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Abstract—We consider the approximate pattern matching
problem under the edit distance. Given a text T of length n, a
pattern P of length m, and a threshold k, the task is to find the
starting positions of all substrings of T that can be transformed
to P with at most k edits. More than 20 years ago, Cole and
Hariharan [SODA’98, J. Comput.’02] gave an O(n+k4 ·n/m)-
time algorithm for this classic problem, and this runtime has not
been improved since.

Here, we present an algorithm that runs in time O(n +
k3.5√logm log k · n/m), thus breaking through this long-
standing barrier. In the case where n1/4+ε ≤ k ≤ n2/5−ε

for some arbitrarily small positive constant ε, our algorithm
improves over the state-of-the-art by polynomial factors: it
is polynomially faster than both the algorithm of Cole and
Hariharan and the classic O(kn)-time algorithm of Landau and
Vishkin [STOC’86, J. Algorithms’89].

We observe that the bottleneck case of the alternative O(n+
k4 · n/m)-time algorithm of Charalampopoulos, Kociumaka,
and Wellnitz [FOCS’20] is when the text and the pattern are
(almost) periodic. Our new algorithm reduces this case to a new
Dynamic Puzzle Matching problem, which we solve by building on
tools developed by Tiskin [SODA’10, Algorithmica’15] for the so-
called seaweed monoid of permutation matrices. Our algorithm
relies only on a small set of primitive operations on strings and
thus also applies to the fully-compressed setting (where text and
pattern are given as straight-line programs) and to the dynamic
setting (where we maintain a collection of strings under creation,
splitting, and concatenation), improving over the state of the art.

Index Terms—approximate pattern matching, edit distance

I. INTRODUCTION

Almost every introductory algorithms textbook covers the
pattern matching problem: in a given text T of length n, we
wish to find all occurrences of a given pattern P of length m.
As fundamental as both this problem and its solutions are by
today, as apparent are their limitations: a single surplus or
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missing character in the pattern (or in a potential occurrence)
results in (potentially all) occurrences being missed. Hence, a
large body of work focuses on approximate pattern matching,
where we want to identify substrings of the text that are close
to the pattern. In particular, in this paper, we consider a classic
variant of approximate pattern matching where we allow
for up to k character insertions, deletions, and substitutions
(collectively: edits); that is, we consider approximate pattern
matching under the edit distance.

Formally, for two strings X and Y , their edit distance
(also known as the Levenshtein distance) δE(X,Y ) is the
minimum number of insertions, deletions, and substitutions
of single characters required to transform X into Y . Now,
in the pattern matching with edits problem, for a given
text T , pattern P , and an integer threshold k > 0, the
task is to find the starting positions of all k-error (or k-
edit) occurrences of P in T . Specifically, we wish to list
all positions v in T such that the edit distance between
T [ v . .w ) := T [ v ]T [ v+1 ] · · ·T [w−1 ] and P is at most k
for some position w; we write OccEk (P, T ) to denote the set
of all such positions v.

Let us highlight the main prior results for pattern matching
with edits; for a thorough review of other (in particular) early
results on pattern matching with edits, we refer to the extensive
survey of Navarro [21]. Back in 1980, Sellers [23] demon-
strated how the standard dynamic-programming algorithm
for computing δE(P, T ) can be adapted to an O(nm)-time
algorithm for the pattern matching with edits problem. Around
the same time, Masek and Paterson [20] reduced the running
time by a poly-logarithmic factor using the Four-Russians
technique. Only several year later, Landau and Vishkin [18]
presented an O(nk2)-time solution, which they could then im-
prove to the—by now—classic “kangaroo jumping” algorithm
that solves this problem in O(nk) time [19]. In search of even
faster methods, Sahinalp and Vishkin [22] developed an algo-
rithm that runs in time O(n+nk8+1/3(log∗ n)1/3/m1/3)—this
algorithm was then improved by Cole and Hariharan [10], who
gave an O(n+k4n/m)-time solution, which is asymptotically
faster than the aforementioned Landau–Vishkin algorithm
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Fig. 1. The running time t(n, k) of algorithms for the approximate pattern matching problem under the edit distance as a function of k for the important
special case where m = Θ(n). The scale is doubly logarithmic and sub-polynomial factors are hidden; running times below n and above n2 are not relevant,
neither are values of k that lie above n. Any point that lies strictly to the bottom-right of the green line segment is unattainable unless SETH fails.

when k = o( 3
√
m), and in that setting remained the fastest

known algorithm prior to this work.
From a lower-bound perspective, we can benefit from the

discovery that the classic quadratic-time algorithm for com-
puting the edit distance of two strings is essentially optimal:
Backurs and Indyk [4] recently proved that any polynomial-
factor improvement would yield a major breakthrough for
the satisfiability problem. For pattern matching with edits,
this means that there is no hope for an algorithm running
in time O(n + k2−εn/m) for any constant ε > 0: given
an O(n + k2−εn/m)-time algorithm for pattern matching
with edits, we could compute the edit distance of any two
given strings X and Y of total length N over an alphabet
Σ in time O(N2−ε logN). Specifically, we pad X and Y to
P := $2NX$2N and T := $2NY $2N , where $ /∈ Σ. Now, due
to minv,w δE(P, T [ v . .w )) = δE(P, T ) = δE(X,Y ), we can
binary search for the smallest value of k such that OccEk (P, T )
is not empty.

Despite the large gap between the quadratic and bi-quadratic
dependency on k, no further advancements have been made
to settle the running time of the pattern matching with edits
problem. In particular, there has not even been any progress
on resolving the 24-year-old conjecture of Cole and Hariha-
ran [10] that an O(n + k3n/m)-time algorithm should be
possible—until now. We give the first algorithm that improves
over the running time achieved by Cole and Hariharan [10]:

Theorem I.1. Given a text T of length n, a pattern P of
length m, and an integer threshold k > 0, we can compute
the set OccEk (P, T ) in O(n+ n/m · k3.5√logm log k) time.

Observe that if k is roughly between n1/4 and n2/7, we

obtain the first linear-time algorithm for the important special
case where text and pattern are close in length. Further, we still
obtain polynomial improvements in the running time for values
of k that are roughly less than n2/5. Consult Figure 1 for a
graphical comparison of the running times of our algorithm
with the previous state-of-the-art and the conditional lower
bound discussed above.

The PILLAR Model and Faster Algorithms in Other Settings
The generality of our approach allows for an easy adaptation

to settings where the text and the pattern are not given
explicitly, such as the dynamic setting (cf., Theorem I.3) and
the fully-compressed setting (cf., Theorem I.4). In particular,
we follow the approach by Charalampopoulos, Kociumaka,
and Wellnitz [8] and implement the algorithm in the so-called
PILLAR model. In that model, one bounds the running times
of algorithms in terms of the number of calls to a small
set of very common operations (the PILLAR operations) on
strings, such as computing the length of their longest common
prefix. Then, for any setting, an efficient implementation of
the PILLAR operations yields a fast algorithm for approxi-
mate pattern matching. For pattern matching with edits, [8]
presented an algorithm that runs in O(n/m · k4) time in the
PILLAR model. We improve upon their algorithm.

Theorem I.2. Given a pattern P of length m, a text T
of length n, and an integer threshold k > 0, we can compute
a representation of the set OccEk (P, T ) as O(n/m · k3)
arithmetic progressions with the same difference in O(n/m ·
k3.5

√
logm log k) time in the PILLAR model.

Consistently with [8], we represent the set OccEk (P, T ) as
O(k3) disjoint arithmetic progressions with a common differ-



ence. Unless P is almost periodic, though, OccEk (P, T ) is of
size O(k2), and we can list the k-error occurrences explicitly;
see [8] for a structural characterization of OccEk (P, T ).

In the standard setting, where the text and the pattern are
both given explicitly, after an O(n)-time preprocessing, we
can perform each primitive PILLAR operation in constant
time. We thus instantly obtain Theorem I.1. The same PILLAR
implementation remains valid in the internal setting introduced
in [14]. Specifically, after a linear-time preprocessing of an
input string X , the algorithm of Theorem I.2 can efficiently
compute OccEk (P, T ) for any two fragments P and T of the
string X .

In the full version (see also [8]), we show that existing
implementations of the primitive operations of the PILLAR
model allow us to also obtain efficient algorithms for pattern
matching under edit distance in the fully-compressed setting
(where the text and the pattern are given as straight-line
programs) and in the dynamic setting (where we maintain
a collection of strings under creation, splitting, and con-
catenation). Our algorithms improve over the state-of-the-art
algorithms of [8] for these settings: we trade a

√
k factor for a

factor that is asymptotically upper-bounded by the logarithm
of the length of the considered pattern. Formally, we obtain
the following results.

Theorem I.3 (♢). We can maintain a collection X of
non-empty persistent strings of total length N subject to
makestring(U), concat(U, V ), and split(U, i) operations
that require O(logN + |U |), O(logN), and O(logN) time,
respectively, so that given two strings P, T ∈ X , and
an integer threshold k > 0, we can compute a rep-
resentation of OccEk (P, T ) as O(|T |/|P | · k3) arithmetic
progressions with the same difference in time O(|T |/|P | ·
k3.5

√
log |P | log k log2 N).1

Theorem I.4 (♢). Let GT denote a straight-line program
of size n generating a string T , let GP denote a straight-
line program of size m generating a string P , let k > 0
denote an integer threshold, and set N := |T | and M :=
|P |. We can compute |OccEk (P, T )| in time O(m logN +
nk3.5 log2 N

√
logM log k log logN) and we can report the

elements of OccEk (P, T ) within O(|OccEk (P, T )|) extra time.

II. RELATED WORK

Pattern Matching with Mismatches

The Hamming distance of two (equal-length) strings is the
number of positions where the strings differ. This metric is
more restrictive than edit distance since it allows substitutions
but does not support insertions or deletions.

In the pattern matching with mismatches problem, we are
given a text T of length n, a pattern P of length m, and
an integer threshold k > 0, and we wish to compute the k-
mismatch occurrences of P in T , that is, all length-m sub-
strings of T that are at Hamming distance at most k from P .

1All running time bounds hold with high probability (that is, 1−1/NΩ(1)).
A deterministic version can be obtained at the cost of a poly(log logN)-
factor overhead.

This problem has been extensively studied since the 1980s. A
long line of works [1], [3], [6], [9], [11], [12], [15], [17] has
culminated in an Õ(n + kn/

√
m)-time algorithm,2 presented

by Gawrychowski and Uznański [12], who also showed that
no significantly faster “combinatorial” algorithm exists. In
other words, any polynomial-factor improvement over the
result of [12] would require using fast matrix multiplication;
nevertheless, the existence of such an “algebraic” solution
remains a challenging open question.

As shown in [8], pattern matching with mismatches admits
an Õ(k2 ·n/m)-time algorithm in the PILLAR model. Analo-
gously to pattern matching with edits, this solution constitutes
the basis of the state-of-the-art algorithms in the internal, fully-
compressed, and dynamic settings.

Online Algorithms for Pattern Matching with Edits
The pattern matching with edits problem has also been con-

sidered in the online setting, where the text arrives character
by character and, by the time T [w ] becomes available, the al-
gorithm needs to decide whether minv δE(P, T [ v . .w )) ≤ k.
Landau, Myers, and Schmidt [16] provided an online algo-
rithm that runs in O(k) time per character. Subsequent work
focused on the streaming model, whether the main emphasis
is on reducing the space complexity of an online algorithm,
usually at the cost of introducing Monte-Carlo randomization.
Starikovskaya [24] presented an algorithm for this setting with
both the space usage and the time required to process each
character of the text being proportional to

√
m(k logm)O(1).

Very recently, Kociumaka, Porat, and Starikovskaya [13],
improved upon this result, presenting an algorithm that uses
Õ(k5) space and processes each character of the text in Õ(k8)
amortized time.

Approximating Pattern Matching with Edits
Chakraborty, Das, and Koucký [5] presented an Õ(nm3/4)-

time algorithm that produces, for each position w of the text,
a constant-factor approximation of minv δE(P, T [ v . .w )).
They also provided an online algorithm with a weaker ap-
proximation guarantee.

III. TECHNICAL OVERVIEW

For a string P (also called a pattern), a string T (also
called a text), and an integer k > 0 (also called a threshold),
we say that P has a k-error occurrence in T at position v
if δE(P, T [ v . .w )) ≤ k holds for some w ≥ v. We write
OccEk (P, T ) to denote the set of the starting positions of k-
error occurrences of P in T , that is,

OccEk (P, T ) := {v : ∃w≥v δE(P, T [ v . .w )) ≤ k}.
We now formally state the pattern matching with edits prob-
lem.

PMWITHEDITS(P, T, k)
Input: A pattern P of length m, a text T of length n, and a
positive integer k ≤ m.
Output: The set OccEk (P, T ).

2Here and throughout, Õ(⋆) hides logO(1) n factors.



A. The AlignedPeriodicMatches Problem

Let us start with a short exposition of parts of our notation.3

A string S is primitive if it cannot be expressed as Uy for a
string U and an integer y > 1. For two strings U and V , we
write

δE(U, V
∗) := min{δE(U, V ∞[ 0 . . j )) : j ∈ Z≥0}

to denote the minimum edit distance between U and any prefix
of V ∞ = V · V · · · . Further, we write

δE(U,
∗V ∗) := min{δE(U, V ∞[ i . . j )) : i, j ∈ Z≥0, i ≤ j}

to denote the minimum edit distance between U and any
substring of V ∞.

As we explain in the full version, a recent algorithm of
Charalampopoulos, Kociumaka, and Wellnitz [8] reduces the
PMWITHEDITS problem to several instances of the following
restricted variant. The input of this variant additionally con-
tains a string Q that is a common approximate period of P
and T , as well as witness edit-distance alignments AP and AT ,
which describe how to transform strings P and T , respectively,
to appropriate substrings of Q∞ using O(d) edits.

ALIGNEDPERIODICMATCHES(P, T, k, d,Q,AP ,AT )
Input:

• a pattern P of length m,
• an integer threshold k ∈ [ 0 . .m ],
• a positive integer d ≥ 2k,
• a text T of length n ∈ [m− k . .

⌈
3/2 m

⌉
+ k ),

• a primitive string Q of length q := |Q| ≤ m/8d,
• an edit-distance alignment AP : P Q∞[ 0 . . yP ) of

cost dP := δE(P,
∗Q∗) = δE(P,Q

∗) ≤ d, and
• an edit-distance alignment AT : T Q∞[xT . . yT ) of

cost dT := δE(T,
∗Q∗) ≤ 3d, where xT ∈ [ 0 . . q ).

Output: The set OccEk (P, T ) represented as O(d3) disjoint
arithmetic progressions with difference q.

Specifically, [8] implies the following reduction.

Fact III.1 (♢). Given an instance (P, T, k) of
the PMWITHEDITS problem, one can compute a
representation of the set OccEk (P, T ) as O(n/m · k3)
disjoint arithmetic progressions with the same difference
in time O(n/m · k3) in the PILLAR model plus
the time required for solving several instances
ALIGNEDPERIODICMATCHES(Pi, Ti, ki, di, Qi,APi

,ATi
),

where
∑

i |Pi| = O(n) and, for each i, we have |Pi| ≤ m
and di = ⌈8k/m · |Pi|⌉.

Remark III.2. When Fact III.1 is applied to an instance
of the PMWITHEDITS problem such that the pattern P is
approximately periodic, the input (Pi, Ti, ki, di, Qi,APi

,ATi
)

to each produced instance of ALIGNEDPERIODICMATCHES
satisfies the following conditions: Pi = P , Ti is a fragment of

3Consult also the full version, where we provide a comprehensive exposi-
tion of the notation used throughout this paper, including those we consider
standard.

T , ki = k, and d = O(k). For the purposes of this technical
overview, one can focus solely on that case.

Using the algorithm of [8, Lemma 6.11] to solve the
ALIGNEDPERIODICMATCHES problem in O(d4) time in the
PILLAR model, the time (in the PILLAR model) required
for solving all instances of the ALIGNEDPERIODICMATCHES
problem that are generated by Fact III.1 is

∑

i

O(d4i ) =
∑

i

O(k4/m4 · |Pi|4)

=
∑

i

O(k4/m · |Pi|) = O(n/m · k4).

In particular, we can reinterpret the O(n/m · k4)-time algo-
rithm of [8] for the PMWITHEDITS problem as a combination
of Fact III.1 and [8, Lemma 6.11]. Our main contribution is
the following faster algorithm for the ALIGNEDPERIODIC-
MATCHES problem.

Lemma III.3 (AlignedPeriodicMatches(P, T, k,
d, Q, AP, AT), ♢). We can solve the ALIGNED-
PERIODICMATCHES problem in O(d3.5

√
log n log d) time in

the PILLAR model.

By combining Fact III.1 and Lemma III.3, we obtain
Theorem I.2.

Theorem I.2. Given a pattern P of length m, a text T
of length n, and an integer threshold k > 0, we can compute
a representation of the set OccEk (P, T ) as O(n/m · k3)
arithmetic progressions with the same difference in O(n/m ·
k3.5

√
logm log k) time in the PILLAR model.

Proof. By Fact III.1, in O(n/m · k3) time, we can
reduce the PMWITHEDITS problem to several instances
ALIGNEDPERIODICMATCHES(Pi, Ti, ki, di, Qi,APi

,ATi
),

where
∑

i |Pi| = O(n) and, for each i, we have |Pi| ≤ m
and di = ⌈8k/m · |Pi|⌉. By Lemma III.3, the time required
for solving all the obtained instances (in the PILLAR model)
is

∑

i

O(d3.5i

√
log |Ti| log di)

=
∑

i

O(k3.5/m3.5 · |Pi|3.5
√

logm log k)

=
∑

i

O(k3.5/m · |Pi|
√
logm log k)

= O(n/m · k3.5
√

logm log k).

B. A Fast Algorithm for the AlignedPeriodicMatches Problem

We continue with a high-level description of the algorithm
that underlies Lemma III.3. In what follows we assume for
simplicity that m/k ≫ q ≫ k and that both Q∞[ 0 . . yP )
and Q∞[xT . . yT ) are powers of Q.

A First Solution via the DynamicPuzzleMatching Problem:
Let us first discuss how the (almost) periodicity of P and
T yields a simple way to filter out many potential starting
positions of k-error occurrences.
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Fig. 2. S1, . . . , S7 is a 4-puzzle whose value is S.

As an introductory example, suppose that P and T are
perfectly periodic with period Q, that is, P = Q∞[ 0 . .m )
and T = Q∞[ 0 . .n ). Observe that in this special case, AP

and AT are cost-0 alignments (that is, dT = dP = 0),
and we have m = yP , 0 = xT , and n = yT . Next, we
argue that all k-error occurrences of P in T start around the
positions in T where exact occurrences of Q start, that is,
in the intervals [ jq − k . . jq + k ] for j ∈ Z.4 To that end,
observe that, for any alignment of cost at most k mapping
P to a fragment T [ v . .w ) of T , at least one of the copies
of Q that comprise P must match exactly; otherwise the edit
distance would be much larger than k. Suppose that the i-th
copy of Q, that is, P [ iq . . (i + 1)q ), is matched exactly. As
Q is primitive and hence does not match any of its non-
trivial rotations, P [ iq . . (i + 1)q ) must be matched with a
fragment T [ i′q . . (i′ + 1)q ) of T . As the entire alignment
makes at most k insertions and deletions, this implies that
v ∈ [ (i′ − i)q − k . . (i′ − i)q + k ].

In general, the strings P and T are only almost periodic—
in particular, the edits in AT and AP may widen the intervals
of potential starting positions, albeit only by a dT + dP ≤ 4d
additive term. Since k < d, we have

OccEk (P, T ) ⊆
⋃

j∈Z
[ jq − 5d . . jq + 5d ].

Hence, for each j, we define a fragment Rj = T [ rj . . r
′
j ) of

T that is of length m+O(d) and, in the considered instance,
is responsible for capturing k-error occurrences of P in T that
start in [ jq − 5d . . jq + 5d ]; specifically, we have

rj +OccEk (P,Rj) ⊇ OccEk (P, T ) ∩ [ jq − 5d . . jq + 5d ].

In addition, we identify a set J ⊆ Z of size O(m/q) such that

OccEk (P, T ) =
⋃

j∈J

(
rj +OccEk (P,Rj)

)
.

Our goal is to compute occurrences of P in each Rj

separately. To that end, observe that both P and all Rjs
essentially decompose into (possibly slightly “edited”) copies
of Q. In particular, for j, j+1 ∈ J , we can obtain Rj+1 from
Rj by replacing O(d) such “edited” copies. As a first step

4Under our earlier assumption that q ≫ k, this claim indeed allows for
filtering out some positions where no occurrence may start as we have jq +
k ≪ (j + 1)q − k in that case.

toward capturing the notions of P and Rj being decomposed
into pieces and our algorithm replacing pieces of Rj , we define
∆-puzzles; consult Figure 2 for a visualization of an example
of a ∆-puzzle.

Definition III.4. For an integer ∆ ∈ Z≥0, we say that z ≥ 2
strings S1, . . . , Sz form a ∆-puzzle if

• |Si| ≥ ∆ for each i ∈ [ 1 . . z ], and
• Si[ |Si|−∆ . . |Si| ) = Si+1[ 0 . .∆ ) for all i ∈ [ 1 . . z ).

The value val∆(S1, . . . , Sz) of the puzzle is

S1 · S2[∆ . . |S2| ) · S3[∆ . . |S3| ) · · ·Sz[∆ . . |Sz| ).
In the full version, we define pieces P1, . . . , Pz and

Tj,1, . . . , Tj,z (for each j ∈ J) that form ∆-puzzles with
values P and Rj , respectively, where ∆ := 6(dP + dT + k).
Let us intuitively describe these pieces.5 First, let us partition
both P and T into tiles, that is, maximal fragments that are
aligned to different copies of Q by AP and AT , respectively.
Observe that all but O(d) tiles are exact copies of Q. Further,
the endpoints Rj are O(d) positions apart from tile boundaries.
We then obtain an induced partition for Rj by extending the
first and last tiles that it fully contains these O(d) positions.
Finally, we extend all tiles of the partition of P and the induced
partition of Rj , other than the trailing ones, by ∆ characters
to the right. Consult Figure 3 for a visualization of this setting.

We call pieces P2, . . . , Pz−1 and Tj,2, . . . , Tj,z−1 (for j ∈
J) internal. Observe that, for each i, all internal pieces of
the form Tj,i′ with j + i′ = i coincide; that is, overlapping
parts of different Rjs share their internal pieces. Hence, for
each i ∈ (min J + 1 . . max J + z ), we define Ti := Tj,i′

for any j ∈ J and i′ ∈ ( 1 . . z ) with j + i′ = i. This is
an essential property for our approach to work: when moving
from Rj to Rj+1, we only need to shift the pieces Ti, and not
to recompute them altogether.

Now, suppose that we can efficiently maintain a pair of ∆-
puzzles so that we can at any time efficiently query for the k-
error occurrences of the value of the first puzzle in the value of
the second one. Then, as a warm-up solution, we can initialize
the two puzzles as P1, . . . , Pz and Tmin J,1, . . . , Tmin J,z and
then replace pieces of the second puzzle as necessary in order

5This description provides an oversimplified definition of pieces. In par-
ticular, as defined in the full version, P1 covers at least 2 tiles whereas Pz

covers 17 tiles. This is due to complications arising without the assumption
q ≫ k.
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Fig. 3. Both P and T are partitioned into tiles. Specifically, dashed lines indicate the copy of Q to which a tile of P (or T ) is aligned by AP (or AT ).
For example, AP aligns the shaded tile of P with the fifth copy of Q. The fragment Rj starts O(d) positions prior to the start of the second tile of T and
ends O(d) positions after the end of the eighth tile. The pieces P1, . . . , P7 and Tj,1, . . . , Tj,7 form ∆-puzzles with values P and Rj , respectively.

to iterate over puzzles Tj,1, . . . , Tj,z for all j ∈ J . In fact, our
final algorithm iterates over carefully trimmed versions of such
puzzles, where we omit plain pieces that do not contribute to
the solution set in an interesting manner. Formally, we capture
the problem of maintaining such a pair of puzzles with the
DYNAMICPUZZLEMATCHING problem.

DYNAMICPUZZLEMATCHING(k,∆,Sβ ,Sµ,Sφ)
Input: Positive integers k and ∆, as well as families Sβ , Sµ,
and Sφ of leading, internal, and trailing pieces, respectively.
Maintained object: A DPM-sequence I = (U1, V1)
(U2, V2) · · · (Uz, Vz) of ordered pairs of strings, that addi-
tionally satisfies the following two conditions:
(a) U1, V1 ∈ Sβ , Uz, Vz ∈ Sφ, and, for all i ∈ ( 1 . . z ),

Ui, Vi ∈ Sµ,
(b) The torsion tor(I) :=

∑z
i=1

∣∣|Ui| − |Vi|
∣∣ satisfies

tor(I) ≤ ∆/2− k.
Update operations:

• DPM-Delete(i): Delete the i-th pair of strings.
• DPM-Insert((U ′, V ′), i): Insert the pair of strings

(U ′, V ′) after the i-th pair of strings.
• DPM-Substitute((U ′, V ′), i): Substitute the i-

th pair of strings with the pair of strings (U ′, V ′).
It is assumed that I satisfies conditions (a) and (b) at
initialization time and after each update.
Query (DPM-Query): Under a promise that U1, . . . , Uz

and V1, . . . , Vz are ∆-puzzles, return

OccEk (I) := OccEk (val∆(U1, . . . , Uz), val∆(V1, . . . , Vz))

We move on to our main result for the DYNAMICPUZZLE-
MATCHING problem. For a precise statement, we need to
be able to quantify the complexity of the input families
of strings; formally we define the median edit distance of
a family S of strings over an alphabet Σ as δE(S) :=
minŜ∈Σ∗

∑
S∈S δE(S, Ŝ). Now, our result reads as follows.

Theorem III.5 (♢). There is a data structure for
DYNAMICPUZZLEMATCHING(k,∆,Sβ ,Sµ,Sφ) supporting
O(∆ log z log∆)-time updates and queries, O(∆z log∆)-
time initialization, and O((d3 + ∆2d) log2(d + ∆))-time
preprocessing, where d = δE(Sβ) + δE(Sµ) + δE(Sφ).6

Let us defer a detailed discussion of the proof of The-
orem III.5 to the end of this overview. Here, we discuss
its application to the ALIGNEDPERIODICMATCHES problem
with the following string families.

Sβ := {P1} ∪ {Tj,1 : j ∈ J},
Sµ := {Pi : i ∈ ( 1 . . z )}

∪ {Ti : i ∈ (min J + 1 . . max J + z )},
Sφ := {Pz} ∪ {Tj,z : j ∈ J}.

Next, we define multisets Special(P ), Special(T ), and
Specialβφ(T ) of special pieces—in this overview, we focus

6Recall that z is the length of the DPM-sequence that we maintain in the
data structure.



on the two former multisets. In our fixed instance, we have

Special(P )={Pi : i ∈ ( 1 . . z ) and Pi ̸= Q∞[ 0 . . q +∆ )},
Special(T )={Ti : i ∈ ( 1 + min J . . z +max J )

and Ti ̸= Q∞[ 0 . . q +∆ )}.

As mentioned earlier, there are only very few special pieces—
crucially, we show the following lemma.

Lemma III.6 (♢). The median edit distance of each of the
families Sβ , Sµ, and Sφ is bounded by O(d).

Further, each of the multisets Special(P ), Special(T ), and
Specialβφ(T ) is of size O(d) and can be computed in O(d)
time in the PILLAR model.

For j ∈ J , let Ij denote the DPM-sequence (P1, Tj,1)
(P2, Tj,2) · · · (Pz, Tj,z). Now for j ∈ J \ max J , each of Ij
and Ij+1 contains O(d) special pairs, that is, pairs that contain
special pieces. Hence, we can naively iterate over all Ijs
in an instance of the DYNAMICPUZZLEMATCHING problem
using O(d · |J |) updates; in the considered instance we have
d · |J | = O(d ·m/q). Consult the full version for details of this
reduction in the general case. As a preliminary improvement,
also in the full version, we show how to reduce the number of
updates to O(d3). Let us give a brief sketch of this reduction.

We call a pair of pieces (Pi, Tj,i) plain if i ∈ ( 1 . . z )
and neither Pi nor Tj,i is special; in the restricted case that
we are considering here, the second condition is equivalent to
Pi = Tj,i = Q∞[ 0 . . q + ∆ ). For j ∈ J , let I ′

j denote the
DPM-sequence obtained from Ij by trimming each run (that
is, maximal contiguous subsequence) of plain pairs in Ij to
length k + 1 by deleting excess pairs.

The main idea is that we do not gain or lose any k-error
occurrences by trimming the DPM-sequences, that is, we have
OccEk (Ij) = OccEk (I ′

j). One direction is easy: removing the
same substring from two strings P and T may only decrease
the edit distance between P and T ; this naturally translates
to DPM-sequences. For the other direction, observe that if a
DPM-sequence contains a run of at least k+1 plain pairs, then
any cost-k alignment between the corresponding strings has to
perfectly match at least one copy of Q in such a run—we can
hence duplicate said copy by adding more plain pairs in the
DPM-sequence without increasing the cost of the alignment.
Induction then yields the claim.

With the aim of obtaining an O(d3) upper bound on the
number of required updates for iterating over the I ′

js, let us
think of the process of shifting P along T . For each j, each
run of plain pairs in Ij can be attributed to a run of plain
pieces in P2, . . . , Pz−1 that overlap a run of plain pieces in
Tj,2 . . . Tj,z−1. As we shift P , in the most general case, the
length of the overlap first increases, then it remains static,
and, finally, it decreases. Overall, as j gets incremented, a
run of plain pairs that is attributed to a specific pair of runs
of plain pieces may change length ω(d) times. However, after
trimming the lengths of all runs of plain pairs to k+1 = O(d),
the length of such a run gets incremented/decremented O(d)
times. As we have O(d) special pieces in each of P and T , we

have O(d2) pairs of runs of plain pieces, and hence we get the
desired O(d3) upper bound, as we can bound the number of
updates other than insertions/deletions of plain pairs by O(d2).

Note that we cannot always iterate explicitly over all
I ′
js as this would require Ω(m/q) calls to DPM-Query.

We circumvent this problem by observing that if we have
I ′
j−1 = I ′

j (for some j ∈ J \min J), then rj+OccEk (P,Rj) =

q + rj−1 + OccEk (P,Rj−1). Consequently, for any maximal
interval [ j1 . . j2 ] ⊆ J where I ′

j1
= · · · = I ′

j2
, we only pro-

cess I ′
j1

; then, for each position u ∈ OccEk (P,Rj1), we report
an arithmetic progression {rj1 + u + iq : i ∈ [ 0 . . j2 − j1 ]}
of k-error occurrences of P in T . On a high level, we are
offloading the computation of

⋃j2
j=j1

(
rj + OccEk (P,Rj)

)
to

the computation of OccEk (I ′
j1
).

A Faster Solution: To obtain a faster solution for the
ALIGNEDPERIODICMATCHES problem, we intend to trim
runs of plain pairs even further, to a length of roughly Õ(

√
d).

Now, naively processing the obtained DPM-sequences, we
may obtain “false-positive” occurrences, but—as we prove in
the full version—not too many. In particular, we can extend
existing tools to filter out such “false-positive” occurrences.

For a slightly more detailed overview, for any two positions
v < w of T , let us write Q∞[ ρ(v) . . ρ(w) ) for the fragment
of Q∞ that AT aligns with T [ v . .w ). Suppose that we have

δE(P,
∗Q∗) = δE(P,Q

∞[ ρ(v) . . ρ(w) ))

≤ δE(T [ v . .w ), ∗Q∗)

= δE(T [ v . .w ), Q∞[ ρ(v) . . ρ(w) )).

Then, the triangle inequality yields

Λ := δE(P,
∗Q∗) + δE(T [ v . .w ), ∗Q∗)

≥ δE(P, T [ v . .w ))

≥ δE(T [ v . .w ), ∗Q∗)− δE(P,
∗Q∗).

We see that, intuitively, the best case is when all the er-
rors of P with Q∞[ ρ(v) . . ρ(w) ) cancel out with errors
of T [ v . .w ) with Q∞[ ρ(v) . . ρ(w) ). Now, roughly speak-
ing, for each position v of T , we quantify the “potential
savings” that an alignment P T [ v . .w ) of cost at most
k may yield compared to minx δE(P,Q

∞[ ρ(v) . .x )) +
miny δE(T [ v . .w ), Q∞[ ρ(v) . . y )). To this end, we use the
notion of locked fragments from [8] to mark each position of
the text with a number of marks proportional to said “potential
savings”. (A similar notion was used in [10].) Based on a
threshold η := Θ̃(

√
d) on the number of marks (and a few

technical conditions), we then classify each position as either
heavy or light. Details on locked fragments and our marking
scheme can be found in the full version.

Now, for our solution for ALIGNEDPERIODICMATCHES,
we first show that the set of heavy positions intersects Õ(

√
d)

ranges, each of size O(d), where a k-error occurrences of P
may start (recall that OccEk ⊆ ⋃

j∈Z[ jq− 5d . . jq+5d ]). We
can then compute the intersection of OccEk (P, T ) with heavy
positions efficiently, that is, in Õ(d3.5) time, using known
tools.



Having taken care of the heavy positions, we can return
to DYNAMICPUZZLEMATCHING for the light positions. To
that end, consider again T [ v . .w ), supposing that v is a light
position of T . We then have that Λ ≥ δE(P, T [ v . .w )) ≥
Λ − η. Now, the optimal alignment A from P to T [ v . .w )
has to make Λ − η edit operations just to align the locked
fragments of the text and the pattern. This means that the
number of edit operations that A makes in aligning portions
of P disjoint from the locked fragments of P to portions of
T disjoint from the locked fragments of T is at most η.

Now, we define a set Red(P ) ⊇ Special(P ) that addi-
tionally contains all pieces of P that overlap some locked
fragment of P ; we similarly define a set Red(T ) of pieces
of T . Importantly, both Red(P ) and Red(T ) are of size O(d).
Redefining plain pairs to be those that contain no red piece, we
show that we can trim each run of plain pairs to have a length
of O(η) = Θ̃(

√
d). This allows us to reduce our problem

to an instance of the DYNAMICPUZZLEMATCHING problem
with Θ̃(d2.5) updates in total; as before, we can essentially
charge all but O(d2) updates to O(d2) pairs of runs of plain
pairs, so that each such pair gets charged with Θ̃(

√
d) updates.

C. A Solution for the DynamicPuzzleMatching Problem

For our solution to the DYNAMICPUZZLEMATCHING prob-
lem, we rely on a framework of Tiskin [25], [26], [27] (which
we recall and extend in the full version). A key observation
behind this framework is that semi-local alignments between
strings U and V can be represented as paths between boundary
vertices of a certain alignment graph: a grid on vertices
[ 0 . . |V | ] × [ 0 . . |U | ], augmented with diagonal edges. All
horizontal and vertical edges have weight 1 (they represent
insertions and deletions), whereas each diagonal edge (u, v) ↔
(u + 1, v + 1) has weight 0 (for a match) or 1 (for a substi-
tution). Then, δE(V [ v . .w ), U) corresponds to the distance
from (v, 0) to (w, |U |). As observed in [27], even though there
are quadratically many such distances, they can be encoded
in linear space using a certain permutation matrix that we
denote by PV,U . Moreover, we can stitch alignment graphs by
computing a certain seaweed product of permutation matrices.
For example, PV,UU ′ can be expressed as the seaweed product
of PV,U and PV,U ′ (shifted appropriately so that the characters
of U ′ are indexed from |U | rather than from 0). Tiskin [26]
provided an O(n log n)-time algorithm for computing the
seaweed product of two n × n permutation matrices, but
we cannot hope to compute PV,U in truly subquadratic time
because it encodes δE(U, V ).

In our setting, though, the strings U and V are of similar
length (that is,

∣∣|V | − |U |
∣∣ ≤ tor(I) ≤ ∆/2− k) and we only

care about alignments of cost at most k. The underlying paths
corresponding to such alignments are fully contained within
a narrow diagonal band of the alignment graph: all of their
vertices (u, v) satisfy u − v ∈ I := [−k . . |V | − |U | + k ]
(in short, they belong to band I of the alignment graph); see
Figure 4 for an illustration. In order to capture this scenario,
we restrict the alignment graph to band I , which corresponds
to zeroing out the costs of all diagonal edges outside band I .

a

a

a

a

b

b

b

b

b

b

a a a a ab b b b b b b

Fig. 4. The alignment graph for U = bbabbbaaab and V = bbabbaabbaab.
Thin edges have cost 1 whereas thick edges have cost 0. The blue and orange
path represent cost-2 alignments U ⇝ V [ 0 . . 8 ) and U ⇝ V [ 3 . . 12 ),
respectively. The diagonal band I = [−2 . . 4 ] = [−k . . |V | − |U | + k ]
corresponding to k = 2 is shaded in blue.

We prove that the permutation matrix PU,V |I of the restricted
graph can be encoded in O(|I|) space and computed in
Õ(|I|2) time (in the PILLAR model). Moreover, we show
that PU,V |I can be expressed solely in terms of PU,V , which
leads to a new operation of restricting a permutation matrix
P to a given interval I . We write P |I for the result of said
operation and we present a linear-time algorithm that computes
P |I directly from P and I .

Let us now explain how these techniques are helpful in
solving the DYNAMICPUZZLEMATCHING problem. Our high-
level idea is to express PV,U |I as the seaweed product of z
smaller permutation matrices P1, . . . , Pz , with Pi depending
only on the i-th pair (Ui, Vi). For a first attempt, we could use
PVi,Ui , but the corresponding parts of the alignment overlap
and thus cannot be stitched easily. Thus, we trim each piece Ui

to U ′
i so that U = val∆(U1, . . . , Uz) = U ′

1 · · ·U ′
z . Now, the

seaweed product of matrices PVi,U ′
i

(shifted appropriately),
restricted a posteriori to interval I , yields PV,U |I . However,
the individual matrices PVi,U ′

i
are still too large, so we need to

restrict them a priori as well. Thus, we actually use PVi,U ′
i
|Ii ,

for appropriate intervals Ii of size at most ∆; see Figure 5
for an illustration. We build a balanced binary tree on top of
the permutation matrices PVi,U ′

i
|Ii in order to maintain their

seaweed product (so that every update requires recomputing
O(log z) partial products). For each query, we retrieve PV,U |I
and apply the SMAWK algorithm [2] in order to check, for
every v ∈ [ 0 . . |V |−|U |+k ], whether δE(U, V [ v . .w )) ≤ k
holds for some w ∈ [ |U | − k . . |W | ] in Õ(∆) time in total.

The remaining challenge is to build the matrices PVi,U ′
i
|Ii .

For this, we exploit the small median edit distance of the
families Sβ ,Sµ,Sφ to show that all such matrices can be
precomputed in Õ(d3 +∆2d) time. If the puzzle pieces were
of size O(d + ∆), we could simply use an algorithm of
Charalampopoulos, Kociumaka, and Mozes [7] that maintains
PX,Y subject to edits of X,Y . In general, though, we de-
compose each piece into O(d) parts: perfect parts, which
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Fig. 5. A schematic illustration explaining why PV,U |I , which corresponds to the purple band, can be obtained by the seaweed products of matrices PVi,U
′
i
|Ii ,

which correspond to the pink bands within the rectangles representing the alignment graphs of U ′
i and Vi (subgraphs of the alignment graph of U and V ).

can be arbitrarily long but are kept intact among all the
puzzle pieces, and imperfect parts, which can contain edits
but are of size O(∆). For each perfect part, we compute
a single restricted permutation matrix in Õ(∆2) time. For
imperfect parts, we use the dynamic algorithm of [7]. Finally,
the restricted permutation matrix of a pair of pieces is obtained
by stitching the matrices for pairs of parts similarly to how
we obtain PV,U |I from PVi,U ′

i
|Iis.

IV. OPEN PROBLEMS

The most important and obvious open problem is to close
the gap between upper and lower bounds for the pattern match-
ing with edits problem; as is depicted in Figure 1. In the quest
for faster algorithms, one could try to relax the problem in
scope, for instance, by considering its (easier) decision version
where we only need to check whether OccEk (P, T ) is empty, or
by allowing for some approximation by also reporting an arbi-
trary subset of the positions in OccE(1+ε)k(P, T )\OccEk (P, T )
for a small ε > 0.

Another research direction could be to devise an algorithm
with an analogous running time as the one presented here that
reports all fragments of T that are at edit distance at most
k from P (in appropriate batches); recall that OccEk (P, T )
is only the set of the starting positions of such fragments.
While we think that the O(k4 ·n/m)-time PILLAR algorithm
of [8] can be generalized to report all such fragments, our

Õ(k3.5 · n/m)-time solution does not seem to generalize. We
remark that Landau, Myers, and Schmidt [16] showed that all
the sought fragments can be listed in O(nk) time; for this,
they adapted the algorithm of [19].
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