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Abstract
Random minimaxing studies the consequences of using
a random number for scoring the leaf nodes of a full
width game tree and then computing the best move
using the standard minimax procedure. Experiments in
Chess showed that the strength of play increases as the
depth of the lookahead is increased. Previous research
by the authors provided a partial explanation of why
random minimaxing can strengthen play by showing
that, when one move dominates another move, then the
dominating move is more likely to be chosen by mini-
max. This paper examines a special case of determining
the move probability when domination does not occur.
Specifically, we show that, under a uniform branching
game tree model, whether the probability that one move
is chosen rather than another depends not only on the
branching factors of the moves involved, but also on
whether the number of ply searched is odd or even. This
is a new type of game tree pathology, where the minimax
procedure will change its mind as to which move is best,
independently of the true value of the game, and oscil-
late between moves as the depth of lookahead alternates
between odd and even.
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2 LEVENE and FENNER

1 INTRODUCTION

The minimax procedure is the fundamental search algorithm for deciding the next move to
play in two-player perfect information games between white and black;1-3 Chess, Checkers, Oth-
ello and Go are examples of such games. The minimax procedure is utilised by constructing a
full-width 𝛿+1-ply game tree (with 𝛿 ≥ 0) from the current position (with white, maximizing, to
move), where nodes represent game positions and arcs represent legal moves from one position
to another. The value of the root is determined by computing a score for each leaf value using a
static evaluation function and backing up these scores using the minimax rule. In practice, many
refinements have been developed in order to improve the performance of the minimax search
algorithm.3,4

Here, we concentrate on the classical minimax search algorithm, noting that the results of the
paper would apply to any variant of the algorithm that guarantees the same outcome as classical
minimax, such as alpha-beta pruning.4 Many of the variants of the minimax search algorithm4

would not necessarily return the same minimax value as classical minimax and therefore would
demand separate study.

In order to measure the utility of the minimax procedure, we follow Reference 5 in using a
random static evaluation function that returns a natural number uniformly distributed between
1 and 𝛼, with 𝛼 > 1; this variation of the minimax procedure is called random minimaxing. In
this way, we can decouple the effectiveness of the minimax procedure from the accuracy of the
static evaluation function, allowing us to study the minimax procedure in its raw form. The
experiments carried out by Beal and Smith,5 using random minimaxing in Chess, produced the
interesting result that the strength of play increases as the depth of the lookahead is increased. In
an attempt to understand this result, we showed in Reference 6 that, when one move dominates
another move, then the dominating move is more probable, that is, more likely to be chosen by
the minimax procedure. A move by white dominates another when choosing the former move
over the latter would give less choice for black, at all levels, when it is black’s turn to move, and
subsequently more choice for white when it is white’s turn to move. Under random minimax-
ing, domination can be viewed as a form of mobility, which lends support to the hypothesis that
the minimax procedure is successful in games (such as Chess and Othello) where having greater
mobility is considered to be advantageous.

A problem that was left open in Reference 6 was to determine the probability of one move
being chosen rather than another when domination does not occur. In this paper we tackle this
problem for the case where the subgame trees rooted at the nodes representing the moves have
uniform branching factors. The branching factor of such a subgame tree Ti can be viewed as the
average number of choices a player would have in subsequent moves, given that the move that
leads to the root of Ti was actually chosen. We call this model of a game tree the uniform branching
model.

Our main result is that modelling a game tree in this way leads to decision oscillation, which is
a form of pathological behaviour in the following sense. We show that, under reasonable assump-
tions, whether the probability of one move being chosen is greater than that of another move
depends not only on the branching factors of the moves involved but also on whether the num-
ber of ply searched is odd or even. Decision oscillation implies that the minimax procedure may
change its mind as to which move is best, independently of the true value of the game, resulting in
the move choice alternating between two moves as the search deepens. A similar phenomenon,
called the odd/even effect (in which the backed-up value oscillates each time the depth of search
increases by one),7 has been observed in practical game-playing programs. However, for computer
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LEVENE and FENNER 3

chess programs, it has been suggested that this phenomenon is related to quiescence,1 which is
not related to decision oscillation as described here.

Game tree pathology has been studied for over three decades.8 Under the uniform game tree
model, when the scores of the leaf nodes are independent identically distributed random variables
restricted to the values 1 (win) or 0 (loss), the term pathological means that, as the depth of looka-
head increases, the probability that a move chosen by the minimax procedure is correct tends to
the probability that a randomly chosen move is correct.9 A related form of minimax pathology,
called the “last player theorem”, was exhibited by Nau,10 who showed that, under the uniform
game tree model with win/loss values at the leaf nodes, the probability that the last player appears
to have a winning strategy tends to one as the depth increases. (Nau’s game tree model is slightly
different from ours in that he assumes that the last player is maximizing, while we assume that
the first player is maximizing.)

One explanation for the apparent absence of pathology in real games could be that the scores
of leaf positions are seldomly independent. Beal11 showed that, when sibling node dependence
is taken into account, the error probability decreases with the depth of lookahead, and Pearl12

showed that if the density of “traps” exceeds a certain threshold then pathology can be avoided.
This explanation for the lack of pathology, when real games contain numerous “traps” that lead
to early termination of the game, is based on the fact that for such terminal nodes the score
assigned to the position by the evaluation function reflects the true value of the game. A further
refinement was suggested by Scheucher and Kaindl,13 who showed that the use of multival-
ued evaluation functions with a non-uniform error distribution allows for improved evaluation
quality, so that evaluation errors decrease when the depth of search is increased. Luštrek et al.14

extended the model further to include real values for both heuristic and true values, showing
that pathology can be eliminated in this model due to reduced variance of the values returned
by the minimax procedure.

Despite these results, it was shown by Sadikov et al.15 that in a king and rook versus king
chess endgame, with errors introduced into the evaluation function, pathology still exists in the
sense that deeper search does not reduce the evaluation error. They conjecture that the cause
is the bias introduced by the minimax procedure, where the bias is defined as the difference
between the true and minimax values of a position, averaged over all the positions examined
during a minimax search. Interestingly, despite the fact that evaluation accuracy may decrease
with deeper searches, it was shown that bias affected all evaluations more or less equally, and
therefore it did not affect the relative ordering of moves with respect to their quality, Hence, the
decision accuracy of minimax was not impaired in this context and was more accurate with deeper
searches.

Schrüfer16 uses a model similar to that of Nau,9 that is, game trees have a uniform branching
factor and a finite depth, and only two heuristic values, win and loss, are considered. However,
the error attached to the heuristic value returned by the evaluation function is modelled using
two different sets of independent identically distributed random variables. This is to distinguish
the probability of assigning a win value to a leaf when it is a loss and the probability of assigning a
loss value to a leaf when it is a win (in Nau9 the probability of these two types of error are equal).
Schrüfer16 showed that, for the errors to decrease with increasing depth of search, the probability
of having a single “good” candidate move should be small.

Notwithstanding this long history of studying minimax pathology, there is continuing interest
in the problem. Lorenz and Monien17 investigated arbitrary (not necessarily uniform) win/loss
game trees, using the same probability model as in Reference 9. They show that, in order for min-
imax to be non-pathological in this more general model, there must be at least two leaf-disjoint
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4 LEVENE and FENNER

strategies that prove the true value at the root of the game tree. A more recent paper by Nau et al.18

used simulations and experimental tests to show that pathology is more likely to occur in prac-
tice when the heuristic evaluation function has a small number of possible values, the branching
factor of the game trees is high, and the local similarity values of nearby nodes in game trees
is low. Another recent paper by Zuckerman et al.19 suggests that local pathologies in the game
tree occur due to the error of the static evaluation function used when applying the minimax
procedure. The authors propose to minimise the error by tracking these local pathologies in
tandem with computing the minimax value. Also, even more recently, a paper by Liu et al.20 sug-
gests a variant to the minimax algorithm that overcomes pathology by optimising the minimax
backup rule.

It is also worth mentioning that the newer Monte Carlo tree search (MCTS) algorithm21,22

has proved to be competitive with the minimax algorithm when combined with reinforcement
learning methods.23 However, we note that in Reference 24 it was shown that the Stockfish Chess
engine,25 which deploys minimax rather than MCTS, outperforms a state of the art MCTS-based
Chess engine on solving a well-known Chess endgame puzzle. In addition,26 demonstrated that a
best-first variant of minimax is competitive with state of the art reinforcement learning methods
that use MCTS. To combine the strengths of both MTCS and minimax, hybrid search strategies
have been introduced.27

The layout of the rest of the paper is as follows. In Section 2, we provide notational back-
ground for the minimax procedure and then, in Section 3, we introduce the definitions and
assumptions used in the paper. In Section 4, we adapt the results from Reference 10 to ran-
dom minimaxing of game trees. In Section 5, we show that the uniform branching model leads
to decision oscillation for random minimaxing. Finally, in Section 6, we give our concluding
remarks.

2 THE MINIMAX PROCEDURE

We assume that the reader is familiar with the basic minimax procedure.2 However, we briefly
recall some of the definitions from Reference 6 relevant to this paper.

A game tree T is a special kind of tree, whose nodes represent game positions and arcs represent
legal moves from one position to another; the root node represents the current position. In general,
we will not distinguish between the nodes and the positions they represent, nor between the
arcs and the moves they represent. Furthermore, when no confusion arises, we will refer to the
position arrived at as a result of making a move as the move itself. We are assuming a two-player
zero-sum perfect information game between the first player, called white, and the second player,
called black, where the game has three possible outcomes: win for white (i.e., loss for black), loss
for white (i.e., win for black), or draw (see Reference 28 for a precise definition of a game).

The level of a node n in T is defined recursively as follows: if n is the root of T then its level
is zero, otherwise the level of n is one greater than the level of its parent node. Nodes of T at
even levels are called max-nodes and those at odd levels are called min-nodes. At a max-node it is
white’s turn to move and at a min-node it is black’s turn to move. We assume that T is a 𝛿+1-ply
game tree, with 𝛿 ≥ 0, where the number of ply is one less than the number of levels of T. (Thus
the root of T is at level zero and the leaves are at level 𝛿+1.) Non-leaf nodes of a game tree are
called internal nodes. A full-width game tree satisfies the condition that there is an arc for each
legal move from every position represented by an internal node. We will assume that all game
trees are full-width.
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LEVENE and FENNER 5

We define the following two operators on T:

1. root moves(T) is the set of children of the root of T, that is, the set of nodes representing the
possible positions arrived at after white makes a single move;

2. T[n] is the subgame tree of T rooted at a node n; if n is the root of T then T[n] = T.

We let minimax(T, 𝛿+1, score, 𝛼) denote a procedure that returns the leaf node of the principal
variation chosen by minimaxing,2 where T is the 𝛿+1-ply game tree whose root represents the
current position, score is a static evaluation function, and 𝛼 is a natural number representing the
maximum possible score.

We assume that the scoring of leaf nodes is computed by the function score, which returns a
natural number between 1 and 𝛼 inclusive, with 𝛼 > 1. We denote the set {1, 2, … , 𝛼} by [𝛼]. For
the purpose of scoring, we assume that all leaf nodes are distinct although, in practice, two distinct
leaf nodes may represent the same position (for example, through a transposition of moves3).

In general, it is possible that there is more than one principal variation, in which case we
assume that the minimax procedure returns the set of leaf nodes of all the principal variations.
For our purposes, it is sufficient to know whether or not a particular leaf node could be returned
by the minimax procedure. We note that normally, in practical implementations, the leaf node of
only one principal variation is returned.

The score assigned to an internal node n of T during the evaluation of minimax(T, 𝛿+1, score,
𝛼) is called the backed-up score of n and is denoted by sc(n); when n is a leaf node sc(n) = score(n).
The backed-up score of a subgame tree T[n] is sc(n), the score of its root n; so the backed-up score
of T is the score of the leaf node of any principal variation.

3 RANDOM MINIMAXING

For given 𝛿, score and 𝛼, the procedure minimax(T, 𝛿+1, score, 𝛼) defines a strategy for playing a
particular combinatorial game. We assume, from now on, that successive calls of score return a
sequence of independent random integers uniformly distributed between 1 and 𝛼. In this case,
we will refer to the induced minimax strategy as random minimaxing.5,6,29

We are interested in the probability that any given node lies on a principal variation. For a
node n ∈ root moves(T), we define prob(n, i) to be the probability that n is on a principal variation
of T and sc(n) = i. This may be calculated as follows: count the number of assignments of scores
to the leaf nodes of T such that n is on a principal variation of T and sc(n) = i, and then divide
this count by 𝛼N , the total number of assignments of scores to the leaf nodes of T, where N is the
number of leaf nodes of T. We now define prob(n), the probability that a node n ∈ root moves(T)
is on a principal variation of T, by

prob(n) =
𝛼∑

i=1
prob(n, i). (1)

From now on, we assume that n ∈ root moves(T) and that T[n] has a uniform branching factor
b ≥ 1, where b may depend on n. Suppose first that m is a max-node in T[n] and that m′ is a child
of m. We note that the distribution of sc(m′) is the same for all the children of m. We define

x(i) = prob
(

sc(m′) ≤ i
)
, (2)
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6 LEVENE and FENNER

where 1 ≤ i ≤ 𝛼. Then, since m is a max-node,

prob (sc(m) > i) = 1 − x(i)b. (3)

Now suppose conversely that m is a min-node in T[n]. In this case we define

x(i) = prob
(

sc(m′) > i
)
. (4)

Then, since m is a min-node,

prob (sc(m) ≤ i) = 1 − x(i)b. (5)

We therefore define

Fb(x) = 1 − xb

and consider the recurrence relation

xt+1 = Fb(xt), (6)

for t ≥ 0 (see [Reference 6, Equation (9)] for a justification of this formula), where

x0 = xi
0 =

⎧
⎪
⎨
⎪⎩

i
𝛼

if 𝛿 is even, i.e., the leaves of T are min-nodes,
𝛼−i
𝛼

if 𝛿 is odd, i.e., the leaves of T are max-nodes,

for some i ∈ [𝛼] ∪ {0}. It follows that 0 ≤ xt ≤ 1 for all t ≥ 0.
Starting with x0, we can compute the corresponding sequence xt, for 1 ≤ t ≤ 𝛿, by suc-

cessive applications of Fb as in (6). We denote the final value x𝛿 of the above sequence by
F𝛿b (x0), where F𝛿b is the 𝛿-fold composition of Fb with itself; we call F𝛿b the propagation function
for T[n].

For any given value of i, we may substitute xt for x(i) in equations (2) to (5), for appropriate
values of t. It is then easy to verify that, when 𝛿 - t is even, xt is the probability that the score of a
min-node of T[n] at level 𝛿 + 1- t does not exceed i, and that, when 𝛿 - t is odd, xt is the probability
that the score of a max-node of T[n] at level 𝛿 + 1- t exceeds i.

For t = 𝛿, we have

x𝛿 = F𝛿b (x0) = prob (sc(n) ≤ i) . (7)

We observe that Fb(0) = 1 and Fb(1) = 0, otherwise 0 < Fb(x) < 1. Thus, when x is 0 or 1, if 𝛿
is even then F𝛿b (x) = x, and if 𝛿 is odd then F𝛿b (x) = 1 − x.

From now on, unless stated otherwise, we will assume that there are exactly two nodes, n1
and n2 in root moves (T), and that the subgame trees T [n1] and T [n2] have uniform branching
factors b1 and b2, respectively.

The following lemma (cf. Lemma 5.1 in Reference 6) expresses the probability of a move in
terms of propagation functions.

 14678640, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/coin.12570 by T

est, W
iley O

nline L
ibrary on [17/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LEVENE and FENNER 7

Lemma 1. Suppose root moves(T) = {n1,n2}. Then, for i ∈ [𝛼],

prob(n1, i) =
(

F𝛿b1
(xi

0) − F𝛿b1
(xi−1

0 )
)

F𝛿b2
(xi

0),

prob(n2, i) =
(

F𝛿b2
(xi

0) − F𝛿b2
(xi−1

0 )
)

F𝛿b1
(xi

0). (8)

Proof. Since the root of T is a max-node, and prob(n1, i) and prob(n2, i) are indepen-
dent, we have

prob(n1, i) = prob(sc(n1) = i) × prob(sc(n2) ≤ i)
= (prob(sc(n1) ≤ i) − prob(sc(n1) ≤ i − 1)) × prob(sc(n2) ≤ i).

The result then follows from (7). ▪

The following corollary generalises Lemma 1 to the case when the root of T has more that two
children.

Corollary 1. Suppose that n ∈ root moves(T) has branching factor b, and that all other
nodes in root moves(T) also have uniform branching factors. Then, for each i ∈ [𝛼],

prob(n, i) =
(

F𝛿b (x
i
0) − F𝛿b (x

i−1
0 )

) ∏

n′∈sib(n)
F𝛿b′ (x

i
0) =

(
1 −

F𝛿b (x
i−1
0 )

F𝛿b (x
i
0)

)
Ω(T, i), (9)

where sib(n) denotes the set of sibling nodes of n, b′ is the branching factor of n′, and
Ω(T, i) is independent of n.

4 THE LAST PLAYER THEOREM FOR RANDOM
MINIMAXING

In this section we restate the relevant results from Reference 10 in the context of our formula-
tion of random minimaxing, which differs slightly from that in Reference 10: it is assumed that
the last player is maximizing, while we make the assumption that the first player (root node) is
maximizing.

The following theorem and corollary follow directly from the results in the Appendix and
Table 1 in Reference 10.

Theorem 1. For all branching factors b ≥ 1:

(a) There exists exactly one value x ∈ [0, 1] such that 1 − xb = x; we denote this value
by 𝜐b and call it the critical value for b.(b)

(i) If 0 ≤ x < 𝜐b then 1 − xb
> 𝜐b.

(ii) If 𝜐b < x ≤ 1 then 1 − xb
< 𝜐b.

(c) If b = 1 then 1 − (1 − xb)b = x for all x.
(d) If b > 1 then:

(i) 1 − (1 − xb)b < x when 0 < x < 𝜐b;
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8 LEVENE and FENNER

(ii) 1 − (1 − xb)b > x when 𝜐b < x < 1;
(iii) 1 − (1 − xb)b = x when x = 𝜐b;

(e) limb→∞ 𝜐b = 1 and the convergence is strictly monotonic increasing.
(f) 1

2
≤ 𝜐b < 1 and the inequality is strict except when b = 1.

(We note that 𝜐b = 1 − wb, where wb is the threshold value in Reference 10.)

Corollary 2. Let x0 ∈ [0, 1] and let b > 1. We define the sequence xt as in (6).

(a) If 0 ≤ x0 < 𝜐b then limt→∞ xt = 0 for even t.
(b) If 0 ≤ x0 < 𝜐b then limt→∞ xt = 1 for odd t.
(c) If 𝜐b < x0 ≤ 1 then limt→∞ xt = 1 for even t.
(d) If 𝜐b < x0 ≤ 1 then limt→∞ xt = 0 for odd t.
(e) If x0 = 𝜐b then xt = 𝜐b for all t ≥ 0.

In the next section we will also need the following lemma.

Lemma 2. For all b > 1, 𝜐b is irrational.

Proof. Suppose to the contrary that, for some b > 1, 𝜐b = y
z

where y and z are co-prime
integers. Then y > 1, since, by Theorem 1 (f), 𝜐b >

1
2
. Now, if u is a prime factor of y,

it is also a prime factor of zb since, by Theorem 1 (a),

zb − yb = yzb−1
.

The result now follows, since u is then also a prime factor of z, which contradicts the
fact that y and z are co-prime. ▪

5 A DECISION OSCILLATION THEOREM FOR RANDOM
MINIMAXING

We now present our main results, showing that the choice of move under random minimax-
ing is pathological in the sense that the choice depends not only on the branching factor of the
possible moves, but also on whether the depth of search is even or odd. The result depends on
modelling game trees using the uniform branching model, and is in contrast to the situation with
non-uniform game trees where domination may be present.6

The following definition imposes some reasonable constraints on the maximum score 𝛼, and
the critical values, vb1 and vb2 , for branching factors b1 and b2. The intuition behind the constraints
is that the maximum score should be large enough.

Definition 1 (Admissible maximum scores). We assume that b1 > b2 and that 𝜐b1

and 𝜐b2 are defined as in Theorem 1. (Note that vb1 > vb2 by Theorem 1 (e).) We say
that the natural number 𝛼, 𝛼 > 2, is admissible if, for some i ∈ [𝛼], 𝜐b2 < xi

0 < 𝜐b1 .

The following lemma, which is an immediate consequence of Definition 1 and Theorem 1 (f),
implies that, in practice, admissibility of 𝛼 is not too restrictive provided 𝛼 is large enough.

Lemma 3. Suppose that b1 > b2. Let us call 𝛼 large if 𝛼 > 1
𝜐b1−𝜐b2

. Then, if 𝛼 is large, 𝛼
is admissible.
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LEVENE and FENNER 9

The following theorem establishes our main result, that random minimaxing leads to decision
oscillation under the uniform branching model.

Theorem 2. Suppose that b1 > b2 > 1 and that 𝛼 is admissible. Then, for large
enough 𝛿,

1. prob(n1) > prob(n2) if and only if 𝛿 is even,
2. prob(n1) < prob(n2) if and only if 𝛿 is odd.

Proof. Clearly, since 𝛿 is either even or odd, we only need to prove the “if” parts of (a)
and (b).

(a) Assume that 𝛿 is even and let i ∈ [𝛼]. Then xi
0 is strictly increasing with i.

We first compute the value of prob(n1, i) for each i ∈ [𝛼]. It follows from Lemma 2 that,
since b1 > b2 > 1, xi

0 ≠ 𝜐b1 and xi
0 ≠ 𝜐b2 for all i ∈ [𝛼]. So there are three cases to consider:

(A) xi−1
0 < xi

0 < 𝜐b1 . By Corollary 2 (a), lim𝛿→∞ F𝛿b1
(xj

0) = 0, for j = i and i − 1; so
prob(n1, i) → 0 by Lemma 1.

(B) 𝜐b1 < xi−1
0 < xi

0. By Corollary 2 (c), lim𝛿→∞ F𝛿b1
(xj

0) = 1, for j = i and i − 1; so
prob(n1, i) → 0 by Lemma 1.

(C) xi−1
0 < 𝜐b1 < xi

0. This implies that 𝜐b2 < xi
0. So, by parts (a) and (c) of Corollary 2,

lim𝛿→∞ F𝛿b1
(xi−1

0 ) = 0, lim𝛿→∞ F𝛿b1
(xi

0) = 1 and lim𝛿→∞ F𝛿b2
(xi

0) = 1; thus prob(n1, i) → 1
by Lemma 1.

Clearly there exists a unique i ∈ [𝛼] satisfying case (C), which implies that prob(n1) → 1
(see also [Reference 30, Theorem 1]).
We now similarly compute the value of prob(n2, i) for i ∈ [𝛼]. There are again three cases
to consider:

(D) xi−1
0 < xi

0 < 𝜐b2 . As in (A) prob(n2, i)→ 0.
(E) 𝜐b2 < xi−1

0 < xi
0. As in (B) prob(n2, i)→ 0.

(F) xi−1
0 < 𝜐b2 < xi

0. This implies that xi
0 < 𝜐b1 , by the definition of admissibility. By Corol-

lary 2 (a) lim𝛿→∞ F𝛿b1
(xi

0) = 0, so prob(n2, i) → 0, by Lemma 1.
It follows that prob(n2) → 0 and thus, for large enough 𝛿, prob(n1) > prob(n2) as
required.

(b) This follows using a similar argument to that used in (a), utilising parts (b) and (d) of
Corollary 2. ▪

We extend the notion of admissibility to game trees with more than two moves by letting b1
and b2 in Lemma 3 be the branching factors of any two moves in root moves(T) satisfying b1 > b2.
Thus, for 𝛼 to be admissible, the conditions of Definition 1 must hold for the branching factors b1
and b2 of any two moves in root moves(T) with b1 > b2.

As a corollary, we show that the main result can be extended to game trees with more than
two moves in root moves(T). For node nj ∈ root moves(T), from (9) we have

prob(nj, i) =
(

F𝛿bj
(xi

0) − F𝛿bj
(xi−1

0 )
) ∏

nk∈sib(nj)
F𝛿bk
(xi

0), (10)

where sib(nj) denotes the set of sibling nodes of nj.
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10 LEVENE and FENNER

Corollary 3. Suppose that root moves(T) contains any number of moves, and let n1
and n2 be any two moves in root moves(T)with branching factors b1 and b2 such b1 > b2.
Suppose also that 𝛼 is admissible. Then, for large enough 𝛿,

(a) prob(n1) > prob(n2) if and only if 𝛿 is even.
(b) prob(n1) < prob(n2) if and only if 𝛿 is odd.

Proof. We note from (10) that prob(n1, i) and prob(n2, i) are given by the expressions in
(8) multiplied in each case by the same factor, namely the product in (10) taken over
all moves in root moves(T) except n1 and n2. The result then follows as in the proof of
Theorem 2. ▪

It follows from the corollary that, for large enough 𝛿, prob(n1) ≠ prob(n2) if b1 ≠ b2, thus
prob(n1) = prob(n2) if and only if b1 = b2.

We now extend Theorem 2 to the case when b2 = 1.

Theorem 3. The result of Theorem 2 still holds when b2 = 1.

Proof. We first assume that 𝛿 is even, and show that prob(n1) > prob(n2) in this case.
Using an identical argument to that made in the proof of Theorem 2, it follows

that for cases (A) and (B), prob(n1, i)→ 0 as 𝛿 → ∞. However, for case (C), we have
F𝛿b2
(xi

0) = xi
0 for all even 𝛿 by Theorem 1 (c). So, by Lemma 1 and (1), as 𝛿 →∞,

prob(n1) = prob(n1, i) → xi
0 =

i
𝛼
=

⌈𝛼𝜐b1⌉
𝛼

.

By Theorem 1 (c), F𝛿b2
(xi

0) − F𝛿b2
(xi−1

0 ) = xi
0 − xi−1

0 = 1
𝛼

. Also, lim𝛿→∞ F𝛿b1
(xi

0) is 0 if xi
0 <

𝜐b1 and 1 if 𝜐b1 < xi
0; so, by Lemma 1, as 𝛿 → ∞, prob(n2, i)→ 0 or 1

𝛼
, respectively.

Therefore, by (1), prob(n2) →
𝛼−⌊𝛼𝜐b1⌋

𝛼
as 𝛿 → ∞. Since b1 ≥ 2, we have 𝜐b1 ≥ 𝜐2 =

√
5−1
2

by Theorem 1 (e). Straightforward calculation shows that ⌈𝛼𝜐b1⌉ + ⌊𝛼𝜐b1⌋ > 𝛼, for 𝛼 ≥
4. So, for large enough 𝛿, prob(n1) > prob(n2) as required.

As in Theorem 2, the proof when 𝛿 is odd follows by a similar argument. ▪

We next extend the result of Theorem 3 to game trees with more than two moves. The proof
of the following corollary is exactly analogous to that of Corollary 3.

Corollary 4. The result of Corollary 3 still holds when b2 = 1.

A subgame tree is level-regular if all nodes at the same level have the same branching factor,
that is, the same number of children.

The next extension of Corollary 3 is an interesting and stronger form of decision oscillation
pathology. Intuitively, it states that the this result still holds when we attach, between each move
nj ∈ root moves(T) and the subgame tree T[nj] below it, an arbitrary level-regular 𝜏-ply subgame
tree Tj, where 𝜏 is an even integer.

Definition 2 (Level-regular extension of a game tree). Let T𝜏 be a 𝜏-ply level-regular
subgame tree with branching factors r = (r1, r2, … , r𝜏) at levels 0, 1, … , 𝜏 − 1,
respectively, where 𝜏 is an even integer.
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LEVENE and FENNER 11

For a given move n ∈ root moves(T), let T′[n] be the (𝜏 + 𝛿)-ply subgame tree
obtained by substituting the subgame tree T[n] for each leaf node of T𝜏 . We con-
struct T′[n] in this way for each node n ∈ root moves(T), where the branching factors
r1, r2, … , r𝜏 for different nodes n may be different. Let T′ be the game tree where
root moves(T′) consists of the root nodes of T′[n] for n ∈ root moves(T). We call T′ a
level-regular extension of T.

For a level-regular extension T′ of T the propagation function for T′[n] is

F𝜏r (F𝛿b (⋅)),

where

F𝜏r = Fr1(Fr2(· · · (Fr
𝜏
(⋅)) · · · )).

Corollary 5. The result of Corollary 3 holds for any level-regular extension of T when
b2 > 1.

Proof. Let n′ ∈ root moves(T′)with propagation function F𝜏r (F𝛿b (⋅)). By the continuity
of this function and Corollary 2, for any x0 ≠ 𝜐b,

lim
𝛿→∞

F𝜏r (F𝛿b (x0)) = F𝜏r
(

lim
𝛿→∞

F𝛿b (x0)
)
= lim

𝛿→∞
F𝛿b (x0),

since F𝜏r (0) = 0 and F𝜏r (1) = 1 for even 𝜏.
Thus, when 𝛿 is large enough, the attached subgame tree T𝜏 serves to propagate,

essentially unchanged, the values passed to it by the subgame trees T[n] substituted
for its leaves. It follows that prob(n) and prob(n′) tend to the same value as 𝛿 tends to
infinity, which yields the result. ▪

Corollary 5 is interesting because it indicates that, provided the branching factor is uniform at
the lower levels of each subgame tree T[n], the branching factors at the top levels have little effect
on the probability of a move. We conjecture that Corollary 5 still holds for an arbitrary extension
T𝜏 of T, even when T𝜏 is not level-regular, provided the probability distribution of the leaves is
suitably constrained.

6 CONCLUDING REMARKS

We have shown that, under the uniform game tree model, random minimaxing exhibits decision
oscillation. That is, for moves whose subgame trees have different branching factors the minimax
procedure will most probably change its selection of best move depending on whether the depth
of lookahead is odd or even, provided the depth is large enough.

The results in this paper suggest that, in order to understand which of two moves is more
likely to be chosen, we need to take into account the structure of the subgame trees rooted at
these moves. Corollary 5 indicates that the lower levels of the tree have more influence on the
minimax value. However, it may be the case that using game specific information, such as sibling
dependence, decision oscillation will be eliminated.
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12 LEVENE and FENNER

A non-uniform random static evaluation function is obviously a more realistic model for a
real game than a uniform random function. In a typical game-specific application, the evaluation
tries to produce the same move ordering as would a function that estimated the probability of
winning. The evaluation function is often a linear combination of terms, to which a squashing
function (such as a sigmoid function; see Chap. 4 of Reference 31) could be applied to estimate
the probability of winning. In this typical arrangement, the leaf probability values in the range
[0, 1] are not uniformly distributed.

The results we have presented generalise to evaluations with and without a squashing function
− the only requirement on the squashing function is that it be monotonic. (Monotonicity ensures
that the same leaf is selected by minimax.) This is due to the fact that when a monotonic function
is applied to the leaf evaluations, the minimax procedure will still choose the same move at every
node in the tree. The typical squashing functions used in game-specific applications, for example,
the logistic function, are monotonic. Thus the result applies to any model in which a uniform
random distribution is used to model the linear evaluation, with a squashing function applied to
map the linear evaluation to a probability of winning.

Finally, we note that it follows from Reference 32 that Theorem 1 and Corollary 2 can be
generalised to random evaluation functions that are not necessarily either uniform or identically
distributed, as long as they are independent. Moreover, Nau also showed that the condition of
independence can be somewhat relaxed. It follows that decision oscillation will also hold in this
more general setting provided the probability distribution of the leaves is suitably constrained.

We have shown that decision oscillation is present in a situation where domination does not
occur. It is an open problem to investigate, in detail, the relationship between these two phenom-
ena. In this context it would also be interesting to find weaker conditions than domination6 that
eliminate decision oscillation. Finally, it remains to be seen how these results relate to practi-
cal game playing systems, and whether there is any connection between decision oscillation and
the odd/even effect.7 It would also be interesting to investigate game pathology in the context of
MCTS, as it was shown in Reference 33 that pathology may also arise when MCTS is deployed.
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