
BIROn - Birkbeck Institutional Research Online

Shiode, Shino and Shiode, Narushige (2022) Network-based space-time
scan statistics for detecting micro-scale hotspots. Sustainability 14 (24), p.
16902. ISSN 2071-1050.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/50595/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/50595/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Citation: Shiode, S.; Shiode, N.

Network-Based Space-Time Scan

Statistics for Detecting Micro-Scale

Hotspots. Sustainability 2022, 14,

16902. https://doi.org/10.3390/

su142416902

Academic Editors: Bin Jiang and

Yichun Xie

Received: 15 October 2022

Accepted: 13 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Network-Based Space-Time Scan Statistics for Detecting
Micro-Scale Hotspots
Shino Shiode 1 and Narushige Shiode 2,*

1 Department of Geography, Birkbeck, University of London, London WC1E 7HX, UK
2 Department of Geography, Geology and the Environment, Kingston University,

Kingston upon Thames KT1 2EE, UK
* Correspondence: n.shiode@kingston.ac.uk

Abstract: Events recorded in urban areas are often confined by the micro-scale geography of street
networks, yet existing spatial–analytical methods do not usually account for the shortest-path distance
of street networks. We propose space–time NetScan, a new spatial–temporal analytical method with
improved accuracy for detecting patterns of concentrations across space and time. It extends the
notion of a scan-statistic-type search window by measuring space-time patterns along street networks
in order to detect micro-scale concentrations of events at the street-address level with high accuracy.
Performance tests with synthetic data demonstrate that space-time NetScan outperforms existing
methods in detecting the location, shape, size and duration of hotspots. An empirical study with
drug-related incidents shows how space-time NetScan can improve our understanding of the micro-
scale geography of crime. Aside from some abrupt one-off incidents, many hotspots form recurrent
hotbeds, implying that drug-related crimes tend to persist in specific problem places.

Keywords: crime hotspots; geography of crime; scan statistics; space-time analysis; street network

1. Introduction

Detection of spatial and spatial–temporal concentrations of events marks one of the
pillars across many disciplines that investigate problem places and times. In the field
of geography, its foundations were laid as early as in the 1960s, in part as an integral
component of a paradigm shift known as the quantitative revolution (Chorley and Haggett,
1967 [1]). Since that time, spatial and spatial–temporal cluster analyses have been pursued
in a number of fields, including forestry, ecology, epidemiology and urban geography,
primarily in the forms of cluster detection and hotspot analysis (Clark and Evans, 1954 [2];
Diggle et al., 1976 [3]; Ripley, 1976 [4]; Ripley, 1981 [5]; Boots and Getis, 1988 [6]; Knox,
1989 [7]; Kulldorff and Nagarwalla, 1995 [8]; Rogerson 2001 [9]).

In the context of geography of crime, the detection of problem places has been studied
rigorously, especially in the last two decades (Weisburd et al., 2004 [10]; Braga et al.,
2010 [11]; Weisburd and Telep, 2014 [12]; Lee et al., 2017 [13]; Oliveira and Bastos-Filho,
2017 [14]; Mohler et al., 2020 [15]). In particular, small, concentrated areas of high risk,
namely micro-scale crime hotspots, have attracted strong attention, as they show places where
crime problems are most active at the scale that relates closely to the recent crime-and-place
studies and policing tactics (Weisburd, 2015 [16]; O’brien and Winship, 2017 [17]. However,
the existing range of methods for identifying crime hotspots, either spatially or across
space and time, are not always suitable for detecting hotspots at the micro scale. This
paper proposes a new type of method for detecting micro-scale space-time crime hotspots;
a method that employs the scale unit of micro-scale universe in its analysis, designed to
provide a more accurate description of the spatial–temporal patterns of crime incidents.
Through its application in the analysis of drug-related crimes, we aim to demonstrate the
effectiveness of the proposed method to improve our understanding of the micro-scale
geography of crime.
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2. Related Work

Much of the literature on crime-and-place studies have investigated the patterns
of crimes aggregated to areal units (Robinson, 1982 [18]; Evans and Herbert, 1989 [19];
Weisburd and McEwan, 1998 [20]). While areal data offer valuable insights into the asso-
ciation between the crime level and the characteristics attached to each area, they do not
offer robust narratives on how and why crime incidents concentrate on specific problem
places. Recent criminological theory has stressed that crime opportunities at specific micro
places hold a key to unravelling the mechanism of crime occurrences (Braga and Weisburd,
2010 [21]; Braga et al., 2014 [22]; Weisburd and Telep, 2014 [12]). For instance, Weisburd
et al. (2012) [23] examined the spatial extent of crime opportunities using a vast amount of
micro-scale level data on guardians, accessibility and crime targets, confirming the pres-
ence of micro-scale crime opportunities using street segments as the unit of measurement.
Findings from these studies suggest that detailed crime opportunities can be clarified only
by detecting and understanding crime hotspots at the micro scale, rather than following
the change in the patterns of crime at the aggregate level.

The importance of identifying micro-scale crime hotspots is also recognised for practi-
cal and professional policing purposes—a number of crime prevention schemes established
recently by law enforcement agencies focus on crime hotspots (i.e., hotspot policing) (Braga,
2001 [24]; Weisburd and Eck, 2004 [25]; Weisburd and Braga, 2006 [26]; Weisburd et al.,
2009 [27]; Dau et al., 2022 [28]). The fact that a large portion of crime is concentrated in
small and specific places on the street makes hotspot policing particularly effective for
reducing overall crime and disorder (Braga et al., 2019 [29]). For instance, Braga et al. in
2008 [30] reported that in 2006, over 50% of gun crimes recorded in a neighbourhood of
Boston took place in 5% of the study area. At the city-wide scale, 74% of serious gun assault
incidents were found within 5% of all streets of Boston (Braga et al., 2010 [11]). Similarly,
Weisburd and Zastrow (2021) [31] discovered that about 1% of streets in NYC hosted about
25% of crimes recorded across the city. Investigating this tendency even further, Lee et al.
2017 [13] reported that crime is more concentrated at an address level than other units,
including street segments.

Investigation of hotspots on the micro scale is also affected by the configuration of the
street network; that is, streets become an important place for measuring crime, as it confines
the movement of people—including motivated offenders, potential targets and passers-
by (Eck 1995 [32]). Indeed, a number of studies in environmental criminology suggest
that street networks play a key role in practical crime prevention as well as in exploring
crime aetiology (Eck and Weisburd, 1995 [33]; Sherman, 1995 [34]; Taylor, 1997 [35]; Taylor,
1998 [36]; van Wilsem, 2009 [37]; di Bella et al. 2017, [38]). Brantingham and Brantingham
(1999) [39] offered a theoretical underpinning to explicitly discuss the importance of street
networks in understanding crime problems. They point out that the structures of street
networks—represented by nodes and edges—along with the patterns of traffic and transits,
strongly affect the distribution of crime incidents. Nevertheless, only a limited number
of studies on the geography of crime incorporate the metrics and dimensions of street
networks in their micro-scale analysis.

One of these efforts was made by Bowers and Johnson (2005) [40], who reported that
properties within 400 m in street distance of a burgled home are subject to an elevated risk
of crime for up to two months after the initial incident, with properties on the same side
of the street as the burgled home being subjected to a higher risk. They focus on crime
forecasting and try to predict when the next crime is likely to happen following a previous
incident. While this is an important inquiry, it predicts a more global tendency that applies
to the entire study area and is therefore different from detecting hotspots at a specific place.
Another study was pursued by Okabe and Satoh (2009) [41], who applied a network-based
k-function method to detect hotspots among burglary data in Kyoto. While their analysis
was carried out in the network dimension, their study confirms a global tendency of the
presence of crime concentration, rather than detecting specific micro places where such
concentrations exist.
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The other element that affects the patterns of crime concentration is the distribution of
crime across time (Newton and Felson, 2015) [42]. A series of evidence-based criminological
studies have confirmed the tendency of crime incidents to exhibit concentrations in both
space and time (Braga et al., 2010 [11]; Braga et al., 2011 [43]; Groff et al., 2010 [44]; Weisburd
et al., 2012 [23]; Levine et al., 2017 [45]). For instance, Weisburd et al. in 2012 [23] confirmed
the generally stable and persistent nature of crime hotspots, reporting that 23% of the
crimes in a city during the study period were found in chronic crime hotspots occupying
less than 1% of the street segments. This suggests that a comprehensive understanding of
crime hotspots in a micro setting requires simultaneous investigation of the spatial as well
as the temporal patterns of crime. Other studies point out the importance of planning the
practical policing strategies with respect to the spatial–temporal patterns of crime and that
focusing policing resources on spatially and temporally confined hotspots would improve
the effectiveness of policing intervention (Johnson et al., 2007 [46], Johnson et al., 2008 [47];
Weisburd, 2015 [16]). Some recent studies have extended spatial analytical methods to
detect and evaluate space-time hotspots, but their measurements are not based on the
distance along the street networks (Brunsdon et al., 2007 [48]; Neill and Gorr, 2007 [49],
Nakaya and Yano, 2010 [50], Malleson and Anderson, 2015 [51]). Network-based analysis
has recently seen a rise in its methodological development, especially in the broader area of
spatial analysis (Okabe and Sugihara, 2012 [52]). These include studies by Okabe, Satoh
and Sugihara (2009) [53], who presented kernel density estimation defined on a street
network. Additionally, Yamada and Thill (2010) [54] and Nie et al. (2015) [55] extended
local spatial autocorrelation methods to the network space. However, most of them have
yet to incorporate the temporal patterns in their analysis. In the domain of crime forecasting,
Rosser et al. in 2017 [56] took a modelling approach to predicting crime occurrences in the
network space. They compared the prediction performance of their network-based model
with its grid-based counterpart and concluded that the network-based model outperformed
the grid-based approach on prediction accuracy. Their findings offer a strong support for
the use of street level data and network-based methods for analysing crime incidents in
a micro space. When it comes to the intersection of network-based, space-time analysis
and micro-scale crime hotspot detection, only a handful of studies have emerged so far.
In particular, Shiode and Shiode (2013) [57] and Shiode et al. (2015) [58] worked on the
detection of micro-scale space-time hotspots along the street network. However, the former
study (Shiode and Shiode, 2013 [57]) suffered from the use of the Bonferroni procedure
(Bonferroni, 1935 [59]) in the hypothesis test, as it is known to be too conservative in
detecting hotspots. Additionally, their method was designed to accommodate only a finite
number of discrete searches for hotspots over space and time. The latter (Shiode et al.,
2015 [58]) suggested a method using a false discovery rate (FDR) controlling procedure
(Benjamini and Hochberg, 1995 [60]) in hypothesis testing for detecting hotspots, which
overcomes the conservative nature of the Bonferroni-type procedures, but is still limited in
its capacity to search hotspots continuously across space and time. Against this background,
we propose a new type of geo-analytical method for detecting crime hotspots that overcome
the major limitations, including the use of fixed-size search windows and the multiple
testing problem.

3. Methodology

The methods developed in this paper expand on the notion of search windows,
building partly on the framework of scan statistics—a family of hotspot detection methods
that was originally proposed for epidemiological investigations (Kulldorff and Nagarwalla,
1995 [8]). Using a test statistic called a likelihood ratio test statistic (a scan statistic), they detect
spatial (or space-time) zones, where event counts are significantly higher than expected.
Scan statistics build on several pivotal search-window-type methods and overcome major
limitations their predecessors have suffered from, including the use of fixed-size search
windows and the multiple testing problem (Kulldorff and Nagarwalla, 1995 [8]; Kulldorff,
1997 [61]). For this reason, scan statistics are currently the most widely used methods
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of their kind, including in the geography of crime (Neill and Gorr, 2007 [49]; Cheng and
Adepeju, 2014 [62]; Malleson and Andresen, 2015 [51]). While it is possible to apply scan
statistics to disaggregate point data, they are designed primarily for analysing patterns
across wider areal units, and their extension to network-based analysis is yet to be pursued
systematically (Braga and Weisburd, 2010 [21]; Weisburd et al., 2012 [23]; Shiode and Shiode,
2013 [57]; Braga et al., 2014 [22]). The following sections explain and extend the notion of
a likelihood ratio test to investigate the geographical patterns captured by search windows
along a street network.

3.1. Building Scan Statistics for Searching in a Network Space

The original scan statistic (Kulldorff and Nagarwalla, 1995 [8]) uses circular search
windows to identify concentrations of statistical significance. In its standard form, their
search windows are produced around the centroid of predetermined aggregated areal units
with their radius changing continuously from zero to a predefined upper threshold. The
extent captured by each search window is considered as a potential cluster of an increased
risk, and the likelihood ratio of finding the observed number of incidents is calculated
by comparing the observed and the expected number of incidents inside and outside the
respective window. The extent of a search window with a statistically significant underlying
event-occurrence rate marks clusters, with the one that returned the highest likelihood ratio
being the most likely cluster.

In this paper, the notion of the scan statistics is extended to analyse the concentration of
events in or along a finite network (hereafter referred to as NetScan), whereby the standard
circular search windows are replaced with network-based search windows, or search windows
defined in the network space to extend along the street network. A network-based search
window is constructed by identifying a point of origin (i.e., one of the reference points
that are placed at a near-constant interval across the network), and extending the search
window along all possible paths from that point using the Dijkstra’s shortest-path distance
search until the total length of all line segments reach a pre-defined upper threshold
value. Network-based search windows can cover any spatial extent within the study area
and any temporal duration within the study period to identify space-time hotspots; i.e.,
concentration of events over space and time. The size of these search windows is measured
in terms of the total length of all line segments along the street network, ranging from zero
to a predefined upper threshold and a certain duration of the study period. The likelihood
ratio is derived by counting the observed and the expected numbers of incidents inside
and comparing them against those outside the search window at each instance.

3.2. Assumptions

A standard spatial scan statistic commonly uses either the Poisson process or a bino-
mial model as its baseline process, with the assumption that the variance is equal to the
mean, to model the underlying randomness of observed case counts (Kulldorff, 1997 [61]).
The main interest is in detecting clusters that cannot be explained by the baseline pro-
cess. When the Poisson process is adopted, the standard scan statistics usually assume
an inhomogeneous Poisson process, with its intensity following a known function such
as population (Kulldorff, 1997 [61]). This type of model suits the analysis of aggregate
data, typically represented by the centroid of the respective areal unit. Each of these spatial
locations will be assigned the respective count of the observed events and a population
(e.g., at-risk population).

While most studies adopt inhomogeneous Poisson processes for their analysis with
spatial scan statistics, NetScan assumes a continuous and homogeneous Poisson process as its
baseline process. In this model, observations are distributed randomly and continuously
with a constant intensity throughout the study area and across the study period; i.e.,
observations are assumed to occur anywhere and anytime on the street network within
a study area. For many types of street crimes, this is not an unreasonable assumption,
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as the population in the area usually does not affect the frequency or the patterns of the
respective crimes on streets.

3.3. Null and Alternative Hypotheses

The null hypothesis used for the hypothesis testing of NetScan is defined as follows.
Let W be the complete set of search windows created in the study network NST, where S
and T represent the spatial extent of the study area and the temporal duration of the study
period, respectively. Let wst be a candidate hotspot within W. Let nwst denote the observed
number of points in window wst, and nNST the total number of observed points in study
network NST (Kulldorff, 1997 [61]). The null hypothesis assumes that no hotspot exists
on the study network (NST), and that the number of incidents in each window is Poisson-
distributed, with an expected value proportional to its size (Duczmal et al., 2006 [63]); i.e.,
λ(wst) = nNST |wst|/|NST | where |wst| is the length of the search window, |NST| is the
length of the entire study network, and λ(wst) is the expected number of crime incidents
within the search window wst.

H0: The underlying intensity of crime occurrence is spatially and temporally uniform.
H1(wst): The underlying intensity of crime occurrence is higher inside a region wst

than is outside.
Under the null hypothesis, NetScan assumes that all crime incident counts are drawn

through the mean of their expectations. The alternative hypothesis H1(wst) thus expects
the presence of a hotspot in search window wst; i.e., it assumes that the expected counts
inside and outside of a specific search window wst are multiplied by some constants p and
q, respectively, where p > q. Suppose that ci is the observed and λi is the expected crime
incident count on the ith space-time line segment li in the study network, then the maximum
likelihood estimate of p is Cp/Λp and the maximum likelihood estimate of q is Cq/Λq, where
Cp and Λp are the aggregate observed count (Cp = ∑li∈wst ci) and the aggregate expected
count (Λp = ∑li∈wst λi), respectively, for all line segments included in the search window
wst. Similarly, Cq and Λq are the aggregate observed count (Cq = ∑li /∈wst ci) and the
aggregate expected count (Λq = ∑li /∈wst λi) for all line segments outside the search window
wst. More precisely,

H0: ci ~ Poisson(λi) for all line segments li.
H1(wst): ci ~ Poisson(pλi) for all line segments li in wst, and ci ~ Poisson(qλi) for all line

segments li outside wst, for some constant p > q.
Our goal is to determine whether any increase in the observed counts in a window is

due to chance fluctuations. In order to verify this, a test needs to be carried out to decide
whether a specific wst constitutes a hotspot.

3.4. Likelihood Ratio Function

Based on these hypotheses, NetScan considers the observed and expected counts
outside window wst, and detects increased count in a window wst if the ratio of the observed
counts to the expected counts is higher inside the region than it is outside (Neill, 2009 [64]).
The derivation of the likelihood ratio for the continuous and homogeneous Poisson model
on a street network is similar to that for the standard, planar scan statistics (hereafter
called PLScan).

The probability of observing nNST number of points on the study network of the study
area is

e−pλ(wst)−q(λ(NST)−λ(wst))[pλ(wst) + q(λ(NST)− λ(wst))]
nNST

nG!
(1)

The density function f (l) of a specific point being observed on line segment l is
pλ(l)

pλ(wst)+q(λ(NST)−λ(wst))
i f l ∈ wst

qλ(l)
pλ(wst)+q(λ(NST)−λ(wst))

i f l /∈ wst
(2)
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Therefore, the likelihood function L(wst, p, q) can be written as

L(wst, p, q) = e−pλ(wst)−q(λ(NST )−λ(wst)) [pλ(wst)+q(λ(NST)−λ(wst))]
nNST

nG !

× ∏
li∈Z

pλ(li)
pλ(wst)+q(λ(NST)−λ(wst))

∏
li /∈Z

qλ(li)
pλ(wst)+q(λ(NST)−λ(wst))

= e−pλ(wst)−q(λ(NST )−λ(wst))

nG ! pnwst q(nNST−nwst )∏
li

λ(li)

(3)

The likelihood ratio T is the likelihood under the alternative hypothesis H1(wst) divided
by the likelihood of the data under the null hypothesis H0. This shows how likely the
observed data for wst are given a differential rate of incidents inside and outside of wst;
i.e., the likelihood ratio T(wst) for a given region wst is the ratio of likelihood under the
alternative and null hypotheses. Therefore, the likelihood ratio T(wst) for wst is defined as

T(wst) =
supwst∈W,p>qL(wst, p, q)

supp=qL(wst, p, q)
=

L(wst)

L0
(4)

In the Poisson model, the denominator L0 in the above expression reduces to

supp=qL(wst, p, q) = sup
p

e−pλ(NST)pnNST

nG! ∏
li

λ(li) =
e−nG

nG!

(
nNST

λ(NST)

)nNST
∏

li

λ(li) = L0 (5)

and therefore, L0 is a constant that depends solely on nNST . For the numerator of the
likelihood ratio, the supremum over all p and q for a fixed ws will be used. Equation (3)
takes its maximum when p = nwst /λ(wst) and q = (nNST − nwst )/(λ(NST) − λ(wst)), so

L(wst) =


e
−nNST
nNST !

(
nwst

λ(wst)

)nwst
( nNST−nwst

λ(NST)−λ(wst)

)nNST−nwst
∏
li

λ(li) if nwst
λ(wst)

>
(nNST−nwst )

(λ(NST)−λ(wst))

e
−nNST
nNST !

( nNST
λ(NST)

)nNST ∏
li

λ(li) otherwise.
(6)

The likelihood ratio T(wst) can now be written as

T(wst) =
L(wst)

L0
=

(
nwst

λ(wst)

)nwst
( nNST−nwst

λ(NST)−λ(wst)

)nNST−nwst( nNST
λ(NST)

)nNST
(7)

Note that the term
( nNST

λ(NST)

)−nNST is identical for all window wst, and thus can be
omitted when computing the highest-scoring region (Neill, 2009 [64]). Therefore, the
likelihood ratio test statistic can be rewritten in a simpler form as

T(wst) =
L(wst)

L0
=

(
nwst

λ(wst)

)nwst
(

nNST − nwst

λ(NST)− λ(wst)

)nNST−nwst
, (8)

if n(wst) > λ(wst), and
L(wst)

L0
= 1

otherwise.

3.5. The Most Likely and Secondary Clusters

By finding the highest likelihood ratio over all window locations and sizes, a single
wst that constitutes the most likely cluster (i.e., the hotspot that is most unlikely to be found
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under the null hypothesis) can be identified. The maximum likelihood ratio T over all
possible wst can be derived as

T = maxT(wst) = max
wst∈W

{
L(wst)

L0

}
(9)

where window ŵst ∈ W is selected as the most likely cluster, which has the maximum
likelihood ratio. This allows the selection of ŵst such that L(ŵst) ≥ L(wst) for all wst ∈W.

Other secondary hotspots also have a likelihood ratio that is statistically significant.
They can also be identified by calculating their p-value and comparing it against a fixed
significance level α. The null hypothesis distribution of the maximum likelihood ratio test
statistic is analytically intractable; i.e., the likelihood cannot be differentiated with respect to
their parameters. However, it can be approximated by Monte Carlo simulations, whereby
each replicated point distribution is generated in such a way that it follows the continuous
and homogeneous Poisson model on a street network. The statistical significance of the
hotspot found can be evaluated by deriving the p-values (Assunção et al., 2006 [65]). This
paper also adopts this method, known as randomisation testing, for hypothesis testing
for hotspot detection in a network space. Based on the total number of cases, a larger
number of random replications of the dataset is generated under the null hypothesis. By
calculating the maximum likelihood ratio (test statistic) T* for each replication, the statistical
significance of the most likely hotspot can be derived by comparing T(wst) to these replica
values of T* (Duczmal et al., 2006 [63]). The p-value of region wst is Bbeat+1

B+1 where B is the
total number of replicas created (usually 999), and Bbeat is the number of replicas with T*
greater than T(wst). Region wst is found significant if the p-value is less than the significance
level α.

Since this study carried out a single statistical test for detecting the most likely and
the secondary hotspots, the randomisation testing approach given here has the benefit of
bounding the overall false positive rate; i.e., regardless of the number of regions searched,
the probability of false alarms is bounded by the significance level α.

In terms of the computational effort, both PLScan and NetScan are applied to a com-
parable number of reference points and run the same number of Monte-Carlo simulations.
As described by Kulldorff (2022) [66], the computational time for PLScan is linearly propor-
tional to (1) the number of observed points on space, (2) the number of reference points
on space, (3) the maximum spatial search window size, (4) the maximum temporal search
window size, (5) and the number of Monte Carlo simulations, and is directly proportional
to the square of (6) the temporal interval or the number of reference points in the temporal
dimension; all of which also apply to NetScan. The difference in the computational load
between PLScan and NetScan boils down to the need for the shortest-path search during
the construction of network search windows in NetScan. In theory, the shortest-path search
could increase the computational time by as much as O(n2). However, given the relatively
simple and sparse topology of street networks in a typical urban environment, the load
reduces to O(m + n × log(n)) where the number of edges (m) and that of nodes (n) are finite.

4. Analysis with Synthetic Data
4.1. The Space-Time Poisson Cluster Process

In order to produce a point distribution with known clusters in the space-time network
dimension, we adopted a Poisson cluster process (Upton and Fingleton, 1985 [67]; Diggle,
2003 [68]) and extended it to the space-time network space. A synthetic distribution of
street-crime incidents was created through the following procedure: (1) randomly distribute
a fixed number of parent points on a space-time network NST across its spatial extent and
temporal duration, (2) generate a set of offspring points within the vicinity of each parent
point to form a concentration within a sub-network of fixed length and fixed duration, and
(3) generate a set of points across NST that follow uniform random distribution and add
them to the distribution of offspring points.
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The spatial extent NS of NST covered the street network shown in Figure 1. Each of the
fourteen parent points identified the respective line segment (i = 1, . . . , 14) for hosting the
offspring points. The temporal dimension NT of study area NST covered a period of one
year. Each parent point was assigned a different date within the year, and each offspring
point was assigned a time point within ±15 days of the respective parent point so as to
form a space-time hotspot (i.e., 31 days × 14 clusters = 434 days against which 200 points
were assigned, thus resulting in a ratio of approximately one point in two days). Table 1
lists the start date, the end date and the number of offspring points placed in each hotspot.
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Figure 1. ID numbers assigned to the 14 simulated hotspots.

Table 1. The period and the size of the 14 space-time hotspots.

Hotspot ID Start Date End Date Number of Events

1 221 251 15
2 135 165 8
3 130 160 16
4 59 89 5
5 167 197 14
6 12 42 21
7 288 318 8
8 84 114 30
9 109 139 10
10 227 257 15
11 242 272 19
12 34 64 14
13 7 37 14
14 327 357 11

A total of 200 offspring points were randomly placed on the 14 space-time sub-
networks, with an additional 100 points randomly placed across NST. Together, they formed
an inhomogeneous space-time Poisson clustered point pattern consisting of 300 points in
a space-time cube (Figure 2). The three-dimensional view shows not only where, but also
when hotspots were formed. In other words, it shows a micro-scale space-time signature
of crimes.
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Figure 2. Simulated space-time Poisson cluster points presented in a space-time cube.

The space-time cube shown in Figure 2 contains the space-time network NST. The
street network NS embedded in the spatial dimension is shown on the xy-plane, and the
temporal dimension NT is represented by the vertical axis. Each dot in the space-time cube
represents a single crime incident, located at the intersection of the corresponding street
address on the horizontal plane and the day of the year on the vertical axis. The red dots
illustrate the 200 offspring points injected at the hypothetical hotspots, projected onto NS
on the xy-plane (the red line segments on NS show the spatial extent of the corresponding
space-time hotspots).

4.2. Comparison of PLScan and NetScan

Using synthetic data from space-time clustered points, the performance of space-time
NetScan is measured in relation to that of the conventional space-time scan statistics (PLScan)
(Kulldorff et al., 1998 [69]). A set of reference points is placed at approximately 100-feet
intervals across NST, resulting in roughly 400 reference points on the spatial extent of NST.
These 400 points are repeated along the vertical axis at one-day intervals (i.e., the total
number of reference points is approximately 400 × 365 points) to create a set of network-
based space-time reference points. The NetScan was coded as a proprietary computer
program in Python to execute the simulation study as well as an empirical case study.
The data structure and the algorithm used in this study are based on those used in the
SANET (Spatial Analysis along Networks) tool (Okabe et al., 2009 [70]). Circular and
elliptic PLScans were calculated using software called SaTScan (Kulldorff, 2009 [66]).

The SaTScan tool produces point distributions that follow the continuous and homo-
geneous Poisson model for running circular and elliptic “spatial” statistics and the discrete
and homogeneous Poisson model for “space-time” scan statistics. The latter is essentially an
approximation of the continuous and homogeneous Poisson model intended for reducing
the computational load, and is achieved by replacing a continuous plane with a discrete
surface of fine grid points. To obtain a reasonably accurate result, a total of 8316 grid points
were placed at a 30ft interval to exhaustively cover the study area. All the observed crime
incidents and reference points were then assigned to the nearest grid point.

To compare the performance of circular PLScan, elliptic PLScan and NetScan, first,
a simulation test using circular PLScan was applied to the synthetic space-time Poisson
cluster points. Figure 3 shows all non-overlapping space-time hotspots detected with
circular PLScan, with the most likely hotspot shown in dark grey and secondary non-
overlapping hotspots in light grey. While circular PLScan was able to give a reasonable
representation of space-time hotspots, it returned only six hotspots, as opposed to the
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fourteen hotspots injected. This shows that the method failed to detect some of the hotspots
(Hotspots 1, 4 and 10 in Figure 1), while also identifying two or more hotspots in one large,
sparse hotspot (Figure 1). Elliptic PLScan was also applied to the same set of synthetic data.
Figure 4 shows the three-dimensional, space-time projection of elliptic non-overlapping
space-time hotspots detected with respect to the network-based reference points.
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circular PLScan.

By detecting 10 space-time elliptic hotspots out of the 14 injected hotspots, elliptic
PLScan returned a better performance than the circular PLScan, although it still failed to
detect three of the hotspots (Hotspots 4, 7 and 10 in Figure 1), while also exceeding the
extent of the actual cluster in some instances by including surplus areas and also merging
more than one injected hotspot. It is also interesting to note that both the circular and elliptic
cases gave the least accurate coverage of the hotspots toward the lower and upper left
(Hotspots 4 and 10). This is probably because multiple injected hotspots were found within
close proximity of each other in space and time around that area, and this made it difficult
to distinguish one cluster from another, regardless of the set of reference points used.
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Finally, NetScan was applied to the same set of synthetic space-time Poisson cluster
points with upper threshold values of 500 ft in space and 30 days in time as the maximum
size of each search window. The threshold values were set at levels that were large enough
to cover “micro” concentrations, but were sufficiently small to avoid the unnecessary
increase in computational time. Figure 5 illustrates the high level of accuracy achieved by
NetScan in identifying all 14 injected hotspots as linear space-time hotspots. The spatial
extent and the temporal duration of the detected hotspots did not exceed or fall short of the
true extent of the cluster, nor did it incorrectly cover more than one cluster; thus, it gave
a precise representation of each hotspot. It demonstrated the NetScan’s capacity to return
a much more accurate performance in detecting space-time hotspots along street networks.
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with NetScan.

4.3. Performance Assessment

Syndromic surveillance is a method for monitoring and detecting emerging clusters,
used mainly in the fields of public health and epidemiology. Performance of a surveillance
system is often assessed using several different measures, most of which examine (1) the
completeness in detecting all hotspots, and (2) the extent of coverage of the correct areas
(Nordin et al., 2005 [71]). We adopted these two measures to compare the performance of
the PLScans and NetScan.

The completeness of detection is usually measured in terms of the detection power,
which examines the proportion of the clusters detected. The powers calculated for the three
cases above were 0.79, 0.79 and 1.00 for the circular, the elliptic and the network-based
methods, respectively (i.e., the network-based method returned a 100% detection rate, while
others detected only 79% of the actual clusters), demonstrating the high performance of the
network-based method. However, these figures simply showed whether the correct number
of clusters are detected and did not reflect the accuracy in detecting the exact extent of each
cluster (i.e., the extent of coverage). In order to evaluate the performances of the PLScans
and NetScan, we needed to compare the proportion of “accurate” coverage of clusters by
each of the three methods (i.e., whether there has been any undershooting or overshooting).
In the field of syndromic surveillance, the “coverage of the correct areas” (i.e., the spatial
precision) is measured using the positive predictive values (PPV) and sensitivity (Forsberg
et al., 2005 [72]; Huang et al., 2007 [73]; Takahashi et al., 2008 [74]; Neill, 2009 [64]). For
instance, Takahashi et al. (2008) [74] define the PPV as the proportion of the true “regions”
within the detected clusters and sensitivity as the probability of detecting a “region” that
actually constitutes a cluster. In syndromic surveillance, they are calculated with respect to
the number of regions detected, as they usually study aggregate units. Given the focus of
this paper on individual places represented by points, we replaced them with the number
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of reference points. Let Strue be the true hotspot regions where hotspots actually exist, and
denote S* as the detected regions, or the regions detected as statistically significant. Using
the reference points, we define the PPV as the ratio of correctly detected locations (i.e., the
number of detected reference points ri within the respective Strue) to all detected locations
(i.e., the number of reference points rj in the respective S*):

PPV =
#{ri ∈ S∗ ∩ Strue}

#
{

rj ∈ S∗
} (10)

This measure reflects the degree of overshooting. The PPV score is high if the level of
overshooting is low, and becomes low if there is an excessive amount of overshooting.

Sensitivity, on the other hand, is derived from the ratio of correctly detected locations
(i.e., the number of detected reference points ri within the respective Strue) to all true hotspot
locations (i.e., the number of reference points rj in the respective Strue):

Sensitivity =
#{ri ∈ S∗ ∩ Strue}

#
{

rj ∈ Strue
} (11)

This measure accounts for the degree of undershooting. The sensitivity score is high if
the level of undershooting is low, and it becomes low if there is considerable undershooting.
In other words, a high value of PPV or sensitivity reflects more accurate coverage, with 1.0
being the optimal with no undershooting or overshooting.

Table 2 lists the PPV and sensitivity scores for the circular and the elliptic PLScans
as well as NetScan. They show that NetScan returned a much higher level of accuracy in
detecting space-time hotspots than the circular or the elliptic PLScan can, thus confirming
the visual observation discussed earlier. The low PPV score of the circular PLScan reflected
the considerable overshooting caused by the formation of large circular windows, some
of which included multiple hotspot locations and the regions in between. Compared to
the circular PLScan, the elliptic PLScan returned a much better PPV performance (i.e., less
overshooting), helped by the slimmer profile of an elliptic window. On the other hand,
their sensitivity scores were similar, which suggests that both methods undershot the true
hotspots by roughly 1/3.

Table 2. Comparison of the extent of coverage by circular PLScan, elliptic PLScan and NetScan.

PPV Sensitivity

Circular PLScan 0.23 0.62
Elliptic PLScan 0.74 0.65
NetScan 0.99 0.88

Interestingly, the sensitivity score from NetScan was not perfect either. At 0.88, the
margin of error in undershooting by NetScan was 12%. This was mainly because of the way
the synthetic data were formed. The offspring points that formed the synthetic hotspots
were generated randomly within the extent of a predetermined space-time cluster. Some
of the points close to the edge of the cluster were not sufficiently close to other points,
and therefore remained undetected during the search. Nevertheless, the PPV score of 0.99
confirms that NetScan hardly overshot any of the clusters. Given these scores, it can be
concluded that while all methods showed some tendency to undershoot, NetScan returned
a better overall performance and was particularly good in avoiding any overshooting.

5. Empirical Analysis

The simulation study demonstrated that NetScan had a methodological advantage
over its conventional counterparts in detecting micro-scale space-time hotspots. It iden-
tified all hotspot locations with almost no overshooting. Despite the slight tendency to
undershoot some hotspots, it offers a powerful means to identify space-time hotspots at
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the micro scale. This section applies NetScan to drug offences recorded in a study area in
Chicago IL and aims to explore how that method can help provide deeper insights into the
understanding of real crime patterns.

5.1. Empirical Data

In the context of drug-related crimes, the space-time distribution of drug markets
and drug-related crimes is known to form spatial concentrations that are often persistent
and recurrent in nature (Sherman and Weisburd, 1995 [75]). Identifying drug hotspots
through the application of space-time NetScan thus constitutes the first key step towards
a successful reduction in drug-related crimes through hotspot policing (Weisburd and
Green, 1995 [76]; Jacobson, 1999 [77]; Mazerolle et al., 2007 [78]; Braga and Bond, 2008 [79]).

The study area was the West Englewood community, roughly 8 miles south-west of
the town centre of Chicago, United States (Figure 6a,b). The whole area is 13,000 ft by
7000 ft, covering a total of 3.15 square miles. It is home to some 35,500 people as of 2010,
with a population density of 11,250 people per square mile. The street network in the
study area runs for a total of 370,000 ft, forming a mostly regular, grid-based network
with a major street running at every mile and a secondary street at every 1/2 mile. The
backbones of the study area comprise two major streets, 63rd Street and Ashland Avenue,
which run east-west and north-south, respectively, in the middle of the study area. Other
major streets run parallel to them separated by 1/2 miles, and these include 55th Street
(Garfield Boulevard) and 71st Street running east–west, and Racine Avenue (12th Avenue)
and Damen Avenue (20th Avenue) running north–south. Most of the main streets are
served by bus routes (green lines in Figure 6a,b), and there is also a rapid transit station at
the intersection of 63rd and Ashland Avenue, which serves as the centre of Englewood’s
shopping district.

The crime rates for both violent crimes and property crimes are exceedingly high in
West Englewood, especially compared to the average figures for Chicago, Illinois, as well as
the entire United States, thus indicating the seriousness of the crime problems in the study
area. West Englewood and its adjacent area of Englewood were the only areas that saw
an increase in their crime rate between 2000 and 2010 by over 10%, and this was despite
the fact that the overall crime rate across Chicago dropped by 23.7% in the same period.
Declining population and a high crime rate are the typical signs of a socially deprived
American community. Within the study area, 1563 cases of drug-related incidents were
recorded by the Chicago Police Department during the year 2000.

5.2. Application of NetScan to Drug Incidents in Chicago

Before NetScan could be utilised for hotspot analysis, the size of its search window
needed to be considered carefully in relation to the size of the study area and the average
length of street segments. As each block measured approximately 500 ft by 300 ft, the
maximum length of a search window was set at 800 ft to ensure a sufficient coverage of
each line segment. Reference points were placed at a 200 ft interval along the street network
of the study area to generate a total of 1483 points. These reference points were repeated
366 times in the temporal direction at one-day intervals, creating a set of approximately
37,000 reference points in total. In the space-time search, the maximum duration of a search
window was set at 60 days.

In order to investigate the impact of measuring the temporal concentrations, spatial
hotspots with no temporal constraints were also detected. Figure 6a shows the drug
hotspots detected with the study area with no temporal duration. The locations of crime
incidents are denoted by small black dots and the detected hotspots by bold red line
segments. The figure shows a distinct pattern of distribution for drug crimes found in the
proximity of main streets. Its pattern generally conforms to the perceived distribution of
such crimes. Figure 6b shows space-time hotspots detected by NetScan. The locations of
crime incidents (black dots) and the detected hotspots (bold red line segments) are projected
onto a two-dimensional plane that covers the street network in the study area. The overall
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pattern captured by space-time search windows (Figure 6b) was similar to that produced
by applying a spatial search window (Figure 6a). The difference is shown by the slightly
smaller number of space-time clusters and their tendency to remain in the proximity of the
major streets. This suggests that activities around major streets were sufficiently intense
in space and time, including some abrupt outbursts that were picked up as space-time
hotspots but not as persistent spatial hotspots. On the other hand, spatial hotspots that were
identified farther away from the major roads seemed to form a less intense but persistent
form of cluster.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 21 
 

incidents are denoted by small black dots and the detected hotspots by bold red line seg-

ments. The figure shows a distinct pattern of distribution for drug crimes found in the 

proximity of main streets. Its pattern generally conforms to the perceived distribution of 

such crimes. Figure 6b shows space-time hotspots detected by NetScan. The locations of 

crime incidents (black dots) and the detected hotspots (bold red line segments) are pro-

jected onto a two-dimensional plane that covers the street network in the study area. The 

overall pattern captured by space-time search windows (Figure 6b) was similar to that 

produced by applying a spatial search window (Figure 6a). The difference is shown by 

the slightly smaller number of space-time clusters and their tendency to remain in the 

proximity of the major streets. This suggests that activities around major streets were suf-

ficiently intense in space and time, including some abrupt outbursts that were picked up 

as space-time hotspots but not as persistent spatial hotspots. On the other hand, spatial 

hotspots that were identified farther away from the major roads seemed to form a less 

intense but persistent form of cluster. 

  

(a) (b) 

Figure 6. (a) Spatial hotspots and (b) space-time hotspots of drug offences in Englewood, Chicago 

IL in 2000. 

The images in Figure 7a,b give a three-dimensional view of the overlapping and non-

overlapping space-time hotspots detected with NetScan, respectively. Overlapping 

hotspots were formed by all hotspots at that location whose likelihood ratios were statis-

tically significant. A non-overlapping hotspot was a cluster with the highest likelihood 

ratio among those overlapped. The space-time coordinate of each crime incident is repre-

sented by a small blue dot in the space-time cube, shown at the intersection of the corre-

sponding street address on the horizontal plane and the date of the year on the vertical 

axis. The space-time hotspots are illustrated with small patches of green rectangles cover-

ing concentrations of the space-time representation of crime incidents along the street net-

work at a specific period of time during the year 2000. 

Figure 6. (a) Spatial hotspots and (b) space-time hotspots of drug offences in Englewood, Chicago IL
in 2000.

The images in Figure 7a,b give a three-dimensional view of the overlapping and non-
overlapping space-time hotspots detected with NetScan, respectively. Overlapping hotspots
were formed by all hotspots at that location whose likelihood ratios were statistically
significant. A non-overlapping hotspot was a cluster with the highest likelihood ratio
among those overlapped. The space-time coordinate of each crime incident is represented
by a small blue dot in the space-time cube, shown at the intersection of the corresponding
street address on the horizontal plane and the date of the year on the vertical axis. The space-
time hotspots are illustrated with small patches of green rectangles covering concentrations
of the space-time representation of crime incidents along the street network at a specific
period of time during the year 2000.
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offences in Englewood, Chicago IL in 2000.

The effect of visualising their temporal variation gives us a better understanding of
when those hotspots emerged. The non-overlapping hotspots (Figure 7b) show the time and
place of the “hottest” concentration of crime activities, whereas the overlapping hotspots
reflect the concentration of multiple combinations of similar sets captured in a small space
and time. In general, the extent of overlaps between those clusters seems greater in the
spatial dimension and less on the temporal dimension. In other words, the overlapping
clusters cover a similar spatial extent, but there is some variation in the period they have
captured; i.e., clusters are detected across a period of time, collectively forming a combined
cluster that is visibly longer than that of a single non-overlapping hotspot representing
them. It can be considered as a sign of stability (stable hotbeds) that is clearly demarked in
spatial terms, and crime activities are repeatedly observed across time in these locations,
which translate into the multiple periods that are captured by the series of overlapping
clusters. The non-overlapping hotspot that represents all of them can be considered as their
champion, with the most intense spatial–temporal concentration, but the tail that follows
(or the precursor that appears immediately before) can be, in practical terms, considered as
part of the concentrated activities that took place there during that period.

6. Discussion

The simulation study (i.e., performance tests using synthetic data) demonstrated
that the conventional Euclidean-based methods do not return strong performance when
analysing point distributions that are constrained by a network structure, in the sense
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that they tend give inaccurate results by under-representing, overshooting or failing to
detect problem places. The undershooting meant that some of the problem places were not
identified correctly, while cases of overshooting resulted in the covering of an excessively
wide area, including near-crime-free areas in the vicinity. These errors could actually
worsen misunderstanding about problem places as well as about the risk factors that
trigger crimes. The simulation study relied on a single pattern of a street network that was
fairly regular in its configuration, and the results were not conclusive. However, because
NetScan uses a search window that flexibly adopts the structure of a street network, its
performance should be consistent regardless of the configuration of the street network. In
contrast, the performances of the conventional methods are directly affected by the network
configuration, and therefore, the comparative advantage of NetScan is likely to increase
when detecting hotspots across more irregular networks.

In terms of the internal validity, no subjectivity exists with the synthetic data. As
discussed in the manuscript, it adopts the widely-used Poisson cluster process to produce
unbiased, random distribution. In order to test the performance over multiple clusters, we
produced 14 clusters; this number was chosen simply because, through iterative exploration,
we discovered that any more clusters would make it very difficult to prevent the test area
from getting overly crowded with clusters. Furthermore, the association between the
network and the points contained within is purely that of locational arrangements, and
therefore, remains unchanged and unaffected; this is regardless of the type of data. This
is because the analysis here relies purely on the locational data and no other attributes or
weights are needed.

On the external validity, NetScan is robust and should be applicable to any form of
network structure as long as it is defined on a two-dimensional plane. This is because, at
the computational stage, a single network datum is reduced to a simple structure consisting
of nodes and edges. Additionally, the data quantity (or the extent of the network), or
the topological arrangement of the network (e.g., dimension of each edge, or the number
streets that are connected at each junction) do not affect the computational process or the
algorithm itself. For these reasons, variations in these parameters should not affect the
validity of the method.

Empirical analyses revealed that drug incidents tend to be concentrated at specific
places on a street. It confirms the recent criminological findings on crime and place—a large
portion of crime incidents are known to concentrate on a limited number of streets and
form hotspots at those locations. NetScan was effective in identifying when, where and to
what extent crimes were forming such concentrations. The size of a micro-scale hotspot
was occasionally smaller than that of a street segment, with some hotspots being detected
between a handful of street addresses, while some other cases expanded over multiple
street segments. In particular, the spatially overlapping hotspots in Figure 7a highlighted
several small places on the street that saw a heavy recurrence of drug-related incidents
across the duration of the study period. The flexibility in the size of NetScan’s search
windows in both spatial and temporal dimensions not only helped identify hotspots of
different sizes, but also clarified the space-time signature, namely the persistent and stable
nature of drug incidents.

The difference in the size of crime hotspots can be considered to reflect the variability
in the extent of environmental and situational factors. For instance, the presence of spot-
like hotspots suggests that the crime determinant factors, along with crime opportunities
created by these factors, may exist over a very small area in those places, separating the
problem places from their immediate vicinity on a very fine scale. On the other hand,
hotspots that cover a larger area indicate the prevalence of these factors across the entire
length of the area, which collectively produces certain crime opportunities, and the unit
of area should be adjusted accordingly. The flexibility in the temporal dimension (i.e., the
capacity to change the temporal duration of the search windows for NetScan) is also
important, as search windows with a short temporal size can detect short-term hotspots,
whereas a search window with a longer temporal size can also detect hotspots that are
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long-lasting and persistent. The ability to detect different types of hotspots with search
windows of different sizes helps in the investigation of situational factors during a period
when crime opportunities are elevated at particular places.

7. Conclusions

This paper proposed a new type of method, NetScan, for detecting hotspots along
a network over space and time. The foremost methodological advantage of the NetScan is
in its increased accuracy for detecting crime hotspots, both in space and time. Using the
network distance for the space-time searches of clusters is the key in detecting problem
places at the street address level. In practice, the choice over NetScan and PLScan largely
depends on the context. If we target the spatial–temporal patterns of events that are
constrained to micro-scale and network-space, such as crimes in an urban area, NetScan
provides a more accurate result. However, if the events are not affected by the street network
(e.g., airborne disease that spreads in over a straight-line distance), PLScan may be a more
suitable option. In the context of the geography of crime, NetScan helps us capture the
space-time signature of a specific type of crime and find micro-scale crime-inducing factors
that are present at a specific time and place. This in turn leads us to a better understanding of
crime opportunity structures and the aetiology of crime—why crimes form a concentration
at that particular place and time—which has recently been investigated at the street-segment
or the sub-street-segment levels. The level of geographical and temporal granularity of this
study fits this type of enquiry particularly well.

Although NetScan generally returns results with high precision, it is not perfect.
For instance, NetScan was found to be very effective in reducing overshooting, but less
so in controlling undershooting. The high computational load is also an issue that it
shares with PLScan, especially when it comes to applying this method for micro-scale
hotspot detection against a large space-time dataset. Improvement of the computational
performance and further improvement in the detection accuracy marks a future avenue for
research. However, NetScan and the outcome from this study expanded the possibilities for
analysing crime incidents and crime opportunities at the micro-scale across space and time.

This paper was pursued in the context of crime-and-place studies. However, the pro-
posed method is expected to make conceptual and methodological contributions beyond
the analysis of drug-related crimes. Its applications need not be constrained to the fields
of geography and criminology, as the principle of detecting micro-scale concentrations is
fundamentally applicable to any context. NetScan could make a difference in other disci-
plines of natural and social sciences that involve analyses of concentrations on a network.
Examples include traffic accident analysis in the field of transportation planning and policy,
as well as epidemiological applications, such as the identification of a micro-level disease
outbreak in an urban environment.
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