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SUMMARY

Counterfactual (CF) explanations have been employed as one of the modes of explainability in explainable
artificial intelligence (AI)—both to increase the transparency of AI systems and to provide recourse. Cognitive
science and psychology have pointed out that people regularly use CFs to express causal relationships. Most
AI systems, however, are only able to capture associations or correlations in data, so interpreting them as
casual would not be justified. In this perspective, we present two experiments (total n = 364) exploring the
effects of CF explanations of AI systems’ predictions on lay people’s causal beliefs about the real world.
In Experiment 1, we found that providing CF explanations of an AI system’s predictions does indeed (unjus-
tifiably) affect people’s causal beliefs regarding factors/features the AI uses and that people aremore likely to
view them as causal factors in the real world. Inspired by the literature on misinformation and health warning
messaging, Experiment 2 testedwhether we can correct for the unjustified change in causal beliefs.We found
that pointing out that AI systems capture correlations and not necessarily causal relationships can attenuate
the effects of CF explanations on people’s causal beliefs.

INTRODUCTION

Interest in automatically generated explanations for predictive

artificial intelligence (AI) systems has grown considerably in

recent years.1–6 It is argued that explanations provide transpar-

ency for what are often black-box procedures and that transpar-

ency is viewed as critical for fostering the acceptance of AI sys-

tems in real-world practice.7–12 Explainable AI (XAI) has emerged

as a field to address this need for AI systems’ predictions to be

followed by explanations of these predictions.

Common approaches to (post hoc) explainability of specific

predictions of AI systems include feature importance,13,14 sa-

liency maps,15 and example-based methods.16 In this perspec-

tive, we focus on counterfactual (CF) explanations of specific

predictions of AI systems.12,17–24 These explanations describe

changes in an AI system’s inputs (features/factors) that alter

the AI system’s output (prediction/label) and lead to favorable

outputs. CF explanations address questions such as ‘‘why A

rather than B?’’; for example, ‘‘Why did the AI system deny the

loan rather than approve it?’’ An answer to this question would

THE BIGGER PICTURE Explainable artificial intelligence provides methods for bringing in transparency into
black-box artificial intelligence (AI) systems. Thesemethods produce explanations of AI systems’ predictions
that are aimed at increasing the understanding of the AI systems’ behavior and help us to appropriately cali-
brate our trust in these systems. In this perspective, we explore some of the potential undesirable effects of
providing explanations of AI systems to human users and ways to mitigate such effects. We start from the
observation that most AI systems capture correlations and associations in data and not causal relationships.
Explanations of the AI systems’ predictions would make the correlations more transparent. They would not,
however, make the explained relationships causal. In two experiments, we show how providing counterfac-
tual explanations of AI systems’ predictions unjustifiably changes people’s beliefs about causal relationships
in the real world. We also show how we may go about preventing such a change in beliefs and hope to open
doors for further exploration into psychological effects of AI explanations on human recipients.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
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be a CF explanation: ‘‘If Tom’s salary had been at least £30k, the

AI system would have offered him a loan.’’ CF explanations not

only provide us with an insight into why an AI system made a

certain prediction (‘‘deny the loan’’) but also what a user can

do in order to flip the prediction (‘‘offer a loan’’). In other words,

CF explanations may also be able to provide recourse for

users.19 Furthermore, CF explanations naturally embody con-

trastiveness, i.e., the ability to address the question of why this

prediction instead of some other one, which is one of the attri-

butes that people expect explanations to have.25

A significant body of research on CF explanations can be

found in cognitive science and psychology. Some of the results

of this research suggest that CF explanations often convey

causal relations26–29 and that making causal judgments often re-

quires comparing actual and relevant CF situations.30,31 For

example, taking painkillers can have side effects such as fatigue.

In a situationwhere a runner sprained an ankle and took painkiller

A, which has fatigue as one of its side effects, people would

judge that painkiller A has caused poor performance and loss

of the race when they are aware of an alternative painkiller B

without side effects. Here, people formed a CF: if the runner

had taken painkiller B, she would not have had the side effects.

However, when painkiller B also leads to side effects, people

judge painkiller A to have less causal impact on the race

outcome: even if the runner had taken B, she still would have

had side effects.32

AI systems are typically predictive in nature and are capturing

associations and correlations in data, not causal processes that

generated the data. More specifically, in most applications of AI

systems, we use data X and Y to estimate a function f, which in

turn is used to generate predictions bY for new instances. No un-

derlying theoretical causal model for function f is assumed.

Moreover, f is not expected to adequately capture the underlying

(causal) processes or real-world mechanisms that generated the

data used for training and estimation. It is thus entirely possible

that explanations for predictions bY that comprise of changes in

features X have no clear causal connection (when, for example,

X contains heavily engineered features) or have an anti-causal

relationship, where Y is a cause of some X. Furthermore, due

to regularization, it is possible that some of the actually causal

X are left out or that their impact on estimating bY is reduced.33

One should then be careful when using AI systems and explana-

tions of their predictions not to misinterpret AI systems in a

causal manner and to be wary of their limits.34,35 This, however,

may be easier said than done, particularly in the case of CF ex-

planations of AI systems’ predictions. CF explanations normally

assume that the change in feature values maps onto the actions

in the real world. This implies that CF explanations ought to

incorporate a causal mechanism that would allow the person

receiving the explanation to meaningfully intervene in the real

world.36 Some work on incorporating the real-world causal rela-

tionships in CF explanations has been done;19,37 however, the

vast majority of CF explanation generation algorithms do not ac-

count for the causal structure of the world.24

If people naturally associate CF with causal reasoning, as is

suggested by the psychological and cognitive science research,

then they may be especially prone to slipping into causal inter-

pretations of AI system results when they are presented with

CF explanations. As a consequence, they may form an (unjusti-

fied) mental model of the causal structure of the world or the un-

derlying processes that generated the data. In other words, it

may lead the recipients of CF explanations to form disingenuous

and over-attributive perspectives with respect to these systems.

Recent empirical work suggests that CF explanations do pro-

mote causal interpretations of features/factors used by an AI

system,38 making plausible the claim that people may indeed

form an over-attributive perspective regarding AI system predic-

tions when coupled with CF explanations.

In this perspective, we test the possibility that CF explanations

may lead lay people into believing that relations captured by AI

systems are causal in the real world. We report two experiments.

The first investigated if lay people are more likely to form causal

beliefs about the factors/features AI systems are using when

these are presented with CF explanations. The second experi-

ment explores a possiblemeans to prevent lay people from form-

ing inadvertent causal beliefs due to CF explanations.

EXPERIMENT 1

The aim of this experiment was to explore lay people’s causal

beliefs after having received a prediction made by an AI system,

which is then supplemented with a CF explanation. The main hy-

pothesis is that people’s causal beliefs about the world will be

(unjustifiably) affected by CF explanations of an AI system’s pre-

dictions. More specifically, we hypothesize that people will erro-

neously hold beliefs that the features an AI has used tomake pre-

dictions are more causal when a CF explanation of the AI

system’s prediction is provided compared with when the predic-

tion of an AI system is presented without a CF explanation and

compared with a baseline (where no AI system or its predictions

are mentioned).

As AI systems are predictive in nature, one might argue that

the above hypothesized effect may be due to lay people

conflating the prediction/predictive power of AI systems with

causation. The second hypothesis is aimed at testing this possi-

bility. More specifically, we hypothesize that knowing an AI sys-

tem is using certain feature A to predict label B and knowingwhat

the predictions are will change people’s expectation as to how

good a predictor feature A is with respect B compared with the

baseline. Crucially, however, we hypothesize that additionally

knowing an explanation for that predictionwill not further change

people’s expectation as to how good a predictor A is. This finding

would imply that any change in causal beliefswould be due to the

presence of a CF explanation of AI predictions and cannot be ac-

counted for by a change in the expectation of how good the fea-

tures the AI system uses are in predicting the label. Experiment 1

tested both hypotheses.

Methods
Participants

A total of 93 participants (nfemale = 74, one participant identified

as neither male nor female, Mage = 37:2, SD = 13:3) were re-

cruited from Prolific Academic (www.prolific.ac). All participants

were native English speakers residing in the UK or Ireland whose

approval ratings were 95% or higher. They gave informed con-

sent and were paid £6.24 an hour for partaking in the study,

which took on average 8.1 min to complete. Both Experiments

1 and 2 were approved by the Department of Psychological
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Sciences, Birkbeck, University of London Ethics Committee

(reference 2021074).

Design

Participants were randomly assigned to one of three between-

participant groups: the control/baseline group, where partici-

pants were asked about their intuitions regarding how certain

factors/features influence salary without mentioning AI systems

or explanations of AI systems (n = 30); the AI prediction group,

where participants were told about the AI system and the fea-

tures it uses as well as what the prediction is (n = 31); and the

AI explanation group, where they were told about the AI system,

the features it uses, and what prediction is and received a CF

explanation of the prediction for each feature (n = 32).

The experiment had three dependent variables: expectation,

confidence, and action. The expectation dependent variable

measured people’s beliefs regarding how well features predict

the label. The confidence dependent variable measured how

confident participants were in their expectation estimates. The

main reason for including the confidence dependent variable

was to disentangle people’s beliefs about the predictive power

of the features and their confidence in how predictive they

believe the features are. We do not, however, have any hypoth-

eses as to how confidence will change as a function of the group

people were assigned to. Lastly, the action dependent variable

measured people’s causal beliefs about the real world in terms

of their willingness to act or recommend a certain action to be

done in the real world. All participants provided answers for

each dependent variable.

Materials

To test the hypotheses, we used salary as a domain; it is

reasonable to expect that most participants will have some fa-

miliarity regarding factors/features affecting salary and that

they would already have developed certain intuitions about

these factors. We chose 9 factors/features that are, to various

extents, intuitively related to higher/lower salary. These

were as follows: education level; the sector the employee

works in (private or public); the number of hours of

sleep; whether or not the employee owns a smart watch;

whether or not the employee owns an office plant; whether

or not the employee gets expensive haircuts; whether or not

the employee wears expensive clothes; whether or not the

employee goes skiing multiple times a year; and whether or

not the employee rents a penthouse apartment. We aimed

to have a range of factors/features whereby some are intui-

tively causing higher/lower salary (e.g., education level,

sector), some are intuitively not relevant to salary (e.g., office

plant, smart watch), and some are potential consequences or

effects of higher salary rather than causing higher salary (e.g.,

expensive clothes, expensive haircuts, renting penthouse

apartments). With these factors/features, we sought to cover

possible ranges of expectation and action dependent vari-

ables. Namely, we hoped that for some factors/features,

such as education level, both expectation estimates and ac-

tion estimates would be high (i.e., education level is a good

predictor of salary, and to increase their salary, one might

consider getting a higher degree); some factors/features

would have both expectation and action estimates very low

(e.g., whether or not someone has an office plant does not

seem to be related to salary, and buying an office plant to in-

crease salary would seem like a futile endeavor); lastly, some

factors/features such as expensive clothes and renting a

penthouse apartment would have higher expectation esti-

mates but lower action estimates (i.e., that someone is renting

a penthouse apartment may be an indicator that they have a

high salary, but one would not presumably rent a penthouse

apartment because they believe that would increase their

salary). The features/factors were not chosen from a specific

dataset but were devised for the purposes of the experiment.

All collected participant data andmaterials as well as the anal-

ysis code are available via OSF: https://osf.io/xu7v6/?view_

only=a4d11733f3a546cca4b76ad8fbc75018.

Procedure

After providing informed consent and basic demographic infor-

mation (age, gender, and first language; no personally identifi-

able information was collected), participants were shown a

welcome message. Participants then answered two preliminary

questions: ‘‘How familiar are you with the factors that may

affect salary?’’ and ‘‘How familiar are you with the AI technol-

ogy, e.g. AI systems that are able to make predictions?’’ An-

swers to both questions were on a 7-point Likert scale from

‘‘1 - Not at all familiar’’ to ‘‘7 - Extremely familiar.’’ The main

motivation for including these questions was to check whether

any differences among the three groups in the subsequent

expectation or action estimates were due to differences in fa-

miliarity with the domain (salary) or familiarity with AI tech-

nology.

Following these two preliminary questions, participants saw a

preamble for the specific group they were assigned to, i.e., con-

trol, AI prediction, or AI explanation (square brackets indicate

which text was presented to which group):

Your good friend Tom is looking to increase his salary. He’s

asked you for advice on how to best achieve that. [all three

groups]

There are a range of factors that are related to a higher salary.

You will now consider some of these factors. [only the con-

trol group]

In your search for ways to help your friend you have found an

AI system that can predict whether people’s yearly salaries

are higher than/equal to È30k (R È30k) or lower than È30k

(< È30k). [AI prediction and AI explanation groups]

The AI system uses a number of factors to make the predic-

tion. You do not know, however, how much each factor is

important for the AI system when it is making its predictions.

[only the AI prediction group]

The AI system uses a number of factors to make the predic-

tion. The AI system also has an option to provide you with ex-

planations regarding its predictions. [only the AI explana-

tion group]

You input Tom’s details for all factors into the AI system and it

predicts that his yearly salary is lower than È30k (< È 30k). [AI

prediction and AI explanation groups]

The AI system now provides you with explanations with

respect to each factor as to why it predicts that Tom’s salary

is lower than È30k (< È30k). [only the AI explanation group]

The cutoff È30k was used as that figure was close to the

median salary in the UK in 2020. After participants read the
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preamble for the group they were assigned to, they proceeded to

answer the three questions (expectation, confidence, action)

regarding the 9 factors. The order of factors/features was ran-

domized for each participant. Before answering the three ques-

tions, participants in the AI prediction and AI explanation groups

were reminded of the AI system’s prediction, and in the AI expla-

nation group, people were additionally told the CF explanation

for that factor. For example, questions and preceding text

relating the education level were as follows.

Reminder: The AI system predicts that Tom’s yearly salary is

lower than È30k (< È30k). [AI prediction and AI explanation

groups]

Factor: Education level [all three groups]

Explanation: If Tom had had an advanced degree (e.g.mas-

ters), the AI system would have predicted that his salarywas

higher than/equal to È30k (R È30k). [only the AI explana-

tion group]

Q. Would you expect that employees who have an advanced

degree (e.g. masters) also have a higher salary? [expecta-

tion question, same for all three groups]

Please rate your answer from 0 (No, not at all) to 100 (Yes,

absolutely).

Q. How confident are you in your response? [confidence

question, same for all three groups]

Q. Assuming Tom has the resources (time, money, etc.),

would you recommend he starts an advanced degree

(e.g. masters) with the hope of increasing his salary? [action

question, same for all three groups]

Please rate your answer from 0 (not at all) to 100 (totally).

Participants’ responses to the three questions were elicited

using a slider from 0 to 100 with 1-point increments. The three

questions followed the same format for all other factors. The

action questions sometimes had a short caveat (‘‘Assuming

Tom has the resources.’’) as shown above to guard against

participants drifting into a cost-benefit analysis, which could

deter from them providing causal estimates regarding the fac-

tor in question. The format of the CF explanations was the

same for each factor, namely ‘‘If Tom had [had/worked/

owned/etc. the factor/feature], the AI system would have

predicted that his salary was higher than/equal to È30k (R

È30k).’’ For example, for factor ‘‘office plant,’’ the explanation

was ‘‘If Tom had owned an office plant, the AI system would

have predicted that his salary was higher than/equal to È30k

(R È30k),’’ and for factor ‘‘penthouse apartment,’’ the expla-

nation read, ‘‘If Tom had rented a penthouse apartment,

the AI system would have predicted that his salary was higher

than/equal to È30k (R È30k).’’ Given that this formulation of

the CF explanation implies a positive impact of the factor/

feature on salary, we expected that participants’ action esti-

mates in the AI explanation group would be higher than the ac-

tion estimates of the participants in the other two groups. At the

end of the survey, participants were asked to summarize their

reasoning for the estimates they provided in a free-format

type textbox. This information was used to gain insight into

the potential approaches participants took to answer the ques-

tions. Lastly, participants received debriefing information and

were invited to provide feedback.

Results
Familiarity with the factors affecting salary and AI

systems

We first analyzed the participants estimates regarding how

familiar they are with factors affecting salary. We performed a

one-way ANOVA for each familiarity category (i.e., salary and

AI systems) with group (control, AI prediction, AI explanation)

as a three-level independent variable. We found no significant ef-

fect of group on either familiarity with factors affecting salary,

Fð2;90Þ = 0:66, p = 0.52, or familiarity with AI systems,

Fð2;90Þ = 1:96, p = 0.15. Mean familiarity ratings indicated

that participants were more familiar with factors affecting salary

ðM = 3:9Þ than AI systems ðM = 2:8Þ, which is expected. These

results suggests that any potential significant differences be-

tween the groups in the further analyses cannot be accounted

for by the participants familiarity with the domain (salary) or AI

systems.

Main analyses

Participant estimates for each dependent variable are shown in

Figure 1. To test the effect of group on each dependent variable,

we initially built three linear mixed-effects models with the

random intercept for each participant. However, as the distribu-

tions of participants estimates were highly skewed (especially for

expectation and action dependent variables), and as residuals of

the linear mixed-effects models were clearly non-normally

distributed (see Appendix B), to test for the overall effect of the

group, we resorted to non-parametric tests. We performed a

Kruskal-Wallis rank-sum test for each dependent variable with

the group as a three-level independent variable. Participants’

expectation estimates were significantly affected by the group

they were assigned to (control, AI prediction, AI explanation)

for expectation estimates, Hð2Þ = 11:9, p = 0.003, confidence

estimates, Hð2Þ = 16:1, p < 0.001, and action estimates,

Hð2Þ = 27, p < 0.001.

We performed post hoc pairwise comparisons between the

three groups using aWilcoxon rank sum test (the false discovery

rate for multiple comparisons was controlled using the

Benjamini-Hochberg procedure;39 for more details, see Table 1

in Appendix A). We found that participants’ action estimates

were not significantly different between control and AI prediction

groups (p = 0.74) but that there was a significant difference be-

tween AI prediction and AI explanation (p < 0.001) as well as be-

tween control and AI explanation (p < 0.001). From Figure 1, we

can also see that participants’ action estimates were higher in AI

explanation group compared with the two other groups. Figure 2

suggests that this effect held across the features/factors and not

just overall. These results provide support for our main hypothe-

sis, namely that providing CF explanations would affect people’s

beliefs about how causal the features in the real world are.

Post hoc pairwise comparisons with respect to the partici-

pants’ expectation estimates showed significant differences be-

tween control and AI prediction (p = 0.03) as well as control and

AI explanation (p = 0.002); however, the AI prediction group’s

and the AI explanation group’s estimates were not significantly

different (p = 0.36). These results support our second hypothe-

sis: being aware that an AI system is using certain factors/feature

to make predictions and knowing what the prediction is affects

people’s expectation as to how well these features/factors are

predicting salary. However, their expectations will not further
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change upon learning about the CF explanations of the features/

factors. This also implies that the results regarding participants’

action estimates cannot be explained by the participants’ expec-

tation estimates, providing further support for the claim that CF

explanations are affecting people’s causal beliefs.

Post hoc pairwise comparisons on participants’ confidence

estimates showed significant difference between control and

both AI prediction (p = 0.02) and AI explanation (p < 0.001)

groups. There was not a significant difference between AI pre-

diction and AI explanation groups (p = 0.12). Figure 1 shows a

downward trend in estimates from the control to the AI explana-

tion group. We speculate that this might be because some of the

features/factors the AI system uses are intuitively not relevant to

salary or because they are effects rather than causes of higher/

lower salary. This may result in the reduction in people’s confi-

dence in the AI system’s predictive accuracy. It is important to

note that participants’ confidence estimates were clearly

different from their expectation estimates, suggesting that these

two dependent variables were successfully disentangled in the

experiment design.

Lastly, Figure 2 shows that the participants’ estimates were

dependent on the feature/factor they were asked to provide es-

timates for. These roughly coincided with the intuitions outlined

above, namely that factors/features such as education level

and sector would have both high expectation and action esti-

mates as they seem that they can causally affect salary; fac-

tors/features such as office plant and smart watch do not

seem causally relevant for salary, hence their low estimates for
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Group Control AI Prediction AI Explanation Figure 1. Experiment 1 results for each
group and each dependent variable
We find that action estimates were significantly
higher in the AI explanation group than in the two
other groups. We also find that the AI explanation
group’s expectation estimates were not signifi-
cantly higher than the AI prediction group’s esti-
mates, suggesting that the effect of CF explana-
tions on action estimates is not due to participants
beliefs in the AI’s predictive power.

both expectation and action, and fac-

tors/features such as expensive clothes

and renting a penthouse apartment are

intuitively effects of higher salary, hence

their expectation estimates would be

higher, whereas their action estimates

would be generally low. Critically, we

found that action estimates were higher

in the AI explanation group compared

with the other two groups across most

of the factors/features. This was not the

case for the participants’ action esti-

mates for education level (degree) and

sector factors. We found that the group

participants were assigned to did not

significantly affect their action estimates

(Hð2Þ = 4:2, p = 0.12). This is expected

for two reasons. For one, as participants

in the control group already have high

action estimates for these two factors

(following our conjecture that these two factors are intuitively

causal factors), adding a CF explanation may further reinforce,

but not significantly change, their causal beliefs about these

two factors. On the other hand, we found that participants’ ac-

tion estimates were significantly different depending on the

group they were assigned to for all other factors (H(2) = 38.1,

p < 0.001). Secondly, as our scales were bounded at 100, it is

possible that some of the non-significant finding is due to ceiling

effects.

EXPERIMENT 2

Experiment 1 suggested that providing lay users with CF expla-

nations of AI systems’ predictions can (unjustifiably) affect their

causal beliefs about the features/factors. The aim of Experi-

ment 2 was to explore if we can correct the effects of CF expla-

nations on people’s causal beliefs. Inspired by the research on

correcting misinformation40 and the research on the impact of

health warning messages,41 we designed this experiment to

explore if providing participants with a note communicating

that AI systems are capturing correlations in data rather than

causal relationships might attenuate the effect of CFs on their

causal beliefs. We hypothesize that the AI explanation group

presented with the note will provide lower action estimates

than the AI explanation group, where the note was not present.

We do not have a specific hypothesis as to how introducing the

note might affect participants’ expectation, confidence, or ac-

tion estimates in the other groups or how the AI explanation
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groups’ expectation and confidence estimates might change

due to the note.

The second aim of Experiment 2 was to provide a replication of

Experiment 1 in groups that are not presented with the note.

Thus, Experiment 2 will provide an additional test for the two hy-

potheses explored in Experiment 1.

Methods
Effect size calculations showed that the effect size of Experiment

1 results was relatively small (h2 = 0.03), making Experiment 1

underpowered. To increase the power of Experiment 2, we

increased the number of participants. We aimed to have around

45 participants in each group.

Participants, design, and materials

A total of 271 participants (nfemale = 196, two participants iden-

tified as neither male nor female, Mage = 38:7, SD = 12:2)

were recruited from Prolific Academic (www.prolific.ac). All par-

ticipants were native English speakers residing in the UK or

Ireland whose approval ratings were 95% or higher. They all

gave informed consent and were paid È6.24 an hour for

partaking in the present study, which took on average

8.6 min to complete. Participants were randomly assigned to

one of 3 (control, AI prediction, or AI explanation) 3 2 (correc-

tion: no note or note) = 6 between-participant groups (control

and no note, n = 46; control and no note, n = 45; AI prediction

and no note, n = 44; AI prediction and note, n = 46; AI explana-

tion and no note, n = 46; AI explanation and no note, n = 44).

Experiment 2 used the same three dependent variables as
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factor/feature, each group, and each
dependent variable
We find a trend whereby the participants’ action
estimates were higher in the AI explanation group
than in the other two groups across the factors.
We also find that for factors that are intuitively
more causal, both expectation and action esti-
mates were high; for factors that are intuitively not
causal, both expectation and action estimates
were low; and for factors that are intuitively effects
rather than causes of higher salary, expectation
estimates were high, and action estimates were
low, in agreement with the experimental pre-
dictions.

Experiment 1, namely expectation, con-

fidence, and action. Materials in Experi-

ment 2 were exactly the same as those

in Experiment 1.

Procedure

The procedure for Experiment 2 was

similar to the procedure for Experiment

1. The only difference is that three of the

6 groups were additionally presented

with a note regarding correlation, causa-

tion, and AI systems. For groups with

the note, that note was introduced in the

preamble of each condition, presented

on a separate page, and participants

were also reminded of the note before

answering the questions related to the

three dependent variables. The note read slightly differently for

control, AI prediction, and AI explanation groups. The note for

the control group read as follows:

Important note

Correlation does not imply causation. Even though some fac-

tors may be highly correlated with higher salary that does

not mean that they are causing higher salary.

The note does not mention the AI system, as participants in

this group were not presented with any AI system. Instead, the

note included general information about correlation and causa-

tion. In the AI prediction group, the note read the following:

Important note

AI systems learn correlations in data. Even though the fac-

tors the AI system uses are potentially correlated with higher

salary that does not mean that they are causing higher

salary.

Here, participants are told information regarding correlation

and causation that is more relevant to the AI systems. Specif-

ically, they are told that AI systems capture relationships that

are correlational and should not be interpreted as causal. In

the AI explanation condition, the note read the following:

Important note

AI systems learn correlations in data. Even though the fac-

tors the AI system uses are potentially correlated with higher
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salary that does not mean that they are causing higher

salary. Similarly, the explanations of the AI systems’ predic-

tions are about the correlations the AI system has identified

and not about which factors are actually causing higher

salary.

In addition to being told that AI systems capture correlations,

participants in this group were also told that the explanations of

the AI system’s predictions are explanations of these correla-

tions and are not necessarily of causal relations.

Results
Familiarity with the factors affecting salary and AI

systems

Like in Experiment 1, we first analyzed the participants’ esti-

mates regarding how familiar they are with factors affecting

salary. We performed a two-way ANOVA for each familiarity

category (i.e., salary and AI systems) with group and correction

as two factors. We found no significant effect of group (control,

AI prediction, AI explanation) on either familiarity with factors

affecting salary, Fð2; 265Þ = 0:99, p = 0.37, or familiarity with

AI systems, Fð2;265Þ = 0:13, p = 0.88. We found no significant

effect of correction (no note, note) on either familiarity with fac-

tors affecting salary, Fð1;265Þ = 0:55, p = 0.46, or familiarity

with AI systems, Fð1;265Þ = 0:06, p = 0.8. Finally, we found

no significant interaction effect between the two independent

variables on either familiarity with factors affecting salary,
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Figure 3. Experiment 2 results for each
dependent variable
Like in Experiment 1, we find that action estimates
are higher in the AI explanation group and cannot
be explained by expectation estimates when the
note is not communicated to the participants.
When the note is presented to the participants,
action estimates in the AI explanation group are at
the level of the AI prediction group and not
significantly higher.

Fð2; 265Þ = 1:68, p = 0.19, or familiarity

with AI systems, Fð2;265Þ = 1:19, p =

0.31. Mean familiarity ratings indicated

that participants were more familiar with

factors affecting salary (M = 3.9) than AI

systems ðM = 2:9Þ. These results are

very similar to those in Experiment 1.

Main analyses

Participants’ estimates for each depen-

dent variable as shown in Figure 3. Similar

to Experiment 1, the distributions of par-

ticipants’ estimates were skewed (espe-

cially for expectation and action depen-

dent variables), and residuals of the

linear mixed-effects models were clearly

non-normally distributed (see Appendix

B). So, to test for the overall effect of

group, we performed a Kruskal-Wallis

rank-sum test for each dependent vari-

able. Participants’ expectation estimates

were significantly affected by group (control and no note, control

and note, AI prediction and no note, AI prediction and note,

AI explanation and no note, AI explanation and note) for

expectation estimates, Hð5Þ = 38:9, p < 0.001, confidence esti-

mates, Hð5Þ = 33:8, p < 0.001, and action estimates, Hð5Þ =

67:7, p < 0.001.

From Figure 3, we can also see that participants’ action esti-

mates were significantly higher in the AI explanation and no

notegroupcomparedwith the twoother nonotegroups. Thismir-

rors the findings from Experiment 1 and further supports the first

hypothesis from Experiment 1. Unlike in Experiment 1, the differ-

ence between control andAI prediction conditionwas also signif-

icant, p = 0.02 (for more details, see Table 4 in Appendix A). Pair-

wise comparisons for dependent variable expectation show

significant difference only between control and both AI prediction

(p = 0.001) and AI explanation (p < 0.001) groups. No significant

difference was found between AI prediction and AI explanation

(p = 0.31). This result provides support to our second hypothesis

fromExperiment 1 and suggests that even though therewere sig-

nificant difference between all three no note groups in the action

dependent variable, the significant difference between AI predic-

tion and AI explanation cannot be accounted for by differences in

expectation estimates.

Pairwise comparisons across all three dependent variables

show that the only significant difference between no note and

note conditions was between AI explanation and no note and

AI explanation and note for the action dependent variable (p =

0.01) (see Tables 2, 3, and 4 in Appendix A for more details).
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Participants’ action estimates in group AI explanation and note

were lower than those in group AI explanation and no note and

were not significantly different than those from AI prediction

and no note or AI prediction and note. This implies that the effect

of CF explanations on participants’ causal beliefs was attenu-

ated and no different from that in groups where CF explanations

of AI systems’ predictions were not shown. Moreover, Figure 3

suggests that participants’ action estimates in AI explanation

and note were lower than those in explanation and no note for

almost all features/factors. These results directly support our hy-

pothesis.

Finally, participants’ confidence estimates were again dif-

ferent from their expectation estimates. But, unlike in Experiment

1, where there was a downward trend in participants’ confidence

estimates, Experiment 2 found that AI prediction groups’ esti-

mates were lower than both control groups’ and AI explanation

groups’ estimates and that there was no significant difference

between control groups’ and AI explanation groups’ estimates.

In Experiment 1, we speculated that confidence estimates might

be driven by some factors/features not being relevant to salary or

in an anti-causal relationship to (i.e., effects of) salary. However,

the data form Experiment 2 does not seem to support this

supposition.

DISCUSSION

If one of the aims of XAI is to provide human users with informa-

tion that will help thembetter understand howan AI system came
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Figure 4. Experiment 2 results for each
factor/feature and each dependent variable
We find that the similar distributions of estimates
for different factors as in Experiment 1. Further-
more, we also find the trend of reduction in action
estimates when the note is present compared with
when it is not.

to a prediction and how the system will

behave in the future, then we need to

communicate to that user as clearly as

possible the predictive and associative

(rather than the causal) nature of these

systems so that the mental models hu-

mans create based on that information

are more genuine and representative of

the AI system’s nature.

Two experiments showed that partici-

pants’ causal estimates were significantly

higher when they were presented with a

CF explanation compared with both the

baseline and when only the prediction

was communicated. We further found

that this was not the case for people’s be-

liefs regarding how good the feature/fac-

tors are at predicting salary and that there

was no significant difference in expecta-

tion estimates difference between the

group where only predictions were pre-

sented and the group where both the pre-

diction and a CF explanation was included. This result suggests

people’s expectation estimates cannot account for the differ-

ences in their causal beliefs and that these differences were in

fact due to CF explanations alone. This implies that CF explana-

tion of AI systems’ predictions can (unjustifiably) skew people’s

causal beliefs about the world.

We also found that one might be able to guard against the un-

wanted effect of CF explanations on causal beliefs. Inspired by

the work on misinformation and health warning messaging, we

designed a note communicating to the participants the correla-

tional character of AI systems rather than causal. Adding the

note reduced the effect of CF explanation on the participants’

causal beliefs.

Future work
In this study, we have used salary as a domain. This is because

we expected that participants are largely familiar with this

domain, which would allow us to test whether their expectation

and action estimates were in line with what we expected. As their

estimates were in line with our expectations, this provided evi-

dence for the appropriateness of the metrics we used. Further

research should explore other domains; in particular, the do-

mains that people are not as familiar with. We expect, however,

that the effect of adding a CF explanation on action estimates will

be at least as great as in this study. From Figures 2 and 4, we can

see that when participants’ expectation estimates were relatively

low (e.g., owning a smart watch, owning an office plant, and get-

ting expensive haircuts), implying that they believed the
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association between the features/factors and salary was weak,

their action estimates were invariably higher in the AI explanation

condition compared with the other two conditions. If, as seems

plausible, when reasoning in a relatively unfamiliar domain, par-

ticipants believe there is a weak association between the fea-

tures/factors and the label, then we would expect to find a

greater impact of adding CF explanations on their action esti-

mates compared with this study, as this study also included fea-

tures that are intuitively causally efficacious with respect to the

label (e.g., having an advance degree or sector the employee

works in).

A wealth of research on explanation and explanatory good-

ness suggests that simpler explanations have a bigger impact

on our (causal) beliefs.42–45 In our studies, only one feature/factor

was included in a CF explanation at a time, so our CF explana-

tions were on the simpler side of the spectrum. This could imply

that the CF explanations that include multiple factors and are a

combination of these factors have less impact on our causal be-

liefs about the world than the simpler CF explanation that uses

one or two factors. Further research should explore how more

complex CF explanations of AI systems’ predictions affect peo-

ple’s causal beliefs about the world. It should be noted that

although increasing the complexity of CF explanations may

reduce their undesired impact on our causal beliefs, it may at

the same time increase the time needed to process these expla-

nations and reduce satisfaction.46

Finally, we have only briefly discussed the role of the partici-

pants’ confidence in their expectation estimates. We found

that confidence estimates are clearly different from the expecta-

tion ones. However, we have not explored in further detail how

confidence estimates may depend on whether people are just

told about the AI system’s prediction or they are also told the

CF explanation. It may be interesting to explore how confidence

estimates interact with people’s estimates of how accurate they

believe the AI system is in predicting the label.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2022.100635.
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