spider-forest is a starforest, and a 2-spider-forest is a subdivided starforest
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Since a 2-spider-forest has treedepth, pathwidth, and treewidth at most 3, a
graph with a modulator M to a 2-spider-forest has treedepth, pathwidth, and
treewidth at most |M |+ 3. This very strong structural parametrisation means
that the problem is not only hard on general sparse graphs, but indeed also
W[1]-hard for parameters like treewidth, pathwidth, and even treedepth. We
complement this result by showing that a slightly stronger parameter, the vertex
cover number, does indeed make the problem tractable:

Theorem 3. Harmless Set is fixed-parameter tractable when parametrised by
the vertex cover number of the input graph.

Note. We obtained our results simultaneously with and independent from those
by Gaikwad and Maity [19]. They provide an explicit and potentially practical
FPT algorithm for planar graphs while we show that the problem is not only FPT
on planar graphs, but indeed on a much more general class of graphs, namely
those of bounded expansion. We also show that on apex-minor-free graphs (which
include planar graphs), there exists a subexponential time algorithm for the
problem. That is, we show the following results, which improves on Gaikwad and
Maity’s 2O(k log k)nO(1) algorithm for planar graphs:

Theorem 4. Harmless Set is solvable in time O(2o(k) · n) on apex-minor-free
graphs.

2 Preliminaries

|G|, ‖G‖, 2-spider For a graph G we use V (G) and E(G) to refer to its vertex- and edge-set,
respectively. We used the short hands |G| := |V (G)| and ‖G‖ := |E(G)|. A
2-spider is a graph obtained from a star by subdividing every edge at most once.
A 2-spider-forest is the disjoint union of arbitrarily many 2-spiders.

f(G), f(X), N(X),
Nr(•), Nr[•]

For functions f : V (G) → R we will often use the shorthands f(X) :=∑
u∈X f(x) and f(G) := f(V (G)). Similarly, we use the shorthand N(X) :=

(
⋃
u∈X N(u)) \X for all neighbours of a vertex set X. The rth neighbourhood

Nr(u) contains all vertices at distance exactly r from u, the closed rth neigh-
bourhood Nr[u] all vertices at distance at most r from u (also known as the
r-ball of u). This corresponds to N(u) = N1(u) and N [u] = N1[u]. We refer to
the textbook by Diestel [11] for more on graph theory notation.

r-scattered,
r-dominating,

domr(G),
domr(G,X)

A vertex set X ⊆ V (G) is r-scattered if for x1 ∈ X and x2 ∈ X, Nr[x1] ∩
Nr[x2] = ∅. Equivalently, Nr[u] ∩X 6 1 for all vertices u ∈ G, or the pairwise
distance between members of X is at least 2r + 1. A vertex set D ⊆ V (G) is
r-dominating if Nr[D] = V (G) and we write domr(G) to denote the minimum
size of such a set. Similarly, we say that D r-dominates another vertex set
X ⊆ V (G) if X ⊆ Nr[D] and we write domr(G,X) for the minimum size of
such a set. In both cases we will omit the subscript r for the case of r = 1. In
classes with bounded expansion, the size of r-scattered sets is closely related to
the r-domination number, see the toolkit section below.
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Given a vertex set X ⊆ V (G) we call a path X-avoiding,
r-projection

X-avoiding if its internal vertices
are not contained in X. A shortest X-avoiding path between vertices x, y is
shortest among all X-avoiding paths between x and y.

Definition 1 (r-projection). For a vertex set X ⊆ V (G) and a vertex u 6∈ X
we define the r-projection of u onto X as the set

P rX(u) := {v ∈ X | there exists an X-avoiding u-v-path of length 6 r}
Two vertices with the same r-projection onto X do not, however, necessarily
have the same (short) distances to X. To distinguish such cases, it is useful to
consider the projection profile of a vertex to its projection:

Definition 2 (r-projection profile). For a vertex set X ⊆ V (G) and a vertex
u 6∈ X we define the r-projection profile of u onto X as a function πrG,X [u] : X →
[r] ∪∞ where πrG,X [u](v) for v ∈ X is the length of a shortest X-avoiding path
from u to v if such a path of length at most r exists and ∞ otherwise.

2.1 Bounded expansion classes and kernels

Nešetřil and Ossona de Mendez [26] introduced bounded expansion as a generali-
sation of many well-known sparse classes like planar graphs, graphs of bounded
genus, bounded-degree graphs, classes excluding a (topological) minor, and more.
The original definition of bounded expansion classes made use of the concept of
shallow minors inspired by the work of Plotkin, Rao, and Smith [29].

Definition 3. A graph H is an r-shallow minor of G, written as H 4rmG, if H
can be obtained from G by contracting disjoint sets of radius at most r.

Classes of bounded expansion are then defined as those classes in which the
density (or average degree) of r-shallow minors is bounded by a function of r.

Definition 4. grad, ∇r(•)The greatest-reduced average degree (grad) ∇r of a graph G is
defined as

∇r(G) = sup
H4r

mG

‖H‖
|H|

Definition 5. A graph class G has bounded expansion if there exists a function f
such that ∇r(G) 6 f(r) for all G ∈ G.

For example, it is easy to see that classes with maximum degree ∆ have bounded
expansion with f(r) := ∆r+1. In the following we will often make use of the
property that the grad of a graph does not change much under the addition of a
few high-degree vertices: if G is a graph and G′ is obtained from G by adding an
apex-vertex, then ∇r(G′) 6 ∇r(G) + 1.

One principal issue with designing kernels for bounded expansion classes is
the uncertainty of whether certain gadget constructions preserve the class or not.
When working with more concrete classes like planar graphs we can be certain
that e.g. adding pendant vertices will result in a planar graph. When working
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with some arbitrary bounded expansion class G this is not necessarily possible: G
might, for example, consist of all graphs with grad bounded by some function
and minimum degree at least two. In such cases, the addition of a pendant vertex
takes us outside of the class even though the grad did not increase.

sparse kernel We resolve this issue as proposed in the paper [17]. Let Π be a parametrised
problem over graphs. A sparse kernel of Π is a kernelization for which there
exists a function g that, given an instance with graph G, outputs a graph G′

that besides the usual constraints on the size |G| + ‖G′‖ further satisfies that
∇r(G′) 6 g(∇r(G)) for all r ∈ N. Therefore if the input graphs are taken from a
bounded expansion class G, the outputs will also belong to a, potentially different,
bounded expansion class G′.

2.2 The bounded expansion toolkit

The notion of independence (or more specifically scatteredness) plays a central
role in the theory of sparse graphs. As a prime example, Dawar [8, 9] introduced
the notions of wideness and quasi-wideness—both related to independence—as
one possible classification of sparseness. We will need the following definition
from his work; recall that an r-scattered set is a set of vertices X ⊆ V (G) such
that for any vertex u in V (G), the r-ball of u contains at most 1 vertex from X.

Definition 6.uniformly quasi-wide A class G is uniformly quasi-wide if for every m ∈ N and r ∈ N
there exist numbers N = N(m, r) and s = s(r) such that the following holds:

Let G ∈ G and let A ⊆ V (G) with |A| > N . Then there exists S ⊆ V (G),
|S| 6 s(r) and a set B ⊆ A− S, |B| > m, such that B is r-scattered in G− S.

As it turns out this notion of sparseness coincides with the notion of nowhere
denseness in graph classes closed under taking subgraphs [25]. Bounded expansion
classes are nowhere dense and the following result due to Kreutzer, Rabinovich,
and Siebertz plays a crucial role in our kernelization procedure.

Theorem 5 (Kreutzer, Rabinovich, Siebertz [23]). Every nowhere dense
class G is uniformly quasi-wide with N(m, r) = mg(r) for some function g.
Moreover, there exists an algorithm which, given G ∈ G and A ⊆ V (G) as input,
computes an r-scattered set of the promised size in time |A|O(1)n1+o(1).

There is a second method to compute suitable scattered sets which we can leverage
to create a “win-win” argument for our kernelization procedure. Concretely,
Dvořák’s algorithm [15] provides us either with a small r-dominating set or a
large r-scattered set. The following variant of the original algorithm is called the
warm-start variant (see e.g. [17]):

Theorem 6 (Dvořák’s algorithm [15]). For every bounded expansion class
G and r ∈ N there exists a polynomial-time algorithm that, given a vertex
set X ⊆ V (G), computes an r-dominating set D of X and an r-scattered set
I ⊆ D ∩X with |D| = O(|I|).
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Note that since an r-scattered set I ⊆ X provides a lower bound for the r-
domination of X we have that |D| = O(domr(G,X)).

Finally, we will need the following two fundamental properties of bounded
expansion classes. The first is a refinement on the neighbourhood complexity
characterisation of bounded expansion classes [30]:

Lemma 1 (Adapted from [13, 23]). For every bounded expansion class G and
r ∈ N there exists a constant cprojr such that for every G ∈ G and X ⊆ V (G), the
number of r-projection profiles realised on X is at most cprojr |X|.

The second can be seen as a strengthening of the first: not only are the number
of projection profiles bounded linearly in the size of the target set, we can find a
suitable superset of the target set which even restricts the size of the projections
to a constant.

Lemma 2 (Projection closure [13]). For every bounded expansion class G
and r ∈ N there a polynomial-time algorithm that, given G ∈ G and X ⊆ V (G),
computes a superset X ′ ⊇ X, |X ′| = O(|X|), such that |P rX′(u)| = O(1) for all
u ∈ V (G) \X ′.

2.3 Waterlilies

Reidl and Einarson introduced the notion of waterlilies as a structure which is
very useful in constructing kernels [17]. We simplify the definition here as we do
not need it in its full generality.

Definition 7 (Waterlily). A waterlily of radius r and depth d 6 r in a
graph G is a pair (R,C) of disjoint vertex sets with the following properties:

• C is r-scattered in G−R,
• Nr

G−R[C] is d-dominated by R in G.

We call R the roots, C the centres, and the sets {Nr
G−R[x]}x∈C the pads of the

waterlily. A waterlily is uniform if all centres have the same d-projection onto R,
e.g. πdR[x] is the same function for all x ∈ C.

We will frequently talk about the ratio of a waterlily which we define as a
guaranteed lower bound of |C| in terms of |R|, e.g. a waterlily of ratio 2|R|+ 1
satisfies |C| > 2|R|+ 1. The authors in [17] used waterlilies with a constant ratio,
but a slight modification of their proof (in particular using Theorem 5) lets us
improve this ratio to any polynomial. We provide a proof with the necessary
modification in the Appendix.

Lemma 3. For every bounded expansion class G and r, d ∈ N, d 6 r, the
following holds. There exists a polynomial pr such that for every G ∈ G, t ∈ N
and A ⊆ V (G) with |A| > pr(t) domd(G,A) there exists a uniform waterlily
(R,C ⊆ A) with depth d, radius r, and with |R| = O(1) and |C| > t, moreover,
such a waterlily can be computed in polynomial time.
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3 A sparse kernel for p-Bounded Harmless Set

In order to give a sparse kernel we first show how to construct a bikernel into
the following annotated problem.

Input: A graph G with a threshold function t : V (G) → [p], an
integer k, and a subset K ⊆ V (G).

Problem: Is there a vertex set S ⊆ K of size at least k such that every
vertex v ∈ G has fewer than t(v) neighbours in S?

Annotated p-Bounded Harmless Set

solution core We call the set K the solution core of the instance (see [17] for a general definition).
Next we present two lemmas whose application will step-wise construct smaller
annotated instances. The first lemma lets us reduce the size of the solution core,
the second the size of the graph. Afterwards we demonstrate how these two
reduction rules serves to construct a bikernel.

fragile In the following, we often need to treat vertices with a threshold equal to one
differently. For brevity, we will call these vertices fragile; observe that a fragile
vertex can be part of a solution but none of its neighbours can.

Lemma 4. Let (G, t, k,K) be an instance of Annotated p-Bounded Harm-
less Set where G is taken from a bounded expansion class and K is a solution
core. There exists a polynomial q(p) such that the following holds: If |K| > q(p) ·k,
then in polynomial time we either find that (G, t, k,K) is a YES-instance or we
identify a vertex x ∈ K such that K \ {x} is a solution core.

Proof. First consider the case that there is a vertex x ∈ K with a fragile neighbour
u ∈ N(x). Then x of course cannot be in any solution and K \ {x} is a solution
core.

Assume now that no vertex in K has a fragile neighbour. We now use
Dvořák’s algorithm (Theorem 6) to compute a 1-dominating set for K; let D be
the resulting dominating set and I ⊆ D ∩K the promised 1-scattered set, i.e.,
with |I| = Ω(|D|). Since the neighbourhoods of vertices in I are pairwise disjoint
and no vertex in I (as I ⊆ K) has a fragile neighbour, it follows that I itself is a
harmless set. So if |I| > k we conclude that (G, t, k,K) is a YES-instance.

Otherwise |I| < k and therefore, by Theorem 6, dom(G,K) = O(k). We
apply Lemma 3 to compute a waterlily for the set K at depth 1 and with radius 2.
We will later choose q(k) to ensure that the following arguments go through.

Let (R,C ⊆ K) be the resulting uniform waterlily with |C| > κ, where κ is
an appropriately large value that we choose later. For the centres v ∈ C, define
the following signature σ(v):

σ(v) = {(t(u), N(u) ∩R) | u ∈ NG−R(v)}.

That is, σ(v) records how neighbours of v connect to R and what thresholds
these neighbours have. Define the equivalence relation ∼σ over C via v ∼σ w iff
σ(v) = σ(w). Recall that, by Lemma 1 the number of 1-projections onto R is at
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most cproj1 |R|. Therefore we can picture σ(v) as a string of length at most cproj1 |R|
over the alphabet {0, . . . , p} where 0 indicates that a certain neighbourhood
is not contained in σ(v) and any non-zero value a ∈ [p] indicates that this
neighbourhood is realised by one of v’s neighbours with weight a. Accordingly,
we can bound the index of ∼σ by

|C/ ∼σ | 6 (p+ 1)c
proj
1 |R|

and thus by averaging there exists an equivalence class C ′ ∈ C/ ∼σ of size at

least |C|/(p+ 1)c
proj
1 |R|.

We choose |C| big enough so that |C ′| > (p− 1)|R| and now claim that any
vertex of C ′ can be safely removed from C. To see this, fix an arbitrary vertex
x ∈ C ′. Consider any harmless set S ⊆ K of size k, if no such set exists then
K \{x} trivially is also a solution core. Note that if x 6∈ S we are done, so assume
x ∈ S.

Claim. There exists a centre x′ ∈ C ′ such that N2
G−R[x′], the pad of x′ in (R,C ′),

does not intersect S.

Proof of claim. If |N(R) ∩ S| > (p− 1)|R|, there would be at least one vertex in
R whose threshold is exceeded, contradicting our assumption that S is a harmless
set. Since R dominates the pads of (R,C ′), they are all contained in N(R) and
we conclude that S intersect at most (p − 1)|R| pads. Since |C ′| > p|R|, the
claimed centre x′ ∈ C ′ must exist.

We claim that S′ := (S \ {x}) ∪ x′ is a harmless set. Note that x 6= x′ since
x ∈ S but x′ 6∈ S, therefore |S′| = |S| > k. To show that S′ is harmless we show
that no threshold of N(x′) is exceeded. This suffices since these are the only
vertices whose threshold increases when x is exchanged for x′. Fix y′ ∈ N(x′)
and consider the following cases.

First, assume y′ ∈ R. As (R,C ′) is uniform, we have that N(x′)∩R = N(x)∩R
and therefore N(y′)∩S = N(y′)∩S′. We conclude that |N(y′)∩S′| = |N(y′)∩S| <
t(y′).

Second, assume y′ 6∈ R. Since σ(x) = σ(x′), there exists a vertex y ∈ N(x)\R
such that t(y) = t(y′) and N(y) ∩ R = N(y′) ∩ R. Since N2

G−R[x′], the pad
of x′, does not intersect S and because y′ ∈ NG−R(x′) we have that N(y) ∩ S′ =
x′ ∪ (S′ ∩R). Finally note that |N(y) ∩ S| < t(y) as S is harmless. Therefore

|N(y′) ∩ S′| = 1 + |S′ ∩R| = 1 + |S ∩R| 6 |N(y) ∩ S| < t(y).

Since t(y) = t(y′), we conclude that |N(y′) ∩ S′| < t(y′).
It follows that S′ is indeed a harmless set of size |S| with S′ ⊆ K \ {x} and

due to this exchange argument we find that K \ {x} is indeed still a solution
core for (G, t). It remains to choose an appropriate polynomial q(k). In the above
arguments, we needed that |C ′| > (p− 1)|R| which we now use to determine q(p):

|C ′| > (p− 1)|R| =⇒ |C| > (p+ 1)c
proj
1 |R|(p− 1)|R|

=⇒ |K| > p1

(
(p+ 1)c

proj
1 |R|(p− 1)|R|

)
· dom(G,K)
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Where p1 is the polynomial from Lemma 3 (with r = 1). Since by our very first
argument dom(G,K) = O(k), it is therefore enough that |K| > q(p) · k with

q(p) = O(p1((p+ 1)c
proj
1 |R|(p− 1)|R|). Since |R| = O(1), q is indeed a polynomial.

Finally, note that all algorithmic steps (Dvořák’s algorithm, construction of the
waterlily (R,C ′)) can be done in polynomial time.

The constant cproj1 in the following lemma is the constant from Lemma 1 for
r = 1.

Lemma 5. Let (G, t, k,K) be an instance of our Annotated p-Bounded
Harmless Set problem where G is taken from a bounded expansion class. Then,
if |K| < |G|/(cproj1 + 1), then there exists a vertex v ∈ V (G) \ K such that
(G− v, t|V (G)−v, k,K) is an equivalent instance.

Proof. Let O := V (G) \ K for convenience. By Lemma 1, the number of 1-

projections that O realises on K is bounded by cproj1 |K|. Accordingly, if |O| >
cproj1 |K|, there exist two distinct vertices u, v ∈ O with π1

K [u] = π1
K [v] or,

equivalently, N(u) ∩K = N(v) ∩K. Let wlog t(v) 6 t(u), we claim that we can
safely remove v from the instance. To see this, consider a harmless set S ⊆ K.
Clearly, neither u nor v are in S. Furthermore, N(u) ∩ S = N(v) ∩ S, and since
|N(v) ∩ S| 6 t(v) we also have |N(u) ∩ S| 6 t(u). We conclude that it is safe to
remove v.

With these two reduction rules in hand, we can finally prove the main result of
this section.

Theorem 7. p-Bounded Harmless Set over bounded expansion classes ad-
mits a bikernel into Annotated p-Bounded Harmless Set of size f(p) · k,
for some polynomial f .

Proof. Let I = (G, t, k) be an instance of p-Bounded Harmless Set. We first
construct the instance Î = (G, t, k,K) for Annotated p-Bounded Harmless
Set where K := {u ∈ G | minv∈N(u) t(v) > 1}, that is, K contains all vertices
who do not have a fragile neighbour. Observe that any solution S for I must
necessarily avoid picking such vertices, and therefore S ⊆ K. We conclude that I
and Î are equivalent instances.

Now apply Lemma 4 iteratively to Î, that is, we apply the lemma until it
either tells us that the current instance is a trivial YES-instance, in which case we
output a constant-sized YES-instance and are done, or we arrive at an instance
Î ′ = (G, t, k,K ′) where |K ′| 6 q(p) · k.

Next, we apply Lemma 5 exhaustively to Î ′, meaning we iteratively remove
suitable vertices v 6∈ K until the resulting graph G′ satisfies |G′| 6 (cproj1 + 1)|K ′|.
Call the resulting instance Î ′′ = (G′, t|V (G′′),k,K′). By the bounds on K ′ and G′

we have that

|G′| 6 (cproj1 + 1)|K ′| 6 (cproj1 + 1)q(p) · k := f(p) · k,

as claimed.
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Corollary 1. Harmless Set admits a polynomial sparse kernel.

Proof. Given an instance I = (G, t, k) of Harmless Set, we first create the
instance Ĩ = (G, t̃, k) where t̃ is t with thresholds larger than k + 1 replaced
by k + 1. This, as we observed before, is an equivalent instance of (k + 1)-
Bounded Harmless Set and by Theorem 7 we can obtain a bikernel instance
Î = (Ĝ, t̂, k, K̂) of size f(k + 1) · k = kO(1).

We reduce back to Harmless Set by constructing an instance I ′ = (G′, t′, k)
from Î as follows. Create G′ from Ĝ by adding two vertices a, b where a is
connected to all of K in G′ and b is only connected to a. Set the thresholds
t′(a) = t′(b) = 1 and let t′ be otherwise like t. To see that the two instances are
equivalent, simply note that since a and b are fragile, no vertex of N(a)∪N(b) =
V (G′) \K can be part of a harmless set. In other words, any solution of I ′ must
completely reside in K. The size of I ′ differs to that of I only by some constant
factor, therefore we conclude that I ′ is indeed a polynomial kernel of I. The
construction itself increases the grad of G only by an additive constant (see
Section 2.1) therefore I is indeed a sparse kernel.

By the same construction we also obtain the following result:

Corollary 2. p-Bounded Harmless Set for any constant p admits a linear
sparse kernel.

4 Sparse parametrisation

In this section we first prove Theorems 2 and 3, namely that Harmless Set
is intractable when parametrised by the size of a modulator to a 2-spider-forest
but is FPT when parametrised by the vertex cover number of the input graph.
We then show that a simple application of the bidimensionality framework [10,
18] proves Theorem 4, i.e. that Harmless Set can be solved in subexponential
FPT time on graphs excluding an apex-minor.

4.1 Vertex cover

Theorem 3. Harmless Set is fixed-parameter tractable when parametrised by
the vertex cover number of the input graph.

Proof. Let (G, t) be an instance of Harmless Set and let X ⊆ V (G) be a
vertex cover of size 2 vc(G) which we compute greedily by the usual local ratio
algorithm. Let R := V (G) \X be the remaining independent set.

In the first stage of the algorithm we guess, in time O(2|X|), the intersec-
tion S ⊆ X of the maximal solution with X. If S itself is not harmless, we discard
it. Otherwise we create a modified instance (G, t′) where t′(u) = t(u)−|N(u)∩S|,
that is, we simply account for the budget used up by S. Since we have already
guessed the intersection of the maximal solution and X, our goal is now to
compute a maximal solution I ⊆ R which is harmless in (G, t′). It is easy to
verify that I ∪ S is then harmless in (G, t).
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Note that finding a solution I ⊆ R means that we can ignore the thresholds
of vertices in R, only the thresholds of vertices in X constrain our solution. We
proceed by partitioning R according neighbourhoods in X: for A ⊆ X, let RA
contain all vertices u ∈ R with N(u) = A. Since we can ignore thresholds of
vertices in R, a solution I ⊆ R can be encoded by simply noting the size of the
intersection xA := |I ∩RA| for all A ⊆ X.

We will now formulate the problem as an ILP with at most 22vc(G) variables,
that comprises the following parts

1. maximise the sum of chosen vertices
2. each variable xA, corresponding to the set whose neighbourhood is A, has

size at most |RA|
3. each vertex u ∈ X, is at most its threshold t′(u).

Accordingly, the following ILP solves our subproblem:

max
∑
A⊆X

xA

s.t. 0 6 xA 6 |RA| ∀A ⊆ X∑
{u}⊆A⊆X

xA < t′(u) ∀u ∈ X

The first constraint ensures that our solution is realizable in G, while the second
constraint ensures that it does not exceed the thresholds in X. This ILP has at
most 2|X| variables and we can therefore solve it in FPT-time using Lenstra’s
algorithm [24]. After solving all 2|X| sub-problems, we return the largest total
solution size (including the guessed intersection with |X|).

4.2 Modulator to 2-spider-forest

An instance of Multicoloured Clique consists of a k-partite graph G =
(V1, . . . , Vk, E). The task is to find a clique which intersects each colour Vi in
exactly one vertex. Since Multicoloured Clique is W[1]-hard [7], our reduction
establishes the same for Harmless Set.

In the following, we fix an instance (V1, . . . , Vk, E) of Multicoloured
Clique. By a simple padding argument, we can assume that the sizes of the sets
Vi are all the same and we will denote this cardinality by n (thus the graph has
a total of nk vertices). For convenience, we let vi1, . . . , v

i
n be the vertices of the

set Vi. For indices 1 6 i < j 6 k we denote by mij = |E(Vi, Vj)| the number of
edges between colours Vi and Vj . We further let m be the total number of edges.

remaining budget Finally, we will often speak of the remaining budget of a vertex u with respect
to some (partial) solution. This budget is to be understood as the number of
vertices in N(u) that we can still select without violating the threshold t(u). So
if a partial solution has selected already s vertices in N(u), then the remaining
budget will be t(u)− s− 1.
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Forbidden vertices
Let F ⊆ V (G) be a set of vertices that we want to prevent from being in any
solution. To that end, we construct a global forbidden set gadget which enforces
that no vertex from F can be selected. The construction is similar to the forbidden

edge gadget by Bazgan and Chopin [1]:
We add two vertices aF and bF with
threshold one to the graph and make
them connected. Then we connect aF
to every vertex in F .
In the following gadgets we will often
mark vertices as “forbidden”. We will
denote this graphically by drawing a

thick red border around these vertices.

Observation 2. Let F, aF , bF be vertices as above in some instance (G, t, k) of
Harmless Set. Then for every harmless set S of (G, t) it holds that S ∩ (F ∪
{aF , bF }) = ∅.

XOR gadget
We construct an XOR gadget for vertices u and v by adding a new forbidden
vertex x with threshold two and adding the edges xu and xv to
the graph. To simplify the drawing of
the following gadgets, we will simply
draw a thick red edge between to ver-
tices to denote that they are connected
by an XOR gadget.

Observation 3. Let u, x, v be as
above in some instance (G, t, k) of Harmless Set. Then for every harmless set
S of (G, t) it holds that |S ∩ {u, v}| 6 1.

We will later enforce that in any solution S, |S ∩ {u, v}| = 1, hence the name
XOR.

Selection gadget

The role of a selection gadget Si will be
to select a single vertex from one coloured
set Vi. The final construction will therefore
contain k of these gadgets S1, . . . ,Sk. The
gadget consists of n pairs of vertices dsls,
s ∈ [n], where each pair is connected by
an XOR gadget. We call the set D(Si) =
{d1, . . . , dn} the dark vertices and L(Si) =
{l1, . . . , ln} the light vertices. We make two
simple observations about the behaviour of
this gadget:
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Observation 4. Let Si be as above in some instance (G, t, k) of Harmless Set.
Then for every harmless set S of (G, t) it holds that |S ∩ (D(Si) ∪ L(Si))| 6 n.

By choosing an appropriate budget we will expect a solution to the final instance
to pick exactly n vertices in each selection gadget and this number encodes a
vertex from the Multicoloured Clique instance. For these solutions, we have
that the number of vertices in the light and dark part sum up exactly to n:

Observation 5. Let Si be as above in some instance (G, t, k) of Harmless
Set. Then for every harmless set S of (G, t) with |S ∩ (D(Si) ∪ L(Si))| = n it
holds that |S ∩D(Si)|+ |S ∩ L(Si)| = n.

Port gadget

For every pair of selection gadgets Si, Sj we need to communicate the choices
these gadgets encode to further gadgets (described below) which verify that this
choice corresponds to an edge in E(Vi, Vj).

The port gadget Pij responsible for the pair Si, Sj consists of four forbidden
port vertices p+i , p−i , p+j , and p−j , each with a threshold of n+ 1. For ` ∈ {i, j},
we connect the port vertex p+` to the light vertices L(S`) and the port vertex p−`
to the dark vertices D(S`). Note that every selection gadget will be connected to
k − 1 port gadgets in this manner and our naming scheme of the variables p+• ,
p−• does not reflect that. However, we will in the following only ever talk about a
single port gadget and therefore it will always be clear to which vertices we refer.

Test gadget
The final gadget Txy exists to test whether two selection gadgets Si, Sj selected
the edge vixv

j
y ∈ E(Vi, Vj). If that is the case, the gadget allows the inclusion of n

vertices into the solution; otherwise it only allows the inclusion of a single vertex.
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The gadget consists of n ordered light vertices L(Txy) = {l1, . . . , ln} which
are all connected to a single dark vertex dxy via XOR gadgets. This already
concludes the structure of the gadget itself, but we need to discuss how it will be
wired to the selection gadgets Si and Sj via the port gadget Pij .

For i, j fixed as before, we connect the port p+i ∈ Pij to the first n−x light ver-
tices l1, . . . , ln−x and the port p−i ∈ Pij to the last x light vertices ln−x+1, . . . , ln.
Similarly, we connect the port p+j ∈ Pij to the first n−y light vertices l1, . . . , ln−y
and the port p−j ∈ Pij to the last y light vertices ln−y+1, . . . , ln.

The idea of this construction is as follows: If the selection gadget Si “selects”
the vertex x and Sj “selects” y, our test gadget Txy verifies that the edge xy
exists in the original graph G by allowing the inclusion of all n light vertices
L(Txy). All other test gadgets Tuv, uv 6= xy, wired to Pij will, as we prove
below, only allow the inclusion of their respective dark vertex duv.

Full construction
The full construction for the reduction looks as follows. Given the instance
G = (V1 ] · · · ] Vk, E) of Multicoloured Clique, we construct an instance
(H, t) of Harmless Set as follows:

• We add k selection gadgets S1, . . . ,Sk.

• For every pair of indices 1 6 i < j 6 k:

• We add the port gadget Pij and connect it to Si and Sj as described
above.

• We add mij := |E(Vi, Vj)| test gadgets {Txy}xy∈E(Vi,Vj).

• We wire each test gadget Txy to Pij as described above.

• We add a forbidden vertex aij to H with threshold n+ 1 and connect
it to all light vertices

⋃
xy∈E(Vi,Vj)

L(Txy).

• Finally, we add the vertices aF and bF to H and connect aF to all vertices
marked as “forbidden” in the gadgets as well as to bF .
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Lemma 6. We can delete 5
(
k
2

)
+ 1 vertices from H to obtain a 2-spider forest.

Proof. We delete the 4
(
k
2

)
vertices that make up the port gadgets, the

(
k
2

)
apices

aij for 1 6 i < j 6 k, and the vertex aF . This disconnects all test- and selection
gadgets from each other: the left-over vertices of the selection gadgets induce a
forest of P3s (the middle vertex being the XOR gadget vertex), while the left-over
vertices of the test gadgets induce a 2-spider forest.

Lemma 7. If G contains a multi-coloured clique on k vertices, then (H, t) has
a harmless set of size

(
k
2

)
(n− 1) + kn+m.

Proof. Let x1, . . . , xk be the indices of the clique-vertices, that is, the clique has
vertices vixi

for i ∈ [k]. We construct a harmless set S := Ssel ∪ Stest as follows.
First, let us construct Ssel. For each selection gadget Si, we select xi light

vertices l1, . . . , lxi from L(Si) and n− xi dark vertices dxi+1, . . . , dn from D(Si).
Observe that for each port gadget Pi• (or P•i), the remaining budget of p+i is
now n− xi and the remaining budget of p−i is xi. Note further that we did not
include any forbidden vertices and the thresholds of the XOR gadgets have not
been exceeded.

Now, let us construct Stest. As v1x1
, . . . , vkxk

induces a clique, we have that
vixi

vjxj
∈ E(G) for all 1 6 i < j 6 k. So for every pair of such indices i, j we add

all light vertices L(Txixj
) of the test gadget Txixj

to Stest. For all remaining
test gadgets Txy with xy 6∈ {xixj | 1 6 i < j 6 k} we add the dark vertex dxy
to Stest.

First, note that for every pair of indices 1 6 i < j 6 k we selected exactly
n light vertices from all test gadgets wired to both Si and Sj . So in particular
|N(aij)∩ Stest| = n and we therefore do not exceed the threshold of the apex aij .
We also did not include any forbidden vertices and did not exceed the thresholds of
the XOR gadgets inside the test gadgets as we either picked all light vertices (for
Txixj

) or all dark vertices (all other test gadgets). Finally, consider the vertices

p+i , p−i , p+j , and p−j of the port gadget Pij . As observed above, the remaining
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budget after including Ssel of p+` is n− x` while the remaining budget of p−` is
x` for ` ∈ {i, j}. By construction, |N(p+` )∩ Stest| = |N(p+` )∩L(Txixj

)| = n− x`
and |N(p−` ) ∩ Stest| = |N(p−` ) ∩ L(Txixj

)| = x` for ` ∈ {i, j}, i.e. Stest uses up
exactly the budget left over by Ssel.

We conclude that the set S = Ssel ∪ Stest is indeed a harmless set of (H, t).
The total size of S is

|S| = |Ssel|+ |Stest| = kn+
∑

16i<j6k

(n+mij − 1)

= kn+
∑

16i<j6k

(n− 1) +
∑

16i<j6k

mij

= kn+

(
k

2

)
(n− 1) +m,

as claimed.

Lemma 8. If (H, t) has a harmless set of size
(
k
2

)
(n − 1) + kn + m, then G

contains a multi-coloured clique on k vertices.

Proof. Let S be a harmless set of the above size. As we established above, S
cannot contain any vertices marked as “forbidden” in the construction. Therefore,
S can only contain light and dark vertices of the selection and test gadgets. Let
us introduce the following shorthands: Lsel :=

⋃
i∈[k] L(Si) are the light vertices

and Dsel :=
⋃
i∈[k]D(Si) the dark vertices inside selection gadgets. Similarly, let

Lijtest :=
⋃

xy∈E(Vi,Vj)

L(Txy) and

Dij
test :=

⋃
xy∈E(Vi,Vj)

D(Txy) = {dxy | xy ∈ xy ∈ E(Vi, Vj)}.

Let finally Ltest :=
⋃

16i<j6k L
ij
test and Dtest :=

⋃
16i<j6kD

ij
test be the union of

these sets.
Let us now split up S into Ssel := S∩(Lsel∪Dsel) and Stest := S∩(Ltest∪Dtest).

As all vertices outside of Lsel ∪Dsel ∪ Ltest ∪Dtest are forbidden, it follows that
Ssel and Stest partition S. By Observation 4 we find that |Ssel| 6 k · n, as
every selection gadget can contain at most n vertices of Ssel, and accordingly
|Stest| >

(
k
2

)
(n− 1) +m.

To analyse the size and structure of Stest, let us call a test gadget active if
Stest intersects its light vertices.

Claim. Fix an index pair 1 6 i < j 6 k. Let Te1 , . . . ,Tes be all active tests
gadgets wired to Pij . Then |Stest ∩ (Lijtest ∪D

ij
test)| 6 n + mij − s if s > 1 and

|Stest ∩ (Lijtest ∪D
ij
test)| 6 mij otherwise.

Proof of claim. Since aij has a threshold of n+1, we know that |Stest∩Lijtest| 6 n.
Now note that, due to the XOR gadgets between the dark vertex and the
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light vertices of each test gadget, no dark vertex from D(Te1) ∪ · · · ∪ D(Tes)
can be contained in Stest. Accordingly, |Stest ∩ (Lijtest ∪ D

ij
test)| 6 n + mij − s.

Consider now the case that s = 0, i.e. there is no active gadget. Then Stest can
only intersect the dark vertices Dij

test of which there are mij many, accordingly

|Stest ∩Dij
test| 6 mij .

Let sij denote the number of active test gadgets attached to Pij . Then we can
upper-bound the size of Stest by summing over the above bound:

|Stest| =
∑

16i<j6k

|Stest ∩ (Lijtest ∪D
ij
test)|

6
∑

16i<j6k

nJsij > 0K +mij − sij

= m+
∑

16i<j6k

nJsij > 0K−
∑

16i<j6k

sij .

:= m+ νn− σ.

Where ν =
∑

16i<j6kJsij > 0K is the number of non-zero values sij and σ :=∑
16i<j6k sij is the sum of all sij . Note that σ > ν. Comparing this upper bound

and the previous lower bound on Stest, we find that(
k

2

)
(n− 1) +m 6 m+ νn− σ ⇐⇒

(
k

2

)
(n− 1) 6 νn− σ.

Since σ > ν, we can weaken the above inequality to(
k

2

)
(n− 1) 6 νn− ν = ν(n− 1)

from which we conclude that ν >
(
k
2

)
. Since ν >

(
k
2

)
is impossible, we have that

ν =
(
k
2

)
. Therefore let us consider the updated inequality

(
k
2

)
(n− 1) 6

(
k
2

)
n− σ

which immediately implies that σ 6
(
k
2

)
. Since σ > ν =

(
k
2

)
we find that

σ = ν =
(
k
2

)
.

Accordingly, the number of active gadgets is sij = 1 for all indices 1 6 i <
j 6 k. In other words, for every index pair i, j there is exactly one active test
gadget. Further, we find that |Stest| =

(
k
2

)
(n − 1) + m. Taking these two facts

together, it follows that not only is there exactly one active test gadget per index
pair, but Stest must contain all of its n light vertices. Let x̂ix̂j for 1 6 i < j 6 k
be the indices of these active gadgets Tx̂ix̂j

.
Having established the size and structure of Stest, let us return to Ssel. From

the size of Stest we deduce that |Ssel| = kn and because Ssel can intersect
each selection gadget in at most n vertices, it follows that Ssel intersects every
selection gadget in exactly n vertices. As noted in Observation 5, this means
that |Ssel ∩ D(Si)| + |Ssel ∩ L(Si)| = n for all i ∈ [k]. Let xi := |Ssel ∩ L(Si)|,
i ∈ [k]. Then for every port gadget Pij it holds that |N(p+` ) ∩ Ssel| = x` and
|N(p−` ) ∩ Ssel| = n− x` for ` ∈ {i, j}.
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Claim. Let x̂ix̂j be the index of the active test gadget Tx̂ix̂j
connected to the

port Pij . Then x̂i = xi and x̂j = xj .

Proof of claim. As established above, Stest contains all light vertices L(Tx̂ix̂j
).

Consider the port vertices p+` , p
−
` ∈ Pij for ` ∈ {i, j}. Then

|N(p+` ) ∩ Stest| = |N(p+` ) ∩ L(Tx̂ix̂j
)| = n− x̂`

and |N(p−` ) ∩ Stest| = |N(p−` ) ∩ L(Tx̂ix̂j )| = x̂`.

On the other hand, we just established that |N(p+` ) ∩ Ssel| = x` and |N(p−` ) ∩
Ssel| = n− x`. Accordingly,

|N(p+` ) ∩ S| = |N(p+` ) ∩ Ssel|+ |N(p+` ) ∩ Stest| = x` + n− x̂`
and |N(p−` ) ∩ S| = |N(p−` ) ∩ Ssel|+ |N(p−` ) ∩ Stest| = n− x` + x̂`

As the threshold of p•` is n+ 1, we need that n+x`− x̂` 6 n and n+ x̂`−x` 6 n
which of course only holds when x̂` = x`.

We therefore have that for all pairs of “selected” vertices vixi
, vjxj

, 1 6 i < j 6 k,

that the edge vixi
vjxj

exists in G as witnessed by the existence of the (active)

test gadget Txixj
. Accordingly, the k vertices v1x1

, . . . , vkxk
form a multi-coloured

clique in G, as claimed.

Lemma 6, 7, and 8 together prove Theorem 2.

4.3 Subexponential time algorithm

In order to apply the bidimensionality framework we will need to introduce the
following two annotated problems were we want solutions to avoid a certain
vertex subset.

Input: A graph G, an integer k, a vertex set X ⊆ V (G).
Problem: Does G have a harmless set S ⊆ V (G) \X of size at least k?

Avoiding Harmless Set

Input: A graph G, an integer k, a vertex set X ⊆ V (G).
Problem: Does G have a 1-scattered set S ⊆ V (G)\X of size at least k?

Avoiding 1-Scattered Set

In both cases, we call the vertices in X forbidden. We say that a vertex is
simplicially forbidden if it is forbidden and all its neighbors are forbidden. Observe
that we may safely remove any simplicially forbidden vertices for either of the
two problems. We will assume in the following that this preprocessing rule has
been applied exhaustively and therefore every forbidden vertex has at least one
non-forbidden neighbour.
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Fig. 1. The graph Γ8 with the first and second neighbourhood of an interior vertex
marked.

We define the contraction of an edge uv in an annotated graph (G,X) as
(G,X)/uv := (G/uv,X ′) where

X ′ :=

{
(X \ {u, v}) ∪ {xuv} if {u, v} ⊆ X
X \ {u, v} otherwise

and where xuv is the vertex resulting from the contraction of u and v. In other
words, the vertex xuv is marked as forbidden iff both u and v were forbidden.
A contraction minor of (G,X) is any annotated graph (H,X ′) which can be
obtained from (G,X) by a sequence of contractions.

Observation 6. Avoiding 1-Scattered Set is closed under contractions, that
is, if (G,X)/uv has a solution of size k then so does (G,X).

Proof. Let S be a 1-scattered set in (G,X)/uv := (G/uv,X ′). If xuv 6∈ S, we are
done since pairwise the pairwise distances of vertices in G are at least as large
as in G/uv. Thus assume xuv ∈ S. Accordingly, xuv 6∈ X ′ and therefore at least
one of u, v is not in X, wlog assume u 6∈ X. Then (S \ xuv)∪ {u} is a 1-scattered
set in G since distG(u, y) > distG/uv(xuv, y) for all y ∈ V (G) \ {u, v}. This set
furthermore avoids X and therefore is a solution for (G,X) of size |S|, proving
that the problem is closed under contractions.

Finally, observe that if (G,X, k) is a YES-instance of Avoiding 1-Scattered
Set then it is also a YES-instance of Avoiding Harmless Set. We are now
ready to apply the bidimensionality framework.

Theorem 4. Harmless Set is solvable in time O(2o(k) · n) on apex-minor-free
graphs.
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Proof. Fomin et al. [18, Theorem 1] proved that for every apex-graph H there
exists a constant cH such that if tw(G) > k and G excludes H as a minor, then G
has the graph ΓcH ·k as a contraction minor. Here Γt is the triangulated t× t grid
where additionally one corner vertex is attached to all border vertices of the grid
(cf. Figure 1).

So assume that our input instance (G,X, k) has treewidth tw(G) > (5
√
k +

10)/cH , then G contains Γt as a contraction minor with t = 5
√
k + 10. Let

X ′ ⊆ V (Γt) be the contracted forbidden vertices as defined above. As we observed
earlier, every vertex in X ′ has at least one neighbour in Γt which is not in X ′.

Claim. Γt contains a 1-scattered set that avoids X ′ of size at least k.

Proof of claim. Assume that the vertices of Γt are labelled vi,j , where i, j ∈ [t]
denote the row-index and column-index of the respective vertex in the grid.

Let S′ := {v5x+3,5y+3 | 0 6 x 6 (t − 5)/5 and 0 6 y 6 (t − 5)/5}. The set
S′ is 2-scattered in Γt and has size at least (t/5 − 2)2. Every vertex u ∈ S′ is
either not forbidden or it has a neighbour which is not forbidden, therefore we
can construct a 1-scattered set S of the same size as follows: for every u ∈ S′ we
add a non-forbidden vertex from N [u] to S. The claim follows now since S has
size at least ( t

5
− 2
)2

=
(5
√
k + 10

5
− 2
)2

= k.

We conclude that if G has treewidth at least w := (5
√
k+ 10)/cH , then (G,X, k)

is a YES-instance. Using the single-exponential 5-approximation for treewidth [2],

we can in time 2O(w)n = 2O(
√
k)n either find that G has treewidth at least w

or we obtain a tree decomposition of width no larger than 5w. In the latter
case, we use the algorithm by Bazgan and Chopin to solve the problem in

time kO(w)n = 2O(
√
k log k)n. Note that the total running time is bounded by

O(2o(k) · n), as claimed.

5 Conclusion

We observed that the problem Harmless Set is in FPT for sparse graph classes
due to existing machinery. Therefore, we investigated its tractability in the
kernelization sense and found that Harmless Set admits a polynomial sparse
kernel. In the case of p-Bounded Harmless Set we even proved a linear sparse
kernel. We expect these results to extend to nowhere dense classes.

On the negative side, we demonstrated that sparseness alone does not make
the problem tractable. While the problem is in FPT when parametrised by e.g.
treewidth and solution size, we showed that it is in fact W[1]-hard when only
parametrised by treewidth. Our reduction shows even more, namely that most
sparse parameters (treedepth, pathwidth, feedback vertex set) can be ruled
out as the problem is already hard when parametrised by a modulator to a
2-spider-forest.
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We conjecture—and leave as an interesting open problem—that Harmless
Set is already hard when parametrised by a modulator to a starforest.
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A Appendix

Proposition 1. Harmless Set parametrised by k is fixed-parameter tractable
in nowhere dense classes.

Proof. By Observation 1, Harmless Set is equivalent to (k + 1)-Bounded
Harmless Set. Given an instance (G, t, k) of the former, we can easily transform
it into an instance (G, t′, k) of the latter where t′(v) = min{t(v), k + 1}.

We create the formula ϕHS and prove that it defines Harmless Set.
Let ψ(S,G, v) be the formula ∃6t(v)u.(v, u) ∈ E(G)∧u ∈ S. Then ϕHSk (S,G) =

((|S| = k)∧ ∀v.ψ(S,G, v)). expresses that S is a harmless set of size k. Note that
the expressions |S| = k and ∃6t(v) are both expressible in FOL, though the size
of the resulting formula depends on k and maxv∈V t(v) 6 k + 1.

We now apply the powerful result by Grohe, Kreutzer, and Siebertz [20] that
a first-order sentence φ can be decided in time O(n1+ε) for any ε > 0 in nowhere
dense classes. This algorithm is (non-uniformly) FPT, concluding the proof.

Lemma 3. For every bounded expansion class G and r, d ∈ N, d 6 r, the
following holds. There exists a polynomial pr such that for every G ∈ G, t ∈ N
and A ⊆ V (G) with |A| > pr(t) domd(G,A) there exists a uniform waterlily
(R,C ⊆ A) with depth d, radius r, and with |R| = O(1) and |C| > t, moreover,
such a waterlily can be computed in polynomial time.

Proof. Given G, we use Theorem 6 to compute a d-dominating set D′ of A
with |D′| = O(domd(G,A)) in polynomial time. Afterwards, we compute the
(r + d)-projection closure D of D′, by Lemma 2 we have that |D′| = O(|D|) and
therefore |D| = O(domd(G,A)). Let A′′ := A \D, we will choose the polynomial
pr so that A′′ is still large enough for the following arguments to go through.

Define the equivalence relation ∼D over A′′ via

a ∼D a′ ⇐⇒ πr+dD [a] = πr+dD [a′].

By Lemma 1, the number of classes in A′′/ ∼D is bounded by O(|D|); by an
averaging argument we have at least one class [a] ∈ A′′/ ∼D of size∣∣[a]

∣∣ = Ω
( |A′′|
|D|

)
= Ω

( |A| − |D|
|D|

)
.

Let R′′ = P r+dD (a), e.g. the (r + d)-projection of [a]’s members onto D. By our

earlier application of Lemma 2 we have that |R′′| = |P r+dD (a)| = O(1).
We apply Theorem 5 with distance r to the set [a], let g(r) be the function

defined there. Using this notation, the algorithm of Theorem 5 provides us, in

polynomial time, with a subset A′ ⊆ [a] of size at least |[a]|
1

g(r) and a constant-
sized set R′ ⊆ V (G) \A′, such that A′ is r-scattered in G−R′.

Let R := R′∪R′′, by the above bounds on R′ and R′′ it follows that |R| = O(1).
By Lemma 1 the number of different d-projections onto |R| is bounded by O(|R|),
so we can find a set C ⊆ A′ with uniform d-projections onto |R| of size at least

|C| > |A
′|
|R|

= Ω(|A′|) = Ω
(( |A| − |D|

|D|
) 1

g(r)

)
.
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Since |D| = O(domd(G,A)), there exists a polynomial pr(t) = O((t1/g(r) + 1))
such that |A| > (t1/g(r) + 1) · |D|, which implies that

|C| = Ω
(( |A| − |D|

|D|
) 1

g(r)

)
= Ω(t).

Therefore we can choose pr(t) so that |C| > t, as claimed.


