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Abstract

We consider testing for the presence of rational bubbles during hyperinflations via an

analysis of the non-stationarity properties of relevant observable time series. The test

procedure is based on a Markov regime-switching model with independent stochastic

changes in its intercept, error variance and autoregressive coefficients. This model

formulation allow us to disentangle fundamentals-driven changes in the drift, bubble-

driven explosiveness, and volatility changes that may be fundamentals-driven and/or

bubble-driven. The testing methodology is illustrated by applying it to data from

hyperinflations in Argentina, Brazil, Germany and Poland.

Keywords: Bootstrap; Bubbles; Explosiveness; Markov-switching autoregressive model;

Unit-root test.
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1 Introduction

The question of whether hyperinflations are accompanied, or made worse, by speculative

behavior, which may be characterized as a speculative price bubble, has attracted the

interest of economic theorists and practitioners alike. However, even though it is clear what

the fundamentals are in hyperinflation periods, assessing whether a bubble is present in

the data is not an easy task. This is partly because episodes of high inflation are typically

accompanied by actions of monetary authorities aimed at stabilizing prices and, as a result,

the evolution and volatility of prices may be driven by different factors, one of which is

pure speculative behavior. Our objective in this paper is to consider how to assess the

possibility of the existence of bubbles in a way which takes into account the impact changes

in monetary policy may have on the evolution and stochastic properties of prices.

There are many possible reasons why researchers may wrongly interpret what is ob-

served as bubbles when unaccounted movements in prices are the result of changes in

the underlying fundamentals. One is the possibility of confusing bubbles with expected

changes in policy that have not materialized (see Hamilton (1986)). Another, and possibly

more critical, is interpreting as bubbles deviations of prices from incorrect fundamentals

that ignore policy changes that took place (see Driffill and Sola (1998)). These difficulties

are well understood in the literature and, while there is little a researcher can do to ac-

count for difficulties of the former kind, there is some room for action in the latter case.

Nevertheless, indirect tests for bubbles, which are extensively used in the literature, have

not advanced much in this direction, which is what we attempt to do in this paper.

Indirect tests for the existence of rational bubbles rely on assessing the non-stationarity

and explosiveness properties of time series of prices and of observable fundamentals. Two

well-known approaches of this type are the Markov-switching unit-root tests of Hall et al.

(1999) and the recursive unit-root tests of Phillips et al. (2011) and Phillips et al. (2015).

The key idea behind these approaches is to distinguish between periods in which the

time series of interest, typically prices and their underlying fundamentals, are difference-

stationary (i.e., have an autoregressive unit root) from periods in which they are explo-

sive (i.e., have an autoregressive root greater than one). If there are no sub-periods in
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which prices are explosive (which, in turn, implies that fundamentals are always difference-

stationary), then the existence of bubbles can be ruled out since price explosiveness is a

necessary (although by no means sufficient) condition for the existence of bubbles. If,

on the other hand, both fundamentals and prices are explosive in the same sub-periods

and difference-stationary in all others, then price explosiveness may be entirely driven by

fundamentals, even though the possibility of a bubble cannot be ruled out (if such a price

bubble exists, its explosive behavior will be indistinguishable from that induced by the

fundamentals). Lastly, if the fundamentals are always difference-stationary but prices are

difference-stationary in some sub-periods and explosive in others, then in the sub-periods

associated with explosive behavior prices evolve in a way that is potentially consistent with

the presence of a (big enough) bubble – although other fundamentals-based interpretations

of these patterns are also possible (see, e.g., Hamilton (1986)).

As already mentioned, an additional complication, which has not been addressed suc-

cessfully in the literature on indirect tests for bubbles, is that changes in the structure

of the generating mechanism of the fundamentals that drive prices will typically induce

changes in prices themselves. Hence, price movements that may be interpreted as bubbles

on the basis of an indirect test may in fact be entirely the result of changes in the behavior

of the fundamentals which have not been taken into consideration (see, e.g., Driffill and

Sola (1998)). For example, during periods of high inflation, monetary authorities may

occasionally intervene in the money market in an attempt to stabilize the rate of price

increases. Even though such interventions may have no effect on the explosive behavior

of fundamentals (money expansion), they are likely to have an effect on prices. A re-

searcher who does not allow for the effects of a changing rate of monetary expansion in

their analysis may incorrectly interpret the induced price movements as evidence in favor

of the existence of a price bubble. In addition, it is not unreasonable to expect changes in

the volatility of prices to be driven by changes in the underlying fundamentals, changes

in the size of a bubble, whenever the latter is present, or both. Even when using indi-

rect tests for bubbles, these different sources of potential changes and explosiveness need

to be accounted for in order to avoid confounding the effects of bubbles with those of
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fundamentals.

In this paper, we tackle the difficulties that arise when testing for the existence of bub-

bles in an environment in which changes in the growth rate and volatility of fundamentals

may affect the evolution of prices in ways that mimic the explosive behavior of a bubble.

We do so by considering an indirect test for bubbles based on a model specification that

allows us to disentangle fundamentals-driven changes in the drift of prices, bubble-driven

explosiveness, and volatility changes that may be fundamentals-driven and/or bubble-

driven. Our proposed testing strategy is a generalization of that of Hall et al. (1999) and

is based on a Markov-switching autoregressive model in which stochastic changes in its

intercept, in its error variance and in the roots of the characteristic equation associated

with it are governed by separate (independent) Markov processes.

We motivate our approach in the next section of the paper by considering a simple

model of hyperinflation with stochastic changes in the mean and volatility of the monetary

growth rate. In Section 3, we describe the Markov regime-switching model that is used to

construct unit-root tests (against an explosive alternative), discuss a bootstrap procedure

for obtaining p-values and/or critical values for such tests, and present some simulation

results relating to the properties of the tests. The proposed methodology is illustrated in

Section 4 by analyzing hyperinflation episodes in Argentina, Brazil, Germany and Poland.

Section 5 summarizes and concludes.

2 A simple model with changing rates of monetary expan-

sion

To fix ideas and motivate our approach, consider a simple discrete-time model of infla-

tionary dynamics consisting of a rule that describes money expansion, given by

∆mt = µ+ σεt, (1)

and a Cagan-type equation for money demand, which, in equilibrium, takes the form

mt − pt = −βEt(∆pt+1). (2)
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Here, mt and pt are the natural logarithms of the nominal money stock and the price level,

respectively, at time t, {εt} are random shocks such that Et−1(εt) = 0 and E(ε2t ) = 1, µ, σ

and β are positive parameters, ∆ is the first-difference operator, and Et denotes conditional

expectation given information available at time t.

Reorganizing (2) gives the forward-looking price equation

pt =
1

1 + β
mt +

β

1 + β
Et(pt+1), (3)

which admits the “fundamental” solution pFt = βµ+mt as well as solutions which involve

an additional “bubble” component. More specifically, if the existence of bubbles cannot

be ruled out, pt = pFt + Bt is a solution to (3) for any bubble Bt which is explosive in

conditional expectation and satisfies the equation

Bt =
β

1 + β
Et(Bt+1). (4)

The bubble process {Bt} is typically assumed to be independent of the money-supply

process {mt}. Such bubbles may arise when individuals do not have confidence in the

ability of monetary authorities to control the rate of inflation and expect increases in the

price level higher than those that are justified by the underlying fundamentals (which is

likely to happen in times of a hyperinflation).

Let us consider next a more general setup which allows for a stabilization plan in the

form of reductions in the rate of monetary expansion. To be more specific, suppose that,

instead of (1), money supply obeys the equation

∆mt = µ0 + (µ1 − µ0)St + [σ0 + (σ1 − σ0)St]εt, (5)

where St is a binary random variable taking values 0 and 1, and µ0, µ1, σ0 and σ1 are

positive parameters. This implies that the slope of the trend in mt is µ0 when St = 0 and

µ1 when St = 1; correspondingly, the standard deviation of the shocks is either σ0 or σ1,

depending on the value of St. The random variables {St} are assumed to be independent

of {εt} and to form a temporally homogeneous Markov chain with transition probabilities

Pij = P(St+1 = j|St = i), i, j = 0, 1 (0 < Pij < 1). Assuming µ0 < µ1, one may think of
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the state associated with St = 0 as representing a stabilization state, with transitions into

and out of it being governed by the conditional probabilities Pij .

To obtain the solution for the path of prices under (5), let

pFt =

{
κ0 + γ0mt, if St = 0,

κ1 + γ1mt, if St = 1.

Then, in view of (3), κ0, γ0, κ1 and γ1 are such that, conditionally on St = 0,

κ0 + γ0mt =
1

1 + β
mt +

β

1 + β
{P00[κ0 + γ0(µ0 +mt)] + (1− P00)[κ1 + γ1(µ1 +mt)]} ,

while, conditionally on St = 1,

κ1 + γ1mt =
1

1 + β
mt +

β

1 + β
{(1− P11)[κ0 + γ0(µ0 +mt)] + P11[κ1 + γ1(µ1 +mt)]} .

These equations imply that

κ0 =
β

1 + β
[P00(κ0 + µ0) + (1− P00)(κ1 + µ1)] , (6)

κ1 =
β

1 + β
[(1− P11)(κ0 + µ0) + P11(κ1 + µ1)] , (7)

and γ0 = γ1 = 1. Thus, reorganizing (6) and (7), we have

κ0 =
µ0[P00 + β(1− P11)] + µ1(1 + β)(1− P00)

[(1 + 2β)/β]− P00 − P11
,

κ1 =
µ0 (1 + β) (1− P11) + µ1[P11 + β(1− P00)]

[(1 + 2β)/β]− P00 − P11
.

The fundamental solution for the path of prices may, therefore, be expressed as

pFt = κ0 + (κ1 − κ0)St +mt, (8)

and thus, in view of (5) and (8),

∆pFt = µ0 + (µ1 − µ0)St + (κ1 − κ0)(St − St−1) + [σ0 + (σ1 − σ0)St]εt, (9)

with

κ1 − κ0 =
(µ0 − µ1) (1− P00 − P11)

[(1 + 2β)/β]− P00 − P11
.

The stochastic difference equation (9) describing the dynamics of prices inherits the au-

toregressive unit root present in the money-supply process, as well as the volatility changes

7



the latter is subject to. In addition, the drift in prices undergoes discrete stochastic shifts

driven by the changes in the slope of the trend in money supply. It is worth emphasizing

that such shifts are present in prices despite the absence of bubbles.

As mentioned already, if the existence of bubbles cannot be ruled out, solutions to (3)

are the sum of the fundamental solution pFt satisfying (8) and any bubble Bt satisfying

(4). Since a bubble is defined only via (4), there is, in principle, an infinite variety of

bubble processes. An empirically plausible class of stochastic, positive and periodically

collapsing rational bubbles is described in Evans (1991). In our setting, these bubbles are

of the form

Bt+1 =
1 + β

β
Btζt+1I(Bt ≤ τ) +

[
δ +

1 + β

βq

(
Bt −

βδ

1 + β

)
ηt+1

]
ζt+1I(Bt > τ), (10)

where τ and δ are positive parameters such that (1 + β)τ > δβ, {ζt} are independent,

identically distributed (i.i.d.) positive random variables, independent of {εt}, such that

Et(ζt+1) = 1, {ηt} are i.i.d. Bernoulli random variables, independent of {ζt} and {εt}, such

that P(ηt = 1) = 1−P(ηt = 0) = q (0 < q ≤ 1), and I(·) is the indicator function (equal to

1 if its argument is true and 0 otherwise). Hence, a bubble grows at mean rate (1 + β)/β

as long as Bt ≤ τ ; when eventually Bt > τ , it grows at the faster mean rate (1 + β)/(βq),

but collapses to the mean value δ with probability 1 − q each period. Assuming log ζt is

normally distributed, the maximum time span of such a collapsing bubble in a sample of

T observations can be shown to be at most of order log T in probability (Phillips et al.

(2011)), which is very short compared to the full sample size. The methodology discussed

in the next section, based on a regime-switching autoregressive model, is well-suited to

detecting periodically collapsing bubbles.

3 Testing for explosiveness in a model with independent

stochastic changes

As illustrated in the context of the simple monetary model considered in the previous

section, changes in the drift of prices, under high inflation, will typically be driven by

changes in monetary policy, as will shifts in the volatility of prices. In the presence of a
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price bubble, however, it is reasonable to expect changes in the volatility of prices to be

affected not only by changes in the underlying fundamentals associated with stabilization

programmes pursued by monetary authorities but also by the size of the bubble.

In the test procedure of Hall et al. (1999), changes in the parameters of an augmented

Dickey–Fuller regression (with homoskedastic errors) are assumed to be governed by a sin-

gle two-state Markov chain. As a result, such changes may not necessarily be attributable

to changes in the monetary policy stance, in the sense of the example discussed in Sec-

tion 2, as they may reflect changes in policy, the existence of explosive episodes associated

with bubbles, or both. The assumption of a state-independent error variance, although

restrictive, is advisable in this context in order to ensure that filtering algorithms do not

confuse periods during which there is genuine explosive behavior (due to an autoregressive

root greater than one) with periods which are spuriously explosive due to large volatil-

ity induced by a bubble. This difficulty may be overcome to some extent by using a

specification in which changes in the error variance are driven by a Markov process inde-

pendent of the Markov process that governs changes in the other parameters of the model

(see, e.g., Shi (2013)). However, even this specification does not allow us to disentan-

gle fundamentals-driven changes in the drift, bubble-driven explosiveness, and volatility

changes that may be fundamentals-driven and/or bubble-driven. In order to do so, we

consider here a model in which changes in the intercept, the error variance and the roots

of the characteristic equation are governed by separate Markov processes.1

3.1 Test procedure

For a time series {Xt} of length T (Xt being pt or mt in our setting), our procedure

for detecting explosiveness is based on a Markov-switching autoregressive model (of order

1In the case of indirect tests for bubbles based on recursive unit-root tests, the importance of considering

potential changes in volatility has been highlighted by Harvey et al. (2016) and Monschang and Wilfling

(2021), among others, who demonstrated that neglected heteroskedasticity can have deleterious effects on

the properties of tests. Harvey et al. (2019a) and Harvey et al. (2019b) discuss recursive-type tests which

allow for non-stochastic volatility subject to a countable number of jumps.
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K + 1) parameterized in the form

∆Xt = α0 + (α1 − α0)S1,t + [ϕ0 + (ϕ1 − ϕ0)S3,t]Xt−1

+

K∑
k=1

[ψ0,k + (ψ1,k − ψ0,k)S3,t]∆Xt−k + [ω0 + (ω1 − ω0)S2,t]ut, (11)

for some non-negative integer K.2 Here, {ut} are i.i.d. random variables with E(ut) = 0

and E(u2t ) = 1, {S1,t}, {S2,t} and {S3,t} are latent random variables, independent of {ut},

taking values in the set {0, 1}, and α0, α1, ϕ0, ϕ1, ψ0,k, ψ1,k, ω0 and ω1 are unknown

parameters. The random variables {S1,t}, {S2,t} and {S3,t} determine the prevailing

state/regime at any given time and are assumed to form temporally homogeneous Markov

chains, independent of one another, with transition probabilities

P
(r)
ij = P(Sr,t+1 = j|Sr,t = i) (i, j = 0, 1; r = 1, 2, 3). (12)

The composite regime process {ξt = (S1,t, S2,t, S3,t)} may, therefore, be viewed as a tempo-

rally homogeneous Markov chain with values in the three-fold Cartesian product of {0, 1}

and transition probabilities

P[ξt+1 = (h, l, d)|ξt = (i, j, b)] = P
(1)
ih · P (2)

jl · P (3)
bd (i, j, b, h, l, d = 0, 1). (13)

It is worth noting that, although {ξt} is an eight-state Markov chain, its transition matrix

contains only six independent parameters that need to be estimated (this figure would rise

to 56 if the components of ξt were assumed to be correlated with one another).

The key feature of the model in (11)–(13) is that changes in the error variance, regard-

less of whether they may be due to changes in the fundamentals or to the size of a bubble,

are governed by S2,t, while changes in the intercept are driven by S1,t. At the same time,

changes in the roots of the characteristic equation associated with the model, which are

directly related to the possible presence of a bubble, are governed by S3,t. In the regimes

associated with ξt = (i, j, 0) and ξt = (i, j, 1), with i, j = 0, 1, {Xt} is explosive if ϕ0 > 0

and ϕ1 > 0, respectively. Such explosive behavior is necessary (but not sufficient) for the

existence of a rational bubble in the associated regime.

2As usual, the sum on the right-hand side of (11) is understood to be empty when K = 0.
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The parameters of model (11)–(13) can be estimated by the method of maximum

likelihood using a recursive algorithm analogous to that discussed in Hamilton (1994,

pp. 692–694). Hence, a natural test of the unit-root null hypothesis ϕi = 0 (i = 0, 1)

against the explosive alternative ϕi > 0 will reject for large values of the statistic

Ti =
ϕ̂i

s(ϕ̂i)
(i = 0, 1),

where s(ϕ̂i) is the estimated standard error of ϕ̂i (here and elsewhere, a hat over a pa-

rameter signifies its maximum-likelihood estimator). As is common in the literature,

maximum-likelihood estimates will be obtained under the assumption that ut is normally

distributed.

Like Hall et al. (1999), we propose to obtain p-values and/or critical values for right-

tailed tests based on T0 and T1 by means of a parametric bootstrap procedure. This

involves generating bootstrap data {X∗
t } according to the recursive relation

X∗
t = X∗

t−1 + α̂0 + (α̂1 − α̂0)S
∗
1,t +

K∑
k=1

[ψ̂0,k + (ψ̂1,k − ψ̂0,k)S
∗
3,t]∆X

∗
t−k

+ [ω̂0 + (ω̂1 − ω̂0)S
∗
2,t]u

∗
t , (14)

for t = K + 2, . . . , T , setting X∗
t = Xt for t = 1, . . . ,K + 1. Here, {u∗t } are i.i.d. standard

normal random variables (independent of X1, . . . , XT ) and

S∗
r,t = I(P(Sr,t = 1|It; ϑ̂) > 0.5) (r = 1, 2, 3), (15)

P(Sr,t = 1|It; ϑ̂) being the inferred probability that Sr,t = 1, given data It = {X1, . . . , Xt}

available through time t, and based on the maximum-likelihood estimate ϑ̂ of the vector

of parameters of model (11)–(13). The bootstrap value T ∗
i of Ti (i = 0, 1) is then obtained

by applying the definition of Ti to the bootstrap data X∗
1 , . . . , X

∗
T in place of the original

data X1, . . . , XT . Repeating the above two steps a large number of times, say N , yields a

set of T ∗
i values, and the bootstrap p-value for a right-tailed test based on Ti is computed

as the proportion of the T ∗
i values that are greater than the observed value of Ti. Hence,

the hypothesis of a unit root (ϕi = 0) is rejected in favor of explosiveness (ϕi > 0), at

a given level of significance α (0 < α < 1), if the bootstrap p-value does not exceed α.
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Equivalently, the test rejects if the observed value of Ti exceeds the ⌈(1− α)N⌉-th largest

of the T ∗
i values, ⌈(1− α)N⌉ being the smallest integer greater than or equal to (1−α)N .

Note that the bootstrap procedure described above uses the inferred regimes S∗
r,t from

(15) in each of the N bootstrap samples generated according to (14). This ensures that

regime shifts in the bootstrap data mimic shifts in the observed data as closely as possible.

Although the classification rule P(Sr,t = 1|It; ϑ̂) ≷ 0.5 used to define the indicators S∗
r,t

is somewhat arbitrary, its use is unlikely to be problematic in practice; in our experience,

inferred probabilities about the prevailing regime at each sample date are rarely near the

non-informative 0.5 value. Also note that the indicators S∗
r,t may be constructed using

smoothed probabilities P(Sr,t = 1|IT ; ϑ̂) based on the full set of data in place of the filtered

probabilities P(Sr,t = 1|It; ϑ̂); smoothed and filtered probabilities typically differ very little

from each other in applications. Finally, it is worth emphasizing that bootstrap data are

generated in such a way that they satisfy the constraints of the hypotheses being tested

(ϕ0 = 0 and ϕ1 = 0) even though the observed data may not. Restricting the bootstrap

data-generating mechanism so that it satisfies the hypotheses under test is important for

ensuring that the bootstrap procedure provides an accurate approximation to the null

sampling distribution of T0 and T1, and yields tests that reject with high probability when

there is explosiveness in the observed data.

3.2 Simulations

To get some insight into the properties of the proposed testing methodology, we report

some limited Monte Carlo simulation results. The experimental design is chosen so as to

reflect the characteristics of real-world time series such as those analyzed in Section 4.

All results are obtained from 1,000 Monte Carlo replications, using N = 200 bootstrap

replications in each of these to compute p-values for right-tailed unit-root tests based on

the statistics T0 and T1.3 The proportion of Monte Carlo replications in which the unit-

root null hypothesis ϕi = 0 (i = 0, 1) is rejected in favor of the explosive alternative ϕi > 0,

3Using a larger number of bootstrap replications increases the computational cost of the Monte Carlo

experiments considerably without any substantial changes in the results. Hall (1986) provides a theoretical

explanation of the ability of bootstrap procedures to yield good results without the need to employ a large

number of replications.
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at the 5% significance level, in each of three experiments is shown in Table 1.

Table 1: Rejection Frequencies of Right-Tailed Tests

MC.1 MC.2 MC.3

Null T = 60 T = 120 T = 60 T = 120 T = 60

ϕ0 = 0 0.1548 0.1377 0.1250 0.2145 0.8033

ϕ1 = 0 0.0875 0.0623 1.0000 1.0000 0.9508

In the first simulation experiment (MC.1), artificial data are generated according to the

Markov-switching model (11)–(13) with K = 1, normally distributed ut, and the following

parameter values:

α0 = 0.1, α1 = 0.8, ϕ0 = 0, ϕ1 = 0, ψ0,1 = −0.4, ψ1,1 = −0.2,

P
(1)
00 = 0.9, P

(1)
11 = 0.7, P

(2)
00 = 0.6, P

(2)
11 = 0.85, P

(3)
00 = 0.8, P

(3)
11 = 0.5,

ω0 =
√
0.01, ω1 =

√
0.35.

Under this design, there is a unit root (and no explosiveness) in all eight Markov regimes.

The test for ϕ0 = 0 has rejection frequencies in excess of the nominal level for the relatively

modest sample sizes considered. By contrast, the rejection frequencies of the test for ϕ1 = 0

are reasonably close to the nominal level, especially for the larger of the two sample sizes.

In the second simulation experiment (MC.2), the data-generating process is the same

as the one used in experiment MC.1 except for ϕ1 = 0.05. This implies that the process has

a unit root in regimes associated with S3,t = 0 and an explosive root in regimes associated

with S3,t = 1 (the largest root of its characteristic equation, conditionally on S3,t = 1,

being 1.0419). The test procedure has impressive power to detect explosiveness, the test

based on T1 correctly rejecting the hypothesis ϕ1 = 0 in favor of ϕ1 > 0 in all Monte Carlo

replications, even for the smaller of the two sample sizes. As in the first experiment, the

test based on T0 rejects the hypothesis ϕ0 = 0 more frequently than the nominal level of

the test implies, especially when T = 120.4

4One possible, albeit computationally expensive, way to reduce the discrepancy between the nominal

level of the tests and their actual probability of incorrectly rejecting the null hypothesis is to rely on a nested

double-bootstrap procedure to adjust the p-values (see, e.g., Davison and Hinkley (1997, pp. 175–180)).
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In the final simulation experiment (MC.3), we revisit the monetary model discussed in

Section 2 and consider the properties of the test procedure in the presence of periodically

collapsing bubbles of the well-known type proposed by Evans (1991). More specifically,

the tests are applied to artificial data generated as Xt = pFt + Bt, where p
F
t satisfies (9)

and Bt satisfies (10). The parameter values used are:

µ0 = 0.1, µ1 = 0.2, σ0 =
√
0.0005, σ1 =

√
0.001, P00 = P11 = 0.85,

β = 8, τ = 4, δ = 0.2, q = 0.7.

In addition, {εt} are i.i.d. with a standard normal distribution, {log ζt} are i.i.d. with a

normal distribution having mean −10−8/2 and standard deviation 10−4 (so that the mean

of ζt is 1), and the initial value of Bt is 0.01.5 We only consider samples of size T = 60

in this case to avoid having a large number of erupting bubbles, which seems desirable in

our context (unlike explosive episodes in asset prices, hyperinfaltions are very limited in

number). Despite the relatively small sample size, the test procedure based on the Markov-

switching model (11)–(13) rejects the unit-root hypothesis in favor of explosiveness with

very high frequency. The fact that evidence against the unit-root hypothesis is found in

all Markov regimes is not very surprising. The bubble process satisfying (10) is explosive

in conditional expectation even during periods of slow growth, and this is reflected in the

rejection frequencies of the tests, which are always high but more so in regimes associated

with the rapidly expanding phase of the bubble. By varying the parameters determining

the dynamics of the bubble process and of the fundamentals, it is obviously possible to

obtain realizations of {Xt} for which the explosiveness generated by the bubble during its

slow-growth phase would be undetectable by a test based on T0 or T1 as a consequence of

the observable time series behaving much like a difference-stationary process in the regime

associated with the slowly expanding bubble.

5It is worth reiterating that bubbles can in principle take an infinite number of forms, one of which

is (10). We focus on this specification since it has become the benchmark in the literature. Other useful

specifications include those of Fukuta (1998) and Rotermann and Wilfling (2018).
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4 Empirical results

We illustrate the methodology discussed in the previous section by analyzing hyperinfla-

tion episodes in Argentina, Brazil, Germany and Poland. More specifically, we consider

Argentina’s 1983:1 to 1989:12 hyperinflation, the Brazilian hyperinflation of 1988:8 to

1994:3, and the 1921:1 to 1923:12 German and Polish hyperinflations. In all four cases,

the analysis is based on monthly observations on the logarithm of prices and the loga-

rithm of money supply.6 The objective is to assess whether any explosiveness found in

prices may be attributable to rational bubbles once we account for changes in the drift

and volatility of the prices that may arise as a result of different stabilization attempts

by the monetary authorities. Since the time-series properties of the underlying economic

fundamentals (i.e., money supply) are unknown, it is imperative that these be considered

together with the properties of prices.

Maximum-likelihood estimation results for the Markov-switching model (11)–(13), with

K = 4, are reported in Table 2 and Table 3 for (the logarithmically transformed) prices

and money supply, respectively.7 Figures in parentheses are estimated standard errors

(obtained from the negative Hessian of the log-likelihood function). Figures in square

brackets are bootstrap p-values for tests of the null hypotheses ϕ0 = 0 and ϕ1 = 0 against

the alternatives ϕ0 > 0 and ϕ1 > 0, respectively (computed from N = 1, 000 bootstrap

replications). As a check for neglected non-linear dependence in the errors of the model

due to conditional heteroskedasticity, approximate p-values for Ljung–Box statistics based

on the first 4 and 8 estimated autocorrelations of squared standardized residuals are also

reported (labelled LBû2(4) and LBû2(8), respectively); these reveal no significant signs

of autocorrelation in the squared standardized residuals from any of the fitted models.

Lastly, plots of the inferred probabilities of a high-drift regime (i.e., P(S1,t = 1|It; ϑ̂)) and

a large-root regime (i.e., P(S3,t = 1|It; ϑ̂)) for the four countries are shown in Figures 1–4.8

6Argentinian data are taken from Hall et al. (1999); Brazilian data are taken from the macroeconomic

database of the Institute of Applied Economic Research (www.ipeadata.gov.br); German and Polish data

are taken from Sargent (1983).
7Estimates of the transition probabilities and of the coefficients ψ0,k and ψ1,k, k = 1, 2, 3, 4, are not

reported in order to save space, but are available upon request.
8The corresponding plots associated with changes in volatility (P(S2,t = 1|It; ϑ̂)) are available upon
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Table 2: Parameter Estimates – Prices (standard errors in parentheses, bootstrap p-values

in square brackets)

Parameter Argentina Brazil Germany Poland

α0 0.0528 0.0530 0.4447 −1.8523

(0.0065) (0.0068) (0.1791) (0.0374)

α1 0.1292 0.1398 1.0983 −1.7246

(0.0113) (0.0099) (0.1890) (0.0364)

ω0 0.0174 0.0158 0.0932 0.0106

(0.0016) (0.0021) (0.0125) (0.0015)

ω1 0.3425 0.0285 2.1274 0.3982

(0.0911) (0.0069) (0.8740) (0.1499)

ϕ0 −0.0131 0.0097 −0.0409 0.1737

(0.0014) (0.0018) (0.0244) (0.0035)

[0.9394] [0.0089] [0.8325] [0.0044]

ϕ1 0.0237 0.0161 0.0350 0.1886

(0.0039) (0.0015) (0.0154) (0.0036)

[0.2060] [0.0071] [0.1967] [0.0029]

LBû2(4) 0.8889 0.9858 0.6520 0.2058

LBû2(8) 0.9825 0.9992 0.6348 0.6251

In the case of Argentina, the estimated value of ϕ1 for prices is positive, indicating

that regimes associated with S3,t = 1 are potentially explosive. However, the relatively

large p-value for a right-tailed test of ϕ1 = 0 reveals no compelling evidence against the

unit-root hypothesis, which rules out the existence of a bubble. More importantly, there

is much stronger evidence in favor of explosiveness in money supply, the estimates of both

ϕ0 and ϕ1 being significantly positive. This suggests that hyperinflation episodes were

primarily driven by the monetary policy pursued at the time. It is also interesting to note

that hyperinflation periods are associated with higher drifts in prices.

The inferred probabilities of a large-root regime identify three episodes of potential

explosiveness in prices, namely 1985:4 to 1985:9, 1987:11 to 1988:8, and 1989:1 to 1989:12.

These findings are similar to those reported in Hall et al. (1999). However, as mentioned

request.
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Table 3: Parameter Estimates – Money (standard errors in parentheses, bootstrap p-values

in square brackets)

Parameter Argentina Brazil Germany Poland

α0 −0.0716 0.2083 0.1978 −0.0314

(0.0490) (0.0244) (0.2791) (0.1295)

α1 −0.0052 0.5486 0.3358 0.0279

(0.0480) (0.0300) (0.2829) (0.1251)

ω0 0.0491 0.0294 0.0166 0.0088

(0.0046) (0.0062) (0.0023) (0.0026)

ω1 0.4485 0.1137 4.1909 0.1201

(0.1507) (0.0158) (1.4650) (0.0486)

ϕ0 0.0097 −0.0203 −0.0427 0.0063

(0.0034) (0.0996) (0.0142) (0.0101)

[0.0302] [0.8418] [0.9293] [0.3595]

ϕ1 0.0098 −0.0171 −0.0095 0.0357

(0.0038) (0.0029) (0.0154) (0.0166)

[0.0265] [0.8150] [0.6653] [0.1736]

LBû2(4) 0.8748 0.1639 0.9976 0.9804

LBû2(8) 0.9866 0.5887 0.2713 0.9977

above, the hypothesis of a unit root in regimes associated with either S3,t = 1 or S3,t = 0

cannot be rejected at usual levels of significance, a finding which is inconsistent with the

presence of a rational price bubble. This conclusion is different from the one reached

by Hall et al. (1999) and is the result of relying on a more flexible model formulation

incorporating independent Markov changes in its parameters, a feature which is of partic-

ular importance when considering inflationary periods during which monetary authorities

actively try to contain growth in prices.

In the case of Brazilian prices, we find significantly positive drifts in the regimes asso-

ciated with S1,t = 0 and S1,t = 1; in addition, the small p-values for tests of ϕ0 = 0 and

ϕ1 = 0 indicate that there is strong evidence in favor of explosiveness in the regimes as-

sociated with both S3,t = 0 and S3,t = 1. The estimated drifts in money supply are much

higher than those in prices, but the unit-root hypothesis cannot be rejected in any of the
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Markov regimes. These findings are consistent with the presence of a rational price bub-

ble in the entire sample period, the filtered probabilities associated with S3,t identifying

periods with different degrees of explosiveness (as measured by ϕ0 and ϕ1). Nevertheless,

it is possible that the very high rates of monetary expansion were in part responsible for

the eventual explosiveness of prices.9

The results for the German price series are similar to those for Argentina, in the

sense that we find significantly positive drifts and very weak evidence against the unit-

root hypothesis. The latter hypothesis cannot be rejected for money supply either, the

two drift coefficients for which are positive but insignificantly different from zero. The

filtered probabilities identify the period from 1923:5 to 1923:12 as being associated with

potential explosiveness, a period which is not associated with explosiveness in money

supply. However, as mentioned already, the p-value for a right-tailed test for ϕ1 = 0 is

relatively high, so these findings are not consistent with the presence of a rational bubble

during the German hyperinflation.10

Finally, the results for Polish prices reveal negative drifts, while the hypothesis of a

unit root is very firmly rejected in favor of explosiveness regardless of whether S3,t = 0 or

S3,t = 1. Since no significant evidence of explosive behavior is found in the money supply,

the results point towards a price bubble being present during the whole of the sample

period. As in the case of Brazil, the filtered probabilities associated with S3,t separate the

sample into periods with different degrees of explosiveness.11

5 Concluding Remarks

This paper has considered how to detect the presence of rational bubbles during hyper-

inflations via an analysis of the integration properties of relevant observable time series.

9The analysis of de Holanda Barbosa and da Silva Filho (2015), based on a framework that is not directly

comparable to ours, supports the claim that the Brazilian hyperinflation was caused by fundamentals via

an increasing fiscal deficit financed by money.
10Using a different methodology, Blackburn and Sola (1996) conclude that the empirical evidence is

consistent with the existence of a purely collapsing stochastic bubble.
11Hooker (2000) concludes, using a different approach, that the empirical evidence does not support the

existence of a rational bubble during either the German or the Polish hyperinflations.
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We have discussed a generalization of the test procedure of Hall et al. (1999) which allows

for independent stochastic changes in the drift of the time series of interest, in its volatil-

ity and in the roots of its autoregressive characteristic equation. The former two types

of changes may or may not be related to the presence of a bubble and it is, therefore,

important to separate these from changes in the integration properties of the series that

are driven by the explosive behavior of a bubble. Unlike the case of bubbles in financial

time series, monetary authorities are expected to pursue an active policy during hyperin-

flation episodes, something which affects the time series under consideration and must be

taken into account when formulating the model used to test the no-bubbles hypothesis.

In the proposed methodology, this is achieved by constructing tests of the hypothesis of

a unit root against explosive alternatives in the context of an autoregressive model with

stochastic parameter variation, with changes in different parameters being governed by

independent Markov processes. Such tests have substantial power to detect explosive be-

havior, regardless of whether explosiveness is an intrinsic characteristic of the data or due

to the presence of a rational bubble. In view of the fact that structural change and regime

shifts are endemic, both in the sense of changing policy regimes and in the sense of changes

in the general economic structure, the framework considered here provides a reasonable

and meaningful way of accounting for such changes in the economic situations discussed

in this paper.
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Figure 1: Filtered Probabilities – Argentina
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Figure 2: Filtered Probabilities – Brasil
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Figure 3: Filtered Probabilities – Germany
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Figure 4: Filtered Probabilities – Poland
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