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Figure 1: Peaks of individuality. Artificially generated image using DALL-
E2(Ramesh et al., 2022) and a human-in-the-loop approach.
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Abstract

In recent decades, replication efforts in research have found that many find-
ings are not reproducible. Many of these studies serve as the basis for others
that might be relying on false assumptions. This replication crisis stands out
in neurodevelopment research where heterogeneity in the typical human brain
cannot, in most cases, be probed directly and relies on proxy measures of brain
activity. This thesis develops three methodological frameworks for more robust
research paradigms. I employ machine learning algorithms to navigate and op-
timise spaces of hidden variables, such as outcome variation between individual
participants or data processing pipelines.

The first framework builds a closed-loop experiment where an experimen-
tal space is explored automatically to maximise an individual’s brain response.
Generative modelling is used to create spaces of face stimuli to be explored in
visual self-recognition. The framework is extended to EEG experiments with a
mum-stranger paradigm run with infant participants. This allows the researcher
to learn each individual’s responses across many stimuli.

The second framework builds a searchable space of different analysis. These
spaces are used to model how robust each approach is within the multiverse
of different analysis options. First, the multiverse of preprocessing pipelines is
explored for functional connectivity data with the task of predicting brain age
from adolescent developmental data. Second, a multiverse of predictive models
is explored for an EEG face processing task predicting autism.

The third framework is a normative modelling approach that uses state-of-
the-art machine learning algorithms to model normal variability in brain struc-
ture. This approach generalises to different cohorts characterised by deviations
from typical brain structure, detecting them as outliers. We illustrate its use by
successfully predicting a neurodevelopmental psychiatric condition.

This work intends to explore different avenues to build new gold standards
in methodology that can improve the robustness of neurodevelopment and neu-
ropsychiatry research.
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1 | Introduction

1.1 Challenges with Hypothesis testing in neu-

rocognitive paradigms

In 1710, Dr John Arbuthnot used 82 years of birth records in London, where
male births consistently exceeded the number of female births, to show that the
probability of equal likelihood of birth between both genders was exceedingly
small ( 1

282
) and that this hypothesis could not be attributed to chance (Arbuth-

nott, 1710). It was credited as the first example of hypothesis testing. Centuries
later, much due to Fisher’s work in inventing and establishing modern statistical
science (Box, 1978, Fisher, 1915, 1992), hypothesis testing is today the tried-
and-true method in accepting or rejecting a hypothesis in all fields of scientific
research, as is the case of cognitive neuroscience. It is responsible for moving
science from a more Bayesian perspective, involving subjective prior probabili-
ties, to an objective, entirely data-driven direction, where statistics determine
the likelihood of a given hypothesis being true in a determined set of conditions.

1.1.1 The Replication & Generalisability crisis

However, in the past couple of decades, the reliability of cognitive and medical
science findings has been questioned (Pashler and Wagenmakers, 2012, Simmons
et al., 2011). Statistical studies have shown that the percentage of false posi-
tive findings is vastly above the threshold for significance, generally set at 5%
(Ioannidis, 2005). A study trying to replicate high-impact research in psychology
has shown that from a set of 100 studies, less than half of significant findings
held when replicated and that the average effect size across various studies was
only half of the initially reported values (Collaboration, 2015). Similar results
have been found in medicine research (Prinz et al., 2011), behavioural economics
(Camerer et al., 2016), genetic research (Munafó, 2009) and neuroscience research
(Button et al., 2013). The failure to replicate major research findings that serve
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1. Introduction 2

as the cornerstone for many other research studies has presented a methodological
reckoning to the field. It is widely recognised that the fault lies with question-
able research practices that lead to overinflated significance results (John et al.,
2012, Simmons et al., 2011). Despite the statistical soundness of hypothesis test-
ing, the flexibility in data collection, analysis and reporting of results allows the
researcher’s biases to creep in, which leads to questionable findings (Simmons
et al., 2011). These include but are not limited to selectively discarding data
through questionable outlier removal techniques; repeating statistical analysis
in slightly different conditions until a significant result is obtained (Head et al.,
2015); defining or changing the hypothesis after the analysis of the results (Kerr,
1998); selecting regions-of-interest and hypothesised areas of activity after the
analysis of results, so as not to have to correct for multiple significance measures
(Poldrack et al., 2017). These concerns have led to a movement for better stan-
dards and practices in research by promoting full transparency in the data and
code used in published works as a standard practice, making them fully available
online (Westfall et al., 2017) and publishing in open-access venues to promote
information accessibility; and, introducing pre-registration of studies, dividing
the publication process into two steps, publishing the hypothesis, methodology
and proposed analysis, and following peer-review publishing the results using
the pre-defined methodology (Foster and Deardorff, 2017). These steps limit
data collection and processing flexibility to avoid the researcher’s biases or poor
practices.

In developmental neurocognitive research (particularly with infants and chal-
lenging neurodevelopmental populations), these problems are exacerbated by
other challenges that are hard to overcome: recruitment is challenging, lead-
ing to low sample sizes, data quality is often reduced because the participants
are often active or have short attention spans or are not compliant. Therefore,
the signal-to-noise ratio in any given experiment tends to be low, promoting
false-positive results and low-powered studies. These types of problems have led
to an increasing use of pre-registration in developmental cognitive neuroscience
studies and a movement to many labs collaborating to increase sample sizes and
robustness of results (Frank et al., 2017).

While the hacking of results may suggest ill-intent from many researchers,
the lack of reproducibility cannot be assigned to data misuse in its entirety.
Traditional developmental cognitive neuroscience methodologies map many sig-
nal metrics to limited hypotheses (e.g., in ERP research, we can consider the
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latency, peak-to-peak amplitude, post-stimulus average signal, and power analy-
sis, all for the same collected study (Woodman, 2010)). Cognitive paradigms also
tend to be overly narrow, considering only one experimental condition at a time
while addressing broad hypotheses (e.g., what face elicits a stronger signal from
an infant? can we use a given event-related potential (ERP) as a biomarker for
a given developmental population?). They are reliant on classical paradigms and
stimuli sets that are limited in scope, which has the potential to lead to overin-
flated test statistics (Westfall et al., 2017). Finally, most paradigms and stimuli
sets were built based on a restricted range of typically developing participants
to test a given response. These not only fail to capture the variance across the
whole population but can be suboptimal when studying responses from partic-
ipants with psychiatric conditions, whose variable of interest is not considered
while designing the paradigm. Throughout this thesis, the term response is used
to refer to the variable of interest in a given experiment (e.g., maximum ampli-
tude in an EEG experiment; phenotypic data in behavioural studies; structural
brain data in neuroimaging studies) on both predictive and statistical analysis.

Another important direction in discussing methodological best practices in
psychology research comes from Yarkoni (2022), who introduces the generalis-
ability crisis. In it, he addresses the concern with the overuse of “random effects”
to justify all variability present in data. Yarkoni relates how linear models are
inadequate to model brain responses as they do not capture the variance present
in data but are used pervasively across the field. This inability to account for
variability dismisses fundamental intra-group differences and overestimates con-
fidence intervals, leading to incorrect significant group-wise differences. It also
leads to failures in replicating the results obtained, as they fail to generalise to
a different setting or just different participants. The solution consists of mod-
elling responses with more complex algorithms that account for uncertainty on
measured data and on trying to capture the variability in data by accounting for
the possible covariates (e.g., recording systems, neurodiverse population, state-
of-mind). The issue of generalisability has been acknowledged as a limitation in
neurodevelopmental research (Visser et al., 2022).

In sum, the fields of cognitive neuroscience and psychology are going through
transformative years, where new gold standards of research methodology are be-
ing devised and embraced by the community; this is equally true for neurodevel-
opmental research where many of the challenges underlying the reproductibility
crisis are more acute. There is a particular focus on limiting the researcher’s
degrees of freedom when testing their hypothesis. I argue that this leaves a
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Figure 1.1: The sparseness of high-dimensional spaces. This effect can
be seen in as few as three dimensions. From a random sampling of 20 data points
in unit dimensions (x ∈ [0, 1[), the distance between data points increases with the
number of dimensions considered in the space. For 1000 unitary dimensions, the
average data point distance is 12.89. For this random sampling. This sparseness
of the data will directly affect the assertions that it is possible to do with the data
and the capacity of predictive models to infer information from it.

gap to be filled for best practices in more explorative studies, where too nar-
row hypotheses and paradigms hinder the capacity to address broader research
questions and fail to consider the substantial variation in brain responses across
a neurally diverse population. The challenge is to build new methods that can
account for broader hypotheses and paradigms that cover a more extensive range
of experimental conditions while maintaining the best methodological practices
and without falling into the curse of dimensionality.

1.1.2 Curse of dimensionality

If I am to sample a unit interval at evenly spaced points of 0.01 distance, I
will sample it 100 times. If I instead sample a 10-dimensional hypercube at
the same distance between points, I will need to sample the hypercube 1020

times. The consideration that the number of data points to sample from increases
exponentially with the number of dimensions in Euclidean space is referred to
as the curse of dimensionality (Bellman, 1957). The curse of dimensionality
is a known problem in data modelling, as increasing the number of features
(i.e., dimensions) while maintaining the same number of data points leads to a
sparser space of sampled points (see Figure 1.1). This sparsity leads to a bad
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generalisation of the data model as emptier regions of the space are predicted to
behave according to data points that are far apart in the data space. Interpolation
fails due to the distance between interpolated points.

This phenomenon brings challenges to numerical analysis, sampling and data
modelling that are relevant when addressing the generalisability and replication
limitations of current cognitive science methods:

a) Complex experimental paradigms that consider more than one
condition will require a factorial higher number of data points to ex-
tensively sample the paradigm space (Lorenz et al., 2017)

If three factors are considered for a paradigm, e.g., in face recognition tasks,
directed-averted gaze; emotion; and familiarity, I need to consider the number
of possible combinations between these factors. One way to circumvent this lim-
itation is to maximise information retrieved when sampling instead of aiming
to sample all combinations extensively (i.e., perform active sampling). This can
be done with classical optimisation methods that leverage uncertainty to guide
where to sample next (Baptista and Poloczek, 2018, Lorenz et al., 2017).

b) The large assortment of methods available for data preprocess-
ing, each with different tweakable hyperparameters, creates a highly
dimensional space of preprocessing outputs resulting in the same data
leading to different conclusions (Bzdok and Yeo, 2017).

A large amount of methods impacts the replication of studies and the relia-
bility of findings in general. By not treating it as a high-dimensional problem,
we ignore the variability associated with the preprocessing methods used (Bzdok
and Yeo, 2017, Carp, 2012). It is unfeasible and undesirable that each analysis
is run on all existing preprocessing pipelines as this compromises inferential and
predictive power. However, preprocessing pipelines’ outputs are correlated with
each other, and dimensionality reduction can be used to find a lower-dimensional
manifold that approximates the whole space of preprocessing outputs. The same
problem arises when building data models of response or training predictive sys-
tems. The number of heterogeneous algorithms can lead to many different model
representations (Bell et al., 2022). As before, it is relevant to find lower dimen-
sional representations that can capture all the possible variability explained by
choice of modelling algorithm.

c) Outlier detection studies that rely on proximity measures to build
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models of normal response fail with a higher number of features as the
sparsity of the data points increases exponentially with the number of
dimensions (Beyret et al., 2019, Zimek et al., 2012).

Larger feature space dimensions increase data sparsity due to the exponential
increase in space volume. In this setting, proximity measures become irrelevant
as the distance between the nearest data point converges to the distance of the
furthest data point (Aggarwal and Yu, 2001). In this scenario, every data point
can be identified as an outlier. This problem is relevant to cognitive neuroscience
when trying to identify clinical conditions as deviations from the norm because
many features of relevance are highly dimensional (e.g., structural brain data; raw
brain activity recordings). To address this limitation, some studies have relied
instead on metrics of outlier detection that do not depend on Euclidean distance,
such as likelihood estimation between samples (Pinaya et al., 2022). Other works
have focused on building lower-dimensional projections of the high-dimensional
spaces through classical dimensionality reduction techniques or extracting rele-
vant high-level features from brain data, such as brain volume of longitudinal
cortical thickness (Marquand et al., 2019).

Building lower dimensional representations of original data tackle several
limitations with high dimensional feature spaces. The challenge is maintaining
the relevant information that summarises the original high-dimensional data and
discarding the non-informative dimensions.

1.1.3 Distilling information

Consider a dataset of hundreds of black-and-white images of faces where each
image contains 1000 pixels. Each image can be interpreted as a data point
with 1000 dimensions, where each pixel’s brightness represents the value of the
coordinate in a single dimension. They populate the space of possible data points
in this hyper-dimensional space, and, due to the curse of dimensionality, they do
so very sparsely. Additionally, as this space accounts for any combination of
brightness from the 1000 pixels that make up each image, including all possible
white-noise combinations, all images of faces will only cover a small and specific
region of the hyper-dimensional space. All the data points in our dataset live
in a lower-dimensional manifold (i.e., a topological closed surface that is locally
Euclidean) of the much larger hyper-dimensional space (see Figure 1.2). It is
the objective of dimensionality reduction to find lower-dimensional manifolds
that capture the relevant components of a set while losing the least amount of
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Figure 1.2: Illustration of natural images manifold in hyper-
dimensional space of possible pixel combinations. A) is a schematic rep-
resentation of the hyper-dimensional space of all possible values an image can
take (illustrated in three dimensions for representation purposes). Most images
in the space are incomprehensible, but there is a small multidimensional surface
that captures all possible natural images (pictured as a blue surface). That is
the manifold of natural images that can be represented in a smaller number of
dimensions. The same is true when considering only the manifold of images of
faces, which is contained in the manifold of natural images (here represented by
the red line). The manifold of faces has a lower-dimensional representation than
the manifold of natural images that, in turn, has a lower-dimensional represen-
tation than the full space of possible values. It is then fundamental to find the
lower-dimensional representation for the problem being addressed to combat the
challenges created by the curse of dimensionality through statistical methods or
density function estimators.
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information possible. The visual cortex does something similar when processing
visual information - it is simpler to distinguish between the faces of two siblings
than between two white-noise images, even though the latter example is at a much
larger distance in the space of possible stimuli (Pang et al., 2016). Importantly,
we can reduce the dimensionality of the original space by focusing on our variable
of interest (i.e., faces). If our variable of interest were the estimated age of a given
face, we could reduce the data points in a dataset to only one dimension to encode
the estimated age.

Dimensionality reduction is then the transformation of data from a higher
dimensional space to a lower-dimensional space so that the relevant properties of
data are retained, x ∈ Rn, y = F (x), y ∈ Rk, where F (.) is the transformation
function and k < n. We can subdivide dimensionality reduction techniques into
statistical methods and density estimators. Statistical methods focus on the sta-
tistical properties of the data (e.g., variance across dimensions) and can be linear,
such as Principal Component Analysis (PCA), or nonlinear, such as Multidimen-
sional Scaling (MDS). Density estimators (e.g., Variational Auto-encoder (VAE);
Generative Adversarial Networks (GAN)) are models that try to learn the unob-
servable probability density function of the data that generated a given dataset.
In machine learning, they are known as generative models. Large advances in the
field of machine learning have led to the development of several generative models
that can capture lower-dimensional manifolds of data (most commonly images)
while implicitly or explicitly learning its density function (Tomczak, 2022). By
learning the probability density function, these models permit us to sample un-
seen points from the lower-dimensional manifold and generate realistic synthetic
new data without a cost.

The use of dimensionality reduction algorithms is common practice when
building data models of responses or as a preprocessing step to analyse results and
draw conclusions (Ayesha et al., 2020) as they promote more generalisable and
robust results. Nevertheless, these algorithms’ use can be extended further in the
research pipeline as a mechanism to build more informative paradigms shaped
by data-driven insights into the relationship between experimental conditions
(Lorenz et al., 2017) or as a mechanism to study the impact of the multiverse of
options between data processing or data modelling algorithms.
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1.2 Machine Learning as a tool for predictive

research

Machine Learning is the field of study that gives computers the ability to learn
without being explicitly programmed.

Arthur Samuel, 1959

Despite the term being coined in 1959, it was only in the early 2000s that
machine learning started gaining more visibility and popularity. The advent of
big data and large computational resources (Alon Halevy et al., 2009, Bell et al.,
2005) has proved crucial for machine learning to leap from an experimental field
to building tools for the betterment of society. Today, its quantitative tools are
ubiquitous in every sector of society and many research fields due to their capacity
to map complex data patterns to make predictions in unseen data (Bishop, 2006).
They are the backbone of search engines, recommender systems, face recognition
algorithms and spam identifiers (Sarker, 2021). In research, they are a powerful
tool for data modelling and finding complex relationships in data, allowing the
researcher to obtain insights that were not accessible before. In neuroscience
research specifically, machine learning algorithms have been primarily used as
predictive models to predict individual outcomes from brain patterns (Livezey
et al., 2019) (e.g., building a model to predict if a given functional MRI scan is
from a participant with schizophrenia (Lai et al., 2021, Pereira et al., 2009)). In
infant research, these models allow us to build individual development profiles,
find biomarkers in heterogeneous conditions and objectively identify digressions
to normal development – an especially crucial step to capture clinical conditions
early. Other applications of machine learning tools in neuroscience research in-
clude improving brain-computer interfaces (Sussillo et al., 2016) and building
computational models of the brain (Hassabis et al., 2017, Lindsay, 2020).

1.2.1 Individual predictions & profiling in neuroscience &

psychiatry

Predictive models can generalise to out-of-sample distributions by interpolating
between complex patterns in the data that it is given (i.e., the training data)
(Efron and Tibshirani, 1991). Commonly, it does so by adjusting its parameters
to minimise a given loss function that tends to represent the error between pre-
diction and known labels. This setting is known as supervised learning. These
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models are useful in research because, by being able to predict unseen data points,
they hold insights into what differentiates two categories in a fully data-driven
manner (Vu et al., 2018). Furthermore, developing robust and generalisable pre-
dictive models that perform above the human level in a clinical and psychiatric
setting holds the key for the shift to personalised healthcare and new diagnos-
tic tools. For example, many diagnoses of psychiatric conditions still rely on
phenotyping patients based on a question-answer approach (American Psychi-
atric Association, 2013) that depends on patient’s reliability, an approach with
low inter-rater reliability and ambiguous descriptions (Wakefield, 2013). Re-
cent studies have focused on finding structural changes in the brain associated
with psychiatric and neurologic disorders using predictive models to build robust
biomarkers that can be used as objective measures of disorders (Vieira et al.,
2017).

In research settings, it is common to pit this methodology against statistical
inference’s hypothesis testing methods (Anderson and Perona, 2014) as they aim
to extract new knowledge from mathematical models. However, they address dif-
ferent questions and require different assumptions. Whereas hypothesis testing
focuses on building theories of causal underpinnings of human behaviour, pre-
dictive models focus instead on predicting new examples of behaviour (Yarkoni
and Westfall, 2017). Where hypothesis testing requires strong pre-defined as-
sumptions, predictive models benefit from having as few assumptions as possible.
Predictive models are primarily data-driven, whereas hypothesis testing is a fully
hypothesis-driven method that requires mathematical rigour to describe interde-
pendencies. Statistical models are often tractable and interpretable, whereas
predictive models are less so and more parameterised, making them more ex-
pressive. It is possible to have a predictive model that correctly identifies two
categories that do not have a significant p-value when submitted to the null hy-
pothesis and vice-versa (Arbabshirani et al., 2017). So, it is fairer to see these
approaches as complementary. Statistical modelling takes a more confirmatory
and exploitative approach to the data, whereas predictive modelling is more ex-
plorative. This comes with its drawbacks. As mentioned in Yarkoni (2022), the
generalisability crisis revealed how predictive models mostly fail to capture the
natural variance in the data and do not account for hidden confounders, assum-
ing a deterministic response for a given set of features. In practice, this is never
the case (Vieira et al., 2020). Their exploratory nature makes them brittle as
they learn to map the data distribution correctly but fail to generalise for slightly
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different settings (Kelly et al., 2019) (e.g., a different device manufacturer; a neu-
rodivergent population). In practice, it is impossible to control for all variables,
and the predictive model’s performance falters.

One solution that can draw from both methodologies while capturing the
inherent variability in data acquisition is to build individual predictive models
of each participant (i.e., individual profiles of response) using algorithms that
account for uncertainty. Instead of having a model predicting the response of
a whole group to a pre-defined paradigm, the researcher can build individual
predictive models for each participant based on their performance in the same
paradigm (Cusack et al., 2012, Vu et al., 2018). This approach is especially sen-
sitive to the inherent neurodiversity of in-group participants that gets watered-
down in both predictive analysis and statistical inference studies. Furthermore,
it sits at the intersection of both methodologies. It allows the researcher to per-
form statistical analysis on the group-level differences and do hypothesis testing
with the different predicted responses. It also allows for more robust predictive
models by building an ensemble of individual predictive models (i.e., weighing
the many predicted responses into one consensus) (Zhang and Ma, 2012). One
drawback of taking an individual approach to building predictive models is that
they require a large number of data samples to perform efficiently, limiting indi-
vidual measurements in an experimental setting. It is then crucial to sample the
paradigm efficiently, maximising samples with higher measurement uncertainty.

1.2.2 Active Learning

Commonly, machine learning algorithms are trained with observational data, i.e.,
using datasets that are collected a priori, in what is termed passive learning. The
dataset is shuffled and partitioned into training, validation, and testing sets to
minimise the chance of overfitting the data it was trained on. The disadvantage
of passive learning is that not all samples are equally relevant for training. Data
points close to the decision border will be more impactful for a correct predictive
system (Konyushkova et al., 2017), but they will be sampled at the same rate as
any other data point. Furthermore, passive learning is not always possible. Some
problems in machine learning, as in reinforcement learning, are naturally sequen-
tial and require the model to be trained as it collects data from its environment
(Barto and Sutton, 1992). In these scenarios, as the data collection is online, the
algorithm can inform what is the most informative data point to sample next
based on the results of previous iterations. This is called active learning or active
sampling (Cohn et al., 1994). The informed decision on where to sample next
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becomes crucial when exploring a high dimensional feature space, as an exten-
sive exploration becomes intractable due to the curse of dimensionality (Bellman,
1957). The same is true when sampling a data point entails high financial costs,
computational burdens, low participant attention span, or a diminishing signifi-
cance threshold per measure. In these scenarios, efficiently sampling the feature
space to extract as much information as possible becomes paramount.

What is defined as the most informative data point to sample depends log-
ically on the optimisation problem that is being addressed. The diversity of
options for where to sample next is called query strategies, and they tend to be
controlled by a mathematical algorithm that works as a "model of the model",
receiving as input the relevant state of the model for the optimisation task (Set-
tles, 2009). This algorithm is termed the acquisition function as it guides the
search through the feature space. If the model’s goal is to predict a response in
any region of the feature space with high reliability, the next point to sample
should be the one with the highest expected error reduction or the one with
the highest uncertainty measure. This is an explorative strategy. If the goal is
to find the maximum or minimum of the underlying function of response in as
few samples as possible, then the regions around the previously sampled extrema
should be privileged. This is an exploitative strategy. In practice, strategies tend
to be a trade-off between these two approaches, as overly explorative strategies
are expensive and overly exploitative strategies tend only to find local extrema
(i.e., an extreme value which is not the maximum or minimum of the space, a
common problem in non-convex spaces) instead of the desired global one. The
acquisition function can control a spectrum between exploration and exploitation
depending on the problem it is optimising for.

Active learning approaches have been previously employed in neuroscientific
research, going as far back as 1987, when Jones and Palmer (1987) searched for
the set of stimuli that would maximise the neuron’s firing rate in animal stud-
ies. This neuroadaptive approach has been more recently explored in humans by
Lorenz et al., where brain activity of regions-of-interest was maximised in fMRI
studies in a closed-loop setting using an organised space of experiments that were
presented to the participant based on their brain responses in previous experi-
ments (Lorenz et al., 2015, 2017, 2018). Active learning requires a feature space
to sample from, and in neuroscientific and psychology research, our features of
relevance are stimuli or experiments, depending on the paradigm. In these cases,
we name the spaces, respectively, stimuli spaces and experiment spaces. These
are the spaces the active learning approach optimises over to build individual



1. Introduction 13

predictors of response in a given paradigm efficiently. For an in-depth review of
active learning, please refer to Settles (2009).

1.2.3 Finding outliers

The supervised learning setting is defined by the process of training a predictive
model to learn the underlying function that maps the data points to their known
labels by minimising a loss function that penalises wrong mappings. The expec-
tation is that the learned function generalises to predicting labels of unseen data
points, so the dataset is divided into three components (i.e., training, validation
and testing set) so that the model learns on the first, it is regularly evaluated on
the second and only evaluated once on the latter to test how well it generalises
its performance. This general setting in machine learning has shown remarkable
results in important clinical tasks such as tumour detection and segmentation,
skin cancer detection (Lundervold and Lundervold, 2019), or even diagnosing
psychiatric conditions (Vieira et al., 2017), overcoming expert performances in
many cases. Despite these published results, most of these algorithms fail to
move to a clinical setting because they fail to generalise their performance con-
sistently (Pinaya et al., 2016, Vieira et al., 2020). The main limitation in medical
machine learning is the lack of large datasets required for algorithms to capture
the full data distribution. Supervised learning algorithms excel at interpolating
results between data points they were trained on but are notoriously bad at ex-
trapolating for out-of-distribution data points (McCartney et al., 2020). Medical
datasets are limited due to information privacy restrictions, high costs of data
collection, such as an MRI structural scan, and the limited number of patients
that can be recorded for any given disorder. This low number of data points
leads to unbalanced datasets and is prone to overfitting or failing to capture the
variability of the population.

To address these limitations, there have been efforts to move to other machine
learning settings, such as unsupervised learning. In an unsupervised learning set-
ting, the labels are unknown, and the predictive model learns instead to build
internal representations of the data through pattern recognition and grouping.
One unsupervised approach is outlier detection by building normative models
(i.e., a model of statistically expected responses) of healthy participants to try
to capture the normal heterogeneity in participants’ responses. This model can
then detect any data point that is an outlier to the expected response and clas-
sify it as an anomaly. As such, any participants with conditions that impact
the expected response will be flagged while not requiring the use of their data to
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train the model. This alleviates the limited dataset constraint, as collecting large
swathes of data becomes more manageable if only healthy participants are re-
quired. This approach has been specifically explored in psychiatric research using
neuroimaging data, where patients are characterised by heterogeneous patterns
both in symptoms and in subtle brain changes (Shenton et al., 2001), making it
challenging to build supervised predictive models. In schizophrenia, for example,
inter-individual differences between schizophrenic patients mask group-level dif-
ferences to healthy participants (Wolfers et al., 2018). Taking an outlier-detection
approach to the problem makes it possible to identify distinct anomaly patterns
without requiring the pattern to be replicated across all subjects with the condi-
tion. For a detailed review of normative modelling in psychiatry research, please
refer to Marquand et al. (2019).

1.3 Outline and aims of this thesis

Research in development cognitive neuroscience, and neuroscience and psychol-
ogy more generally, are at a transformative moment. There is a wide acceptance
of the shortcomings in current methodologies that lead to the failure of repli-
cating and generalising research findings. The ongoing debate has focused on
pre-registration and open science initiatives, leaving a gap for new gold stan-
dards for more open-ended questions and personalised experiments. At the same
time, computer science and machine learning developments have brought for-
ward promising new tools that can be leveraged for better research practices.
These tools allow for tackling the curse of dimensionality by learning relevant
lower-dimensional representations; they can be used to navigate the multiverse
of preprocessing and postprocessing methods by learning their interdependen-
cies; they can be used to build more robust detection methods based on outlier
detection. This thesis aims to present, validate and apply three new frameworks
for improving cognitive neuroscience’s replicability and generalisability studies
by borrowing from recent advances in machine learning.

Chapter 2 introduces the general methodologies leveraged throughout the
three presented frameworks. It is subdivided between the algorithms used through-
out the thesis for building lower representations of the original data and the algo-
rithms used for optimising these representations. For the algorithms that build
lower-dimensional representations, classical dimensionality reduction techniques
(i.e., PCA and MDS) and density estimator deep generative models (i.e., VAE
and GAN) are described. For the response optimisation algorithms, we describe
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Bayesian optimisation, an increasingly recognised technique for neuroadaptive
experiments and closed-loop sequential optimisations, and auto-regressive mod-
els, with a special focus on Transformer artificial neural networks, that learn the
probability distribution of representations and are shown to be strong outlier
detectors.

Chapter 3 presents an extension of the neuroadaptive optimisation frame-
work to qualitative studies using generative models to create expressive stimuli
spaces. It explores the human response to face stimuli, optimising over feature
attributes of a face space learned by the generative model. In the presented
proof-of-concept, I use the neuroadaptive framework to measure on an individ-
ual basis how self-recognition varies for perceived variations of age and emotion
in the space of face stimuli. This work was performed to design and optimise
the adaptive algorithms, in a simpler setting, before applying it to the more
challenging domain of infant EEG, below.

Chapter 4 extends the neuroadaptive framework to EEG studies. It further
explores how individual response profiling can be used to build future biomarkers
of neurodevelopment conditions. The introduced proof-of-concept uses the neu-
roadaptive design to optimise over EEG signals. More specifically, the negative-
central (NC), an ERP associated with facial recognition in infants, in a mom-
stranger paradigm with infant participants. I show what information can be
extracted from these individual models of response.

Chapter 5 presents an active learning multiverse analysis framework to
study robustness and variability across methodology choices in the data process-
ing pipelines. To account for the variability in results introduced by choice of
data processing, this chapter explores building informative spaces of an extensive
range of methods and visualising how results change across the space. Specif-
ically, I introduce a multiverse analysis of preprocessing methods in functional
MRI data pipelines, where it is shown how the choice of methodology can impact
age prediction in a developmental functional connectivity dataset of adolescents.

Chapter 6 presents a generalisation of the framework introduced in chapter
5. The presented study is a multiverse analysis of predictive models and hyper-
parameters, showing how navigating a space of organised predictive models can
maximise the predictive power on a given dataset. I show how it outperforms
results in the literature of predicting autism in infants from volumetric data.
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Chapter 7 explores outlier detection methods for robust and generalisable
predictions in settings with a small number of examples. Instead of taking the
supervised approach to predictive modelling, we investigate unsupervised nor-
mative models to detect outliers without training on the data of non-typically
developing participants. Specifically, auto-regressive models are explored as a
solution for predicting early-stage schizophrenia detection while building models
of neutotypical individuals.

Chapter 8 concludes the thesis by discussing how new frameworks are re-
quired to tackle the methodological challenges present in research and how the
frameworks presented here can contribute to the goal of improving research’s
gold standards. It provides an overarching view of where these frameworks fit
into the full research pipeline and suggests the next direction to build stronger
methodologies.



2 | Methods

2.1 Building Lower Representations of

information

As described in Section 1.1.2, the curse of dimensionality poses a concrete chal-
lenge to the replication and generalisability efforts in hypothesis testing research
and data modelling. To that end, several possible methods can be used to ex-
tract the relevant variables from data, for example, dimensionality reduction
techniques and generative models. Classical dimensionality reduction techniques
find lower-dimensional spaces where the redundant data is eliminated, but the
full data variability is kept as intact as possible. Generative models, instead,
learn hidden spaces that well represent the whole lower-dimensional manifold
that is represented on a given dataset. In this Section, I will present a short
introduction to some of these techniques and models.

2.1.1 Classical dimensionality reduction

2.1.1.1 Principal Component Analysis

Principal Component Analysis (PCA) (Minka, 2000) is a method that aims to
capture the most variance of a dataset in a lower number of dimensions, here
named Principal Components. It does so by applying orthogonal linear trans-
formations to the feature space to create linearly independent components that
capture the most variance while reducing dimensionality. This process uses a spe-
cific type of matrix decomposition, the eigendecomposition. Eigendecomposition
factorises the covariance matrix of the dataset into a product of two matrices.
One of the matrices contains per column the eigenvectors, unit vectors which
are a restructuring of the axis of the original space into independent basis. The
other matrix is a diagonal matrix containing the eigenvalues, which determine
the magnitude or scaling of the original covariance regarding the basis defined by
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the eigenvectors. The relative value of the eigenvalues determines the explained
variance of each eigenvector and so can be sorted to maximise the explained
variance in a smaller number of eigenvectors while dropping the ones with small
eigenvalues. This is the process of PCA, and the eigenvectors ordered by ex-
plained variance are named principal components. This allows the user to apply
feature extraction to a dataset into n linearly independent principal components
while knowing how much explained variance is being lost in the dimensionality
reduction.

2.1.1.2 Multidimensional Scaling (MDS)

MDS (Kruskal, 1964) is a non-linear dimensionality reduction technique that cap-
tures similarities between high-dimensional data points as distances in a lower-
dimensional representation. It can be subdivided into metric or classical MDS,
where similarities are measured as the distance in the coordinate space using a
linear scale, and nonmetric MDS, where the similarity is measured with rank and
only the order of similarity between data points matters. The first is optimal
for numeric problems and the latter for ordinal data. Metric MDS is specifically
computed by first calculating the Euclidean distance between pairs of samples in
a dataset,

d(p, q) =
√∑

(qi − pi)2, (2.1)

and then iteratively optimising the coordinates in a lower-dimensional space that
minimises a Stress function:

StressD(x1, ... , xn) =

√∑
i ̸=j

(dij − ||xi − xj||2), (2.2)

where dij is the Euclidean distance between sample i and sample j in the
higher-dimensional space and ||xi−xj||2 is the distance in the lower-dimensional
space. Minimising the Stress function by adjusting the coordinates position x

will force the lower-dimensional space to correctly represent the distances between
data points in the higher-dimensional space. This method is optimal for preserv-
ing the global and local structures of the original dataset, which is paramount
when the similarity between data points is the most important factor in a given
problem.
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2.1.2 Generative models for Density estimation

Generative models are a subclass of machine learning where the stated goal is
to learn the probability density function that underlies the data it represents,
pdata(x). In doing so, it is possible to sample the learned function to make up new
data examples that appear to be from the original training set. Importantly, the
probability density function lies in a lower-dimensional manifold of all possible
data points, as it only accounts for the ones representing a realistic example of
the variables of interest.

The advent of deep neural networks has been paramount to the recent progress
in generative modelling research. Its hierarchical and modular structure allied
to scalable gradient learning methods has brought forth models with a higher
information processing capacity that have successfully approximated many in-
tractable probabilistic computations. The use of these models in generative
modelling has led to the subclass of deep generative models. Two examples
of deep generative model architectures are GANs and autoregressive models. In
both cases, the model learns to map a lower-dimensional hidden representation,
z, to higher-dimensional samples of the learned manifold, y (i.e., given a learned
model G, (z) = y ; z ∈ Rn ; y ∈ Rm ;n < m). This hidden representation is ap-
propriately named latent representation and can be exploited to manipulate the
original data using a lower-dimensional space.

2.1.2.1 Generative Adversarial Networks (GAN)

A GAN is is a deep neural network composed of two modules that are trained
concurrently in an adversarial process (Goodfellow et al., 2014). One module, the
generator G, transforms a noise vector input into a high-fidelity representation
of original data. The second module, the discriminator D, receives as input the
outputs of the generator interspersed with real data points from the training
set. The discriminator is then trained to classify the real data points (i.e., from
the training set) and the fake ones (i.e., from the generator). The components
try to optimise their parameters following a two-player minimax game with the
following value function:

min
G

max
D

V (D,G) = E
x
[log(D(x))] + E

z
[log(1−D(G(z))], (2.3)

where z is the noise vector passed as input to the generator and functions
as a lower-dimensional latent representation of the learned manifold. The two
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modules learn and improve their performance in tandem through stochastic gra-
dient descent. Progressively the generator learns the probability density function
of the real data distribution and can generate high-quality examples of artificial
data not present in the training set by sampling randomly from z (see Figure
2.1.A). These algorithms have been extensively applied to generate realistic faces
(Karras et al., 2017), music (Engel et al., 2019), naturalistic images (Wang et al.,
2018) and many other complex data distributions.

Because of the general setting of GANs, there have been several variations of
the algorithm, with different focuses on the value loss and architecture of both
the generator and the discriminator (Arjovsky et al., 2017). In this thesis, the
implementation used was the one introduced by Karras et al. (2019), named
StyleGAN.

2.1.2.2 StyleGAN

StyleGAN achieves state-of-the-art performance on the generation of realistic
faces and is able to control disentangled attributes in the generated images. The
StyleGAN training is done in a progressive growing GAN (Karras et al., 2018),
where the model is trained for 4x4 images and, when stable, trained for images
with double the size by adding another block of layers to both the generator and
the discriminator. This is done sequentially until the model is trained to generate
and discriminate images with size 1024x1024. On the generator side, StyleGAN
also added a mapping network to process the latent representation before feeding
its output, y, to the generator’s different progressively growing blocks. This is
done by using an adaptive instance normalisation (AdaIN) at the end of each
generator’s block where, for a given generator’s instance xi, and the respective
scaling and bias parameters from the mapping network ys,i and yb,i:

AdaIN(xi, y) = ys,i
ys,i − µ(xi))

σ(xi)
+ yb,i, (2.4)

Where µ(.) and σ(.) stand for the mean and standard deviation of the vari-
able. The output of the mapping network is, in essence, parameterised affine
transformations that specialise to styles or attributes in the data. This results
in more flexibility in controlling the image attributes using the latent represen-
tation. Finally, noise is added to the output of each convolutional layer of the
generator’s network (Figure 2.1.B). This model fits well into the developed work
as we can use the latent representations in the mapping network to control for
variables of interest (e.g., emotion; age) for any given paradigm.
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2.1.2.3 Controlling disentangled attributes in latent representations

It has been previously demonstrated that the organisation of the latent repre-
sentation can be exploited to control different attributes of the image (Pumarola
et al., 2018, Radford et al., 2016). It is possible to manipulate specific features
while maintaining the image identity by generating thousands of images from a
generative model and labelling each according to a binary categorical variable
(e.g., happy vs neutral). For the case of face images, it is possible to automate
the labelling process by using a trained classifier such as Microsoft’s Face recog-
nition API∗. For each categorical variable, it is possible to fit a logistic regression
using the image’s lower-dimensional latent representation as input and the label
as expected output. The coefficients (c) from the fitted regression can then be
used in the latent space of representations, dlatent, to shift the generated image to
change the original image according to the categorical variables while maintain-
ing the face identity. The obtained coefficients c are obtained concept vectors
that navigate axes in the hyperdimensional space that control specific variations
(e.g., the happy/sad vector). The degree of change can be controlled by a scalar
magnitude multiplied by the whole vector. In this thesis, a bounded magnitude,
x{x ∈ R : −2 < x < 2} was explored for each attribute.

dlatentnew = dlatent + c ∗ x (2.5)

One benefit arising from using linear transformations to vary a categori-
cal variable while controlling for the image identity (i.e., maintaining all other
variables constant) is that it reduces the problem’s dimensionality to as many
dimensions as the number of linear transformations. When the goal is to reduce
the space of stimuli in a paradigm, this mechanism can greatly address the curse
of dimensionality.

2.1.2.4 Autoregressive models

GANs perform implicit probability density estimation. The output of the gen-
erator follows the manifold of the training data (i.e., it learns what are real
representations of the data or not), but the model does not have knowledge of
the probability of the observations, nor can it specify the conditional likelihood
function inherent to the generated data. These limitations are not present in
autoregressive models where the probability density estimation is modelled ex-
plicitly. This is relevant for problems where it is important to assert how likely a

∗https://azure.microsoft.com/en-gb/services/cognitive-services/face/
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Figure 2.1: Schematic representation of a generic GAN. The Generator
and the Discriminator optimise concurrently in a minimax game by having the
generator create samples that can be identified by the discriminator as real sam-
ples and by having the discriminator progressively improve its classification of
real and fake samples. B. Schematic representation of the Generator component
of the StyleGAN. The Generator in StyleGan is composed of a Mapping Network
and a Synthesis Network, where the first controls an affine transformation on
the latter. C. Example of images obtained by sampling a region of the StyleGAN
latent. This represents a high-dimensional patch of the manifold of faces learned
by the algorithm. These faces are not real, they are artificially generated by the
algorithm. D. Variation of the semantic attributes ‘lip ratio’ and ‘eye ratio’ for
a given face using StyleGAN. This GAN allows control of specific attributes of
the face, which gives the researcher a more controlled environment when testing
specific variables, as face identity is maintained.
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given data point is, such as the case of outlier detection. Autoregressive models
take the problem of estimating the joint distribution of feature variables in a
given data observation, p(x), as the estimation of the product of conditional dis-
tributions over each individual feature. This is done because modelling the joint
distribution by itself is not a computationally tractable problem. The autore-
gressive approach uses the chain rule to break down the likelihood estimation of
x into the product of 1-dimensional distributions. It is then possible to consider
the joint probability estimation as a sequence problem, where the probability
estimation of data point, x, given feature i, is dependent on all previous features,
p(xi|x1, ... , xi−1). Mathematically the estimation can be decomposed as such:

p(x) = p(x1, x2, ... , xn) (2.6)

p(x) = p(x1)p(x2) ... p(xn) (2.7)

p(x) =
n∏

i=1

p(xi) (2.8)

p(x) =
n∏

i=1

p(xi|x1, ... , xi−1) (2.9)

This makes modelling a data point inherently sequential, which can be chal-
lenging for modelling data with a large number of features. Dimensionality re-
duction also plays an important role in this problem as it reduces the number
of features drastically. With this goal, (Van Den Oord et al., 2017) created the
VQVAE model.

2.1.2.5 Vector-Quantized Variational Autoencoder (VQVAE)

VQVAE (Van Den Oord et al., 2017) is a deep neural network model that is com-
posed of two large modules: a discrete-representation variational auto-encoder
model to create the lower-dimensional latent representation and an autoregres-
sive model that explicitly learns the probability density function of the latent
representation. Both modules are trained separately. The discrete latent varia-
tional autoencoder (dV AE) is trained to learn a transformation where the input
is the same as the output (i.e., dV AE(X) = X), where there is a bottleneck of
information in the middle of the model. This forces the model to learn a lower-
dimensional representation from which we can still recover the original data, and
this is the latent representation of the dV AE. The module comprises an En-
coder that maps x ∈ RD to a latent space x ∈ Rd∗nz , with nz relating to the
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dimensionality of the latent vector and d the number of latent codes. As the
latent space is discrete, each element of z is quantised into its nearest vector
ek ∈ Rnz , k ∈ 1, ... , K from a codebook with K elements. The codebook posi-
tioning in the latent space is learned jointly with the parameters of the dV AE.
A Generator G can reconstruct the original observation x from the discrete la-
tent codes. The module is trained through gradient descent by minimising the
following composite loss function:

LV QV AE = Lrecons + Lcodebook + βLcommit (2.10)

Lrecons = ||x− x̂||22 (2.11)

Lcodebook = ||sg[ze]− ek||22 (2.12)

Lcommit = ||sg[ek]− ze||22 (2.13)

Where sg[.] denotes the stop-gradient operator. Lrecons controls the quality
of the reconstruction of the original data points and Lcodebook and Lcommit try to
minimise the distance between the codebook vectors and the latent output of
the Encoder (Figure 2.2.A). The second module of VQVAE is an autoregressive
model that benefits from the discreteness of the element-wise discreteness of
the latent representation to learn the underlying probability density function
of the data distribution sequentially. In the original VQVAE paper (Van Den
Oord et al., 2017) a PixelCNN is employed (Tim Salimans, Andrej Karpathy, Xi
Chen, Diederik P. Kingma, 2017), but novel autoregressive models such as the
transformers (Vaswani et al., 2017) have been demonstrated to outperform the
other autoregressive models in this setting (Esser et al., 2020).

2.1.2.6 Decoder-only Transformer

Decoder-only transformers, here named only as transformers for simplicity, are
a subclass of autoregressive models that leverage blocks of stacked self-attention
layers to model data dependencies without regard to their distance in the in-
put sequence, resulting in an improved performance when compared to other
autoregressive models (Vaswani et al., 2017). The attention layer consists of
the dot-product of a Query matrix, Q, with the Key matrix, K, divided by a
scaling factor,

√
dk and passed through a softmax function. This output is used

as weighting for the Value matrix, V . The Query, Key and Value are all pa-
rameterised matrices obtained from the dot-product of the layer’s input and the
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respective weight matrix, WQ, WK and WV . The output of the attention mecha-
nism is then obtained through the following mathematical function, where dk is
the number of rows in K:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (2.14)

The model has no preconception of the data ordering, as all previous inputs
are preprocessed simultaneously, so a positional encoding is added to the input
sequence. In an autoregressive setting, the transformer tries to predict the next
value in a sequence xi, while receiving as input all previous values in the sequence
x0, ... , xi−1. The output of the transformer is then passed through a softmax
function where the values of each possible output sum up to one and can be
interpreted as the probability of being the correct output. The autoregressive
transformer is trained to maximise the log-likelihood of the input sequence, s,
by minimising the following loss function:

LossTransformer = Ex[−log p(s)] (2.15)

The trained autoregressive transformer outputs a probability distribution
over the possible next values in a given sequence (see Figure 2.2.B). For a gen-
erative problem, the VQVAE uses the autoregressive algorithm (in this case, the
transformer) to sample a sequence of discrete latent encodings that follows the
probability distribution of the training data. These sequences of the latent codes
are then passed through the generator to generate realistic representations of
the data without copying any real example. Another example of the application
of the VQVAE is for outlier detection. As the Transformer learns the explicit
probability distribution of the latent code, it is possible to use the likelihood
associated with the real data to assess if the Transformer is identifying the se-
quence as unlikely. If the transformer is only trained on a specific distribution of
data, inferencing on a data point outside of the distribution (i.e., an anomaly or
an outlier) will identify the specific latent sequence with low probability.

2.2 Bayesian Optimisation

Bayesian Optimisation (BO) is a powerful sampling algorithm that efficiently
finds extrema of unknown functions, f(x) = y . It does so by employing a statis-
tical model that is fitted to the sampled values and a function that guides where
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Figure 2.2: Schematic representation of the VQVAE and Transformer
algorithms. Schematic representation of the VQVAE encoder-decoder algo-
rithm. The dVAE learns a discrete latent representation by optimising the re-
construction of the input (x) and the codebook to minimise the samples’ distance
to the latent codes. B. Schematic representation of the autoregressive Trans-
former. The Transformer receives sequentially as input the latent codes of the
dVAE and learns the probability distribution of the next value, conditioned on the
previous values of the sequence and starting with the BOS (begining-of-sentence)
token. It does so using a multi-head attention mechanism.
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to sample next based on a balance between the values’ uncertainty and the pre-
viously obtained values (Brochu et al., 2010). It predicts a posterior distribution
across the space of functions using the available evidence (i.e., previously sam-
pled points) and a prior. This method is particularly useful for optimising over
costly functions where it is expensive to sample any given point. This is because
its balance between exploration and exploitation allows the algorithm to find the
function extrema in a small number of samples. The method performs global op-
timisation and does not require the unknown function to be convex, nor does it
depend on gradient-based methods. These two characteristics benefit greatly the
application of BO to real-world problems as the optimised unknown functions
rarely are derivable and smoothly convex. Bayesian optimisation is composed
of two main parts: 1) the surrogate model that fits the data in a supervised
learning framework; 2) the acquisition function that determines which point to
be sampled next based on maximising utility.

2.2.1 Surrogate model

The surrogate model is a statistical model of the unknown objective function,
f(x), which learns a mapping of the input x to the output y and the distribu-
tion of uncertainty around the output predictions (Figure 2.3.A). Typically, a
Gaussian Process Regressor (GPR) is used as the surrogate model. This algo-
rithm is used to build the statistical model based on previously sampled values,
GP (x) = p(x|y) (Rasmussen and Williams, 2018). The GPR fits a multivariate
normal distribution to the feature variables (x0, x1, ... , xi), using the covariance
matrix, Σ = cov(x), to define how the features are correlated with each other.
This allows the model to interpolate between data points following the proba-
bility density function of the multivariate normal distribution, with dimension
D:

N(x|µ,Σ) = 1

2π
D
2 |Σ| 12

exp[−1

2
(x− µ)T Σ−1(x− µ)], (2.16)

Where µ is the mean response vector, and the covariance matrix Σ contains
the pairwise covariance of all jointly modelled random variables. In order to make
the GPR extend to stochastic processes defined on a continuum, the covariance
matrix is replaced by a covariance function or kernel k(xi, xj) that predicts the
covariance between any two data points. There are many different kernels that
represent different relationships between data points. In our systems, I use the
stationary Mátern kernel with a smoothness parameter ν=2.5 and an added white
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noise term. The Mátern kernel is a commonly used stationary kernel (Rasmussen
and Williams, 2018), and the white noise term will simulate the global noise
level as data acquisition is inherently non-deterministic and noisy. The kernel’s
hyperparameters are optimised during the fitting of the model by maximising the
log-marginal-likelihood. For every new sample of the Bayesian optimisation, a
GPR is fitted with all available data and the prediction of f(x), and its standard
deviation is retrieved. These are passed to the acquisition function to control
where to sample next.

2.2.2 Acquisition Function

The acquisition function controls where BO should sample next by balancing
both goals of minimising uncertainty (i.e., exploration) and finding the maximum
of the predicted function (i.e., exploitation). The maximum of the acquisition
function will determine the data point to sample next (Figure 2.3.B). We want to
sample f(x) at argmin

x
u(x|µ,Σ) , where u(.) represents any acquisition function.

Two commonly used acquisition functions are Expected Improvement (EI) and
Upper Confidence Bound (UCB).

EI is a function that leverages information about the expected best candidate
and the uncertainty of the estimations in an exploration-exploitation trade-off
(Kandasamy et al., 2016). It is given by the expectation of improvement function,
I:

E[I[x]] = E[max(f(x∗)− y, 0)] (2.17)

As the surrogate function follows a normal distribution, we can compute EI
in closed form:

E[I[x]] = (µ(x)− f(x∗)) Φ(z) + σ(z)ϕ(z), (2.18)

where
z =

µ(x)− f(x∗) + κ

σ(x)
(2.19)

Where Φ is the standard normal density, ϕ is the standard normal distribution
function, and κ is a hyperparameter that controls how much the acquisition
function privileges exploration over exploitation.

The UCB acquisition function was introduced by (Cox and John, 1992) and
provides a cleaner balance between the aim for the global maxima and the min-
imisation of uncertainty:
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UCB(x) = µ(x) + κσ(x), (2.20)

Where κ is a hyperparameter that controls for the degree of exploration as
it weights the importance of the standard deviation for the choice of the next
point to sample.

The BO setting can be used for problems that focus only on minimising un-
certainty and not on optimising a function, by controlling the κ hyperparameter
to only account for uncertainty. This setting is known as active learning. Be-
cause the acquisition function requires a statistical model of the target metric
across the space to guide where to sample next, we need to pre-define what the
first samples of the algorithm will be (i.e., burn-ins). This approach is adapted
from Automatic Machine Learning research (Misir and Sebag, 2013) and allows
relevant heuristics to be added to a model prior to being optimised by the BO
algorithm. The number of burn-ins and where they sample is user-defined and
should be adapted depending on the paradigm being addressed.



2. Methods 30

Figure 2.3: Fifth iteration of a Bayesian optimisation algorithm to
find the maximum of a noisy parabolic function (−x2 + 1). In A., the
previous samples from the algorithm are marked with red diamonds, the Bayesian
optimisation prediction of the real function is marked in a dashed black line, with
a 95% certainty boundary marked in blue, and the real function that is being
sampled is marked in red. The prediction of Bayesian optimisation consists on
fitting a Gaussian Process to the already sampled points. Although the prediction
of Bayesian optimisation is not a good match to the real signal, mostly due to the
noisy samples, the algorithm correctly predicts the maxima to be around 0. The
uncertainty around the areas already sampled is lower than those that were not
yet sampled. B. presents the acquisition function, which controls where Bayesian
optimisation should sample next. The golden star is the maxima of the utility
function and the position that will next be sampled in f(x). Because this is an
exploitative run, it prioritises the region with the highest value and is sampling
very close to the real function maxima (i.e., 0).
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Table 2.1: Benefit and project applicability to each method described in this
chapter.

Method Benefit Chapters

PCA Simple linear dimensionality re-
duction

5, 6

MDS Non-linear dimensionality reduction 5, 6

StyleGAN
Learning manifolds with relevant
features from hyperspace of avail-
able datapoints

3 4

VQVAE Data compression and decom-
pression 7

Transformer Likelihood estimation for finding
unlikely samples 7

Bayesian Optimisation Active learning and optimisation
on a Euclidean space 3 4, 5, 6
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3 | Neuroadaptive Optimisation of
face stimuli in human-centred
research

3.1 Introduction

The replication crisis and the generalisability crisis previously introduced in 1.1.1
are challenges faced by most natural science research. Some of the practices that
lead to these causes include researchers having too many degrees of freedom
when conducting their research, especially in the case of exploratory studies,
and most studies not accounting for individual variability in their population of
study when doing group-wise analysis. As introduced in 1.2.2 the neuroadaptive
optimisation approach attempts to tackle these limitations by employing active
learning methods to automate the process of data collection, data processing and
result analysis in more open-ended hypotheses and retrieving individual profiles
of response for each participant in the study. These topics have been explored
in fMRI studies (Lorenz et al., 2016) and this chapter extends this approach for
behavioural responses. It. explores responses over a space of face stimuli, as
faces have a key role in our understanding of brain representations (Tsao and
Livingstone, 2008) and have been considered a relevant biomarker for psychi-
atric conditions (Jones et al., 2019). Furthermore, this chapter introduces a
novel mechanism to enrich the space of stimuli using generative models to create
continuous variations between variables of interest.

Face perception and processing is fundamental for human survival. Within a
fraction of a second, faces reveal to us information about the emotions, gender,
age, trustworthiness or intention of another human. Therefore, faces are among
the most important visual stimuli in the natural world and, consequently, a large
portion of neuroscience and psychology research has been dedicated to study-
ing face processing mechanisms (Eimer, 2012, Kanwisher et al., 1997, Kanwisher

33
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and Yovel, 2006, Tsao and Livingstone, 2008). As a result, we now know humans
have a specialised neural mechanism to process faces that is in influenced by their
individual experience (Pascalis et al., 2011) Furthermore, neuroimaging studies
have shown that different face stimuli elicit different brain response patterns
(Kriegeskorte et al., 2007). This heterogeneity in our neural response to faces
presents a challenge to current methodology in the field, where the status-quo
consists of using the same set of pre-selected face stimuli for every individual and
then drawing conclusions from group-level results. The absence of personalised
stimuli presents a serious limitation as it fails to account for how each individual
face processing system is tuned to cultural embeddings or how it is disrupted in
disease. By performing group-level analysis on a subset of the general popula-
tion, results may fail systematically to generalise to different populations or even
different acquisition devices. Besides not allowing to tailor face stimuli to spe-
cific research questions (e.g., what kind of face stimuli maximise response in each
brain region), this approach overlooks inter-individual differences in face process-
ing by averaging over the individual signal across a predefined group. If we want
to better understand the mechanisms underlying face processing, how it devel-
ops and how it is disrupted (e.g., autism spectrum disorder or fronto-temporal
dementia), we need an approach sensitive to individual responses.

To address this shortcoming, this project presents a framework that lever-
ages the neuroadaptive framework and generative models to tailor face stimuli
with the aim to maximise a particular response from an individual subject (e.g.,
neural, behavioural or subjective)∗. By requiring a small number of iterations,
this approach bypasses the inherent limitation of participants’ attention and fa-
miliarity effects from repeated testing. This closed-loop and automated approach
measures how the manipulation of face stimuli alters evoked measures. For this,
a continuous space was created, where each dimension manipulates a facial se-
mantic attribute orthogonally from the other facial attributes. The algorithm
automatically searches through this ”face space” using Bayesian optimisation
that queries only the most informative points in that space in order to find the
maximum of a target function. The target function can be neural, such as the
participant’s brain signal while processing the face stimulus or a behavioural
evaluation, such as similarity to a target face or aesthetic judgement. The face
stimuli are generated by a generative adversarial network (GAN) previously in-
troduced in Section 2.1.2.1. GANs are effective at image manipulation because

∗Code access to the full framework is available at
github.com/PedroFerreiradaCosta/FaceFitOpt



3. Neuroadaptive Optimisation of face stimuli in human-centred research 35

Figure 3.1: Schematic Representation of the framework.

they create an unsupervised separation of semantic features (such as gender, age,
etc) (Goodfellow et al., 2014). When the network is trained on images of faces,
the latent space is transformed by the generator component of the GAN into a
point in the low-dimensional manifold of realistic faces (Goodfellow et al., 2014,
Karras et al., 2019). By moving the point along a vector in the low-dimensional
manifold, we can manipulate the image along certain facial attributes while main-
taining face identity (Pumarola et al., 2018), presenting a continuous mapping
of these attributes, which would be impossible to obtain from any dataset.

This proof-of-concept tests whether the approach can identify an individual’s
own face by manipulating the age and emotion of an original photograph and
considering the ground truth to be the non-manipulated image in the space. It
is shown how the algorithm can efficiently locate an individual’s optimal face
while mapping out their response across different semantic transformations of
a face. Finally, inter-individual analyses suggest how the approach can provide
rich information about individual differences in face processing.
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3.2 Methods

The introduced algorithm has four main components: 1) a pre-trained GAN to
sample from the face manifold; 2) a face encoder that allows to obtain the latent
representation for any real face in order to find its position in the manifold; 3)
learned attribute directions from the latent space to manipulate images; 4) a
Bayesian optimisation algorithm that efficiently samples the space.

3.2.1 GANs for object generation

GANs algorithms are introduced in Section 2.1.2.1 where it is described how this
generative model implicitly learns the density function of a variable of interest
(in this case faces), from the large hyper-dimensional space of possible images. In
essence, the algorithm learns the lower-dimensional manifold using an adversarial
process. By sampling from the learned density function, it is possible to generate
realistic samples of the data it is trained on. Here, StyleGAN (Karras et al., 2018)
was used, which was pre-trained on the Flickr-Faces-HQ dataset (FFHQ). The
input is set to the intermediate latent space of the mapping network (dlatent ∈
R18.512) since it provides a more disentangled representation of the features. This
is possible because StyleGAN is optimised for maximising the disentanglement
of features in the latent space by using a network that controls the generator
through affine transformations.

3.2.2 Latent Space Encoder

In order to manipulate images that the generator model was not trained on (e.g.,
a photo of the participants’ faces taken by their webcam), we need to project
the image from the manifold of face images, towards the learned latent space.
GANs consist of multiple layers of non-linear transformations, which makes it
challenging to invert the model (Abdal et al., 2019, Creswell and Bharath, 2019).
Using styleganencoder †, this is done by projecting both the image we want to
transform and the generated images into a common feature space of a perceptual
model - conv3_2 of the VGG16 pre-trained on the ImageNet dataset (Simonyan
and Zisserman, 2015). Then, the latent values are optimised through Gradient
Descent on the perceptual loss for 500 iterations, where F (I) is the output of the
feature space, and I is the image input.

†github.com/Puzer/stylegan-encoder
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Lpercept(I1, I2) = ||F (I1)− F (I2)||2 (3.1)

This process results in a latent representation that, when fed into the gen-
erative network, outputs an image that is nearly identical to the original one
(Bojanowski et al., 2018). As a demonstration of the reliability of the encoder,
the results of an encoding from the face space to the latent space are presented in
Figure 3.2. By learning the latent representation of a figure, the researcher can
manipulate it by applying linear transformations in the latent space to transform
semantic attributes of the original image. The constructed space is not limited
to the semantic directions described in the chapter as Figure 3.2 demonstrates.

3.2.3 Attributes across latent space

In order to manipulate specific features while maintaining facial identity, I follow
the methodology introduced in 2.1.2.3 where a large compendium of faces is
generated from the GAN and automatically labelled to identify concept vectors
of use. In this work the vectors of interest were age (i.e., older vs. younger)
and emotion (i.e., sad vs. happy). This results in a 2-dimensional paradigm
space where the faces are mapped to, covering emotion on the x axis and age
on the y axis. By maintaining facial identity while varying these two features,
the algorithm is setting all other facial variables that are uncorrelated to the
variables of interest as fixed.

3.2.4 Bayesian Optimisation

Bayesian optimisation is ideally suited to perform optimal stimulus selection in
the context of neuroscientific research (Lorenz et al., 2016, 2017, 2018) because
a) evaluating all possible stimuli is not feasible with human participants, b)
the target functions are unknown (e.g., structure, concavity, number of max-
ima or linearity), c) the sampled values are “derivative-free”, limiting the use
of any gradient descent approaches, and d) the neural or behavioural samples
will inherently be affected by stochastic noise. The set A, the face space, is a
hyper-rectangle {x ∈ Rd : ai < xi < bi}, where each dimension d manipulates
one disentangled facial feature across its axis. The choice of features is flexible
and should be adapted depending on the specific research question. This is the
space that the Bayesian optimisation will navigate, where a point in the space
represents an image generated by the generator network with the given latents
(dlatent +

∑
ci xi). As for the acquisition function the upper confidence bound
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(UCB) was chosen (Cox and John, 1992) with a more explorative hyperparame-
ter.

3.2.5 The framework

The proposed framework is a combination of these four algorithms to automat-
ically explore the face space and find the maximum of a target function that
varies across the chosen feature manipulations. It can use as input any real face,
which is automatically encoded into its latent representation by minimising the
differences of the generated image and the real face in a perceptual space. The
target function is first evaluated after 5 burn-in samples, uniformly chosen at
random to fill the space. Each point is converted to an image through the gen-
erator network, displayed to the participant and the response is measured and
fed back to the algorithm. After the initial five iterations, the loop is closed by
the Bayesian optimisation algorithm automatically choosing the points to sample
for the next 20 iterations, with each point sample following the same steps as
before (see Algorithm 1). A combination of a Mátern 5

2
kernel and a white noise

kernel was used to allow for noisy inputs (Rasmussen, 2004). The algorithm was
wrapped around a GUI that was run with Google Colab to take advantage of
Google hardware to run the generative model. Its automated and flexible process
allows any user with an internet connection to run the software from end-to-end.

Algorithm 1 Framework pseudo-code
1: procedure Burn-in
2: while n < 5 do
3: randomly sample xn from A.
4: dlatentnew = dlatent + c ∗ xn.
5: Run G(dlatentnew) = image_stimulus.
6: Observe yn = f(xn).
7: Increment n.
8: procedure B.O.
9: while n < 25 do

10: Update posterior probability distribution on f using sampled points.
11: Let xn be the maximiser of the acquisition function.
12: dlatentnew = dlatent + c ∗ xn.
13: Run G(dlatentnew) = image_stimulus.
14: Observe yn = f(xn).
15: Increment n.
16: return sampled point with largest posterior mean
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Figure 3.2: Encoding of the real photo into the learned representation.
A) The image on the left is a photograph. The image on the right is generated
from a multidimensional datapoint in the latent space that was chosen by op-
timising the latent values through gradient descent on a perceptual loss. These
results were obtained with 500 epochs, which took 7 minutes to run on Google
Colab. B) Examples of axis in the latent space resulting in different semantic
transformations of the generated image.
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Figure 3.3: Obtained responses mapped by individual and global pat-
terns.
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Figure 3.3: A. Images displaying the extremes of the space (1-8) and the origin
point (O). B. Mean response of the 30 participants. Each individual maximum
response is marked with a cross. C. Similarity matrix between the target space
of different runs of the same participant (matrix diagonal) and between different
participants. The mean Pearson correlation between trials of the same partici-
pant is 0.76, where the correlation between trials of different participants is 0.64.
D. Correlation matrix between the predicted target space of the first run and the
second run (first column) and between the first run and a run using random
search across the space instead of Bayesian optimisation (second column). E.
Cluster Analysis using K-means clustering on the full space of the participants’
evaluations, the centroids for the two clusters are identified. The first centroid
captures a higher dispersion towards positive values of age (younger images) and
the second centroid captures a higher dispersion towards negative values of emo-
tion (angrier images). F. Maximum of each participant labelled according to its
cluster.

3.3 Proof of concept study

To demonstrate the framework, a web-based behavioural study was conducted
with 30 participants (14 female, mean ± sd age: 31.33 ± 13.94 years) in which
they had to rate manipulated photos of themselves. The aim was to quickly iden-
tify the face stimuli that maximally resembled their original, non-manipulated
photo as an exercise in self-perception. The hypothesis being tested was that
the capacity for self-perception of a person’s own face varies across individuals
(Strauss and Kaplan, 1980). For this, a face space composed of two dimensions,
age and emotion, was defined where each axis is a linear variation of these fea-
tures across the latent vector. A negative value corresponded to an older version
in the age axis and to an angrier version in the emotion axis. Each partici-
pant took a photo that was encoded into the latent space. At each of the 25
iterations, participants were shown a manipulated image of their original photo
and were instructed to rate the similarity between them (0 being nothing alike
and 10 being exactly like their original photo). Each manipulated image corre-
sponded to the transformation associated with the point sampled in the space.
This study design allowed to benchmark the algorithm’s performance against
a known ground-truth (the non-manipulated image in the space). In addition,
for six participants, further runs were conducted to assess the algorithm’s test-
retest reliability (first and second run) and compare the algorithm’s performance
against random search (third run).

The results showed that the maximum is more dispersed on the age axis than
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on the emotion axis, although the median response tends to be near the origin of
the space (median ± sd for emotion: -0.04 ± 0.15; age: -0.06 ± 0.30). The test-
retest reliability analysis showed a high intra-subject spatial correlation (mean
Pearson correlation coefficient across participants ± sd: 0.76 ± 0.14); higher
than the mean inter-subject correlation between participants’ response patterns
(0.64 ± 0.19). This result seems to sustain the argument that the framework
might be able to capture personalised responses on self-perception. To analyse
this further, k-means clustering was performed for two clusters on the full space
predictions of the participant’s response. The silhouette score was 0.17. The
results are displayed in Figure 3.3.E. An analysis of the correlation of the test
runs with the re-test runs and a run not using the sampling algorithm (i.e., using
a random search algorithm) shows that the correlation between the two formers
(mean ± sd.: 0.74 ± 0.14) is higher between the test and the random-search
patterns (mean ± sd.: 0.41 ± 0.13). The results are presented in Figure 3.3.D.

3.4 Discussion

This project proposes a new tool to automatically generate and manipulate face
stimuli across several semantic directions in a well-controlled manner. It was
shown that after only a few iterations it is possible to identify the optimal face
stimulus to maximise a target response and can accurately predict the individ-
ual’s response across the entire face space. Importantly, it was shown that re-
sponse patterns are more stable within individuals than across participants. This
suggests that there might indeed be inter-individual response patterns. This is
relevant as high intra-subject reliability is a critical prerequisite for this method’s
validity as one of the objectives is to create a profile of a person’s response. De-
spite the results agreeing with our hypothesis that inter-individual variation in
face self-perception could be captured through this method, further studies and
larger cohorts are required to better asses these individual variations.

This approach is relevant for a wide range of disciplines interested in an
individual’s response to faces (e.g., neuroscience, psychology, psychiatry, mar-
keting). In a clinical setting, altered response patterns to faces could be used
to guide diagnosis or patient stratification for neuropsychiatric conditions known
to affect face processing (e.g., autism spectrum disorder (Golarai et al., 2006),
fronto-temporal dementia, eating disorders (Phillipou et al., 2015) or schizophre-
nia (Bortolon et al., 2017)). In experimental neuroscience, it allows us to identify
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a set of face stimuli that evoke similar brain responses but bypass effects of ha-
bituation. For psychology, it could be used to investigate how different emotions
or personality traits might result in different response patterns.

The space is not limited to be 2-dimensional and there is no limitation on the
types of images that can be presented. GANs have been used to learn different
manifolds (e.g., houses, animal faces), which could be used to create a navigable
space following the same framework. Equally, sounds could also be optimised in
the same way. Regarding limitations of the stimuli, the extremes of the space
will sometimes display distorted images. One reason is that we are interpolating
linearly between categories in the latent space, where a non-linear transformation
would be able to better capture the transition across the axis. In conclusion, this
framework offers a novel tool for human-centred research that can address limi-
tations from group analysis by including the assessment of individual responses.
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4 | Neuroadaptive electroencephalog-
raphy

4.1 Introduction

The general methodology behind the neuroadaptive framework does not limit
it to a single data modality or type of data space. It can be extended to any
measured response given that it can be evaluated automatically and in real-time.
In this chapter, I extend the neuroadaptive optimisation framework for EEG
studies. Specifically, this chapter explores an infant’s paradigm where an ERP
associated with face stimuli is studied along the spectrum of images of mum and
a stranger. Here it is studied the individual response across the space and how
efficient sampling of the space contributes for avoiding problems of stimulus ha-
bituation. Understanding how the brain processes and represents the physical
and social environment is one of the fundamental goals of functional neuroimag-
ing. Decades of research have yielded a range of methodologies for studying
the electrical activity (electroencephalography; EEG), magnetic activity (mag-
netoencephalography; MEG) and oxygenated haemoglobin changes (functional
magnetic resonance imaging/MRI and near infrared spectroscopy/NIRS) that
are associated with neuronal activity in the human brain. Further, cognitive
neuroscience has generated a rich tapestry of neural metrics suitable for as-
sessing response to environmental stimulation. These include measurement of
task-induced changes in oxygenated haemoglobin concentrations in spatially de-
fined regions or networks (fMRI/NIRS, and timing-defined event-related neural
potentials or oscillations (EEG/MEG). These metrics were identified through
experiments in which a researcher measured a broad spectrum of brain responses
(e.g., whole brain EEG or fMRI) to a small pre-selected stimulus set. Often, the
selected stimuli are important environmental cues like faces (Tsao et al., 2006,
Tsao and Livingstone, 2008), or basic auditory or visual features designed to
represent the building blocks of perception (like checkerboards or tones). Such

45
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research has yielded many critical insights into metrics relevant to brain function
(Kropotov and Kropotov, 2016).

Despite this progress, there are increasing questions over the value of tradi-
tional stimulus-driven methods for understanding the ‘meaning’ of these brain
metrics (i.e., what dimensions they represent); and for studying how brain func-
tion differs in populations who are not the modally studied groups of heteronor-
mative White western young adults. First, understanding what each brain metric
‘means’ involves defining the range of stimuli by which each brain metric is mod-
ulated; doing this sequentially through separate experiments that each focus on
one or two stimuli is slow and inefficient. Second, stimulus selection is often
guided by theory or previous empirical study; but the replication crisis (Ioanni-
dis, 2014, Open Science Collaboration, 2015) and the overwhelming focus on a
narrow subset of the world’s population in the neuroimaging literature (Westfall
et al., 2016) means that trying to select the right stimuli to study individual differ-
ences or brain function in broader populations may be little better than guessing.
The substantial analytic flexibility afforded by allowing post-experiment analy-
sis of brain data creates an overwhelming risk of false positives and can only
be partially addressed by written pre-registration (Nosek et al., 2015). Finally,
the traditional approach embeds a deficit model in our approach to studying
individuals with neurodevelopmental or psychiatric disorders. A typical research
project in this area involves studying how people with neurodevelopmental or
psychiatric disorders respond differently to a stimulus selected based on norma-
tive preferences. Reframing this work within a neurodiversity framework (Singer
and Willett, 2009) prompts the researcher to ask not how people’s brains respond
differently to stimuli that ‘typical’ brains prefer, but to identify what stimuli are
preferred by people whose brains work differently. Longer term, this may prove
more fruitful for the design of individualised interventions that build on strengths,
rather than aim to address weaknesses.

To address these problems, Leech and colleagues developed a complemen-
tary approach that inverts the traditional experimental paradigm (Lorenz et al.,
2017). Instead of preselecting one or two stimuli and measuring a broad spectrum
of brain responses, neuroadaptive Bayesian optimisation is a method through
which the experimenter selects one or two brain responses, and measures how
they are modulated by a broad spectrum of environmental stimuli in a real-time
closed loop design. This method has been used successfully to study fMRI re-
sponses in the frontal cortex in neurotypical adults (Lorenz et al., 2017), and to
identify cognitive difficulties in stroke patients (Lorenz et al., 2021). Here, this
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approach is extended to EEG and the study of infant brain function. EEG is a
particularly fruitful method for real-time analysis because its high temporal reso-
lution allows rapid feedback loops of response-guided stimulus selection. Further,
the problems of traditional approaches are particularly acute when studying the
developing brain, where the cognitive topography is likely to be substantially dif-
ferent than in adulthood and where practical challenges of working with infants
make data collection slow and difficult. However, without studying the brain as
it develops, we cannot move beyond studying the correlation between environ-
mental features and brain response. To understand the mechanisms of causation
through which the environment is represented and shaped we must study change
over developmental time in how the brain processes information and controls be-
haviour. Insights from translational work in animal models and computational
modelling approaches to studying learning are also most likely to be effectively
mapped onto preverbal infants, where common mechanisms are most likely to be
conserved. Thus, in the present study I present a proof of principle of the use of
neuroadaptive techniques to study the developing brain.

As a test case, a stimulus space in which we could make a strong predic-
tion about individual level brain ‘preferences’ was selected. Specifically, a face
space within which the face of the infant’s mother was positioned. If the al-
gorithm can automatically converge to identify the infant’s own mother based
on real-time closed loop analysis of their brain activity, this provides a strong
proof-of-principle that the technique can be used to study how a particular brain
metric reacts to a broad environment. Notably, this is different to a typical BCI
approach in which an algorithm would first be trained to distinguish (for exam-
ple) two faces on the basis of multimodal brain data; here, the neural feature is
selected based on the previous literature for greater interpretability. In this case,
the negative central (Nc) event-related potential response was selected because of
its demonstrated links to attention (Richards et al., 2010) and its modulation by
face familiarity (including differentiation between mother and stranger (de Haan
and Nelson, 1999, M. De Haan and C. A. Nelson, 1997, Webb et al., 2011)).The
infant Nc (negative component) is a negative deflection occurring between 300
and 800ms at the frontal midline after the stimulus onset. Previous studies
showed that the amplitude of the Nc was larger (more negative) in response to
the mother’s face (de Haan and Nelson, 1999, M. De Haan and C. A. Nelson,
1997) likely reflecting elevated attention (Conte et al., 2020). These studies use
the traditional approach of preselecting two stimuli (mother and stranger) and
analysing the resulting data with highly variable study-specific parameters (scalp
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location, window timing, peak or latency etc). To invert this paradigm, facial
stimuli was generated based on the mothers and strangers’ faces and created
a configuration space. Then, it was presented one of the faces to the infants
while measuring their EEG. Using real time EEG analyses, their Nc amplitude
response to the stimuli was analysed. The Nc responses were then forwarded
to the neuroadaptive algorithm that predicted which face would elicit the op-
timal Nc response (i.e., larger Nc amplitude) in the individual infant. When
the algorithm converged on the stimulus eliciting the optimal Nc response, the
experiment was automatically terminated. In the following sections, I describe
the method and proof-of-principle results.

4.2 Material and Methods

The neuroadaptive method consists of multiple steps, outlined in the following
sections. These are: generating stimuli and creating a configuration space (here
a face space, 4.2.1); recording and performing real-time analysis of the neural
(EEG) responses to the stimuli 4.2.2; using a sampling algorithm (Bayesian op-
timisation) across the space 4.2.3 and re-iterating steps 2 and 3 until a stopping
criterion has been reached 4.2.4. This allows for a rapid prediction of the target
EEG metric across the space despite sampling only a limited number of stimuli.
Figure 4.1 presents an overview of these steps. In what follows the development
and choice of parameters for each step are described in more detail. All scripts
are available in an open-source repository∗.

4.2.1 Generating stimuli and creating a configuration space

This method maps the peak and topography of the modulation of the pre-selected
neural response across a large stimulus space. As such, a continuous experimental
space needs to be generated that can be characterised along one or more stimulus
dimensions (da Costa et al., 2020). Since the test case involved faces (a common
focus of cognitive neuroscience because of their importance to social function),
to allow for creating a smooth space interpolating between faces of strangers
and participant’s mothers, stimuli were artificially generated using StyleGAN2.
StyleGAN2 is a state-of-the-art generative adversarial network (GAN), a deep
learning algorithm for generative image modelling (Karras et al., 2019). One
of the examples of successful trained GANs on a given data distribution is the

∗github.com/PedroFerreiradaCosta/NeuroadaptiveEEG
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Figure 4.1: Schematic of the EEG neuroadaptive framework. The first
step is taken before the testing of a participant and consists of building the con-
figuration space of stimuli (1.) – in this paradigm, mother-stranger interpolation.
However, this could represent a stimulus space across a large number of dimen-
sions. During testing, the framework is run in a closed-loop, where a stimulus in
the configuration space is chosen to be sampled (2.). The stimulus is displayed
to the participant and the EEG response is processed automatically to retrieve
the target metric (3.) - in this paradigm, the Nc amplitude. A statistical model
is built by fitting a Gaussian process to the sampled data (4.), guiding where to
sample in the next iteration (2.).
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generation of realistic faces (Karras et al., 2018, 2020). The generative algo-
rithm can create a large and diverse compendium of non-existing faces that are
indistinguishable from real photos. Exploring the trained latent manifolds of
generated faces allows to create smooth spaces defined by relevant dimensions
along which faces continuously vary. By using artificially generated faces we are
not limited by a bounded dataset and can maximise diversity of the generated
faces, important to expanding research studies to diverse cultures and ethnici-
ties. Furthermore, the generated images can be manipulated to create realistic
representations of faces that progressively change across a given semantic dimen-
sion, which provides an alternative way to define a ‘space’ (e.g., changing a given
face’s perceived age) (Radford et al., 2016). Finally, as the generated faces do
not depict real people, there is no risk of privacy infringement or limitations on
proprietary datasets.

An additional use of GANs is to project real images of faces to the latent
manifold. This facilitates the manipulation of real images across selected seman-
tic dimensions (i.e., a meaningful dimension in the latent manifold). This allows
us to create a dimension involving a real person (here the infant’s mother) by
following previous implementations of image encoding (Bojanowski et al., 2018).
Specifically, both the GAN output and the image to be encoded are projected
into a common feature space, encoded by a perceptual model – an intermediate
layer of the image classifier VGG16 (Simonyan and Zisserman, 2015). The latent
codes, dlatents, are then optimised directly by gradient descent to try to minimise
the perceptual loss. The perceptual loss is the difference between both projected
images in the common feature space. Given the output of the feature space F (I),
where I is the image input, the perceptual loss can be given by the Euclidean
distance between the two projections:

Lpercept(I1, I2) = ||F (I1)− F (I2)||2 (4.1)

The resulting latent code that minimises the perceptual loss will be able to
generate a similar recreation of the original photograph. As previous studies have
demonstrated (da Costa et al., 2020, Radford et al., 2016), the latent space can be
exploited to control for different facial features of the artificially generated faces.
We can progressively change a given aspect of the face, while maintaining the
other features mostly intact following the linear interpolation method described
in section 2.1.2.3. Finally, the same linear interpolation can be applied to any
two images generated from the GAN. By linearly manipulating two latent codes
from one to the other, it is possible to obtain a continuous morphing of the faces,
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slowly changing their facial identity. These manipulations using the GAN latent
space prove useful in neuroscientific research, as they allow for a flexibility in
facial features, while maintaining realistic representations of the face. Instead of
relying on categorical and discrete stimuli, these continuous variations can then
be used for better assessment of how a given ERP varies.

These manipulations of artificial faces are done using Google’s Colaboratory
†, an online Jupyter notebook environment that provides access to GPU com-
putation, a requirement when doing inference with GANs. This module is run
before the data collection, and it is responsible for generating the stimuli that
will compose the space being analysed. In this module, the experimenter will
define the dimensionality of the space, the semantic direction of each dimension
and the original stimulus under analysis. The semantic direction can be chosen
from a list of available options: gender, age, emotion, yaw, roll, pitch, lip ratio,
nose-ratio, eye-ratio, eye distance, eye-to-eyebrow distance, nose-to-mouth dis-
tance, mouth open/closed, eyes open/closed, nose tip position and interpolation
between two different faces (the option used in the present study). The present
study interpolates between the faces of the participant’s mother and a stranger.
The original stimulus was an original photograph that is uploaded to the sys-
tem; an alternative approach is to use a randomly generated artificial face. This
configuration space builder is currently limited to facial stimuli, but it can be
substituted by any stimuli that are predefined to model a configuration space to
be analysed in real-time.

In this system, the configuration space is Euclidean, discrete and can be
multi-dimensional. The number of dimensions, each of which should account
for an independent variation of the stimuli, is only limited by the capability
of the Bayesian optimisation to sample vast spaces, which is known to break
down for spaces larger than 20 dimensions (Snoek et al., 2012). Each dimension
should code a single and independent variation of the stimuli. This allows to
disambiguate and eliminate confounders from the variation of the target metric
along a given axis. The specific variations of stimuli being encoded per dimension
should depend on the research questions being addressed.

In summary, in this proof-of-concept infant paradigm, there is a focus on
brain functioning during visual processing of familiar and unfamiliar faces: i.e.,
the mother’s face and a stranger’s face. The stranger’s face was the face of
one of the researchers and was used across all infants. A stranger’s face and
a photograph of the mother of the infants were used as the extremes for the

†github.com/PedroFerreiradaCosta/NeuroadaptiveEEG/blob/main/FaceShiftBirkbeck.ipynb
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mother-stranger continuum. In the photographs, the mother and stranger had
a neutral expression, and the head was centred where the image was cropped
at shoulder or clavicle height. Using the StyleGAN2, a continuous GAN latent
space that represented the mother’s face linearly changing into the stranger’s face
was generated. This resulted in 10 additional, realistic images of faces, bringing
the total of possible sampled stimuli to 12 (see Figure 4.2).

4.2.2 Recording and real-time analysis of the neural re-

sponses to the stimuli

Participants were recruited via a database of families interested in research.
Infants were aged between 5 and 9 months and excluded if they had a family
or personal history of epilepsy, were born preterm (< 31 weeks gestational age),
had a clinical diagnosis or a sensory or motor impairment, or if they could not
hold their head up without support. Information about the study was provided
by email and informed consent was signed by the caregiver digitally (per Covid
requirements). Mothers were asked to send a picture of themselves with a neutral
expression before the visit. This picture was used to generate and prepare the
face stimuli in advance. If a photograph was not received before the visit, a
photo was taken in the lab with an iPad. Procedures were in accordance with
the COVID-19 safety government regulations active at the time of data collection.
The study and COVID-19 safety procedures were approved by the Department
of Psychological Sciences ethics committee at Birkbeck (ref.no. 192001). Infants
received a t- shirt as a thank-you.

Stimulus presentation. Stimuli were presented on a 24 inch diagonal screen
(1080p; 1920 x 1200 pixels)) and controlled by a MacBook Pro (15-inch, 2018
with a 2.6 GHz Intel Core i7 processor) using Matlab (version R2018b). Stimulus
presentation was controlled with Task Engine ‡ (Jones et al., 2019), Psychtoolbox
3.0.14, Gstreamer 1.14.4 for stimulus presentation, and a Lab Streaming Layer
(LSL) to connect the EEG recording software to the Matlab software. A web-
cam (Logitech HD Pro Webcam C920) was placed on top of the screen. Open
Broadcaster Software (OBS) was used to monitor the infants’ looking behaviour
during the session. An iPad (7th Generation) was used for taking photographs
for generating the face stimuli and recording of EEG cap placement.

‡sites.google.com/site/taskenginedoc/
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The experiment consisted of a series of blocks. At the start of each block,
one of the face stimuli was selected to be sampled. This stimulus was repeatedly
presented for a total of 12 trials per block; 12 trials were used in each block as
this number of trials was 20% higher than the typical minimum trial number (10)
used in infant Nc studies to allow for data loss (Munsters et al., 2019). Each block
started with a red spiral to attract the infants’ attention to the screen. When the
infants were looking at the screen, the face stimuli were presented. This stimulus
presentation was controlled with a key press by the researcher who monitored
the infants’ attention via the webcam. Each trial in the block started with a
fixation cross presented on a grey screen for a duration of 1000ms for the first
trial, and a jittered duration between 500 and 1000ms in subsequent 11 trials.
The face stimulus was presented for 500ms. Immediately after, the next trial was
presented. Whenever the infants were looking away, stimulus presentation was
paused, and the red spiral was presented on the screen to re-attract the infants
attention to the screen. A cartoon image of an object or animal was presented at
the end of each block while the real-time EEG analysis and BO were performed.

EEG recording and analysis of the Nc response. During this procedure,
EEG was continuously recorded using the Neuroelectrics Enobio with an 8-
channel gel-based system (NE Neuroelectrics, Barcelona, Spain). The system was
connected to the recording software Neuroelectrics NIC (v2.0.11.7, Barcelona,
Spain) via wifi. CMS and DRL electrodes functioned as the system’s reference.
Data were recorded at a sampling rate of 500Hz. Since the Nc is most prominent
at frontal-central sites (Courchesne et al., 1981) , EEG was recorded at six chan-
nels placed at locations FC1, Fz, FC2, C1, Cz, C2 in metal electrode holders in
infant-sized caps (sizes K - 42cm, or KS - 46 cm). The two remaining electrodes
were placed at locations P7, and Oz and functioned as the reference electrodes
for re-referencing during the real-time EEG analysis. CMS and DRL electrodes
were placed on the infants’ mastoid using sticktrodes.

After the presentation of each block of stimuli, real-time EEG analysis started
with reading in the markers and continuous EEG from the presented block. The
continuous EEG data were filtered using an FIR digital band-pass filter from
1 to 20Hz with a Hanning window (as in Benedek et al. (2017), Webb et al.
(2011)). Data were then segmented into trials based on the marker information
from -100ms to 800ms after stimulus onset. Trials were baseline-corrected using
the average amplitude across the -100ms to 0ms. Time series containing arte-
facts were identified on a channel by trial basis. Time series containing signals
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exceeding a threshold of -200µV or +200µV (Munsters et al., 2019), a range of
400µV, or showing a flat signal (absolute value below 0.0001µV) were marked
and excluded from further analysis. Time series from all trials and channels of
interest (FC1, Fz, FC2, C1, Cz, C2) were averaged together into one ERP. For
the re-referencing, time series from all trials and the channels P7 and Oz were
averaged together and subtracted from the ERP.

After the preprocessing, the Nc response was extracted from the ERP. The
Nc response was defined as mean amplitude calculated across the time window
from 300ms to 800ms. To measure data quality, the percentage of artefact-
free trials included in the analysed ERP and number of trials included due to
lack of threshold, range, or flat signal artefacts were also calculated. Both this
data quality information and the ERP waveform were then displayed for visual
inspection by the researchers.

Different criteria were explored on which this decision was based with differ-
ent sessions (and different infants) and both automated and user-defined deci-
sions. The preprocessed pipeline was fully automated. However, there is always
the possibility of unforeseen interfering events or poor data quality that are not
picked up by the automated pipeline. Interference may arise for a mother or
experimenter accidentally disturbing the infant during a block, for example by
talking and pointing at the screen. The signal of the EEG furthermore varies
between individual infants where a certain threshold may be effective in one in-
fant, but not pick up on the artefacts in another. In order to account for these
possibilities, both automated and manual approaches to the decision were tried.
In the automatic criterion, the block was included if the data quality was good.
For the first infant, the following was implemented: Data quality was good if 1 or
more channels were good (out of the 6 channels of interest). A channel was con-
sidered good if it contained 3 or more artefact-free trials (out of the 12 presented
trials). In the remaining sessions, the manual criterion was implemented. This
was a user-defined decision after each real time EEG block. In this researcher-
based criterion, the researcher decided whether to continue, repeat or terminate
the sampling. This subjective decision was based on the visual inspection of the
ERP waveform, the percentage of data from the block included in the ERP.

4.2.3 Bayesian optimisation for sampling across the space

After each block, the relevant ERP metric (here, Nc mean amplitude) was passed
to the Bayesian optimisation (BO) algorithm. The Bayesian optimisation sam-
pling algorithm is run independently using python as the programming language.
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Before the experiment, the user needs to define the number of burn-ins, where
in the configuration space they are sampled, the maximum number of iterations
run by the sampling algorithm and the level of desirable exploration (ξ). In the
present study, the target EEG metric was the mean Nc amplitude. For four par-
ticipants, it was optimised for its most negative value and for one participant it
was optimised for its most positive value to verify that the resulting search pat-
tern changed. It was defined that the first 4 iterations were burn-ins to Bayesian
optimisation, to try to capture an initial model of the Nc amplitude’s variation
across the configuration space. The initial points sampled along the interpolation
between the mother’s face and stranger’s face were in order, 100% mother’s face,
100% stranger’s face, 1

3
mother’s face and 2

3
mother’s face. EEG experiments

in neurodevelopmental research are inherently limited regarding the number of
iterations it can run for one participant in a given session. Because of the short-
attention spans of infants, the method’s parameters need to minimise the number
of blocks the researcher must run. Towards this end, a ξ value of 0.1 was defined,
which benefits exploitation of the identified maxima. One other reason for choos-
ing a more exploitative ξ is the configuration space being relatively small with
just one dimension of variation (i.e., mother-stranger interpolation). For larger
spaces, higher values of ξ that benefit explorations should be considered. The
maximum number of iterations was defined to be 15, which was identified to be
an upper-bound for how many iterations the infants’ managed to maintain at-
tention (approximately 20 minutes). In the present study, the stopping criterion
was always reached before the maximum number of iterations was surpassed.

4.2.4 Re-iterating steps 2 and 3 until an optimum target

metric has been reached

The system is run iteratively in a closed loop. The acquisition function defines
which stimulus to display next. The stimulus is presented to the participant
and the target EEG metric (here the Nc amplitude) is collected after automatic
processing of the ERPs. The acquisition function will progressively choose a
stimulus to sample that is predicted to be closer to the predicted maximum until a
stopping criterion is met or it has run a predetermined number of iterations. The
early-stopping criterion objective is to finish the program if the BO algorithm is
not capturing any new information on each block. The stopping criterion should
then be a relevant proxy of the uncertainty present in the statistical model.
This could be the mean standard deviation after each block, or the number of
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consecutive times a given stimulus has been sampled. If the sampling algorithm
has identified its expected maximum (i.e., the image eliciting the strongest neural
signature), then it will sample this point (i.e., present the selected image) until the
predetermined number of iterations are run. In theory, increasing the number of
blocks, i.e., obtaining the target EEG metric multiple times for the same stimulus,
could be beneficial as it would allow the algorithm to average output across blocks
and obtain a more reliable value. In practice, showing the same image to the
infants would induce neural habituation and decrease the strength of the neural
signal for the repeated stimulus; thus, these factors need to be balanced. To
balance these considerations, in the present study a default stopping criterion of
sampling the same image three times consecutively was used. If an image was
sampled three times, it was assumed that the algorithm has converged to the
unknown function’s maximum.

4.3 Results

Good quality EEG data for analysis were collected from four infants (mean age
= 6 months 4 days, range: 5 months 7 days - 7 months 22 days). One infant
was excluded due to technical issues. Here, it is reported the results of the real-
time analysis (4.3.1), a demonstration that the paradigm elicits expected effects
when analysed in a traditional manner (4.3.2), and a discussion of two factors
that need to be considered in the light of data collected – the balance between
exploitation and exploration (4.3.3) and habituation (4.3.4).

4.3.1 Results of the real-time optimisation in infants

The method allows to build a statistical model of each participant’s response
across the configuration space by fitting their sampled responses with a Gaussian
Process. In the problem presented here, the configuration space was a one-
dimensional interpolation between the face of the infant’s mother and a stranger.
The signal was optimised towards the largest, i.e., most negative, amplitude of
the Nc response (i.e., the minimum value obtained for the Nc). For all four
participants the stopping criteria was met with a mean of 8.25 iterations and 1.64
of standard deviation, well below the number of possible stimuli. Furthermore,
some images were sampled more than once, to allow the statistical model to
assess if they indeed provided a larger Nc, as more samples of a given stimulus
allow for a better estimate of the real elicited ERP. The results are displayed in
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Figure 4.2: Individual model statistics for the 4 tested infants. The BO
sampling optimised the negative polarity of the Nc amplitude. The standard error
for each participant’s modelled response is displayed in shaded colour around each
function.

Figure 4.2. As hypothesised, the predicted measures of the Nc across the stimulus
continuum show a negative slope for all four participants optimised towards the
most negative Nc. Thus, the statistical model predicted that for these four
participants, the image of their mother would produce the most negative Nc.
This was not the case for the infant participant where the algorithm was run
to optimise the most positive value. For this case, the model statistics failed
to capture a variation of the Nc along the stimuli. Because Gaussian Processes
inherit the properties of normal distributions, this method returns the standard
deviation of the modelled function along the configuration space. This value
works as a proxy of the model uncertainty. The high values of standard deviations
obtained for the modelled responses are a consequence of brain metrics not being
deterministic and being highly variant even when averaging across several trials.

4.3.2 Confirmation of expected mother-stranger effects us-

ing a traditional analysis

The grand average across four infants for the first two burn-in blocks (the mother
and the stranger) are displayed in Figure 4.3.A. As expected, the neural response
to the mother’s face showed a more negative deflection than the response to the
stranger face, most prominent during our time window of interest (300 - 800ms).
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Figure 4.3: Real time EEG analysis. A. Grand average for mother and
stranger across the 4 infants with the shaded area reflecting the Nc time window
of interest. B. ERP and data quality report for a good ERP; C. poor quality ERP
with the ERP for the block in the top panel and the number of trials included for
each channel in the bottom panel.
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Illustration of Real time metrics. Figure 4.3.B shows an example of the
data visualisation display reviewed by the investigator after each block during
data collection: an ERP with good data quality computed in real-time during
data collection. In the ERP panel (top), there is a negative deflection during
the time window of interest. The title of the ERP panel displays the value of
the extracted ERP feature: Nc amplitude. The channel feedback panel (bottom)
shows that the EEG signal, or time series, for all trials and most channels were
included in the calculation of the ERP: a) the percentage of inclusion of time
series for the channels of interest printed at the top is 96%, and b) the height of
bars for channel FC2 indicates that 9 time series from this channel were without
any artefacts (black bars), 9 were within the thresholds (blue bars), 11 within
the range (purple bars), and 12 did not display a flat signal (light blue bars).
The bars for the other channels indicate that all 12 time-series for the other
channels were without any artefacts (thus, within the thresholds, within the
range, and without a flat signal). Due to the high amount of clean time series,
and a clear ERP waveform, the researchers decided to continue sampling after
the data collection of this block.

Figure 4.3.C displays the real-time EEG feedback for a low-quality ERP for
one of the infants that was excluded due to flat channels and excessive movement.
In this low-quality ERP, the waveform does not show the typical shape and shows
a positive deflection rather than a negative deflection during the time window
of interest (ERP panel, top). More importantly, the channel feedback panel
(bottom) shows that 22% of the time series from the channels of interest were
excluded in the calculation of the ERP. For both channels P7 and Oz, 11 out of
the 12 time-series are included into the calculation of the ERP. This suggests that
the EEG data from the channels used as reference are relatively good quality.
For channels Fz, FC2, and C2, there were no artefact-free trials (absence of
black bars) due to flat signals (absence of light blue bars, whereas the height
for the ‘within threshold/range’ bars are 12). For channels FC1, C1 and Cz,
not all 12 presented trials were included either. This was mainly caused by the
time series exceeding the thresholds and/or the range. In instances like these,
the researcher would decide to repeat the block due to the low percentage of
included time series and the low-quality ERP waveform. The researchers would
first attempt to improve the EEG signal for the channels with low data quality
(here, FC1, C1, Fz, Cz, FC2, and C2) by adjusting the cap and/or regelling the
EEG electrodes before repeating the block.
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Figure 4.4: Case-study of exploration, exploitation and habituation
on participant P_02. A. Model statistics for participant P_02 after four
iterations with the next points to sample from three different utility functions
marked as stars. B. Acquisition function for the model statistics presented in
A for three different values of ξ. The larger the value the more exploratory is
the utility function and more will it privilege uncertainty over sampled maxima.
The point to sample next is marked with a star. C. Example of habituation on
participant P_02, where positive amplitudes of the Nc result in a change in the
model statistics
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4.3.3 The exploration vs exploitation parameter

As mentioned in Section 4.2.3 the acquisition function, that guides the sampling
algorithm, contains a hyperparameter ξ that controls the level of exploration
of the space. In this proof-of-concept a conservative value of 0.1 was chosen,
benefiting exploitation, as the number of blocks that could be run with infant
participants was severely limited. Figure 4.4.A shows the surrogate model and
the acquisition function for one of the participants after 4 burn-ins. The surrogate
model’s mean is a proxy for how the model interprets the Nc amplitude to change
across the space and is displayed with a dashed line. The standard deviation of
the surrogate model is interpreted as the uncertainty value across the fitted space.
The uncertainty is minimal for the points already sampled and it increases the
further it is from these points. This is due to the prior assumption that stimuli
closer to each other in the configuration space elicit a similar response of the Nc
ERP. The different acquisition function plots display the effect of different values
of ξ for the next point to sample for this given participant – represented with a
star. The higher the ξ parameter, the more exploratory the sampling behaviour
and the more it will investigate sampling the regions where uncertainty is highest.
At the extreme, the acquisition function will display active learning properties,
sampling only to minimise the standard deviation of the space. The lower the ξ

value, the more it will look into resampling what it found the highest value to be,
disregarding uncertainty when ξ is 0. The small number of iterations it required
to achieve the stopping criteria and the fact that the model captured the mother-
stranger variation in Nc amplitude are good indications that a conservative value
was the right choice for this specific paradigm.

4.3.4 The problem of habituation

Efficient sampling in EEG research and, more specifically in neurodevelopmental
research, is fundamental to minimise problems of habituation or of short atten-
tion spans that plague the field (Snyder et al., 2008). This makes the case for
algorithms that can predict individual response to a collection of stimuli, while
only sampling a subset of them. Figure 4.4.C shows that, even while minimising
the number of iterations, there are signs of habituation to the stimuli on P_02
that will shift how the model statistics of the space are predicted. When try-
ing to predict an individual response to a set of stimuli, it is imperative to try
to minimise signal variations that aren’t directly related to the stimulus being
displayed. To avoid the effect of the habituation to the stimulus on the model
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statistics for a given participant, the predicted model statistics before any ha-
bituation to the repeated stimulus had occurred was considered for participant
P_02 in our post hoc analysis.

4.4 Discussion

This project presented the neuroadaptive EEG, a method that uses real-time
data processing and machine learning algorithms to invert common research ap-
proaches by searching a large stimulus space to find the stimulus that maximally
evokes a given neural response. In a proof of principle study, it was shows that
neuroadaptive measurement of infant brain activity can locate a picture of the
infant’s mother from a one-dimensional face space. Here, it is discussed the
advantages and limitations of this method; technical considerations for its use;
and the potential of its application to a broad range of research questions across
diverse fields.

4.4.1 Scientific robustness

Neuroadaptive EEG involves a fully closed-loop design. Thus, the neural fea-
ture targeted in the study and the stimulus search space must be predefined and
hardcoded into the experiment itself. This completely removes analytic flexibility
from the investigator since data is analysed during the experiment itself, solv-
ing one of the major challenges of current neuroimaging research (Head et al.,
2015). Further, this approach requires brain signals to be reliable on an indi-
vidual level within the experiment itself (if not, the search will not converge).
This approach can be combined with other advances in robustness, such as ex-
ternal pre-registration of the selected EEG features and selected stimulus space
to avoid the ‘file drawer’ problem. The approach is thus most suitable when
the investigator has a known brain metric they are interested in investigating.
However, the range of potential metrics to which the method can be applied
is very broad; this could include connectivity between particular regions or at
particular frequencies; activation in particular brain locations; or the speed or
amplitude of well characterised event-related responses. In this way, the experi-
menter can build on the long history of stimulus-driven investigation of particular
brain metrics whilst significantly extending our understanding by mapping new
stimulus landscapes. Of note, this differentiates the present approach from more
traditional brain-computer interface approaches (BCI) where the target metric is
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data-derived for each individual, making it hard to use as a tool for cumulative
discovery. Finally, neuroadaptive methods support effective generalisation by
computing the modulation of a metric across a large stimulus space. The impor-
tance of considering the limitations of inference to the specific stimuli selected in
any given paradigm have recently been elegantly outlined (Yarkoni and Westfall,
2017). With neuroadaptive optimisation, the boundaries of generalisation can
be objectively and efficiently probed. This approach is not only applicable to
neuroscientific research as it can be used more broadly to multiverse analysis in
general (Dafflon et al., 2020).

4.4.2 Efficiency of estimation across a space

This project’s proof of principle case was the use of these methods in infants. In-
fants are a particularly challenging population because of their limited attention
spans and inability to respond to verbal instruction, and this makes it fundamen-
tal to be able to capture dependencies between stimuli using as few iterations as
possible. In this experiment a one-dimensional configuration space is used which
interpolates between the stimulus of the participant’s mother face and a stranger
face. The mean amplitude of the Nc ERP is measured as the target EEG met-
ric. Contrary to classic research paradigms, this method does not restrict the
researcher to just two stimuli (i.e., mother and stranger), but instead the re-
searcher is able to capture the continuous variation between these two images.
This opens the possibility to explore not only if there are differences in the ERP
amplitude, but also whether the signal variation is gradual or if it is abrupt, such
that only the last image of the mother elicits a stronger Nc (as may be the case if
face perception is categorical (Leopold and Rhodes, 2010, Moulson et al., 2011)).
Here the individual model prediction is presented across the configuration space
to show individual variation, but this method allows for the use of other data
to account for intra-group variability; for example, the measure of uncertainty
across the space can be useful to capture differences in signal reliability between
participants. The path of exploration to exploitation used by the algorithm can
also be relevant to discriminate between participants. The introduced method
showed this capability in this proof-of-concept by predicting the variation of the
signal across the stimuli while only sparsely sampling them. This method can be
used in future neurodevelopmental research to test the reliability of individual
ERPs as correlates of cognitive functions, and to understand commonality and
individual differences in neural responses to visual stimuli.



4. Neuroadaptive electroencephalography 64

4.4.3 Diverse populations

Neuroscience has suffered from a long history of collecting data in primarily
White, neurotypical, English-speaking young adults, often from higher educa-
tion institutions. The need to expand to broader and more diverse populations
is well rehearsed but comes with significant challenges. Beyond the practicali-
ties, we must recognise that selection of stimuli based on theories derived from
our existing narrow samples may not be the most appropriate or efficient way to
learn about brain function in more diverse cultures. Such an approach is highly
prone to cultural bias (e.g., selection of White faces for experiments with diverse
ethnicities) and a deficit-based perspective (identifying differences in how neuro-
divergent adults respond to stimuli selected by normative experimenters – such
as examining diminished responses to faces in autism). The presented approach
allows the investigator to move away from studying brain responses to the same
stimulus in different groups, and towards studying how a comparable brain met-
ric is modulated across a much broader stimulus space. Rather than asking why
a young child with autism doesn’t attend to faces, we can search for the type
of stimulus that the child does find interesting. Of course, these approaches are
complementary rather than exclusive, but together they may provide us with a
richer suite of tools to study brain function across diverse populations and to
devise individualised interventions that build on strengths.

These considerations are particularly important in studying the infant brain,
where one of our core interests is the way in which mature cognitive topogra-
phy emerges in development. For decades, researchers have debated whether
the mapping between brain system and cognitive function is present at birth
(nativist or modular accounts (Markram, 2006)) or whether brain regions have
functions that change over developmental time (Johnson, 2011). One leading
account proposes that brain regions progressively specialise through a process of
interaction and competition (interactive specialisation (Johnson, 2011)). Testing
such accounts is slow and challenging with traditional experimental paradigms,
because stimulus selection is typically informed by adult cognitive models (e.g.
since the fusiform face area or N170 component are face-selective in adults, we
examine their response to faces vs objects in infants (Deen et al., 2017)). With
a neuroadaptive approach, in principle investigators can move to mapping the
modulation of the fusiform face area or N170 across a much broader stimulus
space. Indeed, GANs can be used to create a large library of both faces and ob-
jects that are artificially manipulatable along a range of dimensions. In this way,
we may generate new knowledge about the cognitive topography of the infant
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brain- seeing the world through their eyes.

4.4.4 Methodological considerations

The approach includes several parameters that can be adjusted depending on
the research question that is being addressed. The presented method allows the
researcher to navigate the exploration-exploitation boundaries of the configura-
tion space by defining the ξ value, that allows the algorithm to balance between
a more exploitative search of the maximum target metric. Experimental designs
that are limited to a small number of iterations (because of the population stud-
ied), as was the case of the proof-of-concept with infants, should use a low value
of ξ and benefit exploitation of the stimuli. Designs that explore larger configu-
ration spaces, with many dimensions and stimuli, could utilise a larger value of
ξ and exploration to better capture the modelled statistics of the space. As an
example, if instead of just varying along one dimension (e.g., mother-stranger in-
terpolation), the configuration space contained several semantic variations (e.g.,
a 4-dimensional space with faces varying across age, emotion, gender and eye-to-
eye distance), a more explorative behaviour would be beneficial.

Selecting a robust target metric is important. The algorithm searches the
space to identify the stimulus that elicits the maximum target metric we are
measuring. For the four participants for whom the target EEG metric for the
Bayesian optimisation was the most negative amplitude of the ERP, the algo-
rithm is able to model a variation of the signal that maximised its negative
amplitude for images of the mother’s face. This was not the case for the par-
ticipant in which the Bayesian Optimisation aimed instead to identify the image
that produced the most positive Nc amplitude. There are several possible ex-
planations for this; one may be that categorical face perception means that the
infant is sensitive to varying degrees of proximity to the mother, but not varying
degrees of ‘strangerness’ (M. De Haan and C. A. Nelson, 1997). Success of BO-
based approaches are dependent on reliable and meaningful neural signatures to
be used as target metrics. In the current proof-of-concept study, the parameters
and measures for the ERP features were chosen based on the previous literature
and offline analysis of pilot and existing datasets (Gui et al., 2021). The prepro-
cessing methods and calculation of ERP features however vary between studies.
It is possible to further examine how the process of optimisation would vary when
using different EEG features or metrics. For example, in line with most previous
work (Luyster et al., 2014, Webb et al., 2011) the mean amplitude from 300 to
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800ms was used as an EEG metric. Selecting appropriate data processing param-
eters is also important. Researchers willing to use this method should conduct
some preliminary offline analyses of individual-level ERPs to examine how vary-
ing recording and preprocessing methods affect the quality of the ERP waveform.
Different thresholds or a larger number of trials within a block may improve the
quality of the ERP waveform and decrease the signal to noise ratio. In this
project, with infant data increasing the duration of the experiment and exposure
to the same image within a block by including more trials does not improve the
quality of the ERPs. Inspections of the individual infant ERPs obtained with a
varying number of trials using existing and pilot datasets confirmed the choice
that 12 trials were sufficient for our experiment. Another avenue is to develop
an EEG metric that reflects the quality of the ERP waveform, such as standard
deviation or area under the curve during the baseline, or a quantification of the
shape of the ERP waveform and curve. One could implement this information
into the BO algorithm by adding varying weights of the samples. Given that the
present study aimed to test that BO could appropriately map neural signatures
of attention engagement, it was essential to define a threshold for inclusion of
good quality trials per block and channel. In case of poor EEG quality data, the
block was excluded completely and the data collection was repeated for the same
image. Here, the decision on how to proceed with the iterative optimisation pro-
cess was dependent on the subjective inspection of the researchers. This always
raises the risk of potential bias, particularly given the ERP and key metrics were
displayed- although this was done to allow inspection of data quality, it raises the
possibility that researchers could be biased towards rejection or selection based
on the nature of the Nc response. Implementing and quantifying data quality
measures would make this process more objective and therefore less potentially
biased; however, in this pilot work automated quality measures weren’t consid-
ered as effective at detecting poor data quality as a human researcher. Further
work in building stronger automated quality measures for the signal are needed.

4.4.5 Limitations

The sampling algorithm and the real-time EEG can work with any configura-
tion space setting, but the presented configuration space builder is limited to 16
pre-defined meaningful variations of faces (e.g., pitch change, age). Other mean-
ingful variations of faces can be learned by following the approach described in
Section 2.1.2.3. Non-facial stimuli are currently not supported by the configu-
ration builder but could be integrated in future work. The sampling algorithm
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is further limited by the quality of the target EEG metric. Despite the algo-
rithm being flexible to receive noisy input, if the averaging of the EEG signal
per block fails to capture the dynamic of the ERP, the statistical model will
not be able to capture the ERP dependency across the space. It is important
to note that this work does not propose that the neuroadaptive method should
replace traditional stimulus-driven approaches. Traditional methods will be im-
portant to further discovery of new neuroimaging metrics of interest. However,
once such metrics have been identified and sufficiently well parameterised the
neuroadaptive method allows the investigator to map the modulation of these
metrics across a larger stimulus space, providing a complementary tool to further
our understanding of the cognitive topography of the brain.

4.5 Conclusions

A core goal of functional neuroimaging is to study how the environment is pro-
cessed and represented in the brain. The mainstream paradigm involves concur-
rently measuring a broad spectrum of brain responses to a small, preselected set of
environmental features selected with reference to previous studies or a theoretical
framework. As a complement, this project inverts this approach by allowing the
investigator to record the modulation of a preselected brain response by a broad
spectrum of environmental features. It was shown that online recording of the Nc
infant brain engagement response can automatically identify the position of an
individually salient face (the infant’s mother) in a one-dimensional face space.
The promise of this approach for studying the developing brain was demon-
strated, where our theories based on adult brain function may fundamentally
misrepresent the topography of infant cognition and where there are substantial
practical challenges to data acquisition. This approach may also have signifi-
cant potential in areas where theoretical frameworks or previous empirical data
are impoverished or misleading, allowing us to tackle new questions and move
beyond heteronormative undergraduate student populations. Furthermore, by
using a prespecified closed-loop design the approach tackles fundamental chal-
lenges of reproducibility and generalisability in brain research. This approach
has substantial potential in infancy research and beyond for accelerating our
understanding of the cognitive topography of the brain.
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5 | Multiverse analysis of process-
ing pipelines

5.1 Introduction

Processing raw data and choosing statistical analysis methods are fundamental
steps in hypothesis testing. Regardless of the field of research, many valid choices
of processing steps can be taken. For each choice, a forking path is presented to
the researcher resulting in a multitude of correct data processing paths that were
not taken. Importantly, research has shown that the choice of data processing
can directly impact the conclusions obtained by statistical analysis (Marek et al.,
2022, Menkveld et al., 2021, Steegen et al., 2016). These results starkly contrast
with current methodological best practices, where a single dataset analysis is
sufficient to make research claims. This opens the door for p-hacking through
assessing many processing paths and reporting only the most favourable out-
come. Pre-registration of methodology and open-sourcing the code used for data
processing are good practices but are blind to the uncertainty associated with
the methods chosen and those not selected in the processing ’garden of forked
paths’. Recent studies have pushed for a multiverse analysis, i.e., a survey of
many possible processing paths, to analyse the robustness of outcomes and build
better methodological gold standards (Wagenmakers et al., 2022). In this chap-
ter, I study the relationship between the different possible paths and how the
multiverse of analysis can be reduced to a Euclidean space with its organisation
governed by the similarity between processing outcomes.

In the neuroscientific research literature, the research question and the hy-
pothesis tend to be well defined (e.g., quantifying differences in functional con-
nectivity measured with functional MRI (fMRI) between different groups or in-
dividuals), and the analysis pipeline tends to be less transparent. The analysis
can vary depending on how functional MRI data is preprocessed to remove noise
(e.g., which kernel, smoothing factor, or type of motion correction to use) or
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the type of summary metric of functional connectivity chosen (e.g., centrality,
pairwise correlation, entropy). All these choices create a combinatorial panoply
of valid analysis pipelines that can yield different conclusions from the same
data (Bzdok and Yeo, 2017, Carp, 2012). In fledgling research areas, such as
functional neuroimaging, where many ground truths are yet to be discovered,
analytic exploration is an unavoidable aspect of the scientific process. Therefore,
a central conceptual question facing the community is how to balance the data
exploration needed for scientific progress with the analytical rigour necessary to
minimise the number of such discoveries that are false positives. To highlight this
issue (Botvinick et al., 2020) asked 70 independent teams to analyse the same
dataset and test nine pre-defined hypotheses. Although all groups used different
workflows to test these hypotheses and showed relatively high variability in the
specific answers, a meta-analysis showed reasonable agreement among the over-
all results. The degree of consensus in such studies is essential because different
approaches can yield broadly similar answers. This, in turn, provides confidence
that these conclusions are not tied to a specific analytic approach (Steegen et al.,
2016).

There is, however, a trade-off between the breadth of the initial exploratory
approach and the sensitivity of subsequent scientific inferences. There are near
limitless potential analysis approaches, and each additional analysis approach as-
sessed reduces the sensitivity of statistical tests if appropriately corrected for the
number of comparisons. As an example, if 1000 analysis approaches are tested for
a specific hypothesis, then while hypothesis-testing, it is a correct methodological
practice to correct p-values for the multiple comparisons performed (e.g., using
a Bonferroni correction). This methodology dramatically reduces the statistical
sensitivity and would require the corrected p-value to be under 0.00005 to be
considered statistically significant at the default p < 0.05 level.

Moving to out-of-sample prediction rather than inferential statistics on the
whole dataset does not avoid this trade-off. The robustness of a specific conclu-
sion from exploratory neuroimaging studies can be evaluated by training models
on a particular subset of a data set and testing it on an unseen portion of the
data. While minimising overfitting problems from yielding false positive conclu-
sions, this approach does not address reductions in sensitivity from performing
many analyses on the same data.

In this project, a machine learning framework is established that maintains an
exploration across analysis approaches and the sensitivity of predictive statistics
and generalisability to out-of-sample data. This approach allows the researcher to
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explore many different features of the multiverse of pipelines and techniques, al-
lowing many choices to be empirically compared without the need for exhaustive
sampling. This is possible by building a low-dimensional space across different
pipelines, efficiently mapping out using active learning (Settles, 2009).

The utility of this multiverse approach is illustrated in a research question in
which the ground truth is entirely transparent - predicting age from functional
connectivity obtained from functional MRI images of adolescent and young adult
participants (Váša et al., 2020). In particular, this work focuses on graph the-
oretical analyses. The motivation for the choice of graph theoretical analysis is
two-fold: (i) graph theory applied to fMRI data is a useful technique for exploring
the interrelationships between brain regions (Bullmore and Sporns, 2009, van den
Heuvel and Hulshoff Pol, 2010); (ii) such approaches have also been shown to be
highly sensitive to preprocessing steps such as thresholding (Fornito et al., 2013,
van den Heuvel et al., 2017). Moreover, there are dependencies between different
types of graph theory measures (Rubinov, 2016), so the optimal analysis ap-
proach for any given dataset or question is typically unknown a priori. Indeed,
previous work has demonstrated that variations in (structural) brain network
construction and analysis pipelines substantially impact results (Phillips et al.,
2015). Focusing on the graph theoretical analysis of functional brain networks
to predict age allows us to evaluate the utility of the multiverse approach under
conditions when the ground truth is known, but the ideal analytic approach is
not. This approach could be applied more generally to many different types of
neuroimaging problems (both functional and structural) or other types of data
(e.g., univariate and multivariate analyses) and ultimately be applied to basic
scientific and clinical research questions when the ground truth is less transpar-
ent.

5.2 Methods

5.2.1 Rationale and analytical workflow

While the proposed framework can be applied to any neuroimaging studies, here,
its capabilities are shown in the context of predicting age. The framework con-
sists of two main steps: (i) creating a low-dimensional continuous space of the
different analysis approaches; (ii) using an active learning component that effi-
ciently searches the space to find the optimal analysis pipeline (in this case, the
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pipeline which best predicts age) and produces estimates of other pipeline’s per-
formance. The proof-of-concept focuses on predicting brain age as it has been
proposed as a valuable biomarker of neurological and psychiatric health (Cole
and Franke, 2017, Kaufmann et al., 2019) and is predictive of a range of other
factors, including mortality (Cole et al., 2017). More generally, predicting age is
a valuable proof of principle for methodological demonstrations since the partic-
ipant’s age is known with certainty (Schulz et al., 2020), and a range of studies
have shown that functional connectivity from resting-state correlates with age
(e.g., Geerligs et al. (2015), Monti et al. (2020), Váša et al. (2020)). All code
used for analyses and figure generation is available on GitHub∗ and can be run
using Colab. The next section presents the data, followed by the range of analysis
approaches considered, how the analysis space was constructed, and the active
learning approach used to sample the space and so be able to estimate brain
age prediction across the multiverse of analysis approaches without exhaustive
testing.

5.2.2 Functional Connectivity data

The starting point is a functional MRI dataset of changes in functional connec-
tivity across adolescence from Váša et al. (2020). This dataset consists of 520
scans from 298 neurologically healthy individuals (age 14-26, mean age=19.24,
see Váša et al. (2020) for details). Here, only cross-sectional analyses were per-
formed, so only the first scan for each individual was kept. The dataset was
split into two parts: (i) 50 individuals, selected at random, were used to build
the low-dimensional space; (ii) the remaining 248 individuals were subsequently
used to perform search and validation on the space.

5.2.3 Analysis approaches

Many decisions are necessary to conduct a functional connectivity study, in-
cluding choices regarding data acquisition, preprocessing, summary metrics and
statistical models. For convenience, this project uses already acquired data which
has been through extensive preprocessing pipelines to reduce many potentially
confounding sources of non-neural artefacts. Usefully, two preprocessed datasets
were shared by Váša et al. (2020) with two different types of correction for
movement artefacts: (i) global signal regression and (ii) motion regression. The
preprocessed fMRI time-series had been averaged within 346 regions of interest,

∗https://github.com/Mind-the-Pineapple/into-the-multiverse
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including 330 cortical regions from the Human Connectome Project multi-modal
parcellation (Glasser et al., 2016) (excluding 30 "dropout" regions with low signal
intensity) and 16 subcortical regions from Freesurfer. The Pearson correlation
coefficient was used to calculate functional connectivity (FC) between these re-
gions. For further details regarding data preprocessing, see Váša et al. (2020).
In future work, the approach outlined below could be applied to all of the image
preprocessing steps, the choice of parcellation and the connectivity metric for a
more extensive multiverse analysis.

To demonstrate the capabilities of the proposed method, I consider varying
three distinct analysis pipeline choices. These are:

1. The nature of regression: data from two types of data regression, motion
regression and global signal regression, were explored.

2. The graph theoretical metric studied: 16 distinct metrics covering both
simple and higher-level metrics employed in previous neuroimaging stud-
ies were considered. Metrics were taken from the Python implementation
of the Brain Connectivity Toolbox (Rubinov and Sporns, 2010); metrics
included were those that produced nodal metrics. If prior community as-
signment information was required, I used the well-known Yeo network
parcellation of the brain into seven networks (Yeo et al., 2011).

3. The choice of threshold for estimated functional connectivity matrices: 17
distinct threshold values ranging from 0.4 (resulting in highly sparse net-
works) to 0.01 (resulting in dense networks) were considered.

Every evaluated pipeline was built using one of the regression choices, one
threshold and one graph theory metric. Therefore, the analysed multiverse space
consisted of different analysis approaches. The full space of analysis options is
presented in Table 5.1.

5.2.4 Constructing a low-dimensional space of analysis ap-

proaches

We need information about their general relationships to efficiently sample a large
number of analysis approaches. This is achieved by building a low-dimensional
space that quantifies the similarity between approaches in terms of a distance in
the low-dimensional space (i.e., how similar is the obtained functional connectiv-
ity between the different approaches). To ensure utility to a range of questions,
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the space should capture the similarity between approaches across various prob-
lems (and potentially a range of different datasets, although that is not assessed
here). For example, the same space can be used to ask questions about age. Still,
it could be used to ask about other sources of individual variability (e.g., neu-
ropsychiatric symptoms or cognitive ability). Below, one approach to building
such a space is illustrated (precisely how this is done will vary depending on the
data type and other factors).

All 544 analysis approaches were applied to 50 randomly selected partici-
pants’ individual FC data to construct the low-dimensional space (Figure 5.1.A-
C). The aim was to build a space to locate approaches in terms of how well
they capture individual variability. Therefore, for each approach, the Euclidean
distance matrix was calculated in terms of regional graph theory metrics be-
tween different participants (e.g., the Euclidean distance of betweenness cen-
trality across all 346 regions for each pair of participants (Figure 5.1.D,E)).
These were subsequently reshaped into a 2D matrix corresponding to between-
participant distances (this led to a matrix of 1225 participant pairs by 544 anal-
ysis approaches). Finally, the low-dimensional space was constructed with estab-
lished embedding algorithms. Five different algorithms were explored: local lin-
ear embedding (Roweis and Saul, 2000), spectral embedding (Belkin and Niyogi,
2003), t-distributed stochastic neighbour embedding (t-SNE) (van der Maaten
and Hinton, 2008), multi-dimensional scaling (MDS) (Kruskal, 1964) and Uni-
form Manifold Approximation and Projection (UMAP) (McInnes et al., 2018).
The objective of the embeddings was to create a space useful for active learning
which could both: (i) capture similarity between approaches in terms of contin-
uous distance in the space; as well as, (ii) distribute approaches relatively evenly
across the space. Based on observations of the spaces resulting from the embed-
ding mentioned above algorithms, MDS (see 2.1.1.2) was selected to create the
space to apply active learning.

5.2.5 Searching the space

Using the low-dimensional space created with FC data from 50 participants,
active learning was subsequently used with the remaining 248 participants to
sparsely sample the space in order to: i) find the most successful approaches for
predicting participant age based on FC; and (ii) estimate age prediction ability
for all models, including the large majority of models which were not sampled.
Active sampling is performed using closed-loop Bayesian optimisation with Gaus-
sian processes (Shahriari et al., 2016). This loop involves: selecting a point in
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Figure 5.1: Creating a low-dimensional space to characterise the mul-
tiverse of different analysis approaches. A low-dimensional space was con-
structed using 50 (randomly selected) participants’ functional connectivity (FC)
matrices. Each participants’ data was analysed using 544 possible analysis ap-
proaches, which were composed by choosing from: two methods for motion cor-
rection (A), 17 different sparsity thresholds (B), and 16 different graph theory
metrics (C). The different approaches were evaluated as to how well they capture
individual variability by evaluating the pairwise cosine similarity for all the dif-
ferent analysis approaches (D). The distance matrices were then converted into
a low-dimensional (2D) space summarising the similarity between approaches by
using an embedding algorithm (such as multi-dimensional scaling (E)).



5. Multiverse analysis of processing pipelines 76

the space to sample, evaluating it in terms of 5-fold cross-validated predictive
accuracy, fitting a Gaussian process (GP) regression to the space, and evaluat-
ing an acquisition function using the GP regression to select the next point to
sample.

When a point in the space is identified, the closest analysis approach to that
point in the space is selected. Its predictive accuracy is evaluated using sup-
port vector regression for brain age prediction. It is essential to highlight that
although the algorithm to predict age was kept constant, the input data varied
depending on the selected analysis pipeline, which could have used different mo-
tion correction, thresholding or graph theory metrics. Predictive accuracy was
calculated with 5-fold cross-validated negative mean absolute error.

For the examples presented in the results, there was an initial burn-in phase in
which ten points in the space were randomly selected and evaluated before active
learning began. Bayesian optimisation used the upper confidence bound (UCB)
acquisition function (Shahriari et al., 2016). The Gaussian process regression
model used a Matérn kernel combined with a white noise kernel, with kernel
hyperparameters chosen in each iteration by maximising log-marginal-likelihood
using the default optimiser.

5.3 Results

The first step was to construct a low-dimensional space of the analytic space.
Six approaches were considered and are presented in Figure 5.2. All embedding
algorithms demonstrate considerable structure in the position of the different
approaches (e.g., similar types of motion correction, thresholding, graph metric
are generally proximal). This suggests that the low-dimensional space captures
the intended similarity between the approaches. A dissimilarity score was used
to assess how much the different embedding algorithms preserved the topological
information (i.e., similar analysis approaches should stay close after embedding).
MDS, t-SNE and UMAP efficiently maintained the neighbourhood of the original
space. In addition, MDS displayed a relatively even spread of approaches across
the whole space, especially when contrasted with Local-Linear-Embedding and
Spectral Entropy. An approximately even spread across the space is desirable for
the subsequent active learning and Gaussian process regression. As such, MDS
was used in subsequent analyses.
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Figure 5.2: Low-dimensional embeddings of the different analysis ap-
proaches. Each point represents a combination of data accounting for noise
confounds, thresholding of connectivity weights and different graph theory met-
rics. In particular, the colours represent both motion correction methods used
to preprocess the data (i.e., motion regression (orange) and global signal regres-
sion (blue)), the colour intensity represents the different thresholds used in each
analysis and every graph theory metric is represented by a different symbol. A.
Multi-dimensional scaling. B. Four other types of embedding: Local linear embed-
ding (LLE), Spectral embedding (SE), t-Stochastic Neighbour Embedding (t-SNE)
and Uniform Manifold Approximation and Projection (UMAP).
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Figure 5.3: Learning the space and identification of the optimal anal-
ysis pipeline for age prediction. A. After 50 iterations of Bayesian Opti-
misation the Gaussian Process (GP) closely estimates the empirical space. B.
Empirical assessment of age prediction across the whole space. The colours cor-
respond to negative mean absolute error of each model in years. Values closer to
zero represent a more accurate prediction and are shown in red.

There are two objectives for the use of active learning on the MDS-defined
space of different analysis approaches: i) finding an approximately optimal analy-
sis approach efficiently, controlling the number of multiple comparisons; while ii)
approximately estimating performance on the multiverse of approaches without
exhaustive sampling. These two objectives can be observed in Figures 5.3 and
5.5 where age-prediction models were trained and evaluated for different analysis
approaches selected by active learning.

First, in Figure 5.3, the result of the Gaussian process regression after 50
iterations of active learning is shown. Based on the 50 different analysis ap-
proaches sampled, GP regression estimates performance across all 544 approaches
(Fig.5.3.A); this identifies areas predicted to have higher age-prediction perfor-
mance (in warm colours), including the optimum, as well as approaches which
perform worse (in cooler colours). For comparison, the ground truth of per-
formance across the space (from an exhaustive sampling of every approach) is
presented in Fig.5.3.B. There is a generally good concordance between actual
age prediction for each approach and the estimated prediction across the whole
space (Spearman’s ρ = 0.61, p < 0.0001).

The evolution of the active sampling and Gaussian process regression model
is presented in Figure 5.4. A poor GP estimation of the space based on the first



5. Multiverse analysis of processing pipelines 79

Figure 5.4: The evolution of the search across the space for: A. a
more exploratory acquisition function; and B) a more exploitative acquisition
function. Within each panel, the first column is the estimated Gaussian Process
(GP) model after different numbers of samples; the second column is the variance
of the GP model across the space, indicating which points have been sampled; the
third column is the estimated versus empirical predictions for all the analysis
approaches in the space.

ten random burn-in samples was initially observed. As the sampling increases,
the space is progressively better estimated, achieving increasingly higher correla-
tions between empirical and estimated spaces. Acquisition function parameters
strongly affect the active sampling; to illustrate this, the parameter was varied
to conduct both exploratory (10, Fig.5.4.A) and exploitative versions of active
sampling (0.1, Fig.5.4.B). The exploratory version achieves a better estimation of
the whole space, while the exploitative version focuses on an estimated optimum
much more quickly, but the GP model changes much less subsequently resulting
in a much lower correlation between estimated and empirical accuracies across
the space.

To investigate the reliability of the active sampling, the process was repeated
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Figure 5.5: Performance of the optimisation across different random
starting conditions. For computational efficiency, only 20 iterations of ac-
tive sampling were performed. Black dots represent optima of the 20 iterations
based on A. the highest accuracy estimated using the GP model and B. the actual
sampled points. C. Range of negative mean absolute error for the optima versus
negative mean absolute errors across the whole space. D. correlations between
actual and estimated accuracies across the whole space for the 20 replications.

20 times (using the more exploratory 10) with different random seeds (and so
different initial random burn-in samples). In Figure 5.5, the optima (i.e., model
with the highest empirical accuracy) of the 20 repetitions are represented by the
black dots, based both on the highest accuracy estimated using the GP model
(Fig.5.5.A) and for the actual sampled points (Fig.5.5.B). Table 5.2 presents
the optimal analysis approaches selected by each iteration. Many of the optima
illustrated in Table 5.2 were obtained using the Betweenness centrality. This
might suggest that this graph theory metric is more robust to using different
preprocessing choices. The range of the mean absolute error for the different
optima selected versus the full range of mean absolute errors across the whole
space is presented in Fig.5.5.C, and the range of correlations between actual
and estimated accuracies across the whole space for the 20 replications is shown
in Fig.5.5.D. For inferential statistics, the optimal analysis approach selected
for each of the 20 replications was assessed with a permutation test on cross-
validated predictions (with 5000 random permutations), resulting in a range
p ∼= 0.004− 0.044 (Bonferroni corrected for 20 samples). Exhaustive sampling
would result in correcting the best model for 544 comparisons rather than 20
(requiring an uncorrected p<0.000091 rather than p<0.0025).
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5.4 Discussion

In this chapter, it was established that active sampling can be used to map out
a low-dimensional space of the multiverse of analytic approaches allowing the
processing pipelines with higher accuracy to be identified efficiently. This project
focused on a question with a known ground truth, predicting brain age from
resting state functional connectivity data. Since efficient exploratory research is
critical for neuroimaging to become a mature scientific discipline, this multiverse
approach is a crucial tool that balances the need for rapid discovery with analytic
rigour in a highly cost-efficient manner.

The application of active sampling to predict age from functional connec-
tivity is an illustrative example. A recently released dataset preprocessed using
both motion regression and global signal regression (Váša et al., 2018) was used.
The main aim was to showcase active sampling on a space of analysis approaches,
rather than identify (the) optimal combination(s) of fMRI head motion correc-
tion, functional connectome threshold and graph theoretical method for age pre-
diction. Nevertheless, it remains interesting to consider the approaches selected
as optimal by the GP regression. By repeating the active learning method 20
times, there is substantial consistency in processing steps across the selected op-
tima. The motion regression approach consistently outperforms the global signal
regression; lower, but not the lowest sparsities, were also favoured using a range
of simple and complex graph theoretical metrics, with betweenness centrality
selected most frequently. These results are essential because global signal regres-
sion is one of the most debated fMRI processing steps, with many arguments
for and against its inclusion in processing pipelines (Li et al., 2019, Murphy and
Fox, 2017).

Regarding thresholding, it was observed that most of the optima had a higher
threshold. This is in line with previous research that observed that connections
with lower edge weights (i.e., correlation) are more likely to be spurious, sug-
gesting that connectomes thresholded to lower densities might be less affected
by noise (van den Heuvel et al., 2017, Váša et al., 2018). Finally, betweenness
centrality had previously been found to perform well in network neuroimaging
applications, including machine learning applications (Fagerholm et al., 2015).
Our multiverse approach is highly generalisable and can easily be expanded to
consider different analysis approaches and preprocessing techniques. The pre-
sented method is not limited to graph theory. It can be applied to any set of
heterogeneous techniques in neuroimaging that can be evaluated by a standard
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target measure, as is the case of different machine learning pipelines that try to
minimise a cost function. For example, a similar approach could be used with
full preprocessing pipelines used in (f)MRI and potentially integrated with au-
tomated pipelines such as fMRIPrep (Esteban et al., 2019) to allow controlled,
efficient exploration of a much more comprehensive range of analyses. Given that
the analysis space is based on variability across individuals, it does not require
that the analysis approach results in data of the same format. It is possible
to combine univariate and multivariate analyses (e.g., single regions or every
voxel or vertex measured) and even potentially different modalities, allowing the
multiverse to cover a very heterogeneous collection of approaches.

In the current chapter, the analysis space was developed from a subset of the
whole participant group; however, this need not be the case. A predefined space
can be constructed using an existing dataset and subsequently applied to differ-
ent datasets with minimal computational cost. For example, large open datasets
such as the Human Connectome Project or UK Biobank could be used to de-
fine analysis spaces which can then be applied to smaller, e.g., clinical datasets.
This would mirror the strategy taken with many deep learning approaches, which
are computationally expensive to train but not to apply to new data. Perform-
ing multiverse analyses can increase the generalizability of results, similarly to
other approaches (e.g., Baribault et al. (2018)). As recently revisited by Yarkoni
(2019), when interpreting findings, we often go (both statistically and verbally)
far beyond what is justified by the restricted nature of the data and analyses
performed. Taking a multiverse approach explicitly tests the generalisability of
the studies: indeed, the GP regression model quantifies the relationships between
analysis approaches in the low-dimensional space. This can clarify how specific
or general a given finding is across all approaches. The efficiency of the space
sampling also ensures that the same data is only used a limited number of times,
reducing the problems inherent in sequential analyses in terms of overfitting. In
the extreme, to maximise generalisability, it is possible to perform each iteration
of the active sampling on a different subset of participants who are not then
reused; as such, each suggestion from the Bayesian optimisation for the next
point to be sampled would involve out-of-sample prediction.

Similarly to previous work using Bayesian optimisation for the navigation
of predefined experimental spaces (Lorenz et al., 2016, 2018), the method pre-
sented here can help improve the poor reproducibility present across much of
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(neuro)science. Sequential analysis, as applied here, is highly formalised, quan-
tifiable and controllable, and as such, it can be readily combined with pre-
registration (Lorenz et al., 2017). Similarly, the route and samples taken by the
analysis make it possible to deduce what the hypothesis (encoded as the target
function of the optimisation algorithm) was at the time of testing. If a different
target function was selected, the algorithm would have taken a different route
through the analysis space. This means that questionable research practices such
as SHARKing may be more challenging to pursue.

As with any analysis approach, using active sampling methodologies comes
with inherent trade-offs. Most notably, for more exploitative problems, where
the optimal analysis approach is known (or approximately known) a priori or
highly theoretically constrained, then the additional costs (in terms of sequen-
tial analysis affecting statistical power and computational burden) are a serious
limitation. The optimisation algorithm finding local minima resulting in poor
overall performance is another potential limitation; this will depend heavily on
the acquisition function, including the type used and hyperparameters controlling
exploration and exploitation as well as decisions regarding the GP regression and
types of kernels used to model the low-dimensional space. A related issue is the
creation of the low-dimensional space itself; this will inevitably involve a trade-
off between capturing relevant variance and creating a relatively simple search
space, with few dimensions. It is shown here that the search space is coherent (in
terms of the placement of similar analysis approaches near each other - Figure
5.2) and the GP regression can capture regularities in the space efficiently (Fig-
ure 5.3). However, building a compact search space may be more challenging for
other problems, e.g., lower signal-to-noise, more heterogeneous variability across
individuals, or more heterogeneous analysis approaches. Future work is needed
to find the most useful acquisition function, GP regression and search spaces for
applying active sampling approaches to multiverse analyses.

5.5 Appendix
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Table 5.1: Different analysis approaches used to create the pipelines to
be evaluated. Every pipeline was composed of one type of regression data, one
graph theory metric and a threshold leading to the creation of 2× 16× 17 = 544
different analysis pipelines.

Data Graph Theory Metric Threshold

Motion regression Degree 0.4
Global signal regression Strength 0.3

Betweenness-centrality 0.25
Binary clustering coefficient 0.2
Weighted clustering coefficient 0.175
Eigenvector-centrality 0.15
Subgraph-centrality 0.125
Local efficiency 0.1
Modularity (Louvain) 0.09
Modularity (ProbTune) 0.08
Participation coefficient 0.07
Module Degree ZScore 0.06
Pagerank-centrality 0.05
Diversity coefficient 0.04
Gateway degree 0.03
K-core centrality 0.02

0.01
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Table 5.2: List of the data, threshold, graph theory metric and obtained
mean absolute error (MAE) for the empirical optima obtained for the
20 iterations.

Data Threshold Graph Theory Metric MAE

Motion Regression 0.150 Betweenness Centrality -2.342
Motion Regression 0.090 Betweenness Centrality -2.299
Motion Regression 0.100 Betweenness Centrality -2.326
Motion Regression 0.100 Betweenness Centrality -2.299
Motion Regression 0.100 Betweenness Centrality -2.401
Motion Regression 0.175 Betweenness Centrality -2.274
Motion Regression 0.100 Betweenness Centrality -2.395
Motion Regression 0.100 Betweenness Centrality -2.331
Motion Regression 0.070 Modularity (louvain) -2.280
Motion Regression 0.175 Gateway degree -2.324
Motion Regression 0.175 Gateway degree -2.274
Motion Regression 0.175 Gateway degree -2.274
Motion Regression 0.175 Gateway degree -2.333
Motion Regression 0.030 Pagerank Centrality -2.401
Motion Regression 0.030 Pagerank Centrality -2.369
Motion Regression 0.175 Eigenvector Centrality -2.401
Motion Regression 0.175 Eigenvector Centrality -2.432
Motion Regression 0.030 Degree -2.300
Motion Regression 0.020 k-core centrality -2.274
Motion Regression 0.040 k-core Centrality -2.301
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6 | Multiverse analysis of data mod-
elling pipelines using data-driven
spaces

6.1 Introduction

The multiverse analysis framework introduced in Chapter 5 is applied to the
specific problem of functional connectivity data, where different preprocessing
parameters are considered. This framework is problem agnostic as it solely de-
pends on a multiverse of choices existing, with each one having a tangible outcome
that could be mapped in terms of similarity to other outcomes. In this chapter
I generalise the framework for a large range of predictive modelling algorithms,
that can be exploited for any dataset where we can map independent variables
to a variable of interest.

The abundance of data generated and the development of powerful predictive
model solutions have made machine learning (ML) ubiquitous in many industries
and most research fields. One big limitation to the implementation of ML solu-
tions is that there is no single model that outperforms all others for any given
dataset (Wolpert and Macready, 1997). The choice of model will depend on
the data linearity; its dimensionality; how missing values are inputted; etc. Af-
ter choosing a set of methods, they will still depend on the careful tuning of
their hyperparameters. Additionally, most raw data requires preprocessing for
optimal model performance. For these reasons, ML solutions largely depend
on experienced machine learning practitioners and on time-intensive brute force
fine-tuning of successful configurations (Olson et al., 2016). To alleviate these
limitations, the field of automated Machine Learning (autoML) has focused on
building algorithms that create hands-free solutions for any given dataset, ad-
dressing the Combined Algorithm Selection and Hyperparameter optimisation
problem (CASH) (Thornton et al., 2013). This is a hard problem because of
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the vast number of possible combinations of imputation methods, preprocessing
algorithms and predictive models that make up a pipeline of data modelling.
To address this challenge, this project organises the pipelines into a Euclidean
configuration space, Θ, organised based on performance similarity of pairs of
pipelines. The configuration space is built directly from the raw values of pre-
diction generated by each pipeline on several datasets. This approach assumes
that pipelines that perform similarly across several datasets are likely to perform
similarly for new tasks presented.

This process benefits from being model agnostic as it takes no considera-
tion of which is the pipeline that is generating the prediction, only its position
in the configuration space. This allows the user to be better informed of the
performance of different data modelling pipelines while only sparsely sampling
the configuration space. From an explorative perspective, this Euclidean rep-
resentation of data modelling pipelines into a configuration space allows for an
efficient multiverse analysis of the different pipelines (i.e., how does the result
change for different analysis) and a better understanding of the robustness of a
given model of responses. From an exploitative perspective, this space allows to
obtain an optimal data modelling pipeline while not requiring the user to try
out all combinations of models, which would be time-consuming and prone to
overfitting to the validation set. Finally, this approach opens up the possibility
of pre-registering the exploration of pipeline choices by using an active learning
mechanism to sample from the configuration space.

For this project, 20.000 instantiations of pipelines are randomly generated,
comprising missing data imputation, preprocessing techniques and modelling al-
gorithms, from a rich library of machine learning algorithms (see Table 6.1)and
build a collection of prediction data on 64 diverse datasets from OpenML (Van-
schoren et al., 2014), which we refer to as the prediction space P . Multidimen-
sional Scaling (MDS), a dimensionality reduction technique that privileges local
information in hyper-space, is used to create an Euclidean embedding of the
pipelines that generated the predictions. This unsupervised approach naturally
embeds in the space relevant meta-feature information that are imperceptible to
evaluation metrics. As the spatial information encodes the inter-relationships
between pipelines (i.e., pipelines that are close together are similar in their pre-
diction compared to pipelines that are further away), this system presents a
method to build ensembles that maximises prediction dissimilarity.

The main contributions of this project to the field of data modelling research
are:
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1. the creation of a space of pipelines organised by their prediction similarity
- here named the configuration space;

2. a multi-purpose software that explores the space for any dataset with a
target variable to both inform about the multiverse analysis of pipelines
and optimising the pipeline-selection for a given classification task - here
named ModelZoom.

I further demonstrate how it allows for an efficient optimisation of pipelines
while testing memory and time constraints, by using a neighbouring approach
when sampling the space. This novel approach is flexible to receive new settings
as it can contain an open-ended library of algorithms, it can optimise for any
evaluation metric that is a function of the prediction, and it allows to map the
pipelines to any constraint. Finally, I show the applicability of this tool for data
modelling in a proof-of-concept. This tool can be applied to problems of data
modelling in any field of research, as the only existing constraint is that the
problem that is being tackled is a classification task. One such field where there
could be benefit for such a system is in neurodevelopment research. There has
been an effort in this field to move from group-level to individual-level analysis in
search for relevant biomarkers to identify elusive signs of psychiatric conditions
(Baker and Kandasamy, 2022, Latal, 2009, De Ridder et al., 2020). One exam-
ple is in the early diagnosis of Autism Spectrum Disorder (ASD), a condition
known to cause very heterogeneous behavioural responses in patients, making it
challenging to diagnose. Early signs of atypical disinterest in human faces (Jones
and Klin, 2013, Maestro et al., 2002) and associated atypical neural responses to
facial stimuli have been studied as a possible biomarker of ASD in the first year
of life (de Haan, 2007). In Tye et al. (2022), this specific problem is considered
by studying how a face processing event-related potential task in 8 months-old
infants with (n=148) and without (n=68) older siblings with ASD can be ex-
plored as a predictor of ASD. I employ the same data using the introduced tool
to explore the benefits and limitations of considering the multiverse of available
pipelines when building individual prediction models.
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Figure 6.1: A visual description of the proposed method and space. A.
A configuration space Θ is created based on the predictions of 20.000 pipeline in-
stantiations on a large set of datasets. Every individual pipeline θ is trained on a
partition of each dataset Dj,train. They then predict a hold-out set, Dj,test and the
predictions pi,j are concatenated to build the prediction space P . Using multidi-
mensional scaling, the high dimensional space is converted to a low-dimensional
Euclidean embedding of the pipelines, our configuration space. The meta-data
collected and the configuration space guide the warm-start module, the ensem-
ble constructor and orient the sampling through Bayesian optimisation. When
a new dataset is presented to the autoML system, it is trained and evaluated
through cross-validation on 10 pipelines based on their meta-data performance
(i.e., the warm-start module). Then the sampling of pipelines is guided by a
Bayesian optimisation algorithm and, when the system requires constraining, it
uses a neighbouring approach to sample the pipeline that minimises constraint
for the sampled region. Lastly, the system uses the information provided by the
sampled pipelines to build an ensemble of pipelines directed by performance and
distance covered across the space. This ensemble is the solution provided by our
system for any given dataset. B. Visual representation of the 4 dimensions of the
configuration space colour coded by the mean accuracy across all datasets used
for generating the space. Each point in the space represents one of the 20.000
data modelling pipelines.
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6.2 Methods

6.2.1 Defining the pipelines and generating the meta-data

This project’s full model selection autoML system optimises over the choice of
imputation method, preprocessing techniques, predictive models and their re-
spective hyperparameters. Each pipeline’s configuration is randomly selected
from a pool of 5 imputation methods, 12 data preprocessing methods, distin-
guishing between numerical and categorical features, 18 classifiers and a total
of 94 hyperparameters. The full list is printed in Table 6.1. A total of 20.000
pipelines were selected at random to populate the configuration space Θ. From
this list, 1185 pipelines were unsuccessful and were discarded. The configuration
space was built using prediction data, by training and evaluating each pipeline on
64 different datasets from OpenML (Vanschoren et al., 2014), including binary
and multiclass datasets and datasets with missing values. The datasets were
chosen solely based on their OpenML rating score. Each pipeline was trained
with 5-fold cross-validation on 75% of the available data for a given dataset, and
the trained pipeline’s predictions on 25% of the data were stored to build the
configuration space. Furthermore, other meta-data from the trained pipelines
were saved (e.g., memory required, training time, testing time and accuracy).

6.2.2 The configuration space

This approach focuses on building a low-dimensional Euclidean configuration
space that draws information solely from pipelines’ predictions on a large num-
ber of datasets. It was assumed that if two pipelines have similar predictions in
several different datasets, it is more likely that their prediction is similar for a new
unseen dataset. This allows the algorithm to infer the predictions of pipelines
neighbouring the sampled pipeline. This process, coupled with a Bayesian optimi-
sation sampling mechanism, reduces the number of samples required to quantify
pipeline performance across the full range of 20.000 configurations. Instead of
focusing on an arbitrarily chosen evaluation metric to draw similarities between
pipelines (Fusi et al., 2018), an Euclidean embedding of pipelines θ based on
their raw predictions on hold-out sets was built. This approach does not limit
the optimisation to one evaluation metric, instead generalising for any mapping
of predictions. The organisation of the space Θ is obtained in an unsupervised
fashion based on prediction but it approximately encapsulates other features in
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its structure such as evaluation metrics and sample-dependent performance of
models.

Bayesian optimisation struggles to handle high dimensional spaces (Grünewälder
et al., 2010), with many approaches seeking to search over a well-defined low-
dimensional projection (e.g., Wang et al. (2013)). It follows that defining such a
low-dimensional space is challenging. In this work, a low-dimensional Euclidean
embedding Θ ∈ R4nθ is constructed from the highly dimensional space of predic-
tions, using metric multidimensional scaling (MDS) (Cox and Cox, 2000).

Thus, the configuration space was created based on dissimilarity measures,
reducing the original space to Θ ∈ R4nθ. Besides allowing for better interpre-
tation and visualisation of the configuration space, the reduced dimensionality
facilitates the use of Bayesian optimisation to efficiently sample the space.

6.2.3 The sampling algorithm

The creation of a Euclidean embedding space of the pipelines’ predicted output
allows the system to infer the predictions of all pipelines as a function of the
already evaluated pipelines. For any task tnew, our objective is to find the pipeline
θ that generates the maximum of the underlying function f of a given evaluation
metric τ that is dependent on a pipeline’s prediction, pi,new:

f(θ(tnew)
∗) = τ(pi,new) = y∗ (6.1)

To find the maximum with a principled approach, Bayesian optimisation
was used across the configuration space. It uses a surrogate function to map a
probabilistic model of the evaluation metric across the configuration space based
on the previously sampled pipelines’ performance. Then it balances modelled
predictions and uncertainty using an acquisition function to determine the utility
of candidate pipelines to sample next. The suitor pipeline is evaluated through 5-
fold cross-validation and its performance is used to update the surrogate function
and define where to sample next. The kernel used to model the space covariance
function was the Matérn kernel summed with a White kernel to account for
random noise affecting pipeline performance. This choice of kernels accounts for
a non-smooth assumption of the underlying space, as the configuration space
order translates only an approximation of the evaluation metric. The selection
of the next pipeline to evaluate is guided by the Expected Improvement (EI)
acquisition function (Kandasamy et al., 2016) introduced in Section 2.2.
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6.2.4 Warm-starting with meta-data

The Bayesian optimisation framework uses an acquisition function to guide where
to sample next based on previously collected samples. When the system starts,
as there are no pipelines sampled, the acquisition function cannot efficiently
determine which pipeline to train next. This is known as the cold start problem.
Typically, this issue is addressed with a burn-in phase, where trained pipelines
are assessed (often selected at random) to populate the space before running
the acquisition function. Instead of randomly drawing pipelines from the space,
the initial sampling is guided by drawing pipelines which tend to present a good
performance in a timely manner. Following approaches introduced by Misir and
Sebag (2013) meta-data was collected by training the pipelines on a large number
of datasets to build a rank-order scoring mechanism to the pipelines’ mean and
median regret and training time. each pipelines’ rank orders were summed over
and the 10 pipelines with the best performance on these criteria were chosen as
the initial samples for the sampling algorithm.

6.2.5 Constraint mapping

In autoML, it is often the case that the user needs the system to minimise certain
constraints unrelated to the evaluation metric, such as training time or memory
resources. It can also be the case that the user intends to constrain the optimal
pipeline to partake in certain conditions (e.g., containing a given class of models).
Here, the constrained Bayesian optimisation literature was followed (Gelbart
et al., 2014, Gramacy et al., 2012) to allow for these optimisation constraints. The
underlying information of the configuration space was leveraged on the similarity
of predictions p on neighbouring pipelines θ to build a principled constraining
mechanism. This mechanism requires that a mapping of the expected constraint
values for all pipelines be passed to the system, here named the constraint map
c. Specifically, the pipeline sampled at each iteration of the BO algorithm will
be chosen based on the minimisation of c for the 5 nearest neighbours of the
sample chosen by the acquisition function. The collected meta-data was used to
build constraint mappings evaluations constrained on training time and memory
resources of the pipelines that populate the configuration space.

6.2.6 The ensemble constructor

Ensembles of models often outperform single models (Guyon et al., 2010, Lacoste
et al., 2014). Ensembles are a powerful way to combat overfitting by weighting
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different predictions on the same data. For this reason, the predictors that com-
pose the ensemble should be individually strong and diverse (Dietterich, 2000).
This system is particularly well-suited for ensemble building, given that the con-
figuration space is mapped based on prediction dissimilarity of each pipeline and
the optimisation algorithm predicts how strong each pipeline is on a given eval-
uation metric. By measuring diversity on the basis of distinct predictions on
prior experiments, the system can capture differences invisible to the common
approach of minimising the correlation of the errors.

Following Feurer et al. (2015) analysis of different types of ensemble builders,
the ensemble constructor uses ensemble selection (Caruana et al., 2004). The en-
semble is built iteratively by taking the ordered 200 best pipelines considered by
the surrogate function and, from this list, discarding the pipelines that lay closer
than a 5% distance in the configuration space from the models already considered
for the ensemble. A proto-ensemble with the added top pipeline is then trained
with an accuracy-adjusted weighting, and if the performance improves on the
previous best, the full ensemble is considered for the next iteration of models at
a larger than 5% distance. If not, the pipeline is discarded.

6.3 Results

6.3.1 Space disposition analysis

Here it is considered how well the configuration space of 20.000 pipelines com-
pactly represents the pipelines’ predictions and how this allows optimisation of
different evaluation metrics and different resource constraints.

The space order is evaluated by measuring the correlation of predictions of
the pipelines for 10 different datasets. The Fisher transformation of Pearson’s
correlation is calculated between predictions on a hold-out set along the distance
between pipelines in the configuration space. As expected, and denoted in Fig-
ure 6.2.B, there is an inverse relationship between pipelines’ distances in space
and the prediction similarity (Spearman’s ρ = −0.64, p < 0.0001). This rela-
tionship allows the algorithm to explore the neighbouring pipelines with more
desirable characteristics (e.g., less resource-intensive) but with similar prediction
boundaries.

The configuration space order is again denoted by running a two-dimensional
non-linear binary task of an artificially generated spiral dataset. Each pipeline’s
accuracy and f1-score on the spiral dataset is mapped onto the space in Figure
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Figure 6.2: Study of the space organisation and constraint optimisa-
tion using a synthetic dataset. A. Two examples of the decision boundary
of neighbouring pipelines for the spiral task; B. Map of correlation of predictions
vs. distance in the configuration space for the spiral dataset, fitted to an expo-
nential function. C. Mean cumulative sum of the training time of the system
across 100 iterations for an unconstrained system (blue), a system constrained to
minimise computational resources (yellow) and a system constrained to minimise
time resources (red) for 10 different datasets; D. Configuration space mapped to
the accuracy of each pipeline for the spiral task; E. Configuration space mapped
to the F1-Score of each pipeline for the spiral task; F. Mean cumulative sum of
computational resource allocation across 100 iterations for an unconstrained sys-
tem, a system constrained on time resources and a system constrained on memory
resources for 10 different datasets.
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6.2.D,E. Different evaluation metrics will not necessarily optimise for the same
pipelines nor the same region of the configuration space. Because the space
is created based solely on prediction similarity, it will present structure and
organisation for any specific objective related to predictions, even if they are not
necessarily overlapping. For example, the f1-score, which is the harmonic mean
of Precision and Recall, will better measure incorrectly classified cases than the
accuracy metric. The desirable evaluation metric depends on the task being
solved and on the context of the problem, but if it is a function of the pipeline
prediction, it will find the coherence needed in the configuration space to run the
sampling optimisation.

Two constraint mappings were created, which optimised for the mean training
time and mean memory allocation to each pipeline in the configuration space us-
ing the meta-data collected when building the space. Three systems were tested
in similar conditions, one unconstrained, one with training time constraint and
one with memory constraint. Each was run for 100 iterations on 10 heteroge-
neous datasets obtained from OpenML (Vanschoren et al., 2014) that were not
used to create the space (5 binary tasks, 5 multi-class tasks, 5 datasets with
missing data) with accuracy as the evaluation metric. After 100 iterations the
mean running time (in seconds) for the system and the standard error with time
constraint were 717.9s (±448.2), for the system with memory constraint was
872.2s (±524.3) and for the unconstrained system was 2216.6s (±1184.5). The
mean memory resources requested (in Gigabytes) for the system with memory
constraints was 0.566Gb (± 0.069), for the system with time constraints was
1.017Gb (± 0.103) and for the unconstrained system was 2.230Gb (± 0.303).
Despite the 68% decrease in running time compared to the unconstrained sys-
tem, the time-constrained system presented a 0.009 (± 0.011) mean regret (i.e.,
difference for the best possible result) and, despite the 75% decrease in mem-
ory resources consumed compared to the unconstrained system, the memory-
constrained system presented a 0.012 (± 0.020) mean regret. The unconstrained
system presented a mean regret of 0.022 (± 0.033). The results of the three
systems resource requirements across iterations are depicted in Figure 6.2.C and
F.
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6.3.2 Proof-of-concept exploring predictive models of di-

agnosis

In Tye et al. (2022), an ERP task is used to build predictive models of diagnosis of
ASD. Specifically, the amplitude and latency of the P1, N290 and P400 ERPs of
infant participants are measured for face stimuli with direct gaze, averted gaze,
static faces and visual noise. The modelled variable of interest was the ASD
diagnosis at 36 months of age which was evaluated using 10-fold cross validation.
The Expectation Maximisation algorithm was used for imputation of missing
values, a genetic algorithm was used for feature selection and a Support Vector
Machine (SVM) with linear kernel was used as the modelling algorithm. An
accuracy of 75.7% was obtained with this pipeline.

All pipelines are trained and evaluated on the presented dataset to build a
ground-truth of the performance across the configuration space (Figure 6.3.A).
This is expensive and time-consuming and in general a sub-optimal method to
identify the best pipeline to use as it doesn’t take into account the correlation of
predictions between datasets. To explore the configuration space organisation,
we use our optimisation algorithm, ModelZoom, to sparsely sample the space
and train and evaluate the chosen pipelines. Here, the system was run twice for
50 iterations (i.e., it evaluated 50 pipelines per run), once with a more exploita-
tive acquisition function (κ = 0.01) and once with a more explorative setting (κ
= 100). The more exploitative setting is preferable for finding a pipeline with
a good performance on the chosen metric. As such the optimal model chosen
by the system, marked with a red star in Figure 6.3.B, obtained an accuracy of
77.3% using 10-fold cross validation. This pipeline was composed of a median
value imputation method, a scaling of each feature by its maximum absolute
value and a K-nearest neighbour (KNN) classifier with k = 7. Then, an en-
semble was constructed using the prior information in the configuration space to
avoid pipelines whose predictions would be the same - encoded as distance in the
space - and an accuracy of 87.0% was obtained for a 4-pipeline ensemble using
10-fold cross-validation. The prediction of the system for the performance across
the whole configuration space (presented in Figure 6.3.B) had a Pearson correla-
tion of 0.37 against the ground-truth obtained by training all pipelines. A more
explorative acquisition function will transform the problem from an optimisation
of pipelines to an active learning of the space. By running the algorithm with
an explorative acquisition function for 50 iterations, the prediction of the per-
formance across the space (Figure 6.3.E) obtained a Pearson correlation of 0.47
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against the ground-truth accuracy across the space. This was achieved while
only sampling 0.25% of all available pipelines. The output of the acquisition
function across the configuration space informs what are the prioritised regions
to sample. Figure 6.3.C shows that the more exploitative run of the system leads
to oversampling the region with higher performance, where Figure 6.3.F shows
how the explorative run did a more homogeneous sampling across the space to
gain a better understanding of all pipelines’ performance.

6.4 Discussion

In this chapter, I presented a configuration space that was created by Euclidean
embedding of a large compendium of pipeline’s predictions across several datasets.
I also presented a system for multiverse analysis and optimisation of data mod-
elling pipelines that, for any given task, efficiently navigates the configuration
space to find an adequate pipeline or better understand how the performance
varies along pipelines. Each pipeline is composed of an imputation method,
preprocessing techniques, a classifier model and each respective tuned hyper-
parameters. The system uses a Bayesian optimisation sampling method to effi-
ciently navigate the organised low-dimensional Euclidean space and a warm-start
method and ensemble constructor, following similar autoML literature (Feurer
et al., 2015, Fusi et al., 2018). The configuration space presents a coherent organ-
isation of pipelines across different unseen datasets and metrics as shown in the
synthetic spiral dataset and for the proof-of-concept with real infant ERP data.
It is also shown that ModelZoom performs well both on exploitation and explo-
ration settings to obtain relevant pipelines. One explanation for the system’s
good performance is that the space can capture a higher detail of the pipeline
prediction than it’s possible for a space created on performance data. As an
example, two pipelines can present the same accuracy of prediction but misla-
belling different data points between the two. This would be imperceptible in
the evaluation metric but not when comparing predictions directly. Furthermore,
the ensemble can also draw information from the space that cannot be drawn
from correlations between predictions. By building the space from a large com-
pendium of predictions, two pipelines with the same prediction on the hold-out
set and at a large distance in the configuration space are likely to have distinct
decision boundaries, resulting in stronger ensembles. Because the space is or-
ganised on pipeline prediction, the only limitation for a pipeline to be included
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Figure 6.3: Evaluation of the proof-of-concept dataset on the space.
A. Configuration space (dimension 1 and 2) coloured by the accuracy obtained
by each pipeline after training and evaluating on the ERP dataset; B. Violin plot
of the distribution of accuracies from the 20.000 pipelines evaluated; C. Con-
figuration space colour coded by the prediction of the ModelZoom run with an
exploitative acquisition function. The suggested best pipeline is identified with a
red star and the pipelines that make up the ensemble presented are marked with
a black star; D. Acquisition function value across the configuration space for the
exploitative run. The pipelines sampled by the algorithm are marked in red; E.
Configuration space colour coded by the prediction of the ModelZoom run with an
explorative acquisition function with the identified best model marked in red; F.
Acquisition function across the configuration space for the explorative run, with
the sampled pipelines marked in red.
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is for it to map any independent variable sample to a prediction of the depen-
dent variable. Although only shallow classifiers were included in this study due
to resource limitations, the same process would allow the inclusion of any deep
learning architecture and any combination of hyperparameters. Another advan-
tage of mapping directly from the prediction space of pipelines is that the system
is not organised towards one evaluation metric but can generalise for optimising
any function of prediction. This can be very useful when dealing with imbal-
anced class distributions or when the task context requires special attention to
false negative or false positive rates, for which the accuracy metric is less reliable.

Another benefit of clustering pipelines with similar predictions is that it fa-
cilitates minimising constraints at a low cost on performance. It was shown how
using a constraint mapping could minimise training time and memory expendi-
ture at minimal cost in performance by using a neighbour-sampling approach,
but competitive constraint mapping can also benefit from the space organisa-
tion. An interesting example that is left for future work is to test if a mapping
of the interpretability of each pipeline in the space could allow for building more
interpretable solutions at a minimal cost in performance.

This work shows the benefit of creating a low-dimensional configuration space
that relates directly to the pipeline prediction instead of its performance. How-
ever, it does not imply that the dimensionality reduction approach is the optimal
method for building the high-dimensional information in the prediction space,
most likely it is not; future work could explore instead the decision boundaries
of the fitted pipelines or further maximise the number of datasets used for gen-
erating meta-data or develop better ways to distil similarity between pipelines
into a low-dimension configuration space.

6.5 Appendix

6.5.1 State-of-the-art comparison

The presented system in an exploitative setting was compared to existing full au-
toML systems. AutoWEKA (Thornton et al., 2013), auto-sklearn (Feurer et al.,
2015) and auto-sklearn 2.0 (Feurer et al., 2020) are model-based derivative-free
optimisation systems like ModelZoom. Specifically, the auto-sklearn approach
follows a similar method to the one presented here as it is also composed of a
warm-start module, Bayesian optimisation as the sampling algorithm and an en-
semble constructor. We also considered the genetic programming autoML system
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Figure 6.4: Performance against other state-of-the-art autoML soft-
wares. A. Mean regret for 4 classical autoML systems and our system (blue)
for different time limits and 10 heterogeneous datasets; B. Mean rank-order for
4 classical autoML systems and our system (blue) for different time limits and
10 heterogeneous datasets

TPOT (Olson et al., 2016). The 5 systems were run on 10 OpenML datasets
that were not included in the creation of our configuration space. They were
run for six different time limits: 1, 5, 15, 30, 60 and 120 minutes on a 28-CPU
machine using accuracy as the evaluation metric. In Figure 6.4, we contrast the
different systems’ performance, demonstrating that ModelZoom performs on par
with the common off-the-shelf autoML solutions, especially after shorter periods
of training.
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Figure 6.5: Pipelines across the configuration space mapped by their
predictive model and colour coded by their mean accuracy in the
datasets used to create the space. From here it is clear how some predictive
models greatly overlap in the same region of the configuration space, from where
we can infer that their predictions across datasets are similar, and other predic-
tive models, such as the Gaussian Process, seem to generate dissimilar prediction
boundaries and are all allocated to a separate region of the configuration space.
The dispersion across the configuration space present in most predictive models
reveals how the choice of preprocessing algorithms and hyperparameters impacts
the expressivity and outcome of the pipeline. Finally, the upper-left corner of
the configuration space seems to account for failed pipelines, where the choice of
algorithms fails to obtain any prediction.
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Table 6.1: List of algorithms used and respective number of hyperparameters

Methods Algorithm Nr. of λ Library

Imputation

Mean substitution 0

scikit-learnMedian substitution 0
Mode substitution 0
KNN substitution 2

Multivariate feature
substitution

2

Categorical
Feature

Processing

Ordinal Encoder 0 scikit-learn
One-Hot Encoder 0

Numerical
Feature

Preprocessing

Standard Scaling 0

scikit-learn

Maximum Absolute Scaling 0
Robust Scaler 0

Power Transformer 1
Quantile Transformer 1

Normalization 1

Discretization K-bins Discretizer 3 scikit-learn

Dimensionality
reduction

Fast-ICA 1

scikit-learnFeature Agglomeration 2
PCA 2

Variance Threshold 1

Classifier

KNN 3

scikit-learn

Gaussian Process 5
Gaussian Naive-Bayes 0

Multinomial Naive-Bayes 2
Complement Naive-Bayes 3

Bernoulli Naive-Bayes 2
Categorical Naive-Bayes 2

Decision Tree 7
Random Forest 7

AdaBoost-SAMME 3
Gradient Boosting 7

Ridge 1
Logistic Regression 5

Linear SVM 4
Support Vector Machine 2
Multi-layer Perceptron 6

XGBoosting 6 xgboost
Relevance Vector Machine 1 sklearn-rvm

Total 36 82 3
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7 | Transformer-based anomaly de-
tection of early schizophrenia

7.1 Introduction

Schizophrenia is a chronic mental health disorder that causes a range of hetero-
genic psychological symptoms and significantly impairs the quality of life of mil-
lions of people worldwide. The current diagnosis gold-standard for schizophrenia,
described in the Diagnostics and Statistical Manual of Mental Disorders (DSM-
V) (American Psychiatric Association, 2013) relies on a professional inquiring
the patient and evaluating the presence of three of the five main symptoms (i.e.,
delusions, hallucinations, disorganized or incoherent speaking, disorganized or
unusual movements and negative symptoms). Issues of inter-rater reliability and
ambiguous criteria descriptions (Welch et al., 2013) are factors that are push-
ing the field of psychiatry to search for more objective, operationalisable and
personalised biomarkers of psychiatric conditions.

It has been shown that schizophrenia is associated with subtle brain ab-
normalities that can be detected with structural Magnetic Resonance Imaging
(sMRI) data (Shenton et al., 2001). This has led the field to try to build reliable
predictors of schizophrenia by employing machine learning algorithms. The most
popular approach utilised supervised learning on structural data to build classi-
fiers (Leonard et al., 1999, Squarcina et al., 2017). Despite presenting modest to
good accuracies on the testing sets, most algorithms fail to generalize to the early
stages of the condition and to cross-site validation (Pinaya et al., 2016, Vieira
et al., 2019). These failures can be attributed to training on small and limited
datasets that fail to capture the full distribution of patients and the population
in general.

To address these limitations, there has been an effort to move to unsuper-
vised learning techniques that focus instead on building normative models of the

105
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healthy brain that try to capture variations from normality as predictors of psy-
chiatric conditions (Marquand et al., 2019) . The challenge of collecting large
swathes of brain data becomes more manageable if only healthy participants’
data are required. Furthermore, contrary to supervised algorithms, normative
models can identify variations from any condition that markedly changes brain
structure. Showcasing this idea Wolfers et al. (2018) built a normative model of
Voxel-based morphometry and found significant variations between healthy and
schizophrenic individuals. They also discuss how the interindividual differences
between patients with schizophrenia mask group-level differences to healthy par-
ticipants. Lv et al. (2021) built a normative model of 48 white tracts and 68 corti-
cal regions and found that patients fell significantly outside of normative ranges.
However, no tract accounted for the majority of deviations from normality, high-
lighting the heterogeneity in schizophrenia representation in brain abnormalities.
Recently, researchers have proposed unsupervised anomaly detection algorithms
to identify brain pathologies, such as brain lesions, from structural MRI (Baur
et al., 2018, Chen et al., 2020). These methods are based on autoencoders to
learn a latent representation of healthy brain data. After training, these models
assess unknown examples to detect pathologies based on their deviation from
normality. In this context, the current state of the art is held by variational
autoencoder (VAE) based methods (Baur et al., 2020), which try to reconstruct
a test image as the nearest sample on the learned normal manifold, using the re-
construction error to quantify the degree and spatial distribution of any anomaly
(Pinaya et al., 2021). However, the success of this approach is limited by the
fidelity of reconstructions from most VAE architectures (Dumoulin et al., 2016),
and by unwanted reconstructions of pathological features not present in training
data, which suggests a failure of the model to internalize complex relationships
between distant imaging features (Pinaya et al., 2021). To address these issues,
a recent study achieved the state of the art performance in unsupervised brain
anomaly detection using an architecture based on transformers (Pinaya et al.,
2021).

Transformers have revolutionized language modelling, becoming the primary
choice for language-related tasks (Radford et al., 2019, Vaswani et al., 2017).
They rely on attention mechanisms that capture the natural sequence of in-
put data, completely dispensing the use of convolutions or recurrences. This
mechanism allows modelling the dependencies of input data regardless of their
distance, enabling the detection of complex long-range relationships. The ro-
bustness of transformers to map input data relationships, whose distances vary
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widely, makes them great candidates for neuroimaging tasks, especially anomaly
detection (Graham et al., 2022, Pinaya et al., 2021).

Here, it is investigated if a normative model with an architecture based on
transformers could be used to detect psychopathologies, such as schizophrenia,
from brain 3D structural MRI and if it could be further used to study the local
variations associated with the condition. The normative model was trained on
3D T1 images of neurotypical individuals (N=1,765). Then, the likelihood of
neurotypical controls and psychiatric individuals with early-stage schizophrenia
was obtained from an independent dataset (N=93) from the Human Connectome
Project. Considering the mean likelihood of the scan as a proxy for a normative
score, an AUROC of 0.82 was obtained when assessing the difference between
controls and schizophrenic individuals using only unsupervised methods. The
presented approach surpassed recent normative methods based on brain age and
Gaussian Process, showing the promising use of deep generative models to help
in individualised analyses.

7.2 Material and Methods

7.2.1 Datasets

In this study, T1-weighted volumes from healthy subjects were used to train
our normative models of the brain. These volumes were from two datasets: the
Human Connectome Project - Young Adult (HCP-YA) (Van Essen et al., 2013)
and the Human Connectome Project - Development (HCP-D) (Somerville et al.,
2018). From the HCP-YA dataset, 1,113 volumes were taken from the “1200
Subjects Data Release”∗. From the HPC-D, 652 volumes were taken from the
"Lifespan 2.0 Release"†. In total, 1,765 subjects were obtained (808 male and
957 female) with an age range from 5 to 37 years old (Avg. (SD) = 23.3(8.1)
years old). To evaluate the presented method, I used the Human Connectome
Project - Early Psychosis (HCP-EP) ("Release 1.1"‡), a study with the goal to
acquire high quality imaging, behavioural, clinical, cognitive, and genetic data
on an important cohort of early psychosis patients. Importantly, this study
was performed at a different acquisition site than the data used for training the

∗http://www.humanconnectome.org/documentation/S1200/
†https://www.humanconnectome.org/study/hcp-lifespan-development/document/hcp-

development-20-release
‡https://www.humanconnectome.org/study/human-connectome-project-for-early-

psychosis/document/hcp-ep
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Table 7.1: Demographic information for the subjects from the Human
Connectome Project Young Adults (HCP-YA), Human Connectome
Project Development (HCP-D), and Human Connectome Project for
Early Psychosis (HCP-EP). For the HCPEP, we are presenting the data from
the distinguish classes: Control (HP) and subjects with early psychosis (EP). We
used Student’s t test and Chi-square test to verify if age and gender, respectively,
are significantly different in the HCP-EP dataset.

HCP-D
(n=652)

HCP-YA
(n=1,113)

HCP-EP (n=93)
HP

(n=46)
EP

(n=47) stats

Age, y 1.87p=0.07

Mean±SD 14.0±4.1 28.8±3.7 23.6±2.8 22.6±2.6

Range 5-21 22-37 16-30 19-31
Sex, n 2.07p=0.15

Men(%) 301(46%) 507(45%) 29(63%) 37(79%)

Women(%) 351(54%) 606(55%) 17(37%) 10(21%)

model. The HCP-EP focus on early psychosis (both affective and non-affective
psychosis), within the first 3 years of the onset of psychotic symptoms. This is
a critical time period when there are fewer confounds such as prolonged med-
ication exposure and chronicity, and when early intervention strategies will be
most effective. From the HCP-EP, the volumes of 46 healthy individuals and
47 volumes of subjects with early psychosis were used, specifically subjects with
diagnosed with schizophrenia and the groups were statistically balanced for age
and sex (see Table 7.1 for demographic details).

7.2.2 MRI processing

All images were corrected for intensity non-uniformity originating from the bias
field using the function N4 bias-field correction (Tustison et al., 2010) from the
Advanced Normalisations Tools (ANTs - version 2.3.4) (Avants et al., 2008). The
images were also registered to a common space (MNI152NLin2009aSym) using
rigid and affine transformation using the RegistrationSynQuick command from
the ANTs. At the end, this project collected high-resolution volumes (1mm3),
where each volume had 192 x 224 x 192 voxels.
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7.2.3 Normative model

The main component of the model is an autoregressive Transformer (Vaswani
et al., 2017) that learns a mapping of probabilities of a given sequence of values,
which is an approximation of the likelihood of the distribution. Transformers are
able to capture highly complex dependencies across large distances due to their
attention mechanism that weighs the linear transformation of the input with
itself. The computational cost of the attention mechanism scales quadratically
with the sequence length, making it unfeasible to sequence the original highly-
dimensional brain data. In the presented method, the 3-dimensional sMRI brain
data is encoded into a smaller discrete latent space before being fed as input to the
autoregressive Transformer. Using a vector quantized variational autoencoder
(VQVAE) (Van Den Oord et al., 2017), the dimensionality was reduced 512 times
from more than 8 million voxels to 16,128 latent variables. This dimensionality-
reduction step makes it computationally feasible for the Transformer to learn
the probability distribution in the latent space. Both components are trained
separately using only healthy participants. The architecture and methodological
details of the VQVAE and the transformer are presented in section 2.1.2.5 and
2.1.2.6.

A decoder-only transformer architecture was used due to its autoregressive
nature and because it outperforms other autoregressive models such as the Pixel-
CNN (Pinaya et al., 2022). The autoregressive transformer receives as input 1D
sequences which are unmasked sequentially so that the model is only informed
by values it has already estimated. The 3D latent representation is flattened
using the raster scan order before being given as input to the transformer. The
categorical nature of the VQVAE latent representation allows the transformer to
predict the likelihood of any of the available elements in the codebook. This is
done through a softmax non-linear function as the transformer output.

7.2.4 Training the normative model

The VQVAE and the autoregressive Transformer are trained sequentially using
the 3-dimensional T1-weighted brain scans from HCP-D and HCP-YA cohorts,
composed solely of participants without a diagnosis of a neurological or psychi-
atric disorder, as training and validation data. The VQVAE is first optimized
to correctly reconstruct the brain scans and create an efficient discrete latent
representation as its bottleneck. The transformer is trained to predict the next
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element in the sequence from the latent representation obtained from the VQ-
VAE and learns to estimate the likelihood of the next element in the sequence.
To try to account for image variability caused by different scanners or acquisi-
tion parameters, data augmentation was performed during training by applying
random shifts to the contrast and intensity of the brain data.

7.2.5 Evaluation and analysis

I estimate the probability of each index in the latent representation obtained by
the VQVAE for each brain scan using the output of the trained transformer. The
autoregressive transformer weighs the already evaluated latent indices to predict
the conditional probability of the next index in the latent representation. This
method will result in the model flagging indices that do not follow the sequencing
observed from the trained data by assigning them low values of probability. This
follows from cases where there are changes to the normal structuring of the
brain as the transformer was trained on a healthy cohort. By summing the
log-likelihood of all the elements of the latent representation, a log-likelihood
estimation was obtained per individual in the evaluation set. The evaluation set is
composed by the HCP-EP cohort, where both neurotypical participants (n=46),
and participants with early-stage schizophrenia (n=47) are present. I hypothesise
that images acquired from participants with schizophrenia will have a lower log-
likelihood than controls due to subtle changes to their brain structure being
captured by the transformer as unlikely. This is measured through a correlation
analysis between the participants diagnosis and its log-likelihood. The efficiency
of the method at identifying individuals with early stage schizophrenia is studied
by measuring the Area Under the ROC curve (AUROC) of the log-likelihood
estimation with the diagnosis as the target variable.

Finally, it was studied how likelihood measures vary locally for participants
with schizophrenia by mapping the likelihood estimations across the latent rep-
resentations to different regions in the brain space, using the Desikan-Killiany
cortical atlas (aparc) and the automatic segmentation volume (aseg) (Desikan
et al., 2006) originally provided by the Human Connectome Project. For each
of the 113 measured brain regions, a correlation analysis between the region’s
median log-likelihood estimation and the participants’ diagnosis is done and the
effect sizes per region are measured using Cohen’s d.
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7.2.6 Baseline normative models

7.2.6.1 Voxel-wise Brain age prediction with deep neural networks

Brain age prediction consists in building predictive models of participants’ age us-
ing only their brain data, generally T1-weighted MRI scans. It uses associations
from changes in brain structure to the biological age, despite the ageing process
not being uniform across a population. As symptoms of psychiatric disorders are
exacerbated during ageing, the brain age predictor trained on healthy control
participants has been suggested as a normative model for psychiatric conditions,
by measuring prediction error (Cole et al., 2019). I used the state-of-the-art in
brain age prediction, the Simple Fully Convolution Network (Peng et al., 2021)
trained on the HCP-D and HCP-YA 3-dimensional brain data, as a normative
model of the brain trained on predicting age. The model’s prediction error on
the HCP-EP data was used as a proxy measure for detection of participants with
schizophrenia.

7.2.6.2 Region-wise Gaussian Process Regression

Following previous literature on phenotyping schizophrenia using normative mod-
els (Wolfers et al., 2018), a set of Gaussian process regressors (GPR) were trained
to predict regional volumes of 183 brain regions using age and sex as covariables.
In inference time, the trained models estimate the predicted brain volume and
the confidence of prediction. The z-scores (i.e., the prediction error normalized
by the prediction uncertainty) are used as proxies of anomaly by measuring the
mean z-score over all regions for each participant. In this study, this is im-
plemented through the Predictive Clinical Neuroscience (PCN) toolkit§, that is
optimised for normative modelling of clinical imaging data.

7.2.6.3 Region-wise Bayesian Linear Regression

As a third baseline, Bayesian linear regressive (BLR) models were used. They
were trained to infer the same regional volumes from healthy control participants
using age and sex as covariables (Huertas et al., 2017). Similar to this project’s
approach and unlike Gaussian process regressors, Bayesian linear regressors esti-
mate likelihood-based statistics that can be used as proxies for normative models.
They are able to model non-Gaussian predictive distributions, as is the case in
this project’s approach. As in the Gaussian process regression, I measure as

§github.com/amarquand/PCNtoolkit
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Table 7.2: Performance of the different normative methods at identi-
fying participants with schizophrenia as outliers. All methods presented
a significant difference between the distribution of controls and individuals with
schizophrenia (i.e., p-value < 0.05) for their metrics metric of normality.

Method AUROC ↑ t-statistics ↑ P-value
GPR Marquand et al. (2016) 0.636 2.104 0.038
BLR Huertas et al. (2017) 0.678 3.013 0.003
Brain Age Peng et al. (2021) 0.732 8.901 <0.001
VQVAE + Transformer [Ours] 0.828 6.033 <0.001

proxy of anomaly detection the mean z-score over all regions measured for a
given participant using the PCN toolkit. The larger the z-score, the more out of
distribution the sample is.

7.3 Results

7.3.1 Image-wise detection of schizophrenia

This project’s model, which is trained in a fully unsupervised manner without
seeing examples of individuals with schizophrenia, successfully flags most cases
of early-stage schizophrenia resulting in an AUROC of 0.828. A Pearson’s cor-
relation coefficient of 0.568 (p-value = 4.1e-9) was obtained when analysing the
correlation between the brain log-likelihood and the diagnosis (subjects with
schizophrenia = 1). As shown in Table 7.2 this project’s model outperforms
all baselines at identifying participants with schizophrenia from the HCP-EP
dataset.

7.3.2 Region-level analysis

The normative scores of each cortical region and anatomical structure (from
aseg+aparc parcellation) are estimated by calculating the median log-likelihood
of the latent variables that are inside the region when upsampling them onto
the original brain space. It was found that 16 regions out of 113 presented a
different normative score between control and subjects with schizophrenia with
a significance level below p=0.05, but none show significance once the result is
corrected by the Bonferroni correction for multiple comparisons (Dunn, 1961).
These results contrast with the global estimation where the difference between
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Figure 7.1: Violin plots of proxies used for anomaly detection. A.
presents our model’s difference in distribution between control participants and
individuals with early-stage schizophrenia using the estimated negative log like-
lihood per individual as a metric for detecting schizophrenia. B. presents the
distributions obtained using the mean absolute error of a brain age model. C.
presents the distribution between cohorts for the mean z-scores obtained using
univariate Gaussian process regressions and D. presents the distributions of the
mean z-scores using Bayesian linear regression. For each distribution, the dashed
lines identify the median and the 25th and 75th quartiles.

log-likelihoods of the two cohorts is significant (p-value < 0.001). The Bonferroni
correction is quite conservative and assumes independence between estimations,
which in statistical inferences in homotopic and adjacent regions is not a correct
assumption. Instead, here we focus on the effect sizes of each statistical test. In
Figure 7.2 and Table 7.3, I show the regions with the highest measured effect size
(Cohen’s d), varying between small and medium effect sizes (between 0.42 and
0.57). The regions with the highest values were present in the prefrontal cortex
(i.e., the left precentral gyrus and the right pars orbitalis), the temporal cortex
(i.e., the right and left fusiform gyri and the left transverse temporal gyrus), the
right lateral ventricle, the anterior portion of the corpus callosum, and the left
and right choroid plexus.

7.4 Discussion

In this study, a VQVAE and autoregressive transformers were applied to create
a normative method to predict how likely it is for a sample to belong to the nor-
mative population. When applying it on subjects from the HCP-EP dataset, this
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Figure 7.2: Top 10 brain regions with the highest effect size measured
by Cohen’s d.

Table 7.3: Top 10 regions with highest effect sizes measured by Cohen’s d.

Rank Region Cohen’s d ↑
1 Left precentral 0.574
2 Anterior corpus callosum 0.569
3 Right lateral ventricle 0.567
4 Right pars orbitalis 0.537
5 Right fusiform gyrus 0.532
6 Left choroid plexus 0.525
7 Left pallidum 0.479.
8 Right choroid plexus 0.432
9 Left fusiform gyrus 0.430
10 Left transverse temporal 0.420
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method was shown to be able to distinguish between healthy controls and partic-
ipants with early-stage schizophrenia with a AUCROC=0.828. This normative
score was more robust compared to other baseline methods, such as the z-score
from the fitted Gaussian process regression, the z-score from the fitted Bayesian
linear regression or the prediction error of the SFCN brain age model. By com-
paring state-of-the-art methods, it was observed that the Gaussian process-based
approach had the lowest performance. This might be because the latter is limited
to modelling uncertainty, the most relevant metric for the normative model, as
a Gaussian distribution (Rasmussen, 2004). This is not the case for the other
three methods, where error prediction and likelihood estimation can have diverse
distributions. This is visible in Figure 7.1 where even when considering the mean
of the 113 Gaussian estimations, the GPR modelled uncertainty is the one that
more closely follows a Gaussian distribution. The Bayesian linear regression had
the second-worst performance, which can be attributed to building univariate
normative models of local brain features, as is the case of the GPR. By fitting
the confounding variables (i.e., age and sex) to the sole dependent variable (i.e.,
one specific local region) we are fitting as many models as there are local regions,
which makes these two normative approaches incapable of retrieving information
between brain regions when building uncertainty estimates. This goes against
what is known about how schizophrenia affects the brain, as it is thought to
be a condition that affects multiple areas simultaneously as well as the commu-
nication between these areas (Lv et al., 2021, Tsuang et al., 1990). Moreover,
as we are fitting individual models per region for both BLR and GPR, it was
necessary to obtain a low dimensionality representation of the structure of the
brain, in this study, characterised by the volumes of the cortical regions and sub-
cortical structures. Due to this limitation, the methods lost a lot of information
about the brain of the investigated subject. This is not the case in both the
brain age approach and our VQVAE+Transformer model, where the voxel-level
data is used to train both models in a multivariate method, where deep neural
networks’ high non-linearity can extract high-level information from different re-
gions at the same time in a fully data-driven manner. One explanation why the
VQVAE+Transformer model outperforms the brain age approach is that learn-
ing to map the age of the individual through MRI brain data results in using
the error as a proxy for identifying outliers which is an indirect task. The VQ-
VAE+Transformer model learns to explicitly predict the likelihood distribution
of brain data from healthy participants. Another advantage of our model against
brain age modelling is that it outputs a regional estimation of likelihood, that
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can be used to analyse the local structures for biomarkers of a given anomaly.
There is no direct local representation for the brain age model as it is predicting
a single value, the age of the participant.

One important limitation of the presented model is that it does not account
for demographic and other information about the participants, such as age and
sex when building the normative model. This is relevant because these confound-
ing variables will greatly impact what is considered normal (i.e., the normal brain
structure at 15 years of age is very different than at 50) and other factors (e.g.,
smoking, BMI) may impact brain structure and differ systematically between
groups. One avenue that is left for future work is to condition the transformer
estimation based on context to have a likelihood estimation that is demographic
dependent. Another limitation of the presented approach is the robustness of
the model on data that do not follow the exact distribution of the training data
(Molina et al., 2017). The model fails to identify healthy brains, marking all data
with low likelihood. This shift in distribution can happen when using different
acquisition settings in the scanner or different field strength. In this work, an
external dataset is used (i.e., the HCP-EP) but it is under the umbrella of the
Human Connectome Project as is the training data. One solution that was im-
plemented here and can be further explored is data augmentation of the training
data in order to simulate the outputs of these different settings and increasing
the model’s robustness to distribution shifts.

The difference in likelihood distribution between groups in individual cor-
tical regions shows small effect sizes when measured through Cohen’s d. One
justification for larger effect sizes not being found can be that as the dataset
only comprises early stages of schizophrenia, the data is not characterised by
large scale pathology clearly visible on MRI (unlike many neurological disorders,
e.g., focal stroke, Alzheimer’s disease). Therefore, differences have to be rela-
tively subtle and distributed across large areas of the brain, possibly with large
individual variability. Relevantly, the global analysis of the likelihood presented
significant difference between distributions, so there is no sole segmented region
that is driving the correct prediction of participants with schizophrenia and tak-
ing the whole brain estimation benefits the prediction power. This assessment
follows closely with what is known in the literature, as schizophrenia is known as
a condition with heterogeneous brain structure profiles (Lv et al., 2021, Tsuang
et al., 1990). The regions that presented largest effect sizes follow what is known
from the literature about brain changes related to schizophrenia. The largest
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effect size was found in the left precentral (p = .0067; Cohen’s d = .57), a re-
gion that has been associated with the mechanisms that underlie the onset of
the psychiatric conditions (Rimol et al., 2010, Shepherd et al., 2012, Zhou et al.,
2005). The right pars orbitalis (p = .0101; Cohen’s d = -.54), a region associated
with language processing (De Carli et al., 2007), is part of the inferior frontal
lobe, which is associated with grey matter reduction in schizophrenic individuals
(Shepherd et al., 2012). The left transverse temporal (p = .0458; Cohen’s d =
.42) and the right and left fusiform gyri (p = .0119; Cohen’s d = .53 and p =
.0406; Cohen’s d = .43 respectively) are components of the temporal cortex, a
region that has been associated with volume reduction (Shepherd et al., 2012)
and positive symptoms (Walton et al., 2017) in participants with schizophrenia.
The volume reduction in brain structures observed in patients with schizophrenia
has been associated with substantial enlargements of the ventricles (Rimol et al.,
2010). This can explain the observed effect size of the right lateral ventricle (p
= .0074; Cohen’s d = .57). The anterior corpus callosum (p = .0072; Cohen’s d
= .57), that connects the orbital, medial and lateral surfaces to the frontal lobe,
is not commonly associated with schizophrenia in meta-analysis and reviews,
but its roof forms the body of the lateral ventricle (Chaichana and Quiñones-
Hinojosa, 2019) which can result in the likelihood estimation to confound the two
regions. The left pallidum (p = .0230; Cohen’s d = .48) sits in the basal ganglia-
thalamocortical circuitry, that has been associated with a grey matter reduction
in first-episode schizophrenia, but less so in chronic schizophrenia (Ellison-Wright
et al., 2008). Importantly, the disruption of this circuitry has been studied to
mediate executive functioning deficits in schizophrenia (Camchong et al., 2006).
Finally, the right and left choroid plexi (p = .0400; Cohen’s d = .43 and p =
.0013; Cohen’s d = .53 respectively) have also been found to have significant
differences in previous work on normative modelling of psychiatric conditions
(Pinaya et al., 2019). Taken together, these findings suggest that the presented
model was sensitive to subtle neural changes that are directly associated with
schizophrenia. The higher effect size in symmetric structures (i.e., the left and
right choroid plexi and the left and right fusiform gyri) despite the transformer
processing the brain structure sequentially and thus breaking its spatial informa-
tion, is another example of how the algorithm is capturing real deviations from
normality and not just spurious variations.

Future work will focus on further analysing local variations from normality
at a finer grain (e.g., intra-region correlations), and evaluating how clinical scores
from participants map onto deviations from normality in different regions. It is
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possible to measure if some regions’ deviations in structure are more striking for
positive or negative symptoms and if biomarkers can be associated with some
specific phenotyping of the psychiatric condition.

7.5 Conclusion

The diagnosis of early psychosis is a challenging task, and several data-driven
methods have been developed to help in this task. In this study, we demon-
strated the potential of using deep generative models to assign the likelihood
of MRI data belonging to a healthy population. The Transformer was better
at identifying early psychosis patients compared to traditional volumetric based
approaches and brain-age voxel-based approach. Furthermore, this approach al-
lows the researcher to explore local maps of likelihood and retrieve information
about how cortex regions are affected for each individual participant, allowing
for new possibilities in personalised psychiatry.

Normative models benefit largely from not requiring any data from partic-
ipants with conditions when training, and only learning from healthy controls,
which are data that is more readily available. This approach can be extrapolated
for rarer conditions where the absence of large cohorts tends to lead to unexplored
research avenues. Due to fast pace of the development of deep generative models
in other fields like computer vision, these models are a promising tool to help in
psychiatry.



8 | Discussion

The research presented in this thesis tackles two crucial methodological challenges
in neurodevelopmental and related research, the replication and generalisability
crises. The main drivers of these crises are the inability to control the researcher’s
degrees of freedom in less constrained hypothesis settings and a lack of focus on
the robustness of scientific results. Both elements can be considered as a lack
of control of multidimensional problems, i.e., each methodological direction the
researcher can take creates a new dimension of possible results; different recording
equipment, different populations, and different settings hide multiple dimensions
that are not considered when extrapolating results from data. To tackle this, new
methodologies can: 1) focus on automating the experiment process, taking the
researcher out of the loop and reducing the experimenter’s degrees of freedom; 2)
accept the variability present from the multiverse of possible choices and study
the robustness of results in multiple-choice paths. For both these directions,
there is a need for novel frameworks that can be considered new gold standards
of research.

As such, this work focused on taking advantage of novel machine learning
techniques to explore the underlying organisation of the multiverse of possible
choices. The neuroadaptive optimisation framework was extended to optimise
over learned stimuli manifolds and EEG paradigms. Furthermore, this work cre-
ated novel frameworks using Bayesian optimisation to explore lower-dimensional
spaces of methodological pipelines, both in neuroimaging preprocessing and in
more general cases of predictive modelling of data. Finally, it extended a state-
of-the-art outlier detection algorithm to efficiently learn the normative brain as
a robust and unsupervised mechanism for detecting subtle changes to the brain
structure. All these frameworks were accompanied by proof-of-concept examples
in neuropsychiatry and neurodevelopment research as a clear demonstration of
the benefit they pose in addressing the methodological challenges in our field and
extending the researcher’s toolkit when exploring new hypotheses.

In summary, the key contributions of this thesis were:

119
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1. The extension of the neuroadaptive framework to explore a rich generative
model-driven manifold of face stimuli in an automated and controlled man-
ner. This framework extension can be considered for any object stimuli and
is not limited to faces;

2. The extension of the neuroadaptive framework for EEG experiments, by au-
tomatically processing and evaluating ERP experiments and using Bayesian
optimisation to guide the stimulus to be presented next that would max-
imise the measured signal or information, depending on the research goal;

3. The development of a navigable space of neuroimaging processing tech-
niques that can be exploited to measure the robustness of the obtained
results efficiently. This new framework is generalisable for any problem of
multiverse analysis where each pipeline has a clear numeric output;

4. The extension of the latter framework to the more general case of predictive
modelling. The space of modelling pipelines can be of use to any modelling
problem where the robustness of the predictions matters for generalisation
purposes;

5. The extension of the VQVAE + transformer algorithm to build unsuper-
vised normative models of the human brain as a generalisable mechanism to
detect subtle changes in brain structure caused by psychiatric conditions,
such as early-stage schizophrenia.

8.1 Summary

The topics discussed in this thesis can be summarised as follows:

Chapter 1: The lack of reproducibility and generalisability of research re-
sults are impacting research fields such as neuropsychiatry and neurodevelop-
ment. This chapter addresses how a blind spot to the challenges of the curse of
dimensionality in methodological research can lead to such issues and how we can
distil the relevant information down to lower dimensions to tackle the problems
of robustness and reproducibility better. It also describes how machine learning
has already introduced the algorithms needed to take the field in this direction.

Chapter 2: The algorithms used in this thesis for both building lower-
dimensional representations of the data as well as efficiently and automatically
navigating through these spaces are introduced in this chapter.



8. Discussion 121

Chapter 3: Investigating the cognitive and neural mechanisms involved
with face processing is a fundamental task in modern neuroscience and psychol-
ogy. To date, the majority of such studies have focused on the use of pre-selected
stimuli. The absence of personalised stimuli presents a serious limitation as
it fails to account for how each individual face processing system is tuned to
cultural embeddings or how it is disrupted in disease. The same stimulus can
have different interpretations and elicit different results from different popula-
tions limiting the capacity for study replication in cognitive neuroscience. In this
chapter, I introduced an extension to the neuroadaptive optimisation framework,
which combines generative adversarial networks with Bayesian optimisation to
identify individual response patterns to a rich set of faces. Formally, Bayesian
optimisation is employed to efficiently search the manifold of faces learned by
the generative models, with the aim to automatically generate novel faces to
maximise an individual subject’s response. I presented results from a web-based
proof-of-principle study in self-recognition, where participants (n=30) rated im-
ages of themselves generated via performing Bayesian optimisation over the face-
manifold of a generative model. The algorithm was able to efficiently locate an
individual’s optimal face while mapping out their responses across different se-
mantic transformations of a face; inter-individual analyses suggest the approach
can provide rich information about individual differences in face processing.

Chapter 4: A core goal of functional neuroimaging is to study how the
environment is processed in the brain. The dominant experimental paradigm
involves concurrently measuring a broad spectrum of brain responses to a small
set of environmental features pre-selected with reference to previous studies or
a theoretical framework. Recording a broad spectrum of metrics allows the re-
searchers to choose the one that best fits their narratives. Here, I defined an
approach where the researcher records the modulation of a single pre-selected
brain response in a broad spectrum of environmental features. By using a pre-
specified closed-loop design, the approach addressed fundamental challenges of
reproducibility and generalisability in brain research. These conditions are par-
ticularly acute when studying the developing brain, where our theories based on
adult brain function may fundamentally misrepresent the topography of infant
cognition and where there are substantial practical challenges to data acquisition.
This methodology employed machine learning to map the modulation of a neural
feature across a space of experimental stimuli. The method collects, processes
and analyses EEG brain data in real-time; and uses a neuro-adaptive Bayesian
optimisation algorithm to adjust the stimulus presented depending on the prior
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samples of a given participant. In a mother-stranger paradigm proof-of-concept,
I showed that the method could automatically identify the face of the infant’s
mother through an online recording of their Nc brain response to a face contin-
uum. This method allows for the retrieval of model statistics of individualised
responses for each participant, opening the door for early identification of atypi-
cal development. This approach has substantial potential in infancy research and
beyond for improving the power and generalisability of mapping the individual
cognitive topography of brain function.

Chapter 5: For most neuroimaging questions, the vast range of possible
analytic choices leads to the possibility that conclusions from any single analytic
approach may be misleading. Although it is possible to perform a multiverse
analysis that evaluates all possible analytic choices, this can be computation-
ally challenging and repeated sequential analyses on the same data can compro-
mise inferential and predictive power. Here, I established how active learning in
a low-dimensional space that captures the inter-relationships between analysis
approaches could be used to approximate the whole multiverse of analyses effi-
ciently. This approach balances the benefits of a multiverse analysis without the
accompanying cost to statistical power, computational power and the integrity
of inferences. I illustrated this approach with a functional MRI dataset of func-
tional connectivity across adolescence, demonstrating how a multiverse of graph
theoretic and simple preprocessing steps can be efficiently navigated using active
learning. This chapter showed how this approach was able to identify the subset
of analysis techniques (i.e., pipelines) which are best able to predict participants’
ages and allow the performance of different approaches to be quantified.

Chapter 6: Although classical statistical analysis has been pushing forward
our understanding of the human brain, the last decades have seen an exponen-
tial growth of studies employing machine learning to build predictive models of
variables of interest. The prevalence of machine learning tools combined with
the ever-growing number of predictive algorithms has resulted in the need for
a large number of decisions to be taken when choosing how to train an algo-
rithm and preprocess the data. In this chapter, I presented a framework solution
that explores the prediction patterns of many ML algorithm pipelines on a large
collection of data. I distilled the high-dimensional data to a low-dimensional
configuration space that is efficiently sampled through Bayesian optimisation. I
demonstrated how the automatically organised space captures information about
the neighbouring pipelines for unseen datasets. I further demonstrated how the
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space organisation could be used for exploring the generalisability of predictions
for the multiverse of pipeline options or exploiting the region in the space with
the best performance while checking for the robustness of the results by evalu-
ating the neighbouring pipelines. I showed the benefit of this framework with a
proof-of-concept in neuropsychiatry, where an EEG dataset was used to build an
accurate predictive model for classifying autism.

Chapter 7: Despite the impact of psychiatric disorders on clinical health,
early-stage diagnosis remains a challenge. Classification approaches tend to be
overly narrow, leading to challenges in generalising the model’s performance
for clinical practice. The overlap between conditions leads to high heterogene-
ity between participants that is not properly captured by classification models
trained on an under-representative section of the population. To address these
issues, normative approaches have surged in popularity as a robust alternative
where pathologies are defined by their deviation from normality. In particular,
transformer-based models showed great results as normative models to identify
neurological lesions in the brain. However, neurological lesions usually are ex-
pressed in the data as significant changes in intensity, and experiments identifying
subtle changes typically associated with psychiatric diseases are challenging. In
this chapter, I evaluated the performance of transformer-based models to detect
subtle changes expressed in adolescents and young adults. I trained a normative
model on 3D T1 images of neurotypical individuals (N=1,765). Then, obtained
the likelihood of neurotypical controls and psychiatric patients with early-stage
schizophrenia from an independent dataset (N=93) from the Human Connectome
Project. Using the mean likelihood of the scan as a proxy for a normative score,
the model obtained an AUROC of 0.82 when assessing the difference between
controls and schizophrenic individuals. This approach surpassed recent norma-
tive methods based on brain age and Gaussian processes, showing the promising
use of deep generative models to help in individualised analyses.

8.2 Robustness at the individual level

Chapter 3 and Chapter 4 delve into the challenges of inter-individual differences
in cohorts for generalisability and replication of results when doing group analy-
sis. The same stimulus does not elicit the same brain response at the individual
level in a given population, even when not considering random measurement er-
rors. The disregard for the variability of brain responses is one factor that is
stated as responsible for the generalisability crisis. This is ever more relevant
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in neurodevelopment research, where the brain is going through rapid changes
which are not deterministic between individuals. In this thesis, I explored and
developed frameworks that learn brain responses at an individual level across
stimuli spaces in both EEG paradigms and self-reported questionnaires. These
maps of brain responses can be used for building common grounds between indi-
viduals. For example, instead of relying on face stimuli selected for their optimal
response in a small population, each participant can be assessed with face stim-
uli that are optimised for them individually. They can also be used for a richer
group analysis where the individual variation across the stimuli space is consid-
ered. In conclusion, exploring these two frameworks is a step in the direction of
addressing the impact of inter-individual variability in the lack of generalisability
in neurodevelopment and neuropsychiatry research.

8.3 Robustness at the experiment level

Chapter 5 and Chapter 6 explore the challenges in reproducibility and robustness
of experimental results that are derived from the abundance of data processing
techniques and algorithms. The large space of valid choices can lead to different
outcomes from the analysis of the same data. To tackle this problem, I developed
a framework to study the multiverse of solutions and how they relate to each
other. A better understanding and exposition of the impact of different valid data
processing choices will strengthen an experiment’s capability of being replicated
at different laboratories. The framework worked for neuroimaging preprocessing
techniques and predictive modelling algorithms but is extensible for any problem
where a multiverse analysis is beneficial. Because it uses a fully data-driven
approach to build the multiverse space, it can extract similarity information
between techniques. This can facilitate exploring the multitude of options while
only running a few experiments.

8.4 Robustness at the cohort level

Chapter 7 considers the challenge of the robustness of results in predictive mod-
elling of small population cohorts. When building predictors of a psychiatric
condition, the data privacy constraints and a small cohort of participants lead
to the creation of models of prediction that fail to generalise for slightly different
settings, recording equipment or ethnicities. To tackle this lack of robustness,
I explored normative models using state-of-the-art machine learning algorithms
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for stronger predictions. A normative model only requires data from healthy
controls, which are available in much larger quantities and have fewer issues re-
lated to data privacy. By using this approach, we can build more generalisable
predictors of psychiatric conditions because these models are not trained for a
specific condition but instead to identify outliers to the normal structuring of
the brain. Models of normality present a good solution for building more robust
and generalisable predictors of outliers, which is the main challenge before these
algorithms can be used in a clinical setting.

8.5 Limitations and future directions

8.5.1 Dimensionality reduction

As all these frameworks deal with very large multidimensional data spaces, they
all require that data are distilled down to be optimisable, or the frameworks
would fail due to the curse of dimensionality. The generative model distils all
possible pixel combinations in an image to only account for the face manifold
(i.e., the region in the image space where images look like faces). The output of
each processing pipeline considered in the multiverse space is concatenated with
all others before the high-rank matrix is reduced to three or four dimensions
using multidimensional scaling. The 3D brain image is originally more than 3
million voxels and is reduced three orders of magnitude using the VQVAE algo-
rithm. In all these examples, information and data variance is lost. There is a
trade-off between the manageability of the multidimensional space and the loss of
variability within the data. I show that these algorithms efficiently capture much
of the relevant information for each specific case, but future work should con-
sider better methods of distilling information down while maximising retention
of relevant information. Furthermore, when building spaces of stimuli or experi-
ments in neuroadaptive optimisation paradigms, it is important to note that not
all experiments translate well into this framework. The framework makes some
assumptions when creating the space: it assumes the space of experiments or
stimuli is continuous, and each axis controls a linear variation of the experiment
(such as a continuous variation between an image of the mom and an image of
a stranger); the space is bounded so there is a limit to where the optimisation
algorithm is able to sample from. Future work could investigate the optimisation
of discrete spaces using a similar optimisation framework or alternative adaptive
algorithms.
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8.5.2 Optimisation algorithm

All presented frameworks use an algorithm to extract information from the anal-
ysis space efficiently. For the neuroadaptive and multiverse analysis frameworks,
the optimisation algorithm is Bayesian optimisation. Bayesian optimisation has
some important limitations that curtail the applicability of these frameworks:
1) The optimisation process is sequential, where some analysis can be paral-
lelised, Bayesian optimisation cannot as each sample depends on being informed
on the result of the previous ones; 2) Although the algorithm performs global
optimisation, it can get stuck in local maxima if using more exploitative acqui-
sition functions; 3) if the optimal analysis/stimulus is largely known a priori
or if the problem is highly constrained so that only a small region of the space
is explorable, then Bayesian optimisation will be sub-optimal as it will require
more resources (and potentially increase the chance of overfitting) then evalu-
ating in an ad hoc manner; 4) if the measured signal variation is too low (i.e.,
if the effective brain response is drowned out by noise or there is limited vari-
ation between processing pipeline’s outputs), then the surrogate model of the
optimisation algorithm will fail to capture the space variation for a given indi-
vidual or dataset. In traditional hypothesis testing, brain responses with high
inherent noise are captured by averaging over many participants. Here, I tried a
similar approach by averaging over 12 trials presented to one participant, with
good results, but higher recording variability would prove challenging for the op-
timisation algorithm. Regarding the kernel chosen for each experiment, I little
practical variation between the results obtained with a Mátern kernel and an
RBF kernel, so both were a valid choice. Furthermore, many other available
kernels could also been chosen, given that the kernel prior respects the type of
data (e.g., for a cyclical signal, a cyclical kernel should be chosen). Similarly, the
choice of acquisition function between UCB and EI did not impact the outcome
of the experiments, but many other choices of acquisition function were available.

In the case of normative modelling, the algorithm that extracts information
from the latent data is the transformer. Although very powerful at processing
information and capturing the probabilistic distribution of the data, this deep
learning algorithm has a large computational burden. This limitation can be
addressed in future work by considering other probability estimator models, such
as the diffusion models that present highly accurate results in computer vision
with a fraction of the computation required by the transformer model.
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8.5.3 Small proof-of-concepts

For each of the introduced frameworks, I explore a proof-of-concept that evaluates
the framework on a neurodevelopment or neuropsychiatry problem. In exploring
neuroadaptive optimisation for stimuli spaces, I study the individual variability of
responses to a self-recognition task in a large stimuli space in 30 participants. In
the extension of the neuroadaptive framework to EEG paradigms, I test out the
mom-stranger paradigm in 4 infant participants, where I observe the optimisa-
tion to find the maximum ERP amplitude to follow the literature (i.e., the higher
amplitude for images of the mums). In the multiverse analysis of preprocessing
steps in functional connectivity data, I show how the framework can be applied
to find the subset of analysis techniques that best process the data for optimising
age prediction of adolescent participants. In the predictive modelling multiverse
analysis, I show how space navigation can be used to optimise the prediction of
autism participants over an ERP dataset. In the normative modelling framework,
I present how it can be used to efficiently predict participants with early-stage
schizophrenia as an outlier-identification task. These frameworks have applicabil-
ity beyond neurodevelopment and neuropsychiatry research, but these are fields
where new gold standards in methodology could present clear-cut benefits. Both
fields are fundamental to our endeavour to understand the human brain better,
but both rely on noisy data such as subjective questionnaires or jittery young
participants’ brain responses. An improvement in methodological gold standards
could help push these fields forward by improving the reproducibility of the re-
search outcomes. The presented proofs-of-concept are insufficient to present these
frameworks as good practices as they are quite small and self-contained. Some
studies, such as the neuroadaptive framework applied to EEG, were impacted by
the COVID-19 pandemic, which limited the number of infant participants that
could be tested. As such, although the projects are methodological sound, there
is no evidence that these techniques generalise better. Future work will focus
on broadening the scope of these frameworks to different tasks and pushing its
boundaries in more complex problems to understand their limitations better. For
example, the neuroadaptive EEG is currently being extended to contrast studies
in adults and gaze vs emotion paradigms in infant research (Gui et al., 2022).
The normative modelling framework is being applied to baby brain structures
to study how pre-term variability from normality relates to future psychiatric
conditions. To build evidence based examples of generalisation, we need to test
different cohorts in different settings, using the proposed methods and evaluate
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how well the obtained results generalise for different populations.

8.6 Concluding remarks

This thesis focused on developing and expanding frameworks to address the chal-
lenges presented by the replication and generalisability crisis in neurodevelop-
ment and neuropsychiatry. I associate these problems with the lack of robustness
of research findings in different settings and populations and try to tackle them at
the individual, experimental and cohort levels. At the individual level, I expand
on the neuroadaptive optimisation framework for automatic optimisation of EEG
paradigms and navigation of face spaces to capture variability that is hidden in
group analysis. At the experiment level, I build and navigate Euclidean spaces
that map the similarity of outcomes for processing steps in functional connec-
tivity neuroimaging studies and in predictive modelling algorithms for efficiently
exploring the multiverse of options when measuring experimental outcomes. At
the cohort level, I extend a normative modelling framework that uses state-of-
the-art deep learning algorithms and only trains on data from healthy controls
to identify individuals with schizophrenia as outliers. This approach can be ex-
tended to other cohorts or clinical conditions. Altogether, these frameworks aim
to improve the methodology of current research practices to make them more
robust and reproducible.
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