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Abstract

This thesis consists of three chapters on dynamic games. In the first chapter we consider

a dynamic model where a principal delegates learning about the unknown binary state

of the world to a biased expert. We find that when preferences of the principal and the

expert are sufficiently closely aligned, retaining some decision making authority may be

detrimental for the principal. The second chapter develops a model that captures risk

taking behaviour of banks. We characterise the unique NE in which banks endogenise

the systemic consequence of their actions. In the third chapter we create an algorithm

to simulate a risk sharing agreement between two parties that both produce a perishable

good. Production is privately known and the parties cannot commit to a long-term

contract. We estimate the expected gains of this agreement compared to the case of

no sharing. The results can be used to quantify the opportunity cost of not setting a

bilaterally-trusted independent authority that monitors and publicly reports electricity

generation between two developing countries that want to share electricity.
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Chapter 1

Introduction

This thesis consists of three largely unrelated chapters on dynamic games. The

overarching themes of those being information acquisition and risk sharing. All games

model environments of incomplete information. Chapter 2 is in continuous time, while

the rest are in discrete time. Another connecting thread of this work is that chapters

3 and 4 involve agents who share risk, while chapter 2 involves information sharing in

a principal-agent setting.

The second chapter considers a dynamic model where a principal delegates learning

about the unknown binary state of the world to a biased expert. Conditional on the

state of the world, both the principal and the expert agree on the optimal decision,

but at either state of the world, the expert obtains a higher payoff than the principal

from one of the decisions. Before taking the decision, the expert may undertake costly

learning from two alternative information sources. The principal observes the expert’s

learning effort and outcomes, but cannot make (contingent) transfers to incentivise

learning. Markov equilibria in two situations are compared: when the principal retains

the right to terminate the expert’s learning to take a decision and when she surrenders

completely her decision making authority. When preferences of the principal and the

expert are sufficiently closely aligned, retaining some decision making authority may

be detrimental for the principal.

The third chapter develops a model that captures risk taking behaviour of banks in

a small economy. Systemic risk is defined as the risk of the banking system collapsing

due to individual banks’ risk taking decisions. The model assumes that there is an in-

stitution, such as a Central Bank (CB), with the capacity to bail out any and all banks.

I characterize the conditions under which banks internalize systemic risk through in-
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vesting in mutual assets in order to force the CB into providing liquidity to any bank

should it be in distress. In the model, I characterise a unique Nash Equilibrium, in

which risk taking by individual banks, through common sharing of investments, occurs

in order to maximize system risk. This result depends on the likelihood of distress, the

spread of returns across banks and a relatively strict regulator rule.

Chapter 4 extends Hertel (2004)’s model of risk-sharing under one-sided uncer-

tainty to a risk-sharing model under two-sided uncertainty. The main contribution

of the chapter is to develop a numerical algorithm to simulate the optimal risk shar-

ing in the absence of commitment to long term contracts. The purpose is to establish

whether relational risk sharing is feasible and characterise the necessary parameters for

feasibility. The simulations of optimal risk sharing between two parties are compared

with the autarky extremes to identify which parameters impact the sustainability of

the relational agreements most. The numerical algorithm can be used to assess the ex-

tent to which parties that are interested in pooling their resources to share risk would

benefit from engaging a trusted third party able to alleviate the information asymmetry.

Chapter 2 is joint work with Dr Arina Nikandrova; the remaining chapters are single

authored. My contribution to the co-authored chapter is in the formal proofs of all the

results as well as drafting of the paper.
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Chapter 2

Delegation of Learning from

Multiple Sources of Information

with A. Nikandrova

2.1 Introduction

Many decisions depend on figuring out the state of the world, but it can often be

the case that learning about the state is inaccessible to the decision maker. Instead,

learning may require engaging an expert who has access to some learning technology.

The expert may be better equipped for undertaking learning due to specialist knowl-

edge or know-how that he has accumulated over many years or because the expert has

the exclusive access to key information sources. If the expert and the decision maker’s

incentives are perfectly aligned, then the latter can hire the former to learn about the

state and also to make a decision if and when the expert finds fit. However, if the

interests of the decision maker and the expert are not perfectly aligned, it is natural

to assume that the decision maker would benefit from retaining at least some decision

making authority, particularly if the expert cannot misreport learning outcomes. In

this paper, we show that this intuition is not entirely correct. When the decision maker

cannot provide monetary rewards for learning, limiting the expert’s decision making

authority may influence how the expert learns to the detriment of the decision maker.

There are many situations in which the expert is somewhat biased towards an ac-

tion. For example, consider a financial consultant advising on whether to sell or buy a

particular stock. For the most part, it is reasonable to expect that the consultant wants
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to make the right decision given the current sentiment of the stock market. Neverthe-

less, he may have a bias towards one of the two actions, stemming perhaps from the

risk exposure of his overall portfolio. Alternatively, think of a real estate agent inves-

tigating the values of two properties on behalf of a potential buyer. The estate agent

may only be interested in the sale commission and hence prefer that the buyer chooses

the more expensive property instead of the property which possesses some qualities

which the buyer privately values but which are not reflected in the price. As another

example consider a government which is interested in learning about the severity of a

new disease in order to decide whether to invest in a vaccine technology or whether to

invest in controlling the spread of the disease through non-pharmaceutical means. The

government may hire an expert, or a group of experts, to investigate the disease. The

experts, however, may have a small bias towards the vaccine being developed as this

is a field they are more knowledgeable about. In all these interactions, the principal

has to engage an expert who is known to be biased. Hence, an important question

arises: Would the principal, in addition to delegating learning, ever want to surrender

completely the decision making authority?

This paper studies a dynamic model of learning by an expert (he) on behalf of

a principal (she). The players are interested in learning about the prevailing binary

state of the world as it determines the optimal binary decision. Conditional on the

state of the world, both the principal and the expert agree on the optimal decision,

but in either state, the expert obtains a higher payoff than the principal from one of

the decisions; that is, the expert is biased towards a particular decision.

The principal delegates learning and decision making to the expert. The princi-

pal cannot undertake learning herself as only the expert has access to two alternative

sources of information. Each source of information generates conclusive good news

about one of the states of the world according to a Poisson process. The expert must

decide how to divide attention between the two sources. The principal observes the

learning outcomes and also observes but cannot directly affect how the expert splits

his attention between the information sources.

The principal can choose between two delegation options: complete delegation and

flexible delegation. Under complete delegation, she commits to surrender completely

the authority to make decisions; under flexible delegation, she retains the right to

take an action as and when she pleases while the expert is still learning.

8



Our main result states that if preferences of the principal and the expert are suf-

ficiently closely aligned, the principal may find it optimal to completely surrender the

authority to make the final decision, instead of retaining the right to intervene. This,

seemingly counter-intuitive, result is a consequence of the expert’s strategic response

when he expects the principal to intervene and terminate learning prematurely by mak-

ing a decision.

Under flexible delegation the expert learns and acts according to his preferences.

However, since preferences of the principal and the expert are misaligned, at some

beliefs they disagree on the optimal learning policy.1 Inter alia, the misalignment of

preferences means that sometimes the expert finds it optimal to continue learning,

when the principal prefers to take the decision immediately and sometimes he may

prefer learning from an information source that is sub-optimal from the principal’s

perspective. Flexible delegation can prevent the expert from prolonged learning, but

cannot ensure the right type of learning.

Flexible Optimal Complete

Optimal

p' p'' p'''
p

Value functions

Figure 2.1: Main result. The red curve corresponds to the principal’s value function
under complete delegation; the black curve corresponds to the principal’s value function
under flexible delegation. The principal prefers complete delegation whenever the red
curve lies above the black curve.

1The nature of their disagreement is discussed further in Section 2.6.
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Figure 2.1 demonstrates that there is a non-empty belief interval in which the ex-

pert prefers learning, while the principal would derive a higher utility by taking an

action immediately. In this region (from p′ until p′′), the principal’s utility given the

experts optimal learning (red line) is lower than the principal’s utility from an im-

mediate action (black line). It follows immediately that if the prior belief about the

state falls within this region, the principal would always favour flexible to complete

delegation.

It is less immediate that the principal does not always want to retain the right to

intervene. In particular, as seen in Figure 2.1 there is a belief interval (from p′′ until p′′′

) in which the principal’s utility when the expert learns optimally under flexible delega-

tion (red line) is higher than the utility the principal derives from complete delegation

(black line). Hence, in this region, the principal is better off relinquishing her decision

making rights. This region arises because flexible delegation cannot prevent the expert

from learning from the sub-optimal source. In fact, flexible delegation may make ex-

pert’s choice of information sources even more sub-optimal for the principal than it is

under complete delegation. Knowing that under flexible delegation, the principal will

want to terminate expert’s learning prematurely, the expert may choose information

sources in a way that delays or even avoids termination of learning by the principal.

As delay is costly to the principal, under certain conditions, the principal is better off

allowing the expert to learn freely.

The main contribution of our paper is to establish that paradoxically, flexible del-

egation may be sub-optimal for the principal and to characterize the conditions under

which complete delegation is optimal. To this end, we guess and verify the equilibrium

strategies of both players under complete and under flexible delegation and then show

that, given these equilibrium strategies, there exist regions in which complete delega-

tion is optimal for the principal.

The rest of the paper is organized as follows. In Section 2.2 we discuss the related

literature and situate our paper therein. Section 2.3 describes the setup. Section 2.4

outlines the main result of the paper and provides a road map for its proof. Section

2.6 describes the principal’s first-best learning strategy. Section 2.6 characterizes the

equilibrium under complete delegation. Section 2.7 fully characterizes the equilibrium

under flexible delegation. Section 2.8 extends the discussion of our main result. Section

2.9 concludes the paper.
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2.2 Literature Review

Our paper is directly related to the literature on optimal dynamic learning and to

various strands of the delegation literature.

Optimal dynamic learning

The literature on optimal dynamic learning, pioneered by Wald (1947), has at-

tracted a lot of attention recently from economic theorists. Optimal information ac-

quisition in continuous time has been studied comprehensively by Zhong (2022). In

their paper, the decision maker (DM) is allowed to choose any dynamic signal process

in order to learn about the state and act accordingly, subject to a informativeness cost.

They show that the DM will choose a Poisson signal process. We assume from the

outset that the expert has access to two exogenous Poisson information processes and

optimally chooses between them.

An alternative approach to modelling optimal learning is taken in Ke and Villas-

Boas (2017), in which a DM is deciding among many alternatives and can purchase

informative signals for each of those. In our paper, the principal has to choose between

two alternatives actions and the validity of each action can be confirmed by an infor-

mation source.

Our paper builds on the sequential decision problem of Che and Mierendorff (2019)

with two sources generating information about two mutually exclusive states of the

world. Our contribution is to embed the decision problem from Che and Mierendorff

(2019) into a game with two players, splitting control of learning and final decision

between two players, the principal and the expert.

Mayskaya (2020) characterizes the unique optimal learning strategy in a decision

problem with two information sources, as in Che and Mierendorff (2019), but with

one additional unfindable state.2 She finds that the optimal learning strategy has two

phases. In the first phase, the decision maker optimally learns from the source that

could confirm a more plausible state of the world; in the second phase, the decision

2Nikandrova and Pancs (2018) also study a decision problem, but with four states.
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maker focuses on learning about the least likely (findable) state of the world. The

decision problem of Che and Mierendorff (2019) also features such phases and a lot of

our analysis focuses on examining the consequences of the misalignment of principal

and expert’s learning phases.

Our paper is also related to Brocas and Carrillo (2007) who analyse a game in which

a leader collects information about a binary world and a follower can then use this in-

formation to take actions that impact both agents. The paper describes the leader’s

stopping rule and his equilibrium information rents. In our paper, the principal may

decide when to terminate the expert’s learning, but we ask a normative question of

whether such interference is optimal for the principal.

Delegation of decision making

The literature on delegation of decision making authority mostly focuses on agents

who are more informed than the principal. In such cases, the principal faces a chal-

lenge of inducing the biased agent to act in the principal’s interest. Thus, Alonso and

Matouschek (2008) consider a model in which the principal offers a menu of decisions

that an informed agent can make. The authors derive the conditions under which an

interval allocation of decisions is optimal for the principal. In our model, the principal

faces a challenge of inducing the biased expert to learn in a way the principal would

want to learn.

In another strand of the literature, the principal would like to elicit truthful in-

formation from the biased agent. Thus, Dessein (2002) find that due to the cost of

communication, the principal finds it optimal to delegate decision making authority

to the agent when the agent’s bias is small enough. Although for different reasons,

this resembles our main finding that the principal wants to relinquish her ability to

intervene. In contrast, in a cheap talk setting, Argenziano, Severinov, and Squintani

(2016) compare implications of delegating versus communicating of learning between

a biased expert and a principal. They find that for low bias levels, communication

is preferable to delegation of learning and decision making to the expert, both when

the expert’s learning is observed and unobserved. The intuition for the latter is that

as the expert cannot credibly communicate the amount of learning deviations from

12



equilibrium path can be costly for the expert.3 Our paper contributes to the litera-

ture on delegation by considering a different dimension. Rather than trying to elicit

agent’s private information, we consider a set up with common knowledge but where

the agent alone has access to a learning technology. We ask the question whether in

the absence of money transfers and long-term contracting, the principal would want to

fully delegate the decision making authority to a biased expert.

Delegation of learning

A central theme within the literature of delegation of learning is that of observ-

ability. Much of the literature focuses on unobservable learning by a biased agent who

discloses their findings to the principal. In this literature the issues of truth revela-

tion and optimal learning are key. For example, Escobar and Zhang (2021), study a

dynamic delegation model in which an agent learns privately about the profitability

of an investment opportunity. They characterise the optimal truth-revealing contract,

and find that it may require the principal to delay action, in order for the agent to

be allowed to learn freely. On the other hand, Herresthal (2022) is interested in the

trade-off between observable and unobservable learning. They consider a framework

in which a DM delegates learning via sequential experimentation about the safety of a

product to an agent with lower safety standards than her, meaning that the agent is

willing to retain the product at a lower certainty threshold. They show that both the

agent and the DM can be strictly better off if testing is privately known by the agent as

opposed to publicly known if their difference in safety standards is above some thresh-

old. The intuition behind this result is that when learning is observable the agent can

learn strategically, i.e. stop or continue experimenting based on the DM’s posterior.

Conversely, when learning is private and the agent can withhold outcomes, the burden

of proof is stronger and so more evidence gathering is required to convince the DM.

In our model, the principal observes, but cannot directly control the allocation of the

expert’s learning effort. Therefore we are not focusing on the revelation of learning

outcomes, rather we are focused on learning that is observable and in situations in

which both the principal and the agent can take decisions.

Garfagnini (2011) consider an experimentation game between a principal and bi-

ased agent. Differently from our set up, they analyse an exponential bandit model with

3Deimen and Szalay (2015) also compare delegation of decision-rights and communication in a
sender-receiver game with endogenous information.
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a risky and a safe arm, similar to Keller, Rady, and Cripps (2005). In their setting the

principal decides which actions is taken at every interval while the agent controls the

rate of learning. The agent is biased toward the risky action being taken, and so she

has an incentive to delay information so that the bad news do not arrive. Interestingly

this effect dissipates when effort is unobservable.

Guo (2016) characterises the optimal contract when a principal delegates experi-

mentation, modelled as a two-armed bandit with a Poisson arm of unknown intensity,

to a biased, privately informed agent. The optimal contract allows the expert to ex-

periment fully as long as the principal’s belief remains above a threshold.

2.3 Model

We consider a game between two players, a principal (she) and an expert (he).

Time is continuous and indexed by t ≥ 0. The time horizon is infinite. Both players

discount future exponentially at rate r > 0.

Problem The players are interested in taking the decision that is optimal for the un-

known state of the world. There are two states of the world, ω ∈ {A,B} and two

decisions x ∈ {a, b} .

Delegation The expert, but not the principal has, access to an information technol-

ogy that enables learning about ω. At any time t > 0, the principal delegates learning

as well as decision making to the expert thereby giving the expert authority to learn

about ω and to take final decision x ∈ {a, b} . The principal observes but cannot di-

rectly affect (through contingent payments or coercion) learning and the final decision

taken by the expert.

We distinguish two types of delegation: complete delegation and flexible delegation.

Under complete delegation, the principal surrenders completely the authority to make

decisions to the expert. Under flexible delegation, at each time, t, while the expert has

not taken action x yet, the principal retains the right to override the expert and take

decision y ∈ {a, b} herself.

Learning At each time t, when he is given the authority to learn, the expert allocates

a unit of learning intensity between two information sources, A and B. Thus, if the
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expert devotes a fraction α ∈ [0, 1] of his learning intensity to source A, then the learn-

ing intensity devoted to source B is 1 − α. Information source A reveals conclusively

state A; that is, when the expert learns from A with intensity α, source A generates a

signal with a Poisson arrival rate α if ω = A and no signal if ω = B. Symmetrically,

information source B reveals conclusively state B; that is, when the expert learns from

B with intensity 1 − α, source B generates a Poisson signal with arrival rate (1− α)

if ω = B and no signal otherwise. The learning process of the expert is denoted by

(αt)t∈R+
.

At t = 0, the principal and the expert share a common prior belief p0 that the

state is A. Subsequently, the principal observes (αt)t∈R+
as well as learning outcomes.

Hence, the belief that the state is A remains common throughout the game. Let pt

denote the belief at time t. By Bayes’ rule, as long as the expert’s learning generates

no signal, pt evolves according to4

ṗt = − (2αt − 1) pt (1− pt) . (2.1)

Payoffs Let uω
x and vωx denote the utility of the principal and the expert respectively,

conditional on decision x and state ω. The states are labeled so that both the principal

and the expert strictly prefer taking the decision that matches the state, that is, uA
a >

max
{
0, uA

b

}
, uB

b > max
{
0, uB

a

}
, vAa > max

{
0, vAb

}
and vBb > max

{
0, vBa

}
. Moreover,

independently of the state, the expert prefers decision a relative to the principal and

the principal prefers decision b relative to the expert. In particular, for ∆ ≥ 0, the

payoff profiles (uω
x , v

ω
x ) are

P,E A B

a ρ, ρ+∆ −ρ, ∆− ρ

b ∆− ρ, −ρ ρ+∆, ρ

where ρ > ∆ ≥ 0. It is without loss to take ρ = 1 and so the paper proceeds thus.

Throughout the paper, we assume that the principal’s and expert’s preferences are

not too misaligned.

Restriction 2.1. ∆ ≤ max
{
∆̄ (r) , 1

}
, where ∆̄ (r) =

√
36r2+28r+1−6r−1

4r
> 0

This restriction ensures that the principal finds it worthwhile to delegate learning to

4See Appendix 2.A.1 for derivation.
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the expert. 5

Given belief p, let

Ux (p) ≡ puA
x + (1− p)uB

x and Vx (p) ≡ pvAx + (1− p) vBx (2.2)

denote the expected payoff of the principal and the expert, respectively, from taking

decision x immediately.

Timing Over an infinitesimal time interval of length h > 0, a heuristic timeline of the

stage game between the principal and the expert is:

1. The expert decides whether to take the final decision x ∈ {a, b} ;

2. If the expert does not take the final decision, he chooses learning intensity αt;

3. Having observed αt, the principal decides whether to take the final decision y ∈
{a, b} ;

4. If the principal has not taken the final decision, the learning outcomes are publicly

observed and belief pt is updated according to Bayes rule.

Equilibrium Concept We focus our attention to Markov perfect equilibria. A

Markov strategy for the expert is a tuple (α,X) , where learning strategy α : [0, 1] →
[0, 1] maps a belief p into learning intensity α (p) ∈ [0, 1], while decision strategy

X : [0, 1] → {a, b, ∅} maps p onto the final decision X (p) ∈ {a, b, ∅}.6 A Markov

strategy for the principal Y : [0, 1]2 → {a, b, ∅} maps a belief p and expert’s learning

intensity α onto the decision Y ∈ {a, b, ∅} .

A strategy profile σ =
((

α,X
)
, Y
)
induces a Markov learning policy

(
αt, Xt, Yt

)
=(

α
(
pt
)
, X
(
pt
)
, Y
(
pt, α

(
pt
)))

, the belief process {pσt | t ≥ 0} and the stopping time τ

that designates when all learning stops and a final decision is taken. The stopping time

τ is the minimum of stopping times τP and τE, where τP designates when the prin-

cipal takes the final decision and τE designates when the expert takes the final decision.

5The genesis of this restriction is discussed in more detail in Section 2.6. The restriction is somewhat
stronger than assuming that when the expert optimally stops learning, he and the principal agree on
the optimal action. This stronger restriction is helpful for the full characterization of the equilibrium
as can be seen in 2.A.15.

6X (p) = ∅ indicates that the expert does not take a final decision at p.
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A strategy profile σ and an initial belief p0 induce expert’s expected discounted

payoff:

I (p, σ) ≡ E
[
I
{
τ = τE

}
e−rτ max {Va (p

σ
τ ) , Vb (p

σ
τ )}

+I
{
τ = τP

}
e−rτVYτ (p

σ
τ ) | pσ (0) = p

]
, (2.3)

where I {·} is an indicator function and the expectation is with respect to the induced

belief process {pσt | t ≥ 0}. Similarly, a strategy profile σ and an initial belief p induce

principal’s expected discounted payoff:

J (p, σ) ≡ E
[
I
{
τ = τE

}
e−rτUXτ (p

σ
τ ) ,

+I
{
τ = τP

}
e−rτ max {Ua (p

σ
τ ) , Ub (p

σ
τ )} | pσ0 = p

]
. (2.4)

An equilibrium strategy profile σ∗ = ((α∗, X∗) , Y ∗) for all p satisfies

V (p) ≡ sup
(α,X)

I (p, ((α,X) , Y ∗)) (2.5)

and

U (p) ≡ sup
Y

J (p, ((α∗, X∗) , Y )) , (2.6)

where the maximization is over all admissible Markov strategies, U (p) is the principal’s

value function and V (p) is the expert’s value function.

2.4 Main Result

Theorem 2.1 states the main result of the paper.

Theorem 2.1. Fix r ≤ r̄ (0) . There exists a threshold ∆(r) such that

• for ∆ ≤ ∆(r) , the principal is better off under complete delegation than under

flexible delegation for some p;

• for ∆ > ∆(r) , principal is better off under flexible delegation for any p.

Proof. See Appendix 2.A.24.

To build up to proving the main result, we first briefly discuss the first best learning

strategy that the principal would pursue if she had access to expert’s learning tech-

nology. We then contrast principal’s first best learning strategy to expert’s first-best
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learning strategy. Expert’s first best learning strategy plays a dual role in the analysis.

First, it constitutes equilibrium learning strategy under complete delegation when the

expert is learning and acting optimally in order to maximise his utility. Second, ex-

pert’s learning strategy is a stepping stone towards deriving the equilibrium strategies

under flexible delegation, where the principal retains the right to intervene and take

an action while the expert is still learning. Once the equilibrium learning strategies

under complete and under flexible delegation are characterised, we prove Theorem 2.1

by directly comparing the principal’s payoff under complete and flexible delegation.

Throughout the paper, quantities without any superscript correspond to flexible

delegation, superscript E indicates quantities under complete delegation and super-

script P indicates principal’s first best learning when the principal has access to the

same learning technology as the expert.

2.5 First-Best Benchmark

From the perspective of the principal, the first-best outcome obtains when the

principal has access to the same learning technology as the expert. In this case, the

principal must solve a decision problem. The solution to this decision problem is char-

acterised in Che and Mierendorff (2019). To keep the analysis self-contained, in this

section, we describe (but do not prove) the solution to the principal’s problem.

The principal, having access to the learning technology, chooses a learning strategy

(αt) as well as a stopping time τ , at which point she takes action a or b in order to

maximize her discounted expected utility. Abusing the notation somewhat, her action

space remains Y = {a, b, ∅}. She is therefore facing the following maximization problem

UP (p) ≡ max
α,τ

E
[
e−rτ max {Ua (p

α
τ ) , Ub (p

α
τ )} | pα0 = p

]
, (2.7)

subject to belief updating equation (2.1) and given the boundary condition

UP (p) = Ua (p) ∨ Ub (p) . (2.8)
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p̄∗P ︸ ︷︷ ︸
decision a

|
p=1

Figure 2.2: Contradictory learning strategy

The Hamilton-Jacobi-Bellman (HJB) equation associated with the problem is

rUP (p) = max
α

{
αp
(
uA
a − UP (p)

)
+ (1− α) (1− p)

(
uB
b − UP (p)

)
− (2α− 1) p (1− p)UP ′(p)

}
(2.9)

The HJB equation (2.9) is linear in α and therefore has a bang-bang solution, i.e.

it is maximised at either α = 0 or α = 1, wherever UP (p) is differentiable.

To characterize the principal’s first-best value function consider the payoffs derived

by four distinct learning policies. The first is the learning policy splits attention be-

tween the sources equally and the principal takes no decision until a signal arrives. One

can immediately observe that ṗ = 0 when α = 1/2, hence, conditionally on no signal

arriving, posterior beliefs remain unchanged at pt = p0,∀t. Hence, under this policy

the principal’s payoff would equal the discounted expected payoff of taking the decision

that matches the state. We denote principal’s payoff from this policy by U∗(p). 7

Next, let UP
A (p) denote the principal’s payoff when she is focusing all her attention

on source A, and makes decision Y = b when the utility of immediate decision Y = b

exceeds that of learning from source A, conditional on no signal arriving. While the

principal learns from source A and sets α = 1, according to belief updating equation

(2.1), in the absence of the signal, she becomes progressively more pessimistic that the

state is A, which makes decision Y = b more attractive. Similarly, let UP
B (p) denote

payoff from learning from source B only, i.e. α = 0, and taking decision a optimally

in the absence of a signal. When principal learns from source B and signal does not

arrive, she becomes progressively more pessimistic that the state is B, which makes

decision Y = a more attractive.8

We call contradictory learning the upper envelope of the payoff derived from learn-

ing from either only source A or only source B until it is optimal to stop. That is,

7For analytical derivation see Appendix 2.A.2
8For analytical derivations of these functions see Appendix 2.A.4
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Figure 2.3: Confirmatory learning strategy

principal’s payoff from contradictory learning strategy is

UP
ct (p) = max

{
UP
A (p), U

P
B (p)

}
.

The term contradictory learning was coined by Che and Mierendorff (2019). Such

learning dictates that full attention is devoted to the source that generates evidence

against the currently preferred action. That is, the principal learns from source B if

state A is relatively likely, and from source A if state B is relatively likely. In the

absence of a signal, the principal’s belief drifts in the direction which strengthens the

original belief until the immediate decision becomes optimal. Figure 2.2 depicts belief

updating under contradictory learning.

Finally, let confirmatory learning refer to a learning strategy that aims to confirm

the state that the principal currently prefers for immediate action. Formally, there is

an optimally chosen threshold belief p∗P such that for p < p∗P , confirmatory learning

focuses attention wholly on source B, i.e., α = 0. Note that in this case, Bayesian

updating dictates that in the absence of a signal, posterior beliefs would become pro-

gressively more pessimistic that the state is B. Symmetrically, for beliefs p > p∗P , the

confirmatory learning policy dictates learning from source A, i.e., α = 1. Let UP
cf (p)

denote principal’s payoff from confirmatory learning.9

Figure 2.3 demonstrates that under confirmatory learning, starting from any belief

p ̸= p∗P , conditional on no signal arriving, the posterior belief would tend towards

the absorbing belief p∗P . At belief p∗P , the confirmatory learning policy dictates that

attention is split between source B and A equally, i.e. α = 1/2. It follows that at p∗P ,

the payoff from the confirmatory learning strategy is UP
cf (p

∗) = U∗P (p∗P ), because no

learning takes place, beliefs remain unchanged and the principal acts only after the

arrival of a signal.

Che and Mierendorff (2019) prove that the upper envelope of the confirmatory and

9For analytical derivation see Appendix 2.A.7
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Figure 2.4: Combination of contradictory and confirmatory learning

contradictory learning strategies described above, in conjunction with the boundary

condition 2.8, constitute a uniquely optimal strategy for the decision maker. Depending

on the discount rate r, which acts as the implicit cost of learning, the optimal strategy

is one of three types.

• If r is higher than threshold r̄P (∆), immediate decision is optimal for any p.

• For intermediate values of r, that is, r̄P (∆) > r ≥ rP (∆), the optimal strategy

involves contradictory learning depicted in Figure 2.2.

• For low values of r, that is, r < rP (∆), both contradictory and confirmatory

learning occur as depicted in Figure 2.4.

Intuitively, the higher r the lower the value of learning, because learning delays

the payoff from final decision x ∈ {a, b}. When the cost of delay is sufficiently high,

that is, r is higher than r̄P (∆), no learning at all is optimal and the principal acts

on her prior belief. The threshold r̄P (∆) is the smallest discount rate r such that the

principal prefers choosing the action immediately to learning for δ → 0 units of time

and only then choosing the optimal action:10

r ≥ 4−∆2

2∆
≡ r̄P (∆) .

Note that

lim
∆→0+

r̄P (∆) =∞

That is, for very small bias ∆ the principal prefers some learning.

Confirmatory learning can be optimal only if the cost of delay is sufficiently low. On

the one hand, confirmatory evidence arrives at higher expected rate than contradictory

evidence. On the other hand, the arrival of confirmatory evidence does not change the

decision maker’s optimal decision and so acquiring confirmatory evidence for a short

10For derivation, see Appendix 2.A.8
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amount of time only causes unnecessary delay. However, prolonged period of learning

without any confirmatory evidence arriving causes the decision maker to update beliefs

sufficiently to potentially sway the optimal decision. Hence, confirmatory learning is

optimal only when the decision maker plans for prolonged learning, that is, when the

cost of delay is sufficiently low. The highest discount rate under which confirmatory

learning is optimal, rP (∆), ensures that at p∗P , the principal prefers making the right

decision after potentially long delay to shorter contradictory learning which neverthe-

less may lead to a wrong decision.11 Formally, the threshold value rP (∆) is the value

of r that makes the below condition hold with equality:(
r

r + 2−∆(r + 1)

)r

≥ 1

2r + 1

The inequality above can be re-arranges to obtain the highest level of ∆, as a function

of r, for which the optimal strategy includes a confirmatory and contradictory part:

∆ =
−r(2r + 1)

1
r + r + 2

r + 1
. (2.10)

2.6 Complete Delegation

It is straightforward to see that under complete delegation the expert will pursue

his first-best learning strategy. Indeed, since the principal cannot intervene, the expert

has no reason to pursue a learning strategy different from the one he would pursue if

he was facing an individual decision making problem.

Thus, with regards to the expert’s value function and optimal strategy, the analysis

is similar to the principal’s first-best described in the previous section, but adjusted

for the expert’s payoffs.

In what follows, superscript E denotes the complete delegation case. In addition,

to denote various threshold beliefs we use the same notation as before, but substitute

superscript P with E. For example, p∗E, denotes the belief threshold below which the

expert takes immediate action and above which he pursues a learning strategy with

α = 1.

11For derivation see Appendix 2.A.9
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Lemma 2.1 demonstrates that for a given ∆ and r, the optimal learning strategy of

the principal is of the same type as the optimal learning strategy of the expert. That

is, one of the three cases obtain:

Case 1 Both the expert and the principal prefer the immediate decision for any p.

Case 2 Both the expert and the principal would like to follow contradictory learning

strategy for p sufficiently far away from the extreme values of 0 and 1.

Case 3 Both the expert and the principal would like to have regions of both contradictory

and confirmatory learning.

Lemma 2.1. For any ∆, r̄E (∆) = r̄P (∆) ≡ r̄ (∆) and rE (∆) = rP (∆) ≡ r (∆).

Proof. The result follows from the symmetry of the payoff matrix. In particular, note

that the payoffs for the expert and the principal are diametrically opposite. By this

we mean that uω
x = vω

−

x− , where the negative superscript denotes the alternative state

or action. To put it in another way, the payoffs of the principal are identical to those

of the expert if one relabels the payoffs of matching state A as those of matching state

B and those of mismatching state is A with those of mismatching state B. Lemma

2.1 is therefore equivalent to stating that the labeling of each state does not bear any

relevance to the type of the optimal learning strategy, which is self-evident. Simple

algebra confirms this to be the case.

Even though the principal and the expert agree on the type of learning strategy

to pursue, due to bias ∆, at a particular belief p, they may disagree on the source of

information from which to learn or whether to learn at all. In particular, because the

expert prefers decision a relative to the principal irrespective of the state, the expert’s

learning region is shifted to the left relative to the principal’s first-best learning region

(Lemma 2.2 demonstrates). Thus, for example, the expert takes immediate decision a

or b at lower p than the principal would have liked. Similarly, for the expert all the

switches of learning from one source to another are shifted to the left relative to the

principal.

Lemma 2.2. For any ∆ > 0, the expert’s learning region is shifted to the left rela-

tive to the principal’s learning region. Specifically, p∗E < p∗P , p̄∗E < p̄∗P and p∗E < p∗P .

Proof. See Appendix 2.A.11.
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Recall that we impose Restriction 2.1, which can equivalently be expressed as a

restriction on r for a given ∆, r < r̄ (∆).12 This restriction ensures that if the expert

find’s it optimal to learn forever, then the principal also prefers learning to her outside

option, i.e. this restriction ensures that UE
cf

(
p∗E
)
> Ub

(
p∗E
)
. Furthermore, Restric-

tion 2.1 has the direct implication that when the expert stops learning under complete

delegation, the principal and the expert agree on the optimal decision and thus the

principal derives some value from the expert’s learning.13

Assuming that Restriction 2.1 holds, Figures 2.5 and 2.6 compare the principal’s

value under complete delegation to principal’s value in the first-best world where the

principal has access to the same learning technology as the expert. As a result of

disagreement on the optimal learning strategy at a given p, the principal’s expected

payoff when the expert undertakes learning on his behalf falls short of his first-best

expected payoff. Furthermore, the principal’s value function under expert’s optimal

learning is discontinuous at a belief whenever the belief process is certain to move away

from that belief. The beliefs with discontinuities are boundaries of the regions where

the type of learning switches, but because the belief process moves away from those

beliefs, the value matching does not hold.

Whenever r < r̄ (∆), for some not-too-low p, the delegation of learning allows the

principal obtain higher payoff than the payoff he obtains from the immediate deci-

sion. However, for sufficiently low p the principal prefers an immediate decision to any

learning, while the expert finds it optimal to continue learning. Hence, for low p the

principal would prefer to take over the final decision making from the expert.

2.7 Flexible Delegation

In this section, we derive equilibrium strategies under flexible delegation.

Under flexible delegation, any principal’s intervention is necessarily one-sided. For

low p, the principal stops contradictory learning from source A at higher p than the

expert would have liked. For high p, the principal would also like to learn from source

B for higher p than the expert does. The principal, however, cannot do anything about

it as she cannot coerce the expert to learn for longer than the expert finds optimal.

12For derivation see Appendix 2.A.12.
13See Appendix 2.A.13
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(a) Learning strategy. The optimal learning
strategy from the perspective of the princi-
pal (dashed line) and the expert (solid line).
When the player finds it optimal not to
learn, α is set to be equal to belief p.
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(b) The value function. The red dashed line is
the value the principal would obtain if he
had access to expert’s leaning technology;
the blue solid line is the value the princi-
pal obtains when he delegates learning and
all decision making rights to the expert;
the black dotted line is the principal’s value
from immediate decision.

Figure 2.5: The optimal policy’s prescription for each belief in Case 2.
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learn, α is set to be equal to belief p.
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the black dotted line is the principal’s value
from immediate decision.

Figure 2.6: The optimal policy’s prescription for each belief in Case 3.
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Armed with this observation, we derive equilibrium learning policy using ”guess and

verify” approach. Thus, in Section 2.7.4 we guess the equilibrium learning strategy and

compute the value functions that this strategy delivers. In Appendix 2.A.23 we show

that the HJB equations for both the expert and the principal hold at all points of

differentiability of the candidate value functions.14

2.7.1 Optimality Conditions

Given strategy of the principal σp, the expert solves an optimal control free-boundary

problem. By the dynamic programming principle (DPP), the expert’s value today

equals the expert’s expected discounted continuation value at an arbitrary future stop-

ping time plus the expected discounted payoffs accruing until that time. The interven-

ing flow payoffs and the eventual continuation value depend on the intervening learning

policy, chosen to maximize expert’s value today. The DPP implies that wherever V is

differentiable, V can be characterized through the HJB equation:

rV (p) ⩾ max
α

{
I {Y (p, α) = ∅}

(
pα
(
vAa − V (p)

))
+ (1− p) (1− α)

(
vBb − V (p)

)
− (2α− 1) p (1− p)V ′ (p) + I {Y (p, α) = a}Va (p)

+ I {Y (p, α) = b}Vb (p)

}
, p ∈ (0, 1) (2.11)

subject to the boundary condition15

V (p) = Va (p) ∨ Vb (p) . (2.12)

The expert’s continuation payoff depends on the principal’s strategy through the

principal’s ability to terminate learning. The boundary condition ensures that the ex-

pert’s value function is at least as high as the value that he can obtain from immediate

decision x ∈ {a, b}.

14The value functions, however, have points of non-differentiability and so further technical work
has to be undertaken to verify that the derived value functions are indeed solutions to the principal
and expert’s problems. Since we derive the value functions from the conjectured policies, we remain
confident that the points of non-differentiability do not invalidate our solution.

15Operator ∨ is the binary max operator.
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Given strategy of the expert σE, the principal faces a stopping problem with value

that satisfies the HJB equation

rU (p) ≥ pα (p)
(
uA
a − U (p)

)
+ (1− p) (1− α (p))

(
uB
b − U (p)

)
− (2α (p)− 1) p (1− p)U ′ (p) ,

(2.13)

subject to the boundary condition

U (p) = Ua (p) ∨ Ub (p) . (2.14)

In a Markov equilibrium, (2.13) and (2.11) are satisfied simultaneously for all

p ∈ [0, 1]. Intuitively, in equilibrium, the expert pursues a learning strategy that

maximizes his utility subject to preferring learning to immediate action, as well as the

principal not terminating learning. Thus, to solve for an equilibrium, we need to find

V that satisfies (2.11) subject to (2.12) as well as an additional constraint

U (p) ≥ Ua (p) ∨ Ub (p) . (2.15)

Constraint (2.15) ensures that on the learning continuation region, the principal’s value

is at least as high as her value from taking decision y ∈ {a, b} immediately. That is,

since the principal can only stop learning and take immediate action, she will find it

optimal to do so, if the value she derives given the expert’s optimal learning strategy

is less than that of taking any immediate action. If that is not the case, she cannot

but allow the expert to continue learning.

2.7.2 Candidate payoff functions

Similarly to the discussion in Section 2.5, it will be useful to start by describ-

ing some specific learning policies. These learning polices will constitute part of the

guessed equilibrium. In particular, let VA (p) and UA (p) denote the payoff functions

in which α = 1 if p ≥ max
{
p|V E

A (p) = Vb (p)
⋃
UP
A (p) = Ub (p)

}
and immediate ac-

tion b is taken by the principal alternatively. Lemma 2.2 implies that the principal’s

boundary constraint will bind first, i.e. at higher beliefs, and as a result, this policy

will always be terminated by the principal. Moreover, let VB (p) and UB (p) denote the

payoffs when α = 0 if p ≤ min
{
p|V E

B (p) = Va (p)
⋃
UP
B (p) = Ua (p)

}
and immediate

action a is taken by the expert alternatively. In this case the reverse will hold and the

expert will be willing to take immediate action at a lower belief than the principal.

27



Further, we denote by Vcf (p) and Ucf (p), the payoffs derived when a learning policy

that is identical to UE
cf (p) is pursued, i.e. to the confirmatory learning strategy that

the expert pursues under complete delegation.

The final payoff function that will be relevant for deriving the optimal value func-

tions of the game is the payoff derived by the expert, while making the principal

indifferent between taking decision b immediately and allowing the expert to continue

learning. In particular, the principal wants to cease learning sooner than the expert

when they are sufficiently sure that the state is B, i.e., when p is sufficiently close to

0. Hence, for some region of beliefs p ∈ [p′, p′′], the expert may want to persuade the

principal to delay intervening as much as possible by mixing learning from information

sources A and B so as to keep principal indifferent; that is, the expert chooses α to

ensure that the utility derived by the principal along this interval of beliefs is

U (p) = Ub (p) = puA
b + (1− p)uB

b ,

with

U ′ (p) = uA
b − uB

b

and satisfies the HJB equation

rU (p) = pα (p)
(
uA
a − U (p)

)
+ (1− p) (1− α (p))

(
uB
b − U (p)

)
− (2α (p)− 1) p (1− p)U ′ (p) . (2.16)

Given the linearity of U (p) , there exits a unique α that satisfies (2.16) and it is given

by

α∗ (p) =
r (1 + ∆− 2p)

p (2−∆)
.

At p′, the expert sets α = 0 and the principal is indifferent; at p′′, the expert sets

α = 1 and the principal is indifferent. In between p′ and p′′, as the expert learns,

belief p drifts down and over time the expert progressively puts more and more weight

on source A; that is, chooses higher α. To see the last assertion formally, take the

derivative of α∗(p) with respect to p

α∗′(p) =
r (∆ + 1)

p2 (∆− 2)

Our assumption that ρ > ∆ implies that the above is always negative, while the second
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derivative is always positive. Furthermore, there is a discontinuous jump upwards in

α∗ (p) at the belief where the principal terminates B-learning.

We call the unique learning policy α∗ (p) indifference learning because its objective

is to make the principal indifferent between intervening and not intervening. We denote

the expert’s payoff from this learning policy Vind(p).

2.7.3 Preliminary observations

This section develops some preliminary observations which help both in forming a

guess for the flexible delegation equilibrium as well as in providing some intuition for

our main result.

Lemma 2.3 shows that as the expert’s bias decreases, the the r thresholds that

separate the different learning strategies decrease. The lemma suggests that for the

regions that learning takes place, ∆ and r have a monotonic relation.

Lemma 2.3. The threshold values of r, r̄ (∆) and r (∆) , are decreasing in ∆.

Proof. See Appendix 2.A.14

Lemma 2.4. Under complete delegation, for r < r(∆) and every p ∈ [p∗E, p̄E)

UE
cf (p) ≥ max {Ua (p) , Ub (p)} .

Proof. See Appendix 2.A.15.

Lemma 2.4 states that the principal will not want to terminate confirmatory learn-

ing by the expert at beliefs p > p∗E. This is an important result as it suggests that

under flexible delegation, the principal would be worse off by intervening if the expert

pursues his first best for p > p∗E when r < r(∆). Further this lemma simplifies our

analysis as if the principal did terminate confirmatory learning to the right of p∗E, the

learning ceases to be confirmatory learning since beliefs no longer can converge to the

absorbing state, as the absorbing state is outside of the learning region and the value

of such learning goes down, which may make learning from the alternative source more

attractive.

Lemma 2.5. p̌E ⩽ p∗E
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Proof. See Appendix 2.A.16.

Lemma 2.5 is a direct consequence of the game’s payoff structure and helpful to-

wards establishing Lemma 2.6, which states for r ∈ [r (∆) , r (∆)] that the expert

derives higher utility from learning from source B and taking immediate action a at

p̄∗E than from pursuing the confirmatory strategy. This simplifies our analysis greatly,

as it suggests that within this r region, the expert would never pursue the confirmatory

learning policy.

Lemma 2.6. If r (∆) < r (∆) < r (∆) then V E
B (p) ⩾ V E

cf (p) for all p.

Proof. See Appendix 2.A.17.

Lemma 2.7. If r < r(∆),V E
B (p) < V E

cf (p) for all p < pEand V E
B (p) > V E

cf (p) for all

p > pE.

Proof. See Appendix 2.A.18.

Lemma 2.7 shows that when contradictory and confirmatory learning are both

optimal under complete delegation, V E
cf (p) > V E

B (p) for p < pE. Combined with

Lemma 2.4 this implies that the expert will both be willing and allowed to pursue

confirmatory learning under flexible delegation as he does under complete delegation.

Lemma 2.8. UE
B (p) intersects Ua(p) from above, is strictly convex and

UE
B (p) > max{Ua(p), Ub(p)} for p ∈ [p̌E, p∗E).

Proof. See Appendix 2.A.19.

Lastly, Lemma 2.8 is pivotal in establishing that the principal is better off when

the expert pursues the latter’s optimal contradictory strategy, than taking her outside

option for p > p∗E. Combined with the previous lemmas, this means that for p > p∗E

the expert can pursue his first-best knowing that the principal would not intervene.

2.7.4 Equilibrium under Flexible Delegation

In this section we provide a description of the equilibrium under flexible delegation,

a sketch of the proof as well as the main insights of equilibrium. A detailed proof of

the equilibrium characterisation can be found in Appendix 2.A.23.
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Firstly, Corollary 2.1 shows that for different combinations of r and ∆ the optimal

learning strategy may be either contradictory only or contradictory and confirmatory.

Further, Lemma 2.9 establishes the regions in which the expert is better off by using

a policy that keeps the principal indifferent between Y = b and Y = ∅. Given these

results, the equilibrium we proceed by guessing the equilibrium of flexible delegation.

To confirm that this policy constitutes an equilibrium, one needs to show that for

each of these cases the below both the HJB’s for the principal and the expert are

satisfied. That is, one needs to show that:

max

{
max

α
HE(α)− rV (p), V E(p)− V (p)

}
= 0 (2.17)

max

{
HP (α∗)− rU(p), UP (p)− U(p)

}
= 0 (2.18)

with

HE(α) ≡ pα(vAa − V (p)) + (1− p)(1− α)(vBb − V (p))− (2α− 1)p(1− p)V ′(p)

and

HP (α) ≡ pα∗(uA
a − U(p)) + (1− p)(1− α∗)(uB

b − U(p))− (2α∗ − 1)p(1− p)U ′(p)

Therefore, to characterise the equilibrium we guess a policy and ensure that the

above conditions hold.16 The extended verification of the below equilibrium can be

found in Appendix 2.A.23.

The equilibrium of the game is as follows:

• If r̄ (∆) < r (∆) then the principal’s boundary condition 2.8 binds and y =

16We check the optimality of the conjectured learning policy at all points of differentiability of the
expert and the principal’s value functions. However, under flexible delegation the value functions have
points of non-differentiability and so further work has to be done to verify that the derived value is a
viscosity solution.
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argmax Ux (p) .

• If r̄ (∆) > r (∆) > r (∆) and VA

(
p∗P
)
≥ VB

(
p∗P
)



y = b for p ∈
[
0, p∗P

]
y = ∅, α = 1 for p ∈

(
p∗P , p̌E

)
y = ∅, α = 0 for p ∈

(
p̌E, p∗E

)
x = a for p ∈

[
p∗E, 1

]
• If r̄ (∆) > r (∆) > r (∆) and VA

(
p∗P
)
< VB

(
p∗P
)



y = b for p ∈
[
0, p∗P

]
y = ∅, α = α∗ (p) for p ∈

(
p∗P , p̂

)
y = ∅, α = 1 for p ∈

[
p̂, p̌E

)
y = ∅, α = 0 for p ∈

(
p̌E, p∗E

)
x = a for p ∈

[
p∗E, 1

]
• If r (∆) < r (∆) and VA

(
p∗P
)
≥ Vcf

(
p∗P
)



y = b for p ∈
[
0, p∗P

]
y = ∅, α = 1 for p ∈

(
p∗P , p′′

)
y = ∅, α = 0 for p ∈

[
p′′, p∗E

)
y = ∅, α = 1/2 for p = p∗E

y = ∅, α = 1 for p ∈
(
p∗E, pE

)
y = ∅, α = 0 for p ∈

[
pE, p∗E

)
x = a for p ∈

[
p∗E, 1

]
• If r (∆) < r (∆) and VA

(
p∗P
)
< Vcf

(
p∗P
)
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y = b for p ∈
[
0, p∗P

]
y = ∅, α = α∗ (p) for p ∈

(
p∗P , p̃

)
y = ∅, α = 0 for p ∈

[
p̃, p∗E

)
y = ∅, α = 1/2 for p = p∗E

y = ∅, α = 1 for p ∈
(
p∗E, pE

)
y = ∅, α = 0 for p ∈

[
pE, p∗E

)
x = a for p ∈

[
p∗E, 1

]
The equilibrium is comprised of many different cases and sub-cases, which makes it

difficult to form an intuitive understanding of optimal play. However, comparing it to

complete delegation in which the expert learns about the state optimally, without the

principal’s intervention, can help highlight the interesting features of the equilibrium.

In particular, the first thing to note is that in the case of contradictory learning the

principal never intervenes and the expert always pursues his first best for any p > p̌E.

The same holds in the case of both contradictory and confirmatory learning for any

p > max{p′′, p̃}. In both these regions, complete and flexible delegation are payoff

equivalent for both the principal and the expert and the optimal policy is equivalent

to that of the expert’s optimal learning.

Another feature of the equilibrium is that, wherever necessary, for p > p∗P the

expert is always better of pursuing a policy that makes the principal indifferent than

taking immediate action. This is shown in Lemma 2.9 below and implies that imme-

diate action will never be taken for p ∈ [p∗P , p∗E] for r < r̄ (∆).

Lemma 2.9. Vind(p) ≥ Vb(p) whenever the optimal learning policy in the decision

problem, α, is 1 and the immediate action optimal decision is b.

Proof. See Appendix 2.A.21.

Lemma 2.9 states that the expert derives a higher payoff from making the principal

indifferent than from taking decision b, in the regions where the optimal policy for the

expert in the decision problem is to learn with intensity α = 1.
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The third notable feature of the equilibrium has to do with the switching of op-

timal strategies and explains our Theorem 2.1. In particular if r (∆) < r (∆) and

VA

(
p∗P
)
< Vcf

(
p∗P
)
the expert pursues confirmatory learning after p̃ with α = 0.

This differs from the experts optimal learning under complete delegation in this region

where he would pursue contradictory learning with α = 1. The intuition behind this

learning shift is discussed in the next section and is the main contribution of our paper.

Further, Corollary 2.1 below, shows that given our assumptions all of the discussed

above are non-empty. Specifically, Figure 2.7 shows that the threshold r below which

both confirmatory and contradictory learning is optimal. As can be seen from the

figure, there exists a threshold for r below which both confirmatory and contradictory

strategies must be part of the equilibrium as the highest ∆ dictated by r∗ is lower than

the lowest ∆ required for contradictory strategy to be optimal only.

Corollary 2.1. There exists a threshold for r, below which both confirmatory and

contradictory strategies are pursued in equilibrium, for some p.

Proof. See Appendix 2.A.22.

Δ (r*)

Δ (r)

1r threshold
r

1

Δ

Figure 2.7: Learning strategy regions

2.8 Comparison of Complete and Flexible Delega-

tion

Theorem 2.1 states that complete delegation may be detrimental to the principal

when the principal’s and the expert’s preferences are sufficiently closely aligned. The
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result is intuitive for both types of the expert’s optimal learning policies and is driven

by the expert’s strategic response to the principal’s intervention. In this section, we

discuss the intuition supporting Theorem 2.1.17

Under flexible delegation, the ability to override the expert enables the principal to

stop learning as soon as the posterior belief falls sufficiently to make immediate decision

optimal. This is the main benefit of flexible delegation. However, the possibility of the

principal terminating learning triggers the expert’s strategic response. This strategic

response may hurt the principal. Theorem 2.1 charaterises the conditions under which

the expert’s strategic response makes the principal worse off.

In the case of only contradictory learning, if UE
(
p̌E
)
≤ Ub

(
p̌E
)
– that is, if at the

belief where the autonomous expert switches from contradictory learning from source

A to contradictory learning from B, the principal’s payoff under expert’s learning is

lower than the payoff from immediate decision, – an intervention by the principal does

not trigger a strategic response from the expert. Hence, flexible delegation does not

have a cost; it unambiguously improves the principal’s payoff. Similarly, for the case of

mixed learning, if UE
(
p∗E
)
≤ Ub

(
p∗E
)
– that is, if at the belief where the autonomous

expert switches from contradictory A to confirmatory B learning, the principal’s payoff

under expert’s learning is lower than the payoff from immediate decision,— an inter-

vention by the principal does not trigger a strategic response from the expert.

However, if UE
(
p̌E
)
> Ub

(
p̌E
)
(in the case of contradictory learning) or UE

(
p∗E
)
>

Ub

(
p∗E
)
(in the case of mixed learning), an intervention by the principal changes the

expert’s optimal learning strategy. In particular, for sufficiently small ∆, some contra-

dictory learning from source A remains optimal for low beliefs, but the expert switches

to A learning later than he would have done absent the principal’s intervention. The

delay in the switch to A learning hurts the principal as by Lemma 2.2, the principal

wants the expert to switch to A learning early. On the other hand, in this region under

complete delegation the expert may want to pursue A learning instead, as he would

not need to act strategically, which would make the principal better off.

Figure 2.8 demonstrates this. Under flexible delegation, the optimal learning pol-

icy by the expert will keep the principal’s utility equal to Ub(p) for p ∈ [p∗P , pind].

However, for some p > p∗P the principal would be better off if the expert pursued his

17For formal proof see Appendix 2.A.24.
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Figure 2.8: Example of complete delegation being optimal for the principal

first-best learning policy which for p ∈ [p∗E, p∗E] is learning from source A (Blue line).

2.9 Concluding Remarks

We study a dynamic model in which the principal delegates learning about the bi-

nary state of the world to a biased expert who has access to a state confirming learning

technology. The principal can either delegate learning and the decision making to the

expert or can retain the ability to make decisions while the expert is still learning. We

call the former complete, and the latter flexible, delegation.

We show that when the expert’s preferences are sufficiently different from the prin-

cipal’s preferences, the principal is always better off under flexible delegation. However,

for low level of expert’s bias, there exist beliefs about the state for which the principal

is better off under complete delegation.

To prove our main result, we fully characterize expert’s equilibrium learning strat-

egy under flexible delegation. We find that on the equilibrium path, from the per-

spective of the principal three types of learning sub-optimalities may occur. Firstly,
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the expert may terminate learning at lower beliefs than those that the principal would

prefer. As the expert has the ability to make a decision, the principal cannot affect

this outcome. Secondly, for some beliefs, the expert still wants to learn, while the

principal wants to take a decision. Thirdly, for some beliefs, the principal and the

expert may disagree on the information source from which to learn. The possibility of

principal’s intervention eliminates the cost of expert’s prolonged learning, but makes

expert learning strategy even more sub-optimal than it is under complete delegation.

37



Appendix

Appendix 2.A

2.A.1 Evolution of posterior beliefs

Note that if the signal has not arrived in the time interval of length h, then by

Bayes’ rule,

pt+h = P (ω = A | no signal)

=
P (no signal | ω = A)P (ω = A)

P (no signal)

=

(
e−αh × 1

)
pt

(e−αh × 1) pt + (1× e−(1−α)h) (1− pt)

=
pte

−αh

pte−αh + (1− pt) e−(1−α)h

= pt − (2α− 1) pt (1− pt)h,

where the last equality follows by the Taylor approximation.
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2.A.2 Derivation of U ∗(p)

U∗(p) = E
[
e−rτuA

a | ω = A
]
+ E

[
e−rτuB

b | ω = B
]

= puA
aE
[
e−rτ

]
+ (1− p)uB

b E
[
e−rτ

]
=
(
puA

a + (1− p)uB
b

)
E
[
e−rτ

]
=
(
puA

a + (1− p)uB
b

) ∫ ∞

0

e−rt

[
e−t/2

2

]
dt

=
(
puA

a + (1− p)uB
b

) 1

2r + 1

=
∆(1− p) + 1

2r + 1

where, τ = min
{
τa, τ b

}
, the time that the first, and only, signal arrives.

2.A.3 Derivation of p∗p

By definition, p∗p ≡ {p | UP
A (p) = Ub(p)}. That is, it is the belief that principal’s

utility from immediate actions is the same as the expected utility from learning from

source A and acting only when signal A arrives.

Ub(p) = p uA
b + (1− p) uB

b = ∆+ 1− 2p (2.19)

The principal’s HJB, equation 2.13, when α = 1 is

rUP (p) = αp
(
uA
a − UP (p)

)
+ (1− α) (1− p)

(
uB
b − UP (p)

)
− (2α− 1) p (1− p)UP ′(p)

rUP
A (p) = p

(
uA
a − UP

A (p)
)
− p (1− p)UP ′

A (p)

where subscript A denotes the HJB when α = 1. Smooth pasting implies that U ′
b(p

∗p) =

U
′P
A (p∗p) = −2. Hence,

UP
A (p

∗p) =
(p∗p)2(−2) + 3p∗p

p∗p + r
(2.20)
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Setting (2.20) = (2.19) and solving for p∗p

p∗p =
r(∆ + 1)

2(r + 1)−∆

2.A.4 Derivation of contradictory learning

Focusing on source A , i.e. α = 1, reduces (2.9) to

rUP
A (p) = p

(
uA
a − UP

A (p)
)
− p (1− p)U ′

A(p)

given the boundary condition (2.14). This ODE is readily solvable and applying our

assumptions is equal to

UP
A (p) =


p+(1−p)(∆+1)( (p−1)r(∆+1)

∆p(r+1)−p(r+2))
r

r+1
p ≥ p∗P

Ub (p) p < p∗P

where p∗P is the belief p′ that satisfies the condition UP
A (p

′) = Ub(p
′).18 As α = 1,

conditional on no signal arriving, Bayesian updating dictates that beliefs are going to

move away from state A. Intuitively, as attention is on source A, since no signal arrives,

the principal becomes more pessimistic about the state being A.

Similarly, learning from source B only, the principal derives the following payoff:

UP
B (p) =


p(pr)r(−((p−1)(∆+(r+2))))−r−(p−1)(∆+1)

r+1
p ≤ p∗P

Ua (p) p > p∗P

where p∗P is belief p that satisfies the condition UP
B (p; ·) = Ua(p; ·).19

2.A.5 Derivation of p∗P

By definition, p∗P satisfies, UP
B (p

∗P ; ·) = Ua(p
∗P ; ·).

Hence,

Ua(p) = p Ua
A + (1− p) Ua

B = 2p− 1 (2.21)

18See Appendix 2.A.3
19See Appendix 2.A.5
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The principal’s HJB, equation 2.13, when α = 0 is

rUP (p) = αp
(
uA
a − UP (p)

)
+ (1− α) (1− p)

(
uB
b − UP (p)

)
− (2α− 1) p (1− p)UP ′(p)

rUP
B (p) = (1− p)

(
uB
b − UP

B (p)
)
+ p (1− p)UP ′

B (p)

where subscriptB denotes the HJB when α = 0. Smooth pasting implies that U ′
a(p

∗p) =

U
′P
B (p∗p) = 2. Hence,

UP
B (p

∗p) =
(p∗p − 1)(∆ + 2p∗p + 1)

p∗p − r − 1
(2.22)

Setting (2.22) = (2.21) and solving for p∗p

p∗p =
∆+ (r + 2)

∆ + 2(r + 1)

2.A.6 Derivation of p∗P

Recall that

U∗(p) =
∆(1− p) + 1

2r + 1

By smooth pasting, as p→ p∗P from above, i.e. when α = 1, the HJB equation 2.9

must equal U∗(p).

Then,

rUP (p∗P ) = αp∗P
(
uA
a − UP (p∗)

)
+ (1− α) (1− p∗)

(
uB
b − UP (p∗)

)
− (2α− 1) p∗P

(
1− p∗P

)
UP ′(p∗P )

rU∗(p∗P ) = p∗P
(
uA
a − U∗(p∗P )

)
− p∗P

(
1− p∗P

)
U ′(p∗P )

r
(
p∗PuA

a +
(
1− p∗P

)
uB
b

) 1

2r + 1
= p∗P

(
uA
a −

(
p∗PuA

a +
(
1− p∗P

)
uB
b

) 1

2r + 1

)
− p∗P

(
1− p∗P

) uA
a − uB

b

2r + 1

p∗P =
υB
b

υB
b + υA

a

=
1 +∆

2 +∆

2.A.7 Derivation of confirmatory learning

Postulating smooth pasting as p→ p∗P both from below and above, as it must be

the case that payoffs match, since strategies at belief p∗P are identical and applying
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these in (2.9) we get

p∗P =
1 +∆

2 +∆
20 (2.23)

Clearly, at belief p∗P , the principal’s utility is equal to U∗(p∗P ), as derived above.

Given this boundary condition we can solve 2.9. In addition, note that this learning

policy results in the principal always taking the decision that matches the state, as

she always acts after the arrival of a signal. The payoff of the confirmatory learning

strategy , hence forth to be denoted by UP
cf , is

UP
cf (p) =


p(− p

(p−1)(∆+1))
r
−(p−1)(2r+1)(∆+1)

(r+1)(2r+1)
p < p∗P

∆(1−p)+1
2r+1

p = p∗P

p(− (p−1)(∆+1)
p )

r+1
+p(2r+1)

(r+1)(2r+1)
p > p∗P

2.A.8 Derivation of r̄P (∆)

The threshold r̄P (∆) is the smallest discount rate r′ such that the principal prefers

choosing the action immediately to learning for δ → 0 units of time and only then

choosing the optimal action. To find r̄P (∆): Suppose p < p̂P and recall that Ub (p) =

puA
b + (1− p)uB

b . If the principal learns from source A for δ amount of time and then

chooses the optimal action, she gets:

e−rδ
[(
1− e−δ

)
puA

a +
(
1− p+ e−δp

)
Ub (p

′)
]
≈

Ub (p)− rUb (p) δ +
(
uA
a − Ub (p)

)︸ ︷︷ ︸
=uA

a −uA
b +(uA

b −uB
b )(1−p)

pδ − U ′
b (p)︸ ︷︷ ︸

=uA
b −uB

b

p (1− p) δ =

Ub (p)− r
(
uB
b +

(
uA
b − uB

b

)
p
)
δ +

(
uA
a − uA

b

)
pδ

Learning is not optimal if

e−rδ
[(
1− e−δ

)
puA

a +
(
1− p+ e−δp

)
Ub (p

′)
]
≤ Ub (p)

20See Appendix 2.A.6
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for every p < p̂P . That is,

−ruB
b + r

(
uB
b − uA

b

)
p+

(
uA
a − uA

b

)
p ≤ 0.

The LHS is increasing in p. So set

p = p̂P =
uB
b − uB

a

uB
b − uB

a + uA
a − uA

b

Then

r ≥
(
uB
b − uB

a

) (
uA
a − uA

b

)
uB
b u

A
a − uB

a u
A
b

The argument for p > p̂P is symmetric and should yield the same threshold r̄P (∆).

Substituting our assumptions on uω
x yields:

r ≥ 4−∆2

2∆
≡ r̄P (∆) .

2.A.9 Derivation of rP (∆)

In order to characterize the threshold level rP (∆) we make the following observa-

tion.

Lemma 2.10. UP
A (p

∗P ) > UP
B (p

∗P ) for ∆ > 0.

Proof. Condition

UP
A (p

∗P ; ·) > UP
B (p

∗P ; ·)

can be equivalently expressed as

(∆ + 1)
((

r
(r+2)−∆(r+1)

)r
+ 1
)

(r + 1)(∆ + 2)
>

(∆ + 1)(∆ + (r + 2))−r(r(∆ + 1))r + (∆ + (r + 2))r

(r + 1)(∆ + 2)

After some algebraic manipulations this becomes(
r

(r + 2)−∆(r + 1)

)r

>

(
r(∆ + 1)

∆ + (r + 2)

)r

or

− ∆2r(r + 1)

(∆(r + 1)− (r + 2))(∆ + (r + 2))
> 0

The above is satisfied for 1 > ∆ > 0.
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Further, we use Proposition 6, Che and Mierendorff (2019), which states that the

confirmatory strategy is part of the optimal strategy if and only if at p∗P the principal

finds it optimal to pursue the confirmatory strategy. Hence, the confirmatory strategy

will not be part of the optimal strategy for the principal, iff:

UP
A (p

∗P ) ≥ U∗(p∗P )

(∆ + 1)
((

r
−∆(r+1)+r+2

)r
+ 1
)

(∆ + 2)(r + 1)
≥ 2(∆ + 1)

(2r + 1)(∆ + 2)(
r

r + 2−∆(r + 1)

)r

≥ 1

2r + 1

The value of r that makes the above condition hold with equality is the threshold value

rP (∆). For a given r, the highest level of ∆ for which the optimal strategy includes a

confirmatory and contradictory part is:

∆ =
−r(2r + 1)

1
r + r + 2

r + 1
(2.24)

2.A.10 Derivation of p∗E

Recall that

V ∗(p) =
∆p+ 1

2r + 1

By smooth pasting, as p → p∗E from above, i.e. when α = 1. The HJB for the

expert must satisfy V ∗(p)
Then,

rV E(p∗E) = αp∗E
(
vAa − V E(p∗)

)
+ (1− α) (1− p∗)

(
vBb − V E (p∗)

)
− (2α− 1) p∗E

(
1− p∗E

)
V E′(p∗E)

rV ∗(p∗E) = p∗E
(
vAa − V ∗(p∗E)

)
− p∗E

(
1− p∗E

)
V ′(p∗E)

r
(
p∗EvAa +

(
1− p∗E

)
vBb
) 1

2r + 1
= p∗E

(
vAa −

(
p∗EvAa +

(
1− p∗E

)
vBb
) 1

2r + 1

)
− p∗E

(
1− p∗E

) vAa − vBb
2r + 1

p∗E =
υB
b

υB
b + υA

a

=
1

∆+ 2
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2.A.11 Proof of Lemma 2.2

Lemma 2.2. For any ∆ > 0, the expert’s learning region is shifted to the left rela-

tive to the principal’s learning region. Specifically, p∗E < p∗P , p̄∗E < p̄∗P and p∗E < p∗P .

Proof. As we have analytical solutions for all thresholds the proof can be produced by

comparing the learning regions.

p∗E < p∗P

p∗P − p∗E =
∆r(∆ + 4 + 2r)

(2(1 + r)−∆)(∆ + 2(1 + r))
,

which is greater than zero since 1 > ∆ by assumption and r ≥ 0.

p̄∗E < p̄∗P

p∗P−p∗E = − ∆r(∆ + 2(r + 2))

(∆− 2(1 + r))(∆ + 2(1 + r))
, which is greater than zero if ∆ < 2(1+r).

This is clearly the case since 1 > ∆ and r > 0.

p∗E < p∗P

p∗P − p∗E = 1+∆
∆+2
− 1

∆+2
= ∆

∆+2
> 0 for ∆ > 0

2.A.12 Derivation of Restriction 2.1

We impose the restriction that if the expert find’s it optimal to learn forever, then

the principal also prefers learning to her outside option, i.e.

UE
cf (p

∗E)− Ub

(
p∗E
)
=

2−∆− 2(∆ + 3)∆r

(∆ + 2)(2r + 1)
> 0 (2.25)

For r = 0, the above reduces to

2−∆

∆+ 2
,
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which is positive. Further, the derivative of (2.25) with respect to r is:

− 2(∆2 + 2∆+ 2)

(∆ + 2)(2r + 1)2
< 0,

which implies that as r increases, UE
cf

(
p∗E
)
−Ub

(
p∗E
)
decreases monotonically. Setting

UE
cf

(
p∗E
)
− Ub

(
p∗E
)
= 0 and solving for r∗ yields

r∗ =
2−∆

2∆(∆ + 3)
.

Hence, the required restriction is

Restriction 2.2.

r <
2−∆

2∆(∆ + 3)
≡ r∗

Equivalently, we can express Restriction 2.2 as a restriction on ∆. In particular,

solving for ∆ yields:

∆̄ (r) =

√
36r2 + 28r + 1− 6r − 1

4r
> 0 (2.26)

Therefore, ∆ < max{∆̄ (r) , 1} is our Restriction 2.1.

2.A.13 Implication of Restriction 2.2

In order to agree on the optimal decision when the expert stops learning it must be

the case that

p̄∗E ≥ p̂P

Indeed,

r(∆ + 1)

∆− 2(r + 1)
+ 1 ≥ ∆+ 2

4
(2.27)

where p̂P is such that Ua

(
p̂P
)
= Ub

(
p̂P
)
, that is,

p̂P =
∆+ 2

4
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.

(2.27) reduces to

r ≤ (2−∆)2

6∆

This condition is always met as restriction 2.2 requires;

r∗ <
2−∆

2∆(∆ + 3)
<

(2−∆)2

6∆
(2.28)

2.A.14 Proof of Lemma 2.3

Proof.

r̄ (∆) =
4−∆2

2∆
d

d∆
[r̄ (∆)] = −∆2 + 4

2∆2

which is clearly negative for any ∆ ̸= 0.

Further, the condition r (∆) must satisfy, if it exists, is

∆ =

(
−r(2r + 1)

1
r + r + 2

)
r + 1

(2.29)

Let,

0 = ∆−

(
−r(2r + 1)

1
r + r + 2

)
r + 1

0 =
∂

∂∆
d∆+

∂

∂r
dr

Then,

dr

d∆
=

r(r + 1)2(2r + 1)

2r2 + r + (2r + 1)
1
r (r(4r + 3)− (r + 1)(2r + 1) log(2r + 1))

given that r > 0 the above expression is negative if
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(2r + 1)
1
r ((r + 1)(2r + 1) log(2r + 1)− r(4r + 3)) < r(2r + 1)

(2r + 1)
1
r
−1((r + 1)(2r + 1) log(2r + 1)− r(4r + 3))

r
< 1

The above inequality holds for any r between 0 and 3.5271.

Finally note that if r > 1, (2.29) is negative which cannot be as ∆ must be positive.

Hence, the upper bound of r (∆) is 1, which concludes the proof.

2.A.15 Proof of Lemma 2.4

Lemma 2.4. Under complete delegation, for every p > p∗E

UE
cf (p) ≥ max {Ua (p) , Ub (p)} .

Proof. First, it is immediate that Ub

(
p∗E
)
> Ua

(
p∗E
)
. Indeed,

Ua

(
p∗E
)
= − ∆

∆+ 2
< 0

and

Ub

(
p∗E
)
=

∆(∆ + 3)

∆ + 2
> 0

Then, note that UE
cf

(
p∗E
)
> Ub

(
p∗E
)
by restriction 2.2.

Note also that UE′

cf (p
∗E) with respect to r is:

−∆(∆ + (∆ + 2)2r + 1)

(∆ + 1)(2r + 1)
< 0

since, U ′
b(p) = −2, it is always the case that UE′

cf (p
∗E) > U ′

b(p
∗E) for r < r∗.

It remains to show that if UE
cf (p

′) < max {Ua (p
′) , Ub (p

′)} for some p′ > p∗E, UE
cf (p

′)

would never be pursued by the expert in equilibrium. To do so, recall that the the

utility derived by the principal from the experts learning decreases monotonically in r

and ∆. Hence the limiting case as r → r∗ and ∆ → 1 is the lower bound of UE′

cf (p)

conditional on p.

Then,
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UE
cf (p)− Ua (p)|r=r∗, ∆=1

=
−10p9/8 + 7 27/8(1− p)9/8 + 9 8

√
p

9 8
√
p

which is equal to zero for p′ = 0.947192. However, p∗E|r=r∗, ∆=1 = 0.8. This means

that the expert would always take action a for p > p∗E and hence UE
cf (p

′) will never be

part of the experts equilibrium learning. Finally, note that Ua(p
′) = 0.8944 > 0.1056 =

Ub(p
′), which concludes the proof for r < r∗.

2.A.16 Proof of Lemma 2.5

Proof. Simple algebra shows that V E
B

(
p∗E
)
> V E

A

(
p∗E
)
for ∆ > 0. Hence, the expert

always prefers learning from source B at p∗E. Since V E
B (p) and V E

A (p) only cross once

and learning from source A is always preferred for low enough p, while learning from

source B is always preferred for high enough p, it follows that for any p ≥ p∗Elearning

from source B is always preferred by the expert and thus p̌E ⩽ p∗E.

V E
B

(
p∗E
)
> V E

A

(
p∗E
)

(∆ + 1)((r + 2)−∆(r + 1))−r (((r + 2)−∆(r + 1))r + (r)r)

(r + 1)(∆ + 2)
>

(∆ + 1)
(

1
∆+2

)1−r ((
1

∆+2

)r
+
(

r(∆+1)
(∆+2)(∆+(r+2))

)r)
r + 1

After some algebraic manipulation the above inequality reduces to

− ∆2r(r + 1)(∆ + 1)

(∆(1 + r)− (2 + r))(∆ + 2 + r)
> 0

which is always met for 1 > ∆ > 0 and r > 0.

2.A.17 Proof of Lemma 2.6

Proof. Since, r (∆) < r (∆) < r (∆) , only contradictory strategy would be used by the

expert under complete delegation for any p. Hence, V E
B

(
p̌E
)
= V E

A

(
p̌E
)
⩾ V E

cf

(
p̌E
)
.

In addition, V E
B (p) ⩾ V E

cf (p) for any belief p ⩾ p̌E, since contradictory from source B is

the expert’s optimal learning strategy under complete delegation for these beliefs. Also,

from Lemma 2.5 we know that p̌E ⩽ p∗E, which implies that V E
B

(
p∗E
)
> V E

cf

(
p∗E
)
.

Note that, for any belief p < p∗E both V E
cf (p) and V E

B (p) have identical learning

strategies α = 0. Hence, since the confirmatory strategy at p∗E has a continuation
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utility that is dominated by the contradictory learning from source B it follows that

V E
B (p) ⩾ V E

cf (p) for p < p∗E, which concludes our proof.

2.A.18 Proof of Lemma 2.7

Proof. The second part of the lemma follows directly from the definition of pE. Note

that for any belief p, such that pE < p < pE, V E
B (p) ¡ V E

cf (p), as under complete

delegation the expert chooses to follow confirmatory learning strategy for these beliefs.

In addition, V E
B

(
p∗E
)
< V E

cf

(
p∗E
)
and for p < p∗E, contradictory learning from source

B and confirmatory learning have identical strategies. Hence, as updating happens in

the same direction and beliefs tend towards p∗E, conditional on no signal, it must be

the case that V E
B (p) < V E

cf (p) for all p < p∗E. As pE < p∗E < pE. It follows that

V E
B (p) < V E

cf (p) for all p < pE.

2.A.19 Proof of Lemma 2.8

Proof. Strict convexity requires UE′′
B (p) > 0 ∀ p.

Indeed,

UE′′

B (p) =
rpr−1(r(∆ + 1))r (∆2r +∆(r(2r + 5) + 1)− (r + 2)) ((p− 1)(∆(r + 1)− (r + 2)))−r−1

p− 1

Since r > 0 and 1 > ∆ > 0, this expression is positive if and only if

∆2r +∆(r(2r + 5) + 1)− (r + 2) < 0 (2.30)

Note that for ∆ = 0, the above reduces to −(r + 2) < 0, which clearly holds.

In addition,

d

d∆
[RHS] = 2r∆+ (1 + r(5 + 2r)) > 0

Hence the RHS of (2.30) increases monotonically with ∆.

Since ∆ is bounded above by 1, it suffices to show that (2.30) is satisfied for ∆ = 1,

i.e. we need to show that

r − (r + 2) + (r(2r + 5) + 1) < 0

Given our assumptions the above is true if and only if 5+4r <
√
33→ r < 0.18614.
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Restriction 2.2, requires r to be less than (2 − ∆)2/(6∆).21 Let ∆ = 1 − ϵ, with

ϵ > 0. Then, restriction 1 is

(1 + ϵ)2

6(1− ϵ)

Taking the limit as ϵ→ 0

lim
ϵ→0

(1 + ϵ)2

6(1− ϵ)
=

1

6

Given that 1/6 < 0.18614, (2.30) is satisfied, UE
B (p) is strictly convex.

To see that UE
B (p) intersects Ua(p) from above note that by construction UE

B (p
∗E) =

Ua(p
∗E). Also, since UE

B (p) is strictly convex and Ua(p) is linear, it suffices to show

that UE′
B (p)|p=p∗E < U ′

a(p)|p=p∗E

Indeed,

UE′

B (p)|p=p∗E − U ′
a(p)|p=p∗E =

(2(r + 1)−∆)(∆ + 2(r + 2))

(∆ + 1)(∆(r + 1)− (r + 2))

Which is negative since 1 > ∆ > 0 and r > 0.

Finally we need to show that UE
B (p) > max{Ua(p), Ub(p)} for p ∈ [pE, p∗E).

By construction UE
B (p

∗E) = Ua(p
∗E) and it is immediate to show that Ua(p

∗E) >

Ub(p
∗E). As shown above, UE

B (p) crosses Ua(p) from above, UE
B (p) is convex and Ua(p)

is linear and upward sloping, it follows that UE
B (p) > Ua(p) ∀p < p∗E.

Since, UE
B (p

∗E) > Ub(p
∗E), Ub(p) is linear and downward sloping and UE

B (p) is

strictly convex, UE
B (p) and Ub(p) can cross at most once if and only if at p = 0

U ′
b(p)|p=0 − UE′

B (p)|p=0 < 0. This is the case since from UE
B (p)’s strict convexity it

will have it’s most negative slope at p = 0. If at that point the slope is not more

negative than U ′
b(p) then they cannot cross twice.

Indeed,

21See appendix 2.A.13.
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U ′
b(p)|p=0 − UE′

B (p)|p=0 = −2−
∆+ 1

r + 1
= −(1 + 2r)−∆

r + 1
< 0

Therefore UE
B (p) and Ub(p) can cross at most once. It follows that for any p′ such

that UE
B (p

′) > Ub(p
′), then UE

B (p) > Ub(p) ∀p ≥ p′.

It remains to show that UE
B (p

E) > Ub(p
E). It suffices to show that ∃ p′ < pE s.t.

UE
B (p

′) ≥ Ub(p
′).

Taking the worst case for the principal, hence r = r∗ and ∆ = 1 and solving for p;

p′ = {p : UE
B (p) = Ub(p)|r=r∗, ∆=1} = 0.467785

Also, note that pE|r=r∗, ∆=1 = 0.671452, which concludes the proof.

2.A.20 Analytical derivation of Vi (p) , Ui (p) , Ucf (p) and Vcf (p) for i ∈
{A,B}

To derive analytical expressions for the payoff functions discussed above we use the

fact that they must satisfy the HJB derivations for the principal and expert analogously.

In addition, we can easily identify the beliefs at which a decision would be taken

immediately. Specifically, Lemma 2.2 shows that p∗P > p∗E and p∗P > p∗E. It is

immediate that UA (p) = UP
A (p), as p∗P is the belief that P would terminate learning

in the first-best scenario. Also, VB (p) = V E
B (p) .Therefore, given that equation (2.11)

must always be satisfied. VA (p) is:

VA (p) =


(∆+1)p−

(p−1)(∆+r(∆(∆+2r+5)−1)−2)( (∆+1)(p−1)r
∆−2r−2 )

r
( (∆+1)pr

∆−2r−2
+p)

−r

∆+(∆−1)r−2

r+1 p > p∗P

Vb(p) p ≤ p∗P

p∗E =
r(∆ + 1)

∆− 2(r + 1)
+ 1

UB (p) =
∆ +

(1−p)−rpr+1
(

(∆+1)r
−∆+2r+2

)r
(∆+r(∆(∆+2r+5)−1)−2)

(
∆+(∆−1)r−2

∆−2r−2

)−r

∆+(∆−1)r−2
− (∆ + 1)p + 1

r + 1

Under flexible delegation confirmatory learning is defined as the leaning policy

were the expert pursues learning as he would under complete delegation. We denote
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the payoff from this policy by Ucf (p) and Vcf (p) for the P and E respectively. Hence,

Vcf (p) = V E
cf (p)and

Ucf (p) =


∆−(∆+1)p− p(1−p)−r(∆(∆+2)r−1)((∆+1)p)r

2r+1
+1

r+1
p < p∗E

p(∆+2)r((∆+1)p)−r−1((∆+1)p(2r+1)( (∆+1)p
∆+2 )

r
−(p−1)(∆(∆+2)(r+1)+1)( 1−p

∆+2)
r
)

(r+1)(2r+1)
p > p∗E

Note that by, lemma (2.4), the principal would never find it optimal to intervene

at p∗E, hence it must be the case that if confirmatory learning is optimal for E at p∗E,

then it will be part of the equilibrium strategy.

2.A.21 Proof of Lemma 2.9

Proof. The proof proceeds in the following steps. First, note that the α that makes

the expert indifferent between learning and taking decision b, henceforth αE
ind, can be

found using the HJB for the expert and the utility from immediate action b. Namely,

we know that it must satisfy both. Then;

V (p) = Vb (p) = pvAb + (1− p) vBb ,

with

V ′ (p) = vAb − vBb

and satisfies HJB equation

rV (p) = pα (p)
(
vAa − V (p)

)
+(1− p) (1− α (p))

(
vBb − V (p)

)
−(2α (p)− 1) p (1− p)V ′ (p) .

(2.31)

Given the linearity of V (p) , there exits a unique α that satisfies (2.16) and it is

given by

αE
ind (p) =

r − 2pr

∆p+ 2p
.

Observe that αE
ind(p) < α∗(p),

αE
ind (p) =

r − 2pr

∆p+ 2p
<

r (1 + ∆− 2p)

p (2−∆)
= α∗(p)

∆
(
∆2 − 4

)
pr(−∆+ 4p− 4) > 0
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Which always holds as (∆2 − 4) and (−∆+ 4p− 4) are negative.

The linearity of the HJB in α implies that when the optimal α in the experts

decision problem is 1 then his utility is increasing in α. Therefore, any α′ > αE
ind(p)

implies V (α′) > Vind.

2.A.22 Proof of Corollary 2.1

Proof. By Lemma 2.4, r ≤ r∗ = 2−∆
2∆(∆+3)

As

dr∗

d∆
=

∆2 − 4∆− 6

2∆2(∆ + 3)2
< 0, for ∆ ∈ (0, 1)

The highest value of r∗ is

lim
∆→0+

r∗ =
1

8

Further, note that by (2.10), r(∆) must satisfy the following condition.

∆ =
−r(2r + 1)

1
r + r + 2

r + 1

Also, by Lemma 2.3, r(∆) decreases in ∆, therefore setting ∆ = 1 above, yields

The inverse of r∗(∆) is:

∆(r∗) =

(√
1
r2

+ 28
r
+ 36− 6

)
r − 1

4r
(2.32)

Comparing, equation (2.10) and the inverse of r∗(∆) .

Δ (r*)

Δ (r)

1r threshold
r

1

Δ

As can be seen from the graph above, there exists a threshold for r below which
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both confirmatory and contradictory strategies must be part of the equilibrium as the

highest ∆ dictated by r∗ is lower than the lowest ∆ required for contradictory strategy

to be optimal only.

2.A.23 Verification of flexible delegation equilibrium

No learning

If r̄ (∆) < r (∆) then the principal’s boundary condition 2.8 binds and y = argmax

Ux (p) .

Contradictory learning only

If r̄ (∆) > r (∆) > r (∆) then by Lemma 2.1 both the expert’s and the principal’s

optimal learning strategy if they both had access to the learning technology would be

contradictory only.

Case 1 : VA

(
p∗P
)
≥ VB

(
p∗P
)

If VA

(
p∗P
)
≥ VB

(
p∗P
)
the expert learns from source A for beliefs p < p̌E and the

principal will take decision b at belief p∗P conditional on no signal arriving until p∗P is

reached. For p > p̌E the expert will learn from source B . If no signal arrives in this

case, the expert will take decision a at belief p∗E .

Y ∗ =

 b p ≤ p∗P

∅ p > p∗P

(α∗, X∗) =



(∅, b) p ≤ p∗E

(1, ∅) p∗E < p ≤ p̌E

(0, ∅) p̌E < p < p∗E

(∅, a) p ≥ p∗E

Proof. To show that this constitutes an equilibrium the conditions below must be

satisfied.
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max

{
max

α
HE(α)− rV (p), V E(p)− V (p)

}
= 0 (2.33)

max

{
HP (α∗)− rU(p), UP (p)− U(p)

}
= 0 (2.34)

with

HE(α) ≡ pα(vAa − V (p)) + (1− p)(1− α)(vBb − V (p))− (2α− 1)p(1− p)V ′(p)

and

HP (α) ≡ pα∗(uA
a − U(p)) + (1− p)(1− α∗)(uB

b − U(p))− (2α∗ − 1)p(1− p)U ′(p)

For the expert note that for p ∈ [0, p∗E] ∪ (p∗P , 1] the expert pursues his first best

strategy. It therefore suffices to show that condition (2.33) is met at p ∈ (p∗E, p∗P ]. By

Lemma 2.2 this region is non-empty.

Clearly, V E(p) = V (p) ∀p ∈ (p∗E, p∗P ], as given the principal’s optimal strategy,

the expert derives the utility from immediate learning in this region. Moreover, any

policy α does not affect the experts utility given the principal’s strategy as no learning

takes place. Hence (2.33) is satisfied in all points of differentiability.

From the perspective of the principal, we can split this into two regions p ≤ p̌E

and p > p̌E. For p < p̌E the principal pursues and obtains her first best. Therefore it

remains to show that UE
B (p) > max{Ua(p), Ub(p)} for p ∈ (p̌E, 1].

By construction, UE
0 (p

∗E) = Ua(p
∗E) > Ub(p

∗E). Also, by Lemma 2.8 UE
B (p) in-

tersects Ua(p) from above. From Lemma 2.8 we know that UE
B (p) is convex and since

Ua(p) is linear, U
E
B (p) > Ua(p), ∀p < p∗E.

Case 2: VA

(
p∗P
)
< VB

(
p∗P
)

The expert will not pursue contradictory learning from source A, as doing so is

dominated by pursuing contradictory learning from source B. By Lemma 2.5 p̌E ⩽ p∗E,
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and by Lemma 2.6, the expert will pursue contradictory learning from source B only.

However, at belief p̂, with p̂ = {p|Ub (p) = UB (p)}, the expert will increase α, so as

to make the principal indifferent between taking y = ∅ and y = b. The expert will

keep the principal indifferent up to p∗P , at which point the boundary condition for the

expert will hold and decision b will be taken. If no signal arrives, decision a will be

taken by the expert at p∗E.

Y ∗ =

 b p ≤ p∗P

∅ p > p∗P

(α∗, X∗) =



(∅, b) p ≤ p∗E

(1, ∅) p∗E < p ≤ p∗P

(α∗ (p) , ∅) p∗P < p ≤ p̂

(1, ∅) p̂ < p ≤ p̌E

(0, ∅) p̌E < p < p∗E

(∅, a) p ≥ p∗E

Proof. We need to show that conditions (2.34) and (2.33) are satisfied at all points of

differentiability.

(2.34) is satisfied for p < p̂ by construction as U(p) = Ub(p) > Ua(p) ∀p ≤ p̂.

For p ∈ (p̂, p̄∗E), we need to show that UE
0 (p) > max{Ub(p), Ua(p)}. The argument

supporting this is identical to the one given in case 1 above.

(2.33) is satisfied for p ≥ p̂ as in this region the expert pursues and attains his first

best. Further, an identical argument to that made in Case 1 above shows that (2.33)

is also satisfied for p ≤ p∗P . Therefore it remains to show that it is also satisfied for

p ∈ (p∗P , p̂). This must be the case by construction. We know that in this region the

expert would like to pursue a learning strategy with α = 1. Given that the experts

HJB is linear in α, this means that in this region the HJB is increasing in α. Therefore

the maximum the expert can attain conditional on not being stopped by the principal

is α∗ by it’s definition. Lemma 2.9 ensures that the expert is better off learning with

intensity α∗ than taking immediate action.
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Confirmatory and Contradictory learning

If r (∆) < r (∆) then both the expert’s and the principal’s optimal learning strate-

gies would include both confirmatory and contradictory learning by Lemma 2.1.

Case 1: VA(p
∗P ) ≥ Vcf (p

∗P )

In this case then the principal will take decision b at any p below p∗P . For p > p∗P

the expert will learn from source A until p = p′′, with p′′ =
{
p|V P

A (p) = V E
cf (p)

}
.

For beliefs p′′ < p < pE the expert will pursue confirmatory learning strategy and for

p > pE the expert will learn from source B until p∗E, where decision a will be taken

by the expert.

Y ∗ =

 b p ≤ p∗P

∅ p > p∗P

(α∗, X∗) =



(∅, b) p ≤ p∗E

(1, ∅) p∗E < p ≤ pE

(0, ∅) pE < p < p∗E(
1
2
, ∅
)

p = p∗E

(1, ∅) p∗E < p ≤ pE

(0, ∅) pE < p < p∗E

(∅, a) p ≥ p∗E

Proof. We need to show that conditions (2.34) and (2.33) are satisfied at all points of

differentiability.

The expert pursues and attains his first best for p ∈ (pE, 1], hence at these beliefs

(2.33) must be satisfied. For p ∈ [0, pE] the arguments showing that (2.33) is satisfied

are identical to case 1 when contradictory learning only is pursued.

The principal for p ∈ [0, pE] pursues and attains her first best, hence (2.34) is

satisfied.

Further, for p ∈ [p̄E, p̄∗E] we need to show that UE
0 (p) > max{Ua(p), Ub(p)}. By

Lemma 2.8, UE
B (p) intersects Ua(p) from above. From Lemma 2.8 we know that UE

B (p)

is convex and since Ua(p) is linear, U
E
B (p) > Ua(p) > Ub(p), p ∈ [p̄E, p̄∗E.

It therefore remains to show that (2.34) is satisfied for p ∈ (pE, p̄E). By Lemma 2.4

UE
cf (p) ≥ max {Ua (p) , Ub (p)} for p ∈ (pE, p̄E) (2.34) is satisfied.
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Case 2: VA

(
p∗P
)
< Vcf

(
p∗P
)

If VA

(
p∗P
)
< Vcf

(
p∗P
)
, then the expert will not pursue contradictory learning from

source A. The principal will take decision b for any p ≤ p∗P . The expert will keep the

principal indifferent for p∗P < p < p̃ and by Lemma 2.7, the expert will find it optimal

to pursue confirmatory learning for beliefs p̃ ≤ p < pE , with p̃ =
{
p|UE

cf (p) = Ub(p)
}
.

Moreover, the expert will pursue contradictory learning from source B for beliefs p >

pE. At p∗Edecision a will be taken by the expert.

Y ∗ =

 b p ≤ p∗P

∅ p > p∗P

(α∗, X∗) =



(∅, b) p ≤ p∗E

(1, ∅) p∗E < p ≤ p∗P

(α∗ (p) , ∅) p∗P < p ≤ p̃

(0, ∅) p̃ < p < p∗E(
1
2
, ∅
)

p = p∗E

(1, ∅) p∗E < p ≤ pE

(0, ∅) pE < p < p∗E

(∅, a) p ≥ p∗E

Proof. We need to show that conditions (2.34) and (2.33) are satisfied at all points of

differentiability.

For the principal for p ∈ (p̃, 1] by Lemma 2.8 and Lemma 2.4 this is the case. For

p ∈ [0, p̃], (2.34) is satisfied by construction since U(p) = Ub(p) > Ua(p).

For the expert, for p ∈ (p̃, 1] the expert pursues and attains his first best hence

(2.33) is satisfied. For p ≤ p̃ This must be the case by construction. We know that in

this region the expert would like to pursue a learning strategy with α = 0. Given that

the experts HJB is linear in α, this means that in this region the HJB is decreasing in

α. Therefore the maximum the expert can attain conditional on not being stopped by

the principal is α∗ by it’s definition. Lemma 2.9 ensures that the expert is better off

learning with intensity α∗ than taking immediate action.
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Possible Indifferences

Contradictory learning only

Case 1 : VA

(
p∗P
)
≥ VB

(
p∗P
)

Possible indifference from p′ = {p|V E
B (p) = V P

A (p)} until p′′ = {p|Ub(p) = UE
B (p)}.

Case 2: VA

(
p∗P
)
< VB

(
p∗P
)

Possible indifference from p∗P until p′ = {p|Ub(p) = UE
B (p)}.

Confirmatory and Contradictory learning

Case 1: VA

(
p∗P
)
≥ Vcf

(
p∗P
)

Possible indifference from p′ = {p|V P
A (p) = V E

cf (p)} until p′′ = {p|Ucf (p) = Ub(p)}.

Case 2: VA

(
p∗P
)
< Vcf

(
p∗P
)

Possible indifference from p∗P until p′ = {p|Ub(p) = Ucf (p)}.

2.A.24 Proof of Theorem 2.1

Proof. We start by proving the second part of the theorem. If VA(p
∗P ) > VB(p

∗P )

for r(∆) ∈
(
r(∆), r̄(∆)

)
or VA(p

∗P ) > Vcf (p
∗P ) for r(∆) ∈

(
0, r(∆)

)
, then flexible

delegation equilibrium shows that the principal never intervenes for any p > p∗P and

the expert pursues the same learning policy as he does under complete delegation.

Therefore, the utility derived by the principal between flexible and complete delega-

tion is identical for all p > p∗P . However, for p ∈ [p∗E, p∗P ] under complete delegation

the expert pursues learning, while under flexible delegation decision b is taken by the

principle. By the definition of p∗P , the principal’s utility is higher by no learning as

opposed to any learning in that region, which makes her strictly worse of under com-

plete delegation.

It remains to show that there exists a ∆(r) above which VA(p
∗P ) > VB(p

∗P ) and

VA(p
∗P ) > Vcf (p

∗P ).

Consider the case that ∆(r) = 0, in this case the preferences of the expert and

the principal are fully aligned and p∗P = p∗E. Che and Mierendorff (2019) show that
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VA(p
∗E) < VB(p

∗E) for r(∆) ∈
(
r(∆), r̄(∆)

)
and VA(p

∗E) < Vcf (p
∗E) for r(∆) ∈(

0, r(∆)
)
.

Further, as ∆(r) increases both VB(p) and Vcf (p) continue to be identical to the

expert’s first-best, but VA(p) monotonically decreases for all p, since p∗P − p∗E in-

creases with ∆(r). Therefore, it must the case that for some ∆(r) ≡ ∆(r) and r(∆) ∈(
r(∆), r̄(∆)

)
, VA(p

∗P ) = VB(p
∗P ) and for some ∆(r) ≡ ∆(r) and r(∆) ∈

(
0, r(∆)

)
,

VA(p
∗P ) = Vcf (p

∗P ). For ∆(r) > ∆(r), the second part of the theorem holds.

To show that the first part of the theorem holds, note that for ∆(r) < ∆(r),

the flexible delegation equilibrium learning policy suggests that for some belief p ∈(
p∗P , p∗P + ϵ

]
the expert will pursue a policy which makes the principal indifferent

between making a decision and taking immediate action b. Further, note that ∆(r) = 0

implies that p∗P = p∗E as above.

Let r(∆) ∈
(
r(∆), r̄(∆)

)
and ∆(r) < ∆(r).

Then,

UB(p
∗E) = UB(p

∗P ) > Ub(p
∗P )

Under flexible delegation, there exists ϵ such that Ufl(p
∗P + ϵ) = Ub(p

∗P + ϵ), where

the subscript fl denotes the equilibrium payoff under flexible delegation, where the

expert is pursuing the learning that makes the principal indifferent. Under complete

delegation, for ϵ→ 0 the expert would pursue contradictory with a = 1 and the prin-

cipal would derive utility UB(p
∗P + ϵ).

Therefore, taking the limit as ϵ→ 0 and ∆(r)→ 0. It must the the case that

UB(p
∗P + ϵ) > Ub(p

∗P + ϵ)

Where the right side corresponds to the utility derived by the principle under com-

plete delegation and the left side that derived by the principal under flexible delegation.

A very similar argument can be made for the case that r(∆) ∈
(
0, r(∆)

)
.
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2.A.25 Heuristic derivation of the HJB equation

By the dynamic programming principle (DPP), in discrete time, with a period

length h > 0, the expert’s value function V (p) would be characterized by the Bellman

equation:

V (p) = max
α

p
(
1− e−αh

)
vAa + (1− p)

(
1− e−(1−α)h

)
vBb︸ ︷︷ ︸

payoff if signal arrives during the period

+e−rh
(
pe−αh + (1− p) e−(1−α)h

)
︸ ︷︷ ︸

probability no signal arrives

V
(
pαh
)︸ ︷︷ ︸

continuation payoff

 ,

where α is the allocation of the learning intensity that remains fixed for the dura-

tion of the period and pαh is the revised belief at the end of the period. By Taylor

approximation, when h is small,

1− e−αh ≈ αh and 1− e−(1−α)h ≈ (1− α)h

e−rh ≈ 1− rh.

So

V
(
p
)
≥ max

α

{(
pαvAa +

(
1− p

)(
1− α

)
vBb

)
h

+
(
1− rh

)(
1−

(
pα +

(
1− p

)(
1− α

))
h

)
V
(
pαh
)}

. (2.35)

If V is differentiable, V
(
pαh
)
can be approximated as

V
(
pαh
)
≈ V (p)− (2α− 1) p (1− p)V ′ (p)h

Omitting the terms of order h and smaller in (2.35) results in

0 ≥ max
α

{
pα
(
vAa − V (p)

)
+ (1− p) (1− α)

(
vBb − V (p)

)
− (2α− 1) p (1− p)V ′ (p)− rV (p)]} .
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Chapter 3

Endogenous Systemic Risk

3.1 Introduction

Systemic risk taking behaviour of banks, thought of as the risk taking behaviour

of banks that incorporates the systemic consequences of their individual decisions is

generally considered an externality in most of the economic literature. In other words,

although it is now evident that individual risk taking of banks may have systemic con-

sequences, this is not something that any one individual bank is usually considered to

internalize in their decision making process. There are many reasons why such a view

may be held and also be correct. For example, in very complex and dense networks of

financial actors, it is often the case that the behaviour of one individual bank does not

have any systemic consequence.

However, during the financial crisis of 2007/08, it became evident that regulators

and central banks, needed to make drastic decisions on the basis of the systematic

consequence of individual bank failures. Arguments such as too big to fail, or too in-

terconnected to fail, have been extensively used as a description of why it was necessary

to provide liquidity to insolvent institutions, which although should have been allowed

to go bankrupt if viewed individually, had to be bailed out when viewed as part of a

bigger network.

This being the case, it seems natural to expect that under certain conditions, it is

possible for individual banks to internalize the decision making process of the regula-

tors, and internalize the systemic risk that results from individual decision making. In

this paper, we construct a simple model of banks, connected through sharing invest-
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ment opportunities. We characterise the conditions under which there exists a unique

Nash Equilibrium in which banks endogenise the systemic implications of their actions

thereby increasing systemic risk. Our model is different from the existing literature

as we study the possibility of banks increasing their systemic importance by sharing

portfolios, rather than by taking correlated risks, which has often been assumed in

the literature. Although very stylized, our model suggests that risk-neutral, profit-

maximizing banks may be willing to share investments that increase their systemic

importance, even at the detriment of expected profits. In our model this will only hap-

pen when banks ensure that the regulator will always intervene if required. Crucially,

this result depends on the regulator’s policy rule, which in our case is the extreme

rule that the regulator will never intervene unless not doing so will result in systemic

collapse.

The next section discusses the literature on systemic risk and bailouts, section 3.3

develops the baseline model, section 3.4 augments the baseline model by adding de-

positors and discusses our main results. Section 3.5 concludes.

3.2 Literature Review

Prior to the 2007/08 financial crisis the literature mostly focused on systemic risk as

an externality. Freixas, Parigi, and Rochet (2000) model systemic risk in the interbank

market in a model with depositors. They find that the interbank market helps reduce

the liquidity holdings of banks and increases the resilience of the banking system as liq-

uidity shocks can be absorbed. However, it is also susceptible to speculative gridlocks,

stemming from depositors’ expectations about the liquidity of banks. In their set up

if the central bank is faced with an insolvent bank, its optimal response is to allow for

that bank to close, while providing the rest of the banks the liquidity they will lose

due to the closure. Their model, which is a simplified version of Diamond and Dybvig

(1983), with only risk neutral, patient depositors, is based on the idea that depositors

‘travel’ and can demand to withdraw from any bank.

More recently, internalizing the systemic consequences of risk taking has become

more commonplace. For example, Dell and Ratnovski (2012) are interested in the re-

lationship between risk taking of banks and bailouts. In their model, the expectation

of a bailout also encourages increased risk taking. However, in their two-bank set-up
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they model contagion as the probability of bank j failing conditional on bank i failing,

independently from each bank’s exposure to risk. They find that bailouts increase

moral hazard but when the risk of contagion is high the prospect of a bailout decreases

the risk taking behaviour of banks. Differently from our setting, there is no interbank

lending in their model.

In a more complicated set up, Farhi and Tirole (2012), develop an argument that

is close in spirit to ours. In their paper, banks’ private leverage decisions depend on

the expected policy response if they require some form of liquidity. In their model,

there is an incentive for banks to need liquidity when the whole financial system is in

distress, rather than on our own, as the former will motivate the regulators to imple-

ment beneficial policies. This logic is very close to ours, however, we are interested

in how banks provide liquidity to each other, rather than in the external risks they

are exposed to. In a similar vein, Acharya (2009) designs bank regulation when banks

can choose the correlation of returns on their assets. The contribution of their pa-

per is to describe optimal regulator policies when risk correlation is an endogenous

variable. They suggest that bailouts accompanied by dilution of owner’s equity is ex-

ante optimal when banks fail, particularly if both banks fail together. In a similar set

up, with two banks in two regions, Dasgupta (2004) models contagion stemming from

banks insuring against regional depositors’ liquidity shocks using the interbank mar-

ket. Due to the risk of contagion they show that banks never fully insure in equilibrium.

Erol (2017) study endogenous network formation when firms anticipate that their

level of connectedness can induce bailouts when distressed. They show that the ex-

pectation of bailouts, makes firms less concerned about the decisions of the firms they

are connected with, which increases connectedness and systemic risk. This result has

some similarities with our intuition that banks would be willing to share less profitable

investments if this increased their systemic importance. In addition, the existence of

intervention creates ‘network hazard’, i.e. core-periphery structures in which the core

firms are systemically important and can amplify contagion when insolvent.

The paper that is closest to ours is Acharya and Yorulmazer (2007). Like us they

observe that crisis prevention conflicts with crisis management. The central bank is

more likely to intervene when many banks fail, therefore, creating an incentive for risk

correlation instead of risk diversification from banks. If few banks fail, surviving banks

are able to step in and buy failing ones, thus not requiring the CB to intervene. Banks
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herd ex-ante, for example by investing in similar industries or similar financial assets,

in order to increase the likelihood of intervention, which leads to systemic banking

crises. In contrast to the too big-to-fail argument, this highlights the systemic role of

small banks as well as large ones. Their analysis indicates that this problem is more

severe when, a) agency problems are high (eg. fraud by bank owners) and b) in times

where fiscal costs of bailing out banks are high. When modelling banks of different

sizes, big banks have an incentive to diversify risk. However, they argue that the fact

that when many banks fail at the same time regulators have to respond, creates in-

centives for small banks to herd by investing in similar industries. Further, Acharya,

Mehran, and Thakor (2016) investigate optimal banks’ capital structures and show

that in the presence of a regulator who cares about systemic risk there exists an equi-

librium in which banks are over-leveraged in order to fund correlated inefficiently risky

loans. This creates a double moral hazard since banks invest in bad projects and have

too much equity as opposed to debt, which leads to insufficient loan monitoring. In

their framework requiring banks to maintain a ‘special capital account’, unavailable to

creditors, reduces these effects. Crucially, in our paper we consider that banks connect

via the inter-banking market rather than by correlated investments. This enables us

to analyse the network effects of the banks’ incentives.

Cabrales, Gottardi, and Vega-Redondo (2017) study the properties of financial

networks in which connections help firms share risk but increase the possibility of con-

tagion. Similarly to our setting in their model financial firms have access to their own

risky project but can also invest to those of the firms they are connected to. They

characterize network structures that maximize social surplus, defined as the structure

that minimizes the expected number of defaults. They find that socially optimal net-

works depend on the type of risk firms are exposed to. Put coarsely, if the likelihood of

a big shock is high then network structures that protect from contagion are optimal -

these are structures that exhibit ‘maximal segmentation’. Conversely, highly connected

networks that allow for maximal risk sharing are optimal. In our paper we analyse a

very similar risk sharing and contagion transmission mechanism but we incorporate

the idea that firms also endogenise the regulators response also.
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3.3 Model

3.3.1 Banks

There exist N banks each of which has exclusive access to an individual investment

opportunity. This opportunity can be thought of as being an external investment,

or a portfolio of investments, that is unique to each individual bank. For simplicity,

each opportunity requires at maximum one unit of capital. Banks are risk neutral

and profit maximizers. This simply means wanting to achieve the highest expected

return from their investment. For the benchmark model, each bank is endowed with

one unit of capital, this assumption will be relaxed in section 3.4 when depositors will

be introduced into the framework but is currently maintained in order to demonstrate

the equilibrium behaviour of banks with greater clarity.

ShickIn period 0, banks choose to invest their capital on their own project or can

choose to invest any part of their capital in projects of other banks, provided that there

is mutual agreement. In order to simplify the analysis, returns on individual projects

are either high or low. In particular, each bank can be of type θ ∈ {l, h}, depending on

the return of the portfolio they own. The proportion of high type is common knowl-

edge and denoted by µ. Return of bank i is Ri ∈ {Rθ, 0}, with Rh > Rl. Further,

pr(Rθ) = p ∀ i. Ω is the state of the world, i.e. the resolution of all uncertainty, with

ω = {R1, . . . , RN}. We also assume that pRl > 1, so that for each bank investing in its

own portfolio is ex-ante optimal. Banks know their type but not that of other banks.

Moreover, they have the option of not investing all of their collected capital and keep

as much as they want as reserve, in case their project is distressed. In this case, the

reserved capital, yields 0 excess return. In the benchmark model, since pRl > 1, it will

never be individually rational for banks to maintain any reserve capital, however, this

may not be the case when depositors are added to the model.

In addition, with probability 1 − p the investment opportunity of a bank is dis-

tressed in period 1. The shock is i.i.d to each project and the likelihood is known.

In this case, the bank will still make a positive return from the investments it has

on other projects, assuming these projects are not distressed also. In the benchmark

model, an assumption that will be relaxed in the general case, we consider a bank to

be distressed and require liquidity if the shock destroys more than a threshold level

β, henceforth bankruptcy threshold, of the initial capital of the bank. In this case,
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the bank is considered bankrupt, unless liquidity is provided by the CB. Following

liquidity provision, the returns to the bank remain intact.

Figure 3.3.1: Timeline of benchmark model

• Banks choose
how to share

investment

projects

t = 0

• Ω is fully revealed

• CB decides whether

to provide liquidity

to banks

t = 1

• Returns are realized

t = 2

Effectively, this shock represents external factors to the investment that may affect

its liquidity. This may also be used to capture certain dynamics during a recession,

the shock could represent something like the effect of an overall lack of liquidity within

the economy. As a consequence, a solvent project may be affected by illiquid partners

and therefore require liquidity from the bank in order to survive.

Under these assumptions, each bank i maximizes its profits Πi;

max
sij

E[Πi] = E

[
N∑
j=1

sijRj|L

]
= p

N∑
j=1

sijRj + (1− p)
N∑
j=1

1Lj=1sijRj (3.1)

subject to:

N∑
j=1

sij ≤ 1,

where sij is the equity share of bank i in bank j’s portfolio. Any sharing sij has to

be agreed by both bank i and bank j. We denote Π1
i the period 1 returns on bank i,

before the CB has decided whether to provide liquidity. The set of all period 1 returns

for all banks is denoted by Π1. In addition, we define;

Li : Π
1 → {0, 1}

the function taking the value of 1 if the CB decides to provide liquidity to bank i

and 0 otherwise.
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3.3.2 Central Bank

To complete the benchmark model, we need to specify the role of the CB and char-

acterize the decision rule for providing liquidity to distressed banks.

In period 1, the central bank decides whether to save the distressed banks or not.

The CB has by assumption unlimited funds. In addition, in period 1 all uncertainty

has been resolved, and all aspects of the environment are common knowledge. The

CB operates under a simple rule: Provide liquidity to any distressed bank, if and only

if not doing so will cause a collapse of the banking system. Hence, in our framework,

systemic failure is defined as the extreme scenario in which all banks require liquidity

in order to survive. The CB will provide liquidity to a distressed bank i when not

doing so creates a systemic collapse.

Definition 3.1 (CB Rule). The CB will provide liquidity to bank i if and only if not

doing so implies that

N∑
j=1,j ̸=i

Πj = 0

Figure 3.3.2: Timeline of benchmark model for bank i - No sharing

Bank i

Πi

p

{Πi − siiRi, 0}
No Liquidity

Πi
Liqu

idity

1−
p

t = 0 t = 1 t = 2

3.3.3 Equilibrium Characterization

To begin the equilibrium characterization, consider the case in which there is no

central bank intervention. Then our model reduces to a static game in which banks

need to choose how much to share with each other.
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Lemma 3.1. In the absence of CB intervention, there is no NE in which high type

banks share their portfolios.

Proof. If no CB, then bank i maximizes;

max
sij

p

N∑
j=1

sijE[Rj] (3.2)

subject to:

N∑
j=1

sij ≤ 1,

Further, if banks do not know the other’s type, for any high type bank i,

E[Rj] =
(µN − 1)Rh + (1− µ)NRl

N − 1
< Rh.

and for any low type bank i,

E[Rj] =
(µN)Rh + ((1− µ)N − 1)Rl

N − 1
> Rl.

Therefore, the low type banks always have an incentive to mimic a high type. As

there is no way to credibly convey one’s type, high type banks prefer not to share their

investment.

Corollary 3.1. In the absence of a CB, in any NE any low type bank i is indifferent

between sharing its investment or investing in its own portfolio only.

Proof. By lemma 3.1 in any NE high type banks invest in their own portfolios only.

Therefore, E[Rj] = Rl. As banks are risk neutral and the expected returns are the same

for all banks willing to share, they are indifferent between any sij that is accepted by

the other bank.

Lemma 3.2. In any pooling equilibrium, i.e. an equilibrium in which high and low

type banks behave indistinguishably,

sij ≤ β, ∀i ̸= j.

Proof. From lemma 3.1 we know that in the absence of CB intervention this is satis-

fied. Consider the case that there is CB intervention and assume that there exists an
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equilibrium in which sij > β. Since there is CB intervention, bank j failing implies

that

N∑
i=1,i ̸=j

Πi = 0

by definition. However, bank i can propose a different level of sharing β ≤ s′ij < sij.

This level of sharing, would not impact any other bank, and therefore would not affect

the CB decision to provide liquidity to j. In addition, it increases the expected payoff

of both i and j if they are high types so it will be accepted by all high type banks.

Therefore, if a bank rejects this offer, then this must be a low type bank and this

cannot be a pooling equilibrium.

Lemma 3.3. For banks to be fully protected then each bank i has to invest in a single

other bank j, with

sij = β.

Proof. Assume not. Hence assume that sij < β. Then, if only bank j’s portfolio

collapses, i.e. the rest of the banks’ portfolios have positive returns, then bank i’s

shock is less than β. Hence, the CB will not intervene.

Full protection implies that the banking system is robust to even a single distressed

portfolio. Having established how banks can be fully protected, the remaining results

show that if banks choose to be protected they will do so only if they are fully protected.

Lemma 3.4. For any bank i with a high investment opportunity that chooses to share

its investment,

N∑
j=1,j ̸=i

sij = β.

Proof. If
∑N

j=1,j ̸=i sij < β then the CB will only provide liquidity to bank i if its

own project fails. Therefore bank i’s chance of CB intervention is not helped by its

investments to the other banks. As the returns of its own portfolio is higher than the

expected return of its investment in other banks’ portfolios, bank i would be better

off investing only in itself. Similarly, if
∑N

j=1,j ̸=i sij > β bank i can reduce its holdings

until
∑N

j=1,j ̸=i sij = β and maintain the same probability of liquidity provision while

increasing its expected profits.
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Corollary 3.2. Any bank i with a high investment opportunity that chooses to share

its investment, will do so if and only if it results in full protection.

Proof. This is a direct result from Lemmas 3.3 and 3.4.

By Lemma 3.4

N∑
j=1,j ̸=i

sij = β.

By Lemma 3.3, full protection requires

sij = β.

As the expected return of sharing with many banks is the same as sharing with

one other bank j, while the likelihood of being saved by the CB if required strictly

increases. It follows that if a bank i shares its investments it will do so with one other

bank and will consequently be fully protected.

3.3.4 Sharing rule

Lemma 3.3 establishes that to be fully protected banks share their portfolios with

exactly one other bank and they will share the minimum level of capital that will force

the CB to intervene, namely β. In addition, Corollary 3.2 establishes that if a high

type bank chooses to share it’s investment, it will ensure that it is fully protected.

Therefore, we can now determine under what conditions will banks choose to form

a network. In particular, the expected returns of bank i when it invests all its capital

to its own portfolio is:

E[ΠNS
i ] = pRi (3.3)

The return of bank i when the network is connected enough to ensure that the CB

will provide liquidity to any distressed bank is:

E[ΠS
i ] = (1− β)Ri + βE[Rj] (3.4)

Since banks are risk neutral, bank i will choose not to form a network if the expected

returns of doing so are higher, that is if:
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E[ΠNS
h ] ≥ E[ΠS

h ]

Rh

(
1 +

(1− p)( 1
N
− 1)

β(1− µ)

)
≥ Rl1

(3.5)

where ΠNS
h denotes the profits of a high type bank if it does not share its portfolio

and ΠS
h denotes its profits if it does. Note, that a low type bank always wants to share

its portfolio. Condition 3.5 is the main result of the benchmark model. It shows what

determines whether banks will endogenously increase systemic risk. As one would ex-

pect, the probability of a shock affects negatively the decision not to share investment

opportunities, whereas the bankruptcy threshold and the proportion of Rh, µ, affect it

positively.

This is an intuitive result as the CB is assumed to have unlimited funds and has

the ability to diminish risk completely from the perspective of banks. Moreover, the

number of banks has a relatively small but positive effect on condition 3.5, as with

even with a small number of banks the effect on the inequality becomes negligible.

3.4 Model with Depositors

3.4.1 Depositors

There areM depositors that have enough endowment to invest in all bank portfolios.

They are born at the beginning of each period and live for 1 period. By assumption

M > N . Depositors are risk neutral and have a utility that depends on their final

period consumption. Thus, the utility of a depositor that is born in period t is:

U(ct) = ct+1

At their initial period, they invest their endowment in the banks, which offer a

return d in the next period, a fraction of the total return that banks receive in each

period. The outside option return to investment is set to d. This ensures that it is in-

dividually rational for consumers to deposit in any bank. In addition, portfolio returns

are realized every period. In particular, each portfolio returns Ri/2 at t = 1 and t = 2

with probability p and 0 otherwise. These can be thought of as long-term portfolios

1For Derivation see Appendix 3.A.1.
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as they yield returns for 2 periods but the positions held by banks cannot change in

period 1. In addition, as, by assumption, there are more investors than banks, the

bargaining power lies with banks, who offer the minimum amount possible. This being

the case, bank types cannot be identified.

Thus,

0 < d <
Rl

2

Hence, if a bank is unable to provide the pledged returns in period 1, it must liqui-

date its assets and gets zero returns in the next period. This endogenizes the event of

a bankruptcy. It is beyond the purpose of this paper to analyse the liquidation process

further. As before, a regulator can step in and provide the necessary liquidity in order

for investors not to withdraw their capital.

We further extend the model to allow for banks to have access to a risk free asset,

denoted by R0, with return equal to 1, that banks can use to ensure they have the

necessary liquidity to pay back depositors in period 1. We denote bank i’s share of

deposits invested in R0 by si0.

Figure 3.4.1: Timeline with depositors and no sharing

Bank i

Πi =
Ri

2
− d

1− p

Πi = Ri − d(2+Ri)
2p

s
i0 = d

Πi = 0
no liquidity

Πi = Ri/2− d
liqui

dity1− p

Πi = Ri − 2dp

s i0
= 0

t = 0 t = 1 t = 2

This extension allows us to achieve two things. Firstly, bankruptcy is endogenised

and corresponds to the situation that the banks do not have enough liquidity to satisfy

their deposits. In addition, in this version, the CB provides enough liquidity for the

depositors to be paid, but does not allow banks to keep excessive returns after their
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portfolios have suffered a loss which is a more realistic assumption on the type of bank

interventions.

3.4.2 Sharing optimality with depositors

For any bank i the trade-off between sharing or not sharing depends on the amount

d pledged to investors and the returns of other banks. In particular, an individual bank

i will choose not to share its investment with other banks if its net returns are higher

when it stores some the capital pledged to depositors in period 1.

Firstly, we assume that for any bank, in the absence of a CB, the returns from

investing d in R0 in period 0 and thus ensuring sustainability in period 2, are always

higher than investing all of its available capital in period 0 and thus, going bankrupt

in period 1 in case of a shock.

Assumption 3.1.

E[Rd
i ] > E[Rnd

i ]

p

[
Ri −

d(2 +Ri)

2

]
+ (1− p)

[
Ri

2
− d

]
> p[Ri − 2d]

2d(2p− 1) > Ri(p(d+ 1)− 1)

That is, the increase in profits that banks make if they ensure they will survive the

second period are higher than the returns lost from storing instead of investing capital

d when there is no shock.

As in the baseline model, banks share investments only in order to be saved by the

CB in case of a crisis. In particular, banks that have projects with high return, will

be unwilling to invest in a project that may have lower return, and do so only if the

CB is going to intervene.

Note, that in order for any bank i to ensure that that the initial mechanism holds

for ensuring that the CB will intervene and provide them with enough liquidity, they

need to invest to another bank. In order for this behaviour to be optimal it must be a

best response for all banks. As before, banks with low returns will always be strictly

better off by investing in any other banks, as the expected return of the other banks

is higher than the return of their own project. Therefore, it is sufficient to show that
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this is a best response for any bank i with a high return project.

In order for the CB to intervene it must be the case that the failure of bank i has

made at least one more bank fail. In order for bank j to fail it is necessary that it does

not have enough liquidity to return to its investors. Also, since banks are expected to

depend on the CB to provide liquidity, they do not have any incentives to invest in

R0. Thus assuming that bank j has been hit by a crisis, it must be the case that:

Ri

2
(sii + sij) ≤ d

That is the period 1 returns of bank i when bank j has been hit by a shock must

be less than d in order for a CB intervention to be possible. But since, bank j has had

a crisis, this is equal to:

Ri

2
sii ≤ d

sii ≤
d

Ri

⇒ sij ≥ 1− sii ≥ 1− d

Ri

(3.6)

That is, condition 3.6 is a necessary condition for any CB intervention. By Lemma

3.3, as a high type bank would not want to share more than necessary, full protection

requires:

sii =
d

Ri

⇒ sij = 1− d

Ri

(3.7)

In addition, if 3.6 does not hold for bank i then it knows that the CB will not

intervene and thus it must always invest d in R0 by Assumption 3.1.

Therefore, following a logic similar to that in the baseline model, a bank i will find

it optimal to share its investments if:

E[ΠNS
h ]− E[ΠS

h ] > 0

Rh

k
>

1 + pN(1− 2d
k
)

1 + p(1− d)
2

(3.8)
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where,

k ≡ d

Rh
Rh + (1− d

Rh
)ϕ

is the one period expected return of a high type bank connected with a single other

bank and

ϕ ≡ (αN − 1)Rh + (1− α)Rl

(N − 1)

is the two period expected return of a bank of unknown type that is connected with

a high bank.

Note also that as N →∞, condition 3.8 becomes

lim
N→∞

Rh

k
>

1

1 + p(1− d)
(3.9)

which always holds since Rh > k. This is means for very large banking networks banks

always prefer not to share their investments. This makes sense as for very large net-

works the CB will intervene with certainty and hence all banks will make 0 profits

in period 1. This result is starkly different with the baseline model where N was not

important in determining banks’ behavior. The reason behind this is that in the ex-

tended model the CB’s intervention is costly to banks as they lose part of their profits.

Condition 3.8 is the main result of the paper. As in the benchmark model, whether

bank i will participate in the mechanism that forces the CB to intervene, depends

positively on the probability of the shock and negatively on the spread of returns and

the proportion of low return projects. The effect of d is also similar to β, i.e. it

decreases the willingness of banks to share investments.

2For the derivation of condition 3.8 see Appendix 3.A.2.

77



3.5 Concluding Remarks

In this chapter we develop a stylized model between risk neutral banks and a reg-

ulator. In our model banks can share investments through the interbank market thus

taking on a share of the other bank’s exposure to risk. Without the presence and

expected intervention of a regulator, banks with access to high return portfolios would

not do this, as it reduces their expected profits. However, if the regulator is expected to

intervene then banks may choose to share investment as this ensures that they cannot

go bankrupt. Therefore, in our model banks may choose to create networks in order

to become systematically important.

In the baseline model, we find that banks either connect in a circle, where each is

connected with a single other bank or they do not share investments with any other

bank. Which of the two depends negatively on the difference between the return of the

high and low portfolios, on the ratio of banks of high portfolios and on the bankruptcy

threshold. It depends positively on the likelihood of a single bank being distressed. The

number of banks in the system plays a negligible role in their behaviour. Crucially,

these results depend on a fairly extreme decision rule of the regulator, who commits

to save any bank if and only if not doing so causes systemic collapse.

Our baseline model is extended by adding depositors and thus endogenising the

bankruptcy threshold, adding a safe asset banks can invest in and allowing the regula-

tor to save depositors only and not banks, thereby making liquidity provision costly to

banks, a more realistic assumption. Qualitatively, the results of this extended model

remain similar. One stark difference is that in the model with depositors the number

of banks is very important in determining the equilibrium. In particular as the number

of banks increases the incentive to share investment decreases rapidly. This is because

in the extended model liquidity provision is costly for banks. Consequently, as the

number of banks increases, the likelihood that at least one will face a liquidity shock

goes to one and hence all banks loose period 1 profits with certainty. This suggests

that from a policy perspective, it is preferable for bailouts to be costly to banks.

Future research could extend the model by having the regulator maximize a social

welfare function, introduce a richer environment of portfolio returns and consider the

case of risk averse depositors and banks.
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Appendix

Appendix 3.A

3.A.1 Derivation of condition 3.5

Given that there are N banks, where µ is the proportion of banks with high return

and 1− µ the proportion of banks with low return, Rh and Rl. We know from lemma

3.3 that sij = β, hence, sii = 1− β. We also know, for a high portfolio bank:

E[Πh] = siiR
h + (1− sii)

(µN − 1)Rh + (1− µ)NRl

N − 1
(3.10)

Hence,

E[ΠNS
h ] ≥ E[ΠS

h ]

pRh ≥ (1− β)Rh + β
(µN − 1)Rh + (1− µ)NRl

N − 1

Rh (β − 1− p)(N − 1)− β(µN − 1)

N − 1
≥ β(1− µ)N

N − 1
Rl

Rh

(
1 +

(1− p)( 1
N
− 1)

β(1− µ)

)
≥ Rl
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3.A.2 Derivation of condition 3.8

Similarly to the previous derivation, bank i will find it optimal not to invest in any

bank j if:

E[ΠNS
h ]− E[ΠS

h ] > 0

p

[
Rh − d(2 +Rh)

2

]
+ (1− p)

[
Rh

2
− d

]
−

[
pN
( d

Rh
Rh + (1− d

Rh
)ϕ− 2d

)
+(1− pN)

(( d

Rh
Rh + (1− d

Rh
)ϕ

)
/2− d

)]
> 0

p

[
Rh − d(2 +Rh)

2

]
+ (1− p)

[
Rh

2
− d

]
−

[
pN
(
k − 2d

)
+(1− pN)

(k
2
− d
)]

> 0

1

2

(
2dpN − dpRh − kpN − k + pRh +Rh

)
> 0

2dpN − dpRh − kpN − k + pRh +Rh > 0

Rh
(
1 + p(1− d)

)
− k(1 + pN) + 2dpN > 0

Rh
(
1 + p(1− d)

)
> k(1 + pN)− 2dpN

Rh
(
1 + p(1− d)

)
k

> 1 + pN − 2dpN

k
Rh

k
>

1 + pN − pN 2d
k

1 + p− pd

where,

ϕ ≡ (αN − 1)Rh + (1− α)Rl

(N − 1)

is the two period expected return of a bank of unknown type that is connected with

a high bank and

k ≡ d

Rh
Rh + (1− d

Rh
)ϕ
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is the one period expected return of a high type bank i connected with a single

other bank and with sii =
d
Rh .
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Chapter 4

Electricity Sharing Agreement with

no Commitment and no

Observability

4.1 Introduction

An almost ubiquitous assumption in economics is that economic agents have in-

tertemporal consumption-smoothing preferences. Faced with an uncertain income

stream, the need to save arises in order to maintain future consumption levels. This

of course presupposes the ability to save. Famously, Kocherlakota (1996) explored the

properties of risk sharing when there is lack of commitment under symmetric informa-

tion and showed that it may lead to imperfect risk sharing for impatient enough agents.

However, there can be situations in which the assumption of symmetric information

needs to be relaxed also. This paper creates an algorithm to simulate an enforceable,

feasible and optimal agreement between to risk averse parties, where there is both lack

of commitment and information asymmetry.

We develop and characterise a sharing agreement in which two countries that pro-

duce electricity can improve on their individual utilities by sharing the electricity they

each generate. Electricity generation technology is stochastic and can be high or low.

The electricity generated by each country is observable only to itself. In addition,

countries cannot commit to a sharing agreement. The justification for this, is that this

environment would fit mostly developing countries, in which electricity institutions

may be less developed. For example, each country, due to a change in political regime,
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or other reasons, may opt to nullify a contract whenever they choose to. Moreover, we

compare the welfare gains between being part of this agreement and the autarky util-

ity level. We find that the agreement can increase the expected lifetime utility of each

party by 1%−5% depending on the level for risk aversion σ and impatience δ. Further,

we find that both σ and δ have a strong effect on the average consumption level per

state. σ’s being negative, while δ’s positive. Finally, we find that σ has a particularly

strong effect on the amount of time each party stays at the autarky utility level. These

results can be used to quantify the opportunity cost of not setting a bilaterally-trusted

independent authority that monitors and publicly reports electricity generation.

In the next section the relevant literature on risk sharing is discussed, in section

4.3 the model is described. Section 4.4 characterizes the dynamic programming form

of the model and describes the algorithm used to generate our results. Section 4.5

presents and discusses the results and section 4.6 concludes.

4.2 Literature Review

In his seminal paper Kocherlakota (1996) introduces a model of risk sharing be-

tween two consumers in a complete information environment without commitment.

They show that if players are patient enough, then there exists an SPNE in which they

will be able to achieve the first best. When players are not sufficiently patient, then

efficient allocations have the identical distributions of consumption between players,

which are positively correlated with current and lagged income. The strength of the

model explored in Kocherlakota (1996) is that it is a simple yet ubiquitous premise.

The crucial difference between our model and Kocherlakota’s paper is that in the lat-

ter aggregate income is constant each period and hence known to all agents. Our

model is also closely related to Thomas and Worrall (1988), in which they also ex-

amine non-enforceable arrangements between parties. Consequently parties can exit

the agreement at any point, meaning that any feasible arrangement must satisfy each

party’s participation constraint at any period. Similarly, (Ligon, Thomas, and Worrall,

2002) characterize an efficient and informal sharing mechanism between villagers that

want to pool their perishable and stochastically generated income. Ligon, Thomas,

and Worrall show that at the optimum consumption is correlated to per-period in-

come. Differently from us, these are environments of no aggregate uncertainty, while

in our paper there exists aggregate uncertainty and therefore information asymmetry

between parties.
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There have been many extensions to the basic no-commitment, no aggregate risk

sharing framework, both on the commitment side as well as on environments with in-

complete information. For example, Ábrahám and Laczó (2018) introduce a storage

technology which allows consumers to store their income, either publicly or privately,

as well as share their income in each period. They find that consumers never have an

incentive to store privately, which is unobserved by the other party and has the same

return as the public storage technology. They find that the return on storage is a key

determinant in the time-path of consumption. In a similar framework, that maintains

the no aggregate risk assumption, Koeppl (2007) introduce a costly punishment tech-

nology that agents can use when the other party decides to revert to autarky. They

show this technology is sometimes used on the equilibrium path. Introducing this tech-

nology is not possible in our framework due to our assumed aggregate uncertainty.

In order to satisfy both individual rationality and incentive compatibility con-

straints our mechanism is based on the idea of future promises to entice whoever has

the highest current income to share with the other party. This type of mechanism has

been explored in the gift exchange and trust literature. For example, Abdulkadiroğlu

and Bagwell (2013) study a repeated game in which privately informed players are

willing to share some of their income only if they anticipate a favour in the future.

In their case the size of the favor may decrease over time. A key requirement for the

existence of equilibrium in their set up is that favours can be reciprocated relatively

frequently. Möbius (2001) shows that even very infrequent favours can be bilaterally

sustained, if players are connected in networks which allow for a connected player to

reciprocate on one’s behalf. In our set up, the frequency with which sharing takes place

affects the gains from trade significantly.

Our paper is most closely related to Hertel (2004) and Nikandrova and Steinbuks

(2017). Hertel (2004) characterize a model which is like ours, with the difference that

uncertainty is one sided. In other words, in that paper there is a risk neutral consumer

with a steady income stream and one whose period income is privately known to be ei-

ther high or low. This model does not fit our envisaged application where uncertainty

must be two-sided. On the other hand, Nikandrova and Steinbuks (2017) consider

a very similar application to ours, i.e. electricity sharing between two countries and

therefore make many similar assumptions in terms of the interaction. However, instead

of numerically approximating the optimal sharing contract, they consider a sub-optimal
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token sharing mechanism that can be fully characterized.

4.3 Model

The model constructed in this paper extends the Efficient and Sustainable Risk

Sharing With Adverse Selection model, as developed in Hertel, 2004. In particular we

extend that framework by adding uncertain income generation for both parties. Our

model consists of two risk averse countries who engage in risk sharing of a non-storable

good, over an infinite horizon. Each country’s generated good is stochastic. This sec-

tion describes the model before the dynamic form of the sharing agreement is stated.

The numerical results are then presented and discussed.

There are two countries, henceforth denoted by i ∈ {1, 2}. Each country owns an

electricity generation technology. Electricity generated each period can be high with

probability q for country 1 and with probability p for country 2. We assume that

the levels of electricity generated by each country are independent. Hence, in each

time period there are four possible states of the world denoted by S = {(s1, s2) : si ∈
Si for i ∈ {1, 2}}, with Si = {L,H} ∀ i. Clearly, the first position of each element in S,

denotes the level of electricity produced by country 1 and the second that by country

2. In addition, sji ∈ Si refers to the state of player i independently to the state of the

other player, with j ∈ {L,H}. As a result of our assumption on independence between

states, the probability of each state is p(s) ∈ {(1− q)(1− p), (1− q)p, q(1− p), qp}. For
readability, we denote the amount electricity generated in state sj by each country, i.e.

es
j
i , by eji and the aggregate electricity generated in each state by es. That is, eh1 refers

the electricity generated by country 1 being high and ehh to the aggregate electricity

generated in state shh . Hence, the possible aggregate levels of electricity for every time

period are:

es =


ehh = eh1 + eh2 ,

ehl = eh1 + el2,

elh = el1 + eh2 ,

ell = el1 + el2,

In addition, the states between time periods are assumed to be identically and

independently distributed, with sjt being the state of the world in period t. A sequence

(sj1, s
j
2, . . . , s

j
t) is a history of states denoted by ht. Ht := {LL,LH,HL,HH}t denotes
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the set of all histories in period t and H =
⋃∞

t=1Ht∪{h0} that of all possible histories.
It follows by the independence of states that the probability of each history ht is,

p(ht) = pn(1− p)t−nqm(1− q)t−m

where n is the number of high states in t periods for country 2 and m is the equiv-

alent for country 1.

A mapping c : H → R is a sharing rule that describes the consumption of electric-

ity for country 1 for every ht ∈ H. We denote by cht the consumption of electricity

by country 1 after any history ht according to the sharing rule c. In addition, csht−1

is the consumption of country 1 under the sharing rule c, with history ht−1 and st.

It follows that the electricity consumption of country 2 is est − csht−1
, where est is the

aggregate electricity generated in period t. The sharing rule c∗ is the autarky sharing

rule, in other words, the sharing rule in which no transfers are made and each country

consumes all the electricity it generates at every period.

Countries’ periodic utilities ui are strictly concave and increasing. They exhibit

non-increasing absolute risk aversion. That is, for x, y and z ∈ R, α > 0 and λ ∈ (0, 1),

λυi(x) + (1− λ)υi(y) ≥ υi(z)

implies

λυi(x+ α) + (1− λ)υi(y + α) ≥ υi(z + α),

for i = {1, 2}. Therefore the expected utility for country 1 under any sharing rule c

that induces true revelation of the state by both countries is:

U i(c) =
∞∑
t=1

δt−1
∑
ht∈H

u(cht)p(ht)

Given the above, the game is as follows. Each period, the countries observe their

own production of electricity and not the electricity produced by the other country.

They each announce their own levels of production. The sharing rule c specifies how

much electricity will be transferred between each other. Electricity is consumed in-
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stantaneously and the next period the process starts from the beginning. The process

can be seen in figure 1.

Figure 4.3.1: Within period timeline

Countries’ observe

their own state

t

States are

announced

Electricity is transferred

according to sharing rule c

Process is repeated

t+ 1

We aim to construct a unique sharing rule that is pareto dominant, efficient and

sustainable. In other words, we want to describe a sharing rule c such that both

countries’ would be willing to participate in and that there exists no other sharing rule

that would be pareto dominating, in the sense that it improves the lifetime utility of

any of the two players without making the other worse off. In the following section we

describe the necessary conditions of such a sharing rule.

4.3.1 Feasibility and sustainability

As stated above, electricity is considered a non-storable good. As such, feasibility

of any sharing rule dictates that the total consumption of electricity in any period t

must not exceed the total generation at that period. Clearly, given that countries’

utility is strictly increasing in electricity consumption, all electricity generated in any

period will be consumed.

0 ≤ cjht−1
≤ ejt , ∀ t (F )

The participation constraint states that any sharing rule must offer a weakly higher

expected utility to both countries than the expected utility that they obtain if they

deviate to the autarky sharing rule, c∗. The rationale behind this constraint is straight-

forward. Since, countries cannot commit to any sharing level prior to the revelation of

each state, they will trade electricity if, and only if, in doing so they achieve a weakly

higher expected utility than their expected utility when no sharing takes place. That

is, the participation constraint dictates:
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U i
H(cht−1) ≥ ui(ehi ) + δU i

s(c
∗), (P i

H)

U i
L(cht−1) ≥ ui(eli) + δU i

s(c
∗), (P i

L)

for all ht−1 ∈ H and countries 1 and 2.

U i
H(L)(cht−1), refers to the expected utility of country i under sharing rule c and

ht−1, when their individual state at t is h(l) but they do not know the amount of

electricity generated by the other country.

In addition, given that there is no commitment, P i
L sets the lower limit of the ex-

pected utility that any sharing agreement must satisfy. Therefore we will only consider

sharing rules that guarantee to each country an expected utility equal to their utility

after sil and the continuation autarky utility, that is, U i(c) ≥ ui(eil) + δU i
s(c

∗) for all t

and all ht ∈ H. More generally, as the states are independent and electricity is non-

storable, the interim utility, i.e. the utility for each country, after state s is realised

and before they know the state of the other country, is:

U i
sji
(c) = ui(c(s

j
i )) + δU i(c(sji ))

Where u1(c(s
j
1)) refers to the expected utility of country 1 in state sj1 and history

ht. Similarly, u2(c(s
j
2)), is the expected utility of country 2, when her state is sj2.

The revelation constraint, R, requires that both countries must find it weakly op-

timal to announce their state truthfully, for all ht−1 and all sji . That is:

U i
H(cht−1) ≥ ui(clht−1

+ ehi − eli) + δU i(clht−1
) (Ri

H)

U i
L(cht−1) ≥ ui(chht−1

− ehi + eli) + δU i(chht−1
) (Ri

L)

Note that Ri
L will always be satisfied if both chhht−1

− (eh1 − el1) < 0 and chlht−1
− (eh1 −

el1) < 0, as this makes the consumption of country 1 in period t negative. Similarly R2
L

will always be satisfied if, ehh − chhht−1
− (eh2 − el2) < 0 and ell − clhht−1

− (eh2 − el2) < 0.
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Henceforth, we will assume that this is always the case and ignore these constraints.

Indeed, this will be violated when the distribution of the two levels of electricity is very

concentrated, thus decreasing the relevance of our model as the need for them to share

electricity decreases substantially.

A sharing rule c is sustainable if it is a subgame perfect Nash equilibrium (SPNE)

outcome of the agreement. That is, if there is no profitable deviation for any player

in any period. Hence, any sharing agreement is a SPNE if the feasibility, participation

and revelation constraints are satisfied for all ht−1 ∈ H.

Definition 4.1. A sustainable sharing rule is a function c : H → R that satisfies P ,

R and F for all ht−1 ∈ H.

4.3.2 Efficiency

As discussed above, the constraints Ri
L and P i

L will always be satisfied, according

to our assumptions. Hence we define the set of sustainable sharing rules as:

C = {c|c : H → R and c satisfies P i
H , R

i
H and F ∀ht−1 ∈ H}

We are interested in the sharing rules within C, which are efficient, in the sense that

they are not Pareto dominated. To find these we first characterize the actions taken

in equilibrium by both countries.

Given a sharing rule c, at any history ht = (ht−1, s
j
t) countries 1 and 2 announce

their states truthfully. Country 1 makes a transfer max{ej1 − cjht−1
, 0} and country 2

makes a transfer max{cjht−1
− ej1, 0}. Deviation from any player triggers a permanent

reversion to the autarky contract, c∗, i.e. zero transfers from both countries for all ht.

This strategy profile induces a sharing rule, that is a subgame perfect nash equilibrium

of the sharing model. As long as Ri
H and P i

H are satisfied, no country has an incentive

to deviate from their strategy. This leads to the following definition.

Definition 4.2. A sharing rule c is efficient in the set C if c ∈ C and c is not Pareto

dominated by any other c′ ∈ C. The set of efficient sharing rules in C is denoted by

E(C).
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4.3.3 Formulation of maximization problem

The following maximization problem characterizes a unique, efficient and sustain-

able sharing rule.

W (k) = max U2(c) subject to c ∈ C and U1(c) ≥ k.

Let, S(k) be the set of sharing rules that solve the above maximization problem.

Hence,

S(k) = {c|c ∈ C and U1(c) ≥ k and U2(c) = W (k)}

Then the set of country 1 attainable utilities is:

K = {k| ∃ c ∈ C s.t. U1(c) = k}

Therefore, according to this maximization formulation, country 2 maximizes its

discounted lifetime expected utility subject to the discounted lifetime expected utility

of country 1 being equal to k and P , R, F being satisfied for both countries. We use

Proposition 1 and Lemma 1 to show existence and uniqueness of the proposed efficient

sharing rule.

First, we show that although C is not a convex set, we can always construct Pareto

dominating combinations of sustainable sharing rules from c′, c′′ ∈ C that are part of

C. Formally:

Lemma 4.1. For any c′, c′′ ∈ C such that c′ ̸= c′′ and any λ ∈ (0, 1), there exists c ∈ C
such that

U1(c′) = λU1(c′) + (1− λ)U1(c′′),

U2(c′) ≥ λU2(c′) + (1− λ)U2(c′′).
(4.1)

Proof. See Appendix.

Lemma 4.1 shows that although the set C may not be convex, for any two different

sharing rules ∈ C we can always construct an sharing rule that is also ∈ C and in which

both countries are at least as well of. This allows to use the following proposition.

Proposition 4.1. S(k) exists when K = [k∗, k∗∗] is non empty, has a single element

for each k ∈ K and W : K → R is a concave and strictly decreasing function. In
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addition, k∗ = minK = U1(c∗), k∗∗ = supK and W (k∗∗) = U2(c∗).

Proof. See Hertel (2004) Proposition 1.

It follows directly from Proposition 4.1 that the maximization problem described

above characterizes a unique and efficient sharing rule, which exists as long as K is

non-empty.

4.4 Computation

4.4.1 Dynamic Programming form

In this section we state W (k) in a dynamic programming form. This will enable us

to get numerical solutions for ck, henceforth the sharing agreement that is a solution

to S(k).

By proposition 4.1 the sharing agreement maximizes the utility of country 2:1

W (k) = max qp[υ2(ehh − chh) + δW (Chh)] + q(1− p)[υ2(ehl − chl) + δW (Chl)]

+ (1− q)p[υ2(elh − clh) + δW (Clh)] + (1− q)(1− p)[υ2(ell − cll) + δW (Cll)] (4.2)

subject to the promise made to country 1, k:

s.t. qp[υ1(chh) + δChh] + q(1− p)[υ1(chl) + δChl]

+ (1− q)p[υ1(clh) + δClh] + (1− q)(1− p)[υ1(cll) + δCll] ≥ k (4.3)

In addition, in order to ensure truth telling by both countries after any promise

the revelation constraints of both countries’ when electricity generation is high must

be satisfied:

1For clarification on notation used here see Appendix 4.A.2.
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p[υ1(chh) + δChh] + (1− p)[υ1(chl) + δChl] ≥

p[υ1(clh + (ehh − elh)) + δClh] + (1− p)[υ1(cll + (ehl − ell)) + δCll], (R1
H)

q[υ2(ehh − chh) + δW (Chh)] + (1− q)[υ2(elh − clh) + δW (Clh)]

≥ q[υ2(ehl − chl + (ehh − elh)) + δW (Chl)] + (1− q)[υ2(ell − cll + (elh − ell)) + δW (Cll)] (R2
H)

Further, as there is no commitment, any country can walk away from the agreement

at any period. To ensure that this does not happen, the participation constraints have

to be satisfied when electricity generation is high:

q[υ2(ehh − chh) + δW (Chh)] + (1− q)[υ2(elh − clh) + δW (Clh)] ≥ U2(c∗), (P 2
H)

p[υ1(chh) + δChh] + (1− p)[υ1(chl) + δChl] ≥ U1(c∗) (P 1
H)

Finally, feasibility requires that:

(cll, chl, clh, chh, Cll, Chl, Clh, Chh) ∈ [0, ell]× [0, ehl]× [0, elh]× [0, ehh]×K4, (4.4)

where the functions, cij : K → [0, eij] and Cij : K → K iteratively characterise

ck ∀ k ∈ K. Therefore, the sharing rule is characterized by the tuple
(
cll, clh, chl, chh,

Cll, Clh, Chl, Chh

)
: at h0 U1(ck) = k. In the next period, consumption is determined

by cij and k changes according to Cij.

4.4.2 Description of algorithm

This section briefly explains how the algorithm works.2 Firstly, we create a grid

from G∗ to G∗∗, with G∗ = U1
aut.

3 G∗∗ is initially unknown but it must be the case

that V F (G∗∗) = U2
aut. This is because, the value function is strictly decreasing in G by

proposition 4.1 and the lowest utility that will satisfy player 2’s participation constraint

is that which gives her the same utility as her autarky utility. The algorithm initially

guesses G∗∗ randomly. Matrix BG is created which contains all possible permutations

2For the full Mathematica code see appendix 4.A.5
3The notation used in this section is the one used in the algorithm. For a legend see appendix

4.A.4.
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of four values selected from the grid, G. Each row in BG represents future promises

to player 1, one for each of the four possible states at time t. That is, the first element

of each row in BG is a candidate for a promise utility to player 1 after the state ll is

announced, the second after the state lh, the third after hl and the last after hh.

The next step is to create matrix kBG12c. This is a matrix with 9 columns. The

first is a value taken from grid, G, the next four are four possible levels of future

promises, i.e. one for each state. The final four columns denote the position of these in

grid G. The number of rows of kBG12c is equal to the number of rows in BG times the

number of rows in G. That is, the matrix kBG12c contains all possible combinations

of promises after each state realization in the next period, for all grid points of today’s

promised utility, Gt.

Using matrix kBG12c and a random vector, named V sgsg, that has the same

number of elements as G and is an initial guess for the value corresponding to each

promise level in G, arguments cll, clh, chl and chh are estimated. These values are

consumption levels for player 2, that maximize player 2’s utility for all promise levels

and all combinations of future state contingent promises, given our guessed values. An

augmented matrix is created, named KbgBG12. It has the same number of rows as

kBG12c but has additional columns for the estimated optimal consumption levels for

each element in G. KbgBG12 is then partitioned into submatrices, each with the same

number of columns and each row’s first element being the same level value. That is,

each submatrix corresponds to all the possible future promises and current levels of

consumption for the same level of promised utility. For each grid value, the highest

utility that player 2 can achieve, given that all the constraints are satisfied, is then

used as the guess of the value associated with that grid value.

This process is repeated, with initial guesses the output of the previous guesses

until the value function converges, i.e. the output grid and the input grid are the same

up to some level of accuracy. The final step is finding the upper bound of G. That is,

the value of G∗∗ such that V F (G∗∗) = U2
aut. This involves a second level of iteration. If

this condition doesn’t hold we make a new guess for G∗∗ and repeat the entire process.

We repeat the whole process until V F (G∗∗) = U2
aut.
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4.5 Results

The purpose of this paper is to assess the extent to which two-sided uncertainty

hampers the scope for agents to trade. This is particularly important in the example of

electricity sharing as it indicates the extent to which an external independent observer

is necessary. In addition, we are also interested to qualitatively assess the relative

importance the risk aversion and patience of agents’ have on the long-term consump-

tion properties of these agreements. To this end we use the algorithm to estimate the

long-term utility of agents and compare to the autarky case for different values of risk

aversion and and patience coefficients.

Our numerical results are derived using the algorithm that exploits the dynamic

formulation of the maximization problem. We assume that consumers have a CRRA

utility function of the form u(c) = c(1−σ)

1−σ
. Also, e1l = e2l = 0.1 and e1h = e2h = 1.9. In

addition, we assume that the risk aversion coefficient, σ and the impatience coefficient,

δ, are the same for both countries. Moreover, p = q = 0.5 Under these assumptions, the

following figures show the estimated value function as well as the estimated functions

for cij(k) and Cij(k) , for all values of k.

Table 4.5.1 shows the expected consumption levels for each country based on the

announced states. These can be compared with the level of 0.1 and 1.9 that they are

able to consume on their own when their individual state is low and high respectively.

As can be seen by the table, the sharing agreement makes them consume less than

their income sometimes when both countries are in the bad state. This is because their

period consumption depends both on the current state and on the promised utility K.
Consequently, if an agent’s promise to the other is high, they may need to consume

less than their income even in state l.

In addition one can see both the effect of σ and on δ in table 4.5.1. In particular, as

σ increases from 0.3 to 0.8, consumption levels decrease by approximately 20% when

δ = 0.9 and by approximately 10.8% when δ = 0.96. Both these results are intuitive.

The fact that as risk aversion increases period consumption decreases is stemming from

the fact that more risk averse agents have stronger concern for consumption smoothing

and as such, care relatively more about changes in their promised level of utility K.
Further, higher values of impatience, δ, imply the opposite, agents care about today’s

consumption more and hence the effect of σ is relatively smaller for high δ.
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Table 4.5.1: Average Consumption

Agents’ average consumption per state - cll, clh, chl, chh

δ = 0.9 δ = 0.96

σ = 0.3 0.1041, 0.5535, 1.4597, 1.8620 0.0921, 0.6104, 1.2817, 1.9011
σ = 0.8 0.0649, 0.4119, 1.2049, 1.8692 0.0776, 0.6769, 0.9571, 1.6525

Table 4.5.2 on the other shows the percentage time each country’s expected utility

is equal to the autarky utility under the agreement. Two observations are striking from

this table. First, being part of the agreement means that the vast majority of time

countries enjoy an expected lifetime utility higher then the autarky utility. Second, the

degree of risk aversion has a very significant impact on the amount of time spent in

the autarky utility level. The magnitude of the second effect is fairly similar for both

values of δ. One hypothesis about this result is that more risk averse consumers are

willing to give up today’s consumption for higher future promise. But this means that

a bad streak of electricity generation can relatively easily send someone to the autarky

utility level. Put differently, more risk averse consumers are more sensitive to changes

in promised utility, which makes it more variable and thus more likely to reach the

autarky level.

Table 4.5.2: Time in Autarky

Percentage time spent in autarky utility

δ = 0.9 δ = 0.96

σ = 0.3 8.7% 9.2%
σ = 0.8 18.6% 20.8%

Table 4.5.3 shows the difference in expected lifetime utility between the autarky

and the sharing agreement. It can be seen that the improvement, depending on the

level of risk aversion and patience, varies 1%−5% approximately. In this case it seems

the more significant effect is that of the patience parameter δ. The more patient a

country is, i.e. the more it values it’s future consumption, the less willing it is to trade

future earning for consumption smoothing.
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Table 4.5.3: Lifetime Utility

Expected Lifetime Utility (Autarky)

δ = 0.9 δ = 0.96

σ = 0.3 13.17 (12.62) 32.09 (31.55)
σ = 0.8 45.81 (44.20) 111.35 (110.5)

4.6 Concluding Remarks

In this paper we study a dynamic sharing agreement without commitment and with

asymmetric information between two risk averse parties who each generate a perish-

able consumption good stochastically. We describe an efficient, sustainable and feasible

sharing rule that allows the parties to share the good between them by satisfying their

incentive compatibility and participation constraints in each period and any history.

The agreement is based on the idea of a promised utility level that one party owes to the

other and that has to be satisfied each period. The level of that promised utility varies

each period according to each party’s announcement and the previous period’s promise.

We construct an algorithm to simulate the agreement and study it’s long-term prop-

erties. We find that the agreement can increase the expected lifetime utility of each

party by 1%−5% depending on the level for risk aversion σ and impatience δ. Further,

we find that both σ and δ have a strong effect on the average consumption level per

state. σ’s being negative, while δ’s positive. Finally, we find that σ has a particularly

strong effect on the time each party stays at the autarky utility level. The intuition

behind this is that a high degree of risk aversion makes parties’ utility more sensitive

to changes in promised utilities, which causes them to fluctuate more and thus spend

more time on the autarky level also.

In the context of electricity sharing between two developing countries, these results

can be used to quantify the opportunity cost of not setting a bilaterally-trusted inde-

pendent authority that monitors and publicly reports electricity generation. As our

results are relatively crude estimates due to the coarseness of our grid as well as the

few parameter values used for calibration, further development of our algorithm would

be a natural next step in order to provide more accurate results.
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Appendix

Appendix 4.A

4.A.1 Proof of Lemma 4.1

Proof. To construct c from c′ and c′′ choose c(ht) s.t.

υ1(c(ht)) = λυ1(c
′(ht)) + (1− λ)υ1(c

′′(ht)), ∀ht ∈ H

As υ1 is strictly concave, c(ht) ≤ λc′(ht) + (1− λ)c′′(ht) hence:

υ2(e(ht)− c(ht)) ≥ λυ2(e(ht)− c′(ht)) + (1− λ)υ2(e(ht)− c′′(ht)), ∀ht ∈ H

Hence, c satisfies Lemma 1 and P 2
H . We therefore need to show that it also satisfies

P 1
H , R

2
H and R1

H , so that c ∈ C indeed.

First, P 2
H will definitely be satisfied as by construction U2(c) is greater than both

U2(c′) and U2(c′′) and therefore it must be greater than U2(c∗h). A similar argument

holds for P 1
H . In particular since U1(c) = λU1(c′) + (1− λ)U1(c′′) it must be the case

that, U1(c) > min{U1(c′), U1(c′′)}, when c′ ̸= c′′. As both sharing rules c′ and c′′ satisfy

P 1
H , so does c.

Finally, we show that R1
H is also satisfied. By assumption:

p[υ1(c
′
hh) + δC ′

hh] + (1− p)[υ1(c
′
hl) + δC ′

hl] ≥ p[υ1(c
′
lh + (ehh − elh)) + δC ′

lh] + (1− p)[υ1(c
′
ll + (ehl − ell))

+δC ′
ll]

p[υ1(c
′′
hh) + δC ′′

hh] + (1− p)[υ1(c
′′
hl) + δC ′′

hl] ≥ p[υ1(c
′′
lh + (ehh − elh)) + δC ′′

lh] + (1− p)[υ1(c
′′
ll + (ehl − ell))

+δC ′′
ll]
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Then,

p[υ1(chh) + δChh] + (1− p)[υ1(chl) + δChl] =

λ
[
p[υ1(c

′
hh) + δC ′

hh] + (1− p)[υ1(c
′
hl) + δC ′

hl]
]
+ (1− λ)

[
p[υ1(c

′′
hh) + δC ′′

hh] + (1− p)[υ1(c
′′
hl) + δC ′′

hl]
]
≥

λ
[
p[υ1(c

′
lh + (ehh − elh)) + δC ′

lh] + (1− p)[υ1(c
′
ll + (ehl − ell)) + δC ′

ll]
]
+

(1− λ)
[
p[υ1(c

′′
lh + (ehh − elh)) + δC ′′

lh] + (1− p)[υ1(c
′′
ll + (ehl − ell)) + δC ′′

ll]
]
=

λ
[
p[υ1(c

′
lh + (ehh − elh)) + (1− p)[υ1(c

′
ll + (ehl − ell))

]
+ (1− λ)

[
p[υ1(c

′′
lh + (ehh − elh)) + (1− p)[υ1(c

′′
ll + (ehl − ell))

]
+ δ(p Clh + (1− p) Cll)

Note that:

λ
[
p[υ1(c

′
lh + (ehh − elh))

+ (1− p)[υ1(c
′
ll + (ehl − ell))

]
+ (1− λ)

[
p[υ1(c

′′
lh + (ehh − elh)) + (1− p)[υ1(c

′′
ll + (ehl − ell))

]
≥

p[υ1(clh + (ehh − elh))] + (1− p)[υ1(cll + (ehl − ell))]

Since, υ is a strictly concave function and by construction U1(c) = λU1(c′) + (1−
λ)U1(c′′). Hence, the above inequality must be true since a constant positive term is

added to all the consumption levels of country 1.

It follows that:

p[υ1(chh) + δChh] + (1− p)[υ1(chl) + δChl] ≥

p[υ1(clh + (ehh − elh)) + δClh] + (1− p)[υ1(cll + (ehl − ell)) + δCll
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4.A.2 Definitions for arguments in W (k)

Define, ∀k ∈ K:

cll(k) = ck(LL)→ player 1 consumption at sll s.t. k

clh(k) = ck(LH)→ player 1 consumption at slh s.t. k

chl(k) = ck(HL)→ player 1 consumption at shl s.t. k

chh(k) = ck(HH)→ player 1 consumption at shh s.t. k

Cll(k) = U1(ckLL)→ player 1 expected lifetime utility after state sll s.t. k

Clh(k) = U1(ckLH)→ player 1 expected lifetime utility after state slh s.t. k

Chl(k) = U1(ckHL)→ player 1 expected lifetime utility after state shl s.t. k

Chh(k) = U1(ckHH)→ player 1 expected lifetime utility after state shh s.t. k

4.A.3 Algorithm

Wn(kn) = max qp[υ2(3.8 − chh) + δWn−1(Chh)] + q(1 − p)[υ2(2 − chl)

+ δWn−1(Chl)] + (1 − q)p[υ2(2 − clh) + δWn−1(Clh)] + (1 − q)(1 − p)[υ2(0.2 − cll) + δWn−1(Cll)]

s.t. qp[υ1(chh) + δChh] + q(1 − p)[υ1(chl) + δChl]

+ (1 − q)p[υ1(clh) + δClh] + (1 − q)(1 − p)[υ1(cll) + δCll] ≥ kn,

p[υ1(chh) + δChh] + (1 − p)[υ1(chl) + δChl] ≥ p[υ1(clh + 1.8) + δClh] + (1 − p)[υ1(cll + 1.8) + δCll], (R
1
H )

q[υ2(3.8 − chh) + δWn−1(Chh)] + (1 − q)[υ2(2 − clh) + δWn−1(Clh)] ≥ q[υ2(2 − chl + 1.8) + δWn−1(Chl)]

+ (1 − q)[υ2(0.2 − cll + 1.8) + δWn−1(Cll)], (R
2
H )

q[υ2(3.8 − chh) + δWn−1(Chh)] + (1 − q)[υ2(2 − clh) + δWn−1(Clh)] ≥ U
2
(c

∗
), (P

2
H )

q[υ2(2 − chl) + δWn−1(Chl)] + (1 − q)[υ2(0.2 − cll) + δWn−1(Cll)] ≥ U
2
(c

∗
), (P

2
L)

p[υ1(chh) + δChh] + (1 − p)[υ1(chl) + δChl] ≥ U
1
(c

∗
), (P

1
H )

p[υ1(clh) + δClh] + (1 − p)[υ1(cll) + δCll] ≥ U
1
(c

∗
), (P

1
L)

(cll, chl, clh, chh, Cll, Chl, Clh, Chh) ∈ [0, 0.2] × [0, 2] × [0, 2] × [0, 3.8] × K4
n−1, and (F

′
)

Kn = [k
∗
, k

∗∗
n ], where k

∗∗
n := max k : Wn(k) ≥ U

2
(c

∗
)
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4.A.4 Mathematica code legend

Symbol Description

p Probability of high state for player 2

q Probability of high state for player 1

δ Discount rate

σ Relative risk aversion coefficient

G Vector of possible utility promises

BG All possible combinations of 4 elements from vector G

cll, clh, chl, chh Consumption of player 1 after states are announced

CLL, CLH, CHL, CHH Continuation utility for player 1 after states are announced

BG1, BG2, BG3, BG4 Position of each continuation utility after each state in vector G

Uaut Autarky utility

Uauth Autarky utility after high state

Uautl Autarky utility after low state

Vsgsg Vector of guesses for the values of the value function for each promise level

kBG12 Matrix with rows: (Gi, CLLi, CLHi, CHLi, CHHi, BG1i, BG2i, BG3i, BG4i)

VF Value function:

ST Constraint: U1(c) ≥ k

RH1 R1
H

RH2 R2
H

PH1 P 1
H

PL1 P 1
L

PH2 P 2
H

PL2 R2
L

KbgBG12 Matrix with rows (Gi, clli, clhi, chli, chhi, CLLi, CLHi, CHLi, CHHi, BG1i, BG2i, BG3i, BG4i)
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4.A.5 Mathematica code

VF[{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

Re [ q p ( u [ 3 . 8 − chh ] + \ [ Delta ] Vsgsg [ [ BG4 ] ] ) +

q (1 − p) ( u [ 2 − ch l ] + \ [ Delta ] Vsgsg [ [ BG3 ] ] ) + (1 − q ) p (

u [ 2 − c lh ] + \ [ Delta ] Vsgsg [ [ BG2 ] ] ) + (1 − q ) (1 − p) (

u [ 0 . 2 − c l l ] + \ [ Delta ] Vsgsg [ [ BG1 ] ] ) ] ;

ST[{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

q p (u [ chh ] + \ [ Delta ] CHH) +

q (1 − p) (u [ ch l ] + \ [ Delta ] CHL) + (1 −
q ) p (u [ c lh ] + \ [ Delta ] CLH ) + (1 − q ) (1 −
p) (u [ c l l ] + \ [ Delta ] CLL ) − t ;

ST1 [{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 , BG4 } ] :=

ST[{ t , 0 . 2 , 2 , 2 , 3 . 8 , CLL, CLH, CHL, CHH, BG1, BG2, BG3, BG4} ] ;
RH1[{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

p (u [ chh ] + \ [ Delta ] CHH) + (1 − p) (u [ ch l ] + \ [ Delta ] CHL) −
p (u [ c lh + 1 . 8 ] + \ [ Delta ] CLH) − (1 −

p) (u [ c l l + 1 . 8 ] + \ [ Delta ] CLL ) ;

RH11[{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 , BG4 } ] :=

RH1[{ t , 0 . 2 , 2 , 2 , 3 . 8 , CLL, CLH, CHL, CHH, BG1, BG2, BG3, BG4} ] ;
RH2[{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

q (u [ 3 . 8 − chh ] + \ [ Delta ] Vsgsg [ [ BG4 ] ] ) + (1 −
q ) (u [ 2 − c lh ] + \ [ Delta ] Vsgsg [ [ BG2 ] ] ) −

q (u [ 2 − ch l + 1 . 8 ] + \ [ Delta ] Vsgsg [ [ BG3 ] ] ) − (1 −
q ) (u [ 0 . 2 − c l l + 1 . 8 ] + \ [ Delta ] Vsgsg [ [ BG1 ] ] ) ;

RH21[{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 , BG4 } ] :=

RH2[{ t , 0 , 0 , 0 , 0 , CLL, CLH, CHL, CHH, BG1, BG2, BG3, BG4} ] ;
PH1[{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

p (u [ chh ] + \ [ Delta ] CHH) + (1 − p) (u [ ch l ] + \ [ Delta ] CHL ) − Uauth ;

PH11 [{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 , BG4 } ] :=
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PH1[{ t , 0 . 2 , 2 , 2 , 3 . 8 , CLL, CLH, CHL, CHH, BG1, BG2, BG3, BG4} ] ;
PL1 [{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

p (u [ c lh ] + \ [ Delta ] CLH ) + (1 − p) ( u [ c l l ] + \ [ Delta ] CLL) −
Uautl ;

PL11 [{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 , BG4 } ] :=

PL1 [{ t , 0 . 2 , 2 , 2 , 3 . 8 , CLL, CLH, CHL, CHH, BG1, BG2, BG3, BG4} ] ;
PL2 [{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

q (u [ 2 − ch l ] + \ [ Delta ] Vsgsg [ [ BG2 ] ] ) + (1 − q ) (

u [ 0 . 2 − c l l ] + \ [ Delta ] Vsgsg [ [ BG1 ] ] ) − Uautl ;

PL22 [{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 , BG4 } ] :=

PL2 [{ t , 0 , 0 , 0 , 0 , CLL, CLH, CHL, CHH, BG1, BG2, BG3, BG4} ] ;
PH2[{ t , c l l , c lh , ch l , chh , CLL , CLH , CHL , CHH , BG1 , BG2 ,

BG3 , BG4 } ] :=

q (u [ 3 . 8 − chh ] + \ [ Delta ] Vsgsg [ [ BG4 ] ] ) + (1 −
q ) (u [ 2 − c lh ] + \ [ Delta ] Vsgsg [ [ BG3 ] ] ) − Uauth ;

PH22 [{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 , BG4 } ] :=

PH2[{ t , 0 , 0 , 0 , 0 , CLL, CLH, CHL, CHH, BG1, BG2, BG3, BG4} ] ;
u [ c ] := c ˆ(1 − \ [ Sigma ] ) / (

1 − \ [ Sigma ] ) ; \ [ Delta ] = 0 .96 ; p = 0 .5 ; \ [ Sigma ] = 0 .3 ; q = \
0 . 5 ; ( ∗ Value func t i on and pa r t i c i p a t i on , i n c en t i v e compatible and \
promised u t i l i t y c on s t r a i n t s ∗ ) (∗Autarchy u t i l i t y ∗)Uaut = (

p u [ 1 . 9 ] + (1 − p) u [ 0 . 1 ] ) \ !\ (
\∗Underoverscr iptBox [ \ ( \ [ Sum] \ ) , \( t = 0\ ) , \ (\ [ I n f i n i t y ] \ ) ]
\∗ Superscr iptBox [ \ ( \ [ Delta ] \ ) , \( t \ ) ] \ ) ; ( ∗ Autarchy u t i l i t y a f t e r high \
s t a t e ∗)Uauth = u [ 1 . 9 ] + (p u [ 1 . 9 ] + (1 − p) u [ 0 . 1 ] ) \ !\ (
\∗Underoverscr iptBox [ \ ( \ [ Sum] \ ) , \( t = 1\ ) , \ (\ [ I n f i n i t y ] \ ) ]
\∗ Superscr iptBox [ \ ( \ [ Delta ] \ ) , \( t \ ) ] \ ) ; ( ∗ Autarchy u t i l i t y a f t e r low \
s t a t e ∗) Uautl = u [ 0 . 1 ] + (p u [ 1 . 9 ] + (1 − p) u [ 0 . 1 ] ) \ !\ (
\∗Underoverscr iptBox [ \ ( \ [ Sum] \ ) , \( t = 1\ ) , \ (\ [ I n f i n i t y ] \ ) ]
\∗ Superscr iptBox [ \ ( \ [ Delta ] \ ) , \( t \ ) ] \ ) ; ( ∗ g r id l ength ∗) g l = \
50 ; (∗ d i f f e r e n c e between lowest and h ighe s t promised u t i l i t y guess f o r \
second step ∗) r1 = 0 . 0 2 ; ( ∗ d i f f e r e n c e between lowest and h ighe s t \
promised u t i l i t y i n i t i a l guess ∗) r = 0 . 0 2 1 ; ( ∗ Before i t e r a t i o n promised \
u t i l i t y guessed g r id ∗) Vsgsg =
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Reverse [ Table [

k , {k , Uaut ,

Uaut∗(1 + r ) , (Uaut∗(1 + r ) − Uaut )/ g l } ] ] ; ( (∗ I t e r a t i o n s t a r t s ∗)
Label [ begin ] ; Clear [ kBG12c ] ; Clear [KbgBG12 ] ; Clear [ part ] ;

Clear [ uruhq ] ; Clear [ hnfg2 ] ; Clear [ tRE ] ; Clear [ Treetye ] ; Clear [ uruhq ] ;

Clear [ hnfg2 ] ; ( ∗ Promised U t i l i t y va lues ; from autarky u t i l i t y to 1+r \
o f autarky . ∗)
G = Table [

k , {k , Uaut ,

Uaut∗(1 + r ) , (Uaut∗(1 + r ) − Uaut )/

g l } ] ; ( ∗ Promised U t i l i t y permutat ions in s e t s o f 4 , f o r 4 \
po s s i b l e s t a t e s ; matrix n x 4 ∗)
kkk = Permutations [

G, { 4 } ] ; ( ∗ Reduce permuatat ions s i n c e some combinat ions are \
impos s ib l e − Se l e c t only p o s s i b l e combinat ions ∗)
t r e e e e e [ i ] :=

S e l e c t [ kkk [ [ i ] ] ,

kkk [ [ i , 1 ] ] < kkk [ [ i , 3 ] ] && kkk [ [ i , 2 ] ] < kkk [ [ i , 4 ] ] &&

kkk [ [ i , 2 ] ] < kkk [ [ i , 1 ] ] &&

kkk [ [ i , 4 ] ] <

kkk [ [ i , 3 ] ] & ] ; (∗ Create a matrix with a l l the p o s s i b l e \
permutat ions o f promised u t i l i t i e s ∗)
t t = Table [

t r e e e e e [ i ] , { i , 1 ,

Length [ kkk ] } ] ; ( ∗ Remove the empty rows o f the matrix above

∗)
BG = Se l e c t [ tt ,

UnsameQ[# , {} ] & ] ; (∗ f unc t i on that gene ra t e s v e c t o r s o f same l e v e l \
o f promised u t i l i t i e s repeated l ength BG, f o r a l l l e v e l s o f promised \
u t i l i t i e s ∗)
g11 [ i ] :=

ConstantArray [G[ [ i ] ] ,

Length [BG] ] ; ( ∗ Create a column vec to r o f a l l the e lements generated \
by the func t i on above , Length [BG}x1 ∗)
kva lue s cons t r =

Pa r t i t i on [ F lat ten [ Table [ g11 [ i ] , { i , Length [G] } ] ] ,
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1 ] ; ( ∗ Rep l i ca t e BG Length [G] t imes and combine in to matrix \
dimensions Length [BG]∗ Length [G] x4 ∗)
TRet = Par t i t i on [ F lat ten [ Table [BG, {Length [G] } ] ] ,

4 ] ; ( ∗ Create matrix l ength [ Tret ] x5 , where the f i r s t column i s G \
repeated BG times and the r e s t i s the matrix c re taed above ∗)
kBG = Join [ kva luescons t r , TRet ,

2 ] ; ( ∗ Create matrix that shows the cor re spond ing po s i t i o n o f \
e lements in BG in vec to r G. d imenst ions Length [BG] x4 ∗)
yiu = Par t i t i on [ F lat ten [ Po s i t i on [G, #] & /@ Flatten [BG] ] ,

4 ] ; ( ∗ Rep l i ca t e the matrix above Length [G] t imes and co sn t ruc t \
matrix Length [BG]∗ Length [G] x4 ∗)
Putr = Pa r t i t i on [ F lat ten [ Table [ yiu , {Length [G] } ] ] ,

4 ] ; ( ∗ Join the l a s t two created matr i ce s i n to one matrix \
Length [BG]∗ Length [G] x9 . example o f row i { Subsc r ip t [G, \
i ] , Subsc r ip t [BG, i1 , ] Subsc r ip t [BG, i2 , ] Subsc r ip t [BG, \
i3 , ] Subsc r ip t [BG, i4 , ] Po s i t i on [G, Subsc r ip t [BG, \
i 1 ] ] , Po s i t i on [G, Subsc r ip t [BG, i 2 ] ] . . . } ∗ ) kBG12 = Join [kBG, Putr , 2 ] ;

Clear [ kkk ] ; Clear [ t t ] ; Clear [kBG ] ; Clear [ y iu ] ; Clear [ TRet ] ;

Clear [ kva lue s cons t r ] ; Clear [ t r e e e e e ] ; Clear [ Putr ] ;

Clear [ g11 ] ; << Developer ‘ ;

kBG12 = Developer ‘ ToPackedArray [ kBG12 ,

Real ] ; kBG12 ; ( ∗From the matrix bu i l t above s e l e c t only the rows \
that weakly s a t i s f y a l l lower th r e sho ld s o f the c on s t r a i n t s . ∗)
kBG12c = Se l e c t [ kBG12 , ST1[#] >= 0 &] ;

kBG12c = Se l e c t [ kBG12 , RH11[#] >= 0 &] ;

kBG12c = Se l e c t [ kBG12 , PH11[#] >= 0 &] ;

kBG12c = Se l e c t [ kBG12 , PL11 [#] >= 0 &] ;

kBG12c = Se l e c t [ kBG12 , RH21[#] >= 0 &] ;

Clear [ kBG12 ] ; ( ∗ Find the argmax o f s t a t i c maximization problem \
assuming promises as in the matrix above and assuming that \
cont inuat i on value f o r maximizer as the guesed u t i l i t y above ( f o r the \
f i r s t i t e r a t i o n t h i s i s the i nv e r s e o f G. That i s i f promice CLH i s \
given , t h i s cor re sponds to a po s i t i o n in G, which a l s o cor responds to \
the same po s i t i o n in the value func t i on . ) ∗)
eeqnw [{ t , CLL , CLH , CHL , CHH , BG1 , BG2 , BG3 ,

BG4 } ] := { c l l , c lh , chl , chh} / .
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Quiet [ FindMaximum[{Re [
q p ( u [ 3 . 8 − chh ] + \ [ Delta ] Vsgsg [ [ BG4 ] ] ) +

q (1 − p) (

u [ 2 − ch l ] + \ [ Delta ] Vsgsg [ [ BG3 ] ] ) + (1 − q ) p (

u [ 2 − c lh ] + \ [ Delta ] Vsgsg [ [ BG2 ] ] ) + (1 − q ) (1 − p) (

u [ 0 . 2 − c l l ] + \ [ Delta ] Vsgsg [ [ BG1 ] ] ) ] ,

q p (u [ chh ] + \ [ Delta ] CHH) +

q (1 − p) (u [ ch l ] + \ [ Delta ] CHL) + (1 −
q ) p (u [ c lh ] + \ [ Delta ] CLH ) + (1 − q ) (1 −
p) (u [ c l l ] + \ [ Delta ] CLL ) − t >= 0 &&

p (u [ chh ] + \ [ Delta ] CHH) + (1 − p) (u [ ch l ] + \ [ Delta ] CHL) −
p (u [ c lh + 1 . 8 ] + \ [ Delta ] CLH) − (1 −

p) (u [ c l l + 1 . 8 ] + \ [ Delta ] CLL ) >= 0 &&

q (u [ 3 . 8 − chh ] + \ [ Delta ] Vsgsg [ [ BG4 ] ] ) + (1 −
q ) (u [ 2 − c lh ] + \ [ Delta ] Vsgsg [ [ BG2 ] ] ) −

q (u [ 2 − ch l + 1 . 8 ] + \ [ Delta ] Vsgsg [ [ BG3 ] ] ) − (1 −
q ) (u [ 0 . 2 − c l l + 1 . 8 ] + \ [ Delta ] Vsgsg [ [ BG1 ] ] ) >= 0 &&

p (u [ c lh ] + \ [ Delta ] CLH ) + (1 − p) (

u [ c l l ] + \ [ Delta ] CLL) − Uautl >= 0 && c l l > 0 &&

c l l < 0 .2 && c lh > 0 && c lh < 2 && ch l > 0 && ch l < 2 &&

chh > 0 && chh < 3 .8} , { c l l , c lh , chl , chh } ] ] [ [ 2 ] ] ;
(∗Apply the func t i on to every row o f the matrix . This gene ra t e s \

argmaxizers f o r each s t a t e . ∗)
trhv = Paral le lMap [ eeqnw ,

kBG12c ] ; ( ∗ Replace a l l empty outputs with 4 0 s ∗)
trhv = trhv / . {} −> {0 , 0 , 0 , 0} ;
(∗Add the outputs from the equat ion be f o r e to the matrix with \

promices ∗) tewtw =

Join [ trhv , kBG12c ,

2 ] ; ( ∗ Rearrange the matrix above so that the argmaxs are p laced in \
po s i t i o n 2 , 3 , 4 , 5 . ( This i s so that the func t i on inputs are c o r r e c t \
f o r the f unc t i on s as de f ined . ) ∗ )
tewtw2 =

Drop [ Transpose [ I n s e r t [ Transpose [ tewtw ] , tewtw [ [ All , 5 ] ] , 1 ] ] ,

0 , { 6 } ] ; ( ∗Change a l l the rows with some ze ro s so that a l l the \
va lue s are zero in these rows . Dimensions Length [BG]∗ Length [G] x 13 ∗)

105



KbgBG12 =

tewtw2 / . { , 0 , 0 , 0 , 0 , , , , , , , , } −> {0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ; Clear [ i f f f ] ; Clear [ trhv ] ; Clear [ tewtw ] ;

Clear [ eeqnw ] ;

Clear [ tewtw2 ] ; KbgBG12 ; ( ∗ Par t i t i on the matrix above in to matr i ce s \
with Length [BG] rows . Hence , each p a r t i t i o n corre sponds to a l l \
po s s i b l e con t inua t i on s g iven a l e v e l o f promise . ∗)
part [ i ] :=

Pa r t i t i on [KbgBG12 , Length [BG ] ] [ [

i ] ] ; ( ∗ For each p a r t i t i o n above s e l e c t a l l rows that weakly \
s a t i s f y the c on s t r a i n t s ∗)
uruhq [ i ] :=

S e l e c t [ part [ i ] ,

ST[#] >= 0 && RH1[#] >= 0 && PH1[#] >= 0 && PL1[#] >= 0 &&

RH2[#] >=

0 & ] ; ( ∗ Create a l i s t that conta in s combines a l l the p a r t i t i o n s \
above , d imenst ions Length [G] x n x 13∗) hnfg2 = Array [ uruhq , Length [G ] ] ;

VF[ { } ] :=

0 ; (∗ Create a func t i on that eva lua t e s VF f o r a l l rows o f hnfg2 \
above . Then choose the maximal va lue f o r each o f the p a r t i t i o n s made \
be f o r e . That i s f o r each promise Subsc r ip t [G, i ] the maximum VF \
given g r id . ∗ )
tRE [ i ] :=

Max[ Paral le lMap [VF, hnfg2 , { 2 } ] [ [
i ] ] ] ; ( ∗ c r e a t e a vec to r with these values , l ength G NOTE: I \

CHANGED THE CODE BELOW BY FROM := T0 = ON 28/8/20. ∗)
Treetye =

Table [ tRE [ i ] , { i , 1 ,

Length [G] } ] ; ( ∗ Calcu la te growth o f l a r g e s t from sma l l e s t va lue s \
in the vec to r above ∗)
r1 = −1 + Treetye [ [ 1 ] ] /

Treetye [ [

Length [ Vsgsg ] ] ] ; ( ∗ f i nd the l i n e ( i n t e r c e p t and s l ope ) that \
s a t i s f i e s both growth rate s , the r from i n i t i a l va lue func t i on guess \
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and the r found be f o r e from new value func t i on guess . ∗ )
s o l = Flat ten [ { \ [ Alpha ] , \ [ Beta ]} / .

So lve [ Treetye [ [ Length [G ] ] ] == \ [ Alpha ] + \ [ Beta ]∗ r &&

Vsgsg [ [ Length [G ] ] ] == \ [ Alpha ] + \ [ Beta ]∗
r1 , {\ [ Alpha ] , \ [ Beta ] } ] ] ; a = s o l [ [ 1 ] ] ; b = s o l [ [ 2 ] ] ;

(∗ r1 becomes the i n i t i a l r that was used to generate in t h i s round \
G ∗) r1 = r ;

Clear [ r ] ; ( ∗ Given a and b found above r i s the value r equ i r ed to get \
G[ [ 1 ] ] . This i s the next i t e r a t i o n ’ s r . Note that as the i t e r a t i o n s \
prog r e s s the ve c t o r s Vsgsg and Treetye change from i n i t i a l va lue s .

∗)
r f = Solve [G [ [ 1 ] ] == a + b∗ r , r ] [ [ 1 ] ] ;

r = r / . r f ; ( ∗As long as the maximum abso lu te d i s t anc e between Vsgsg \
and Treetye i s more than 10ˆ(−3) r ep l a c e Vsgsg with Treetye , then \
pr in t r and Vsgsg ∗) Pr int [ Vsgsg ] ;

While [Max [ Abs [ Treetye − Vsgsg ] ] > 0 .0005 ,

Vsgsg = Replace [ Vsgsg , Vsgsg −> Treetye ] ; Pr int [ r ] ;

Pr int [ Treetye ] ; Goto [ begin ] ] ;

Pr int [ r ] ;

Pr int [ Treetye ] ; ( ∗ F ina l l y i f the d i f f e r e n c e between the lowest va lue \
o f the guessed value func t i on g r id and the autarchy u t i l i t y i s \
g r e a t e r than 0 .005 do another i t e r a t i o n , o therw i s e stop . ∗ )
While [ Abs [ Vsgsg [ [ Length [G ] ] ] − G[ [ 1 ] ] ] > 0 .0003 , Goto [ begin ] ] )

107



References
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