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Abstract 

 

This thesis focuses on the applications of computational prediction methods in the areas 

of antigen presentation and recognition close to the boundary between self and non-self. 

Publicly available MHC binding prediction tools are combined with data about the 

frequencies of different HLA alleles within global and regional populations. Additionally, 

a new in silico method called proteome scanning is presented that assesses whether, in the 

light of central tolerance mechanisms that remove self-reactive T cells, an individual is 

likely to have T cells capable of binding to a given peptide-MHC surface. 

These methods are applied in three main application areas. Firstly, predictions are made 

concerning individuals with missense mutation haemophilia A and their risk of 

developing inhibitors against the replacement Factor VIII used to treat the condition. 

Inhibitor formation is known to be a CD4
+

 T cell-dependent process; the analysis 

presented here demonstrates that understanding the risk of inhibitor formation generally 

requires knowledge of an individual’s HLA types.     

Secondly, predictions are made concerning the risk of transplant rejection and suggest 

that the proteome scanning approach can be used to predict whether a given HLA 

mismatch between donor and recipient is likely to increase rejection risk.  

Thirdly, predictions are made concerning candidate peptide biomarkers (derived from 

known tumour antigens) for hepatocellular carcinoma, with the selection of peptide pools 

optimised in terms of MHC binding affinity and global population coverage. These are 

currently undergoing laboratory evaluation at the Institute of Hepatology, with promising 

early results.  

Taken together, these applications illustrate the breadth of potential contributions to 

clinical practice afforded by the computational prediction of antigen presentation and 

recognition close to the self/non-self boundary, including the novel proteome scanning 

methodology. 
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1 Introduction 

The focus of this thesis is on diverse applications of computationally-predicted antigen 

presentation and recognition within human hosts. This introductory chapter covers the 

background knowledge and concepts relevant to all of these applications: the role and 

mechanisms of antigen presentation (section 1.1) and recognition (section 1.2) within the 

T cell branch of the adaptive immune system. The following chapter covers key 

computational resources and prediction methods within this area (chapter 2). Background 

information relevant to specific applications is deferred until subsequent chapters: 

alloimmune responses to replacement protein therapeutics (chapter 3); alloimmune 

responses in the context of organ transplantation (chapter 4); and the identification of 

broadly-applicable cancer biomarkers (chapter 5).  

1.1 Antigen presentation 

Major histocompatibility complex (MHC) molecules are transmembrane proteins that 

present peptides to T cells through the formation of peptide-MHC complexes. This 

process, which involves both self- and non-self-peptides, is known as antigen presentation 

and takes place on the surface of host cells. A presented peptide that is recognised by a T 

cell receptor (TCR) is called a T cell epitope. 

There are two contrasting antigen presentation pathways involving different types of MHC 

molecules: MHC class I and MHC class II molecules. MHC class I molecules are 

expressed by all nucleated cells and present peptide fragments of endogenously 

synthesised proteins to CD8
+

 (cytotoxic) T cells. CD8
+

 T cells represent a major subset of 

T cells capable of killing host cells that are infected with intracellular pathogens, notably 

viruses together with certain species of bacteria (e.g., Listeria monocytogenes and 

Chlamydia trachomatis) and protozoans (including members of the malaria-causing genus 

Plasmodium).  (The nomenclature CD8
+

 refers to the presence of the CD8 molecule on 

the surface of these cells and is part of a widely-used protocol for differentiating between 

different subsets of immune cells [Engel et al., 2015].)  

MHC class II molecules, on the other hand, are predominantly expressed by professional 

antigen presenting cells (APCs), which internalise antigens of exogenous origin. APCs — 

notably dendritic cells, macrophages and mature B cells — present peptide fragments to 
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CD4
+

 (helper) T cells via MHC class II molecules. CD4
+

 T cells, a second major subset of 

T cells, are associated with various roles — they have been described as the “orchestrators, 

regulators and direct effectors of antiviral immunity” (Swain et al., 2012) — that includes 

helping B cells to generate a mature antibody response. 

In this section, the focus will be on practical issues of relevance to the research 

undertaken for this thesis, while also engaging with underlying biological mechanisms: 

What lengths of peptides are presented and what sequence preferences do they have? 

What is the conformation of bound peptides? And what determines the relative 

frequencies of different presented peptides (known collectively as the immunopeptidome 

[Vizcaíno et al., 2020]) and how long do they remain bound to MHC? 

1.1.1 MHC class I presentation pathway 

Unwanted or damaged proteins are broken down in the cytoplasm or nucleus of cells by 

proteasomes. Eukaryote proteasomes are large protein complexes that play a vital role in 

several fundamental processes (for a useful overview, see [Marques et al., 2009]), but here 

the focus is the contribution to antigen presentation. Under immune stress and interferon-

γ (IFN-γ) stimulation, synthesis of  “standard” proteasome complexes (known as 

constitutive proteasomes) switches to immunoproteasome synthesis, involving the 

replacement of three catalytically active subunits (Basler et al., 2013). The catalytic activity 

of both constitutive proteasomes and immunoproteasomes generates short peptides in the 

range 3 to 22 residues (Kisselev et al., 1999), whereas most peptides bound to MHC class 

I (MHC-I) molecules are of length 8 to 10 residues, constrained by the length of the 

MHC-I groove, which is blocked at both ends (Figure 1.1). The pool of MHC-I-

compatible peptides is increased by post-proteasomal N-terminal trimming (Rock et al., 

2004). Peptides of length 8 to 16 residues are preferentially transported to the 

endoplasmic reticulum (ER) by the transporter associated antigen processing (TAP) 

protein complex, where suitable peptides are loaded onto MHC-I molecules by the 

peptide-loading complex (Cresswell et al., 1999), after which the peptide-MHC complex 

is transported to the cell surface by the secretory pathway.  
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Figure 1.1 Comparison of variable length peptides accommodated in the groove of MHC-I molecules. The 

peptide backbone structures are demonstrated in tube representation and side chains are in stick form. The 

peptides were removed from their bound MHC molecules, superimposed to align, and arrange so that their 

TCR facing residues point upwards. The 8-mer peptide, isolated from the structure 5HGB, is coloured in 

yellow; the 9-mers, isolated from 3RL1, 5SWQ, 7JYV and 7KGQ, are coloured in red. The 13mer peptide 

from 2AK4 and 15mer from 4U6Y, which are atypically long for an MHC-I groove closed on both termini, 

are coloured in green and blue, respectively. Figure inspired by Rudolph et al (2006).  

Several steps of the pathway contribute to the shape of the MHC-I immunopeptidome — 

the pool of peptide that gets presented to CD8
+

 T cells by MHC-I molecules. Certain 

peptides are preferentially cleaved by the proteasome, with each catalytic subunit having 

its own, distinct substrate specificity. These distinct specificities are reflected in differences 

between the immunopeptidome associated with constitutive proteasomes and that 

associated with immunoproteasomes, although a recent in-depth  study (using a mass 

spectrometry-based strategy described as both “global” and “unbiased”) contradicts some 

earlier findings (e.g. those of [Toes et al., 2001]) and concluded that, although the 

frequency of certain MHC-I epitopes is different, the immunoproteasome pool “does not 

appear to be preferentially suited for antigen presentation” (Winter et al., 2017). ERAP1, 

the key aminopeptidases associated with N-terminal trimming, has been observed to have 

strong amino-acid preferences at certain positions, including hydrophobic amino acids at 

the peptide’s C-terminus (Evnouchidou et al., 2008). Prior to the transportation of the 

peptide-MHC complex to the cell surface, the chaperone tapasin, a component of the 

peptide-loading complex, promotes the selection of peptides that bind to MHC-I 

molecules with slow off rates.  
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But arguably the most selective step is the binding of the peptide to the MHC-I molecule, 

discussed below in section 1.1.3. 

Although the preceding account summarises the orthodox view of MHC class I antigen 

presentation, there are two important areas of controversy. Firstly, it is known that 

proteases other than the proteasome are capable of generating MHC-I peptides, and 

some have gone so far as to argue that the importance of the proteasome may have been 

exaggerated (Milner et al., 2013). Secondly, it is known that some MHC-I peptides are 

created by splicing as well as cleavage, although the proportion of peptides within the 

MHC-I immunopeptidome is hotly disputed, with some arguing that it is close to zero 

and others that it is potentially as high as 45% (Purcell, 2021). Whereas the former point 

(i.e., the mode of cleavage) is mechanistically important, the latter point (i.e., splicing 

frequency) is of profound conceptual importance, as it potentially transforms our 

understanding of the boundary between self and non-self. However, although this dispute 

has been around since at least 2016 (Liepe et al., 2016; Mylonas et al., 2018), it is 

currently far from settled (Purcell, 2021).  

1.1.2 MHC class II presentation pathway 

The MHC class II (MHC-II) pathway is mainly associated with professional APCs, 

although MHC-II expression by various other cell types can be induced (for example by 

IFN-γ) (Neefjes et al., 2011). MHC-II molecules are assembled in the ER and a special 

peptide called CLIP (Class II-associated invariant chain peptide) binds to its groove, but 

subsequently displaced by an antigenic peptide with a higher binding affinity. Such 

antigenic peptides derive from internalised proteins that are broken down in endosomal 

or lysosomal compartments by proteases, most notably by members of the cathepsin 

group. Different cathepsins are expressed at different levels in different professional 

APCs (Hsing & Rudensky, 2005).   

A useful summary of the rather complicated mechanisms underpinning MHC-II 

formation, loading and transport to the cell surface can be found in (Neefjes et al., 2011). 

The main topic of interest here concerns the characteristics of the peptides available for 

MHC-II binding and presentation. Whereas the groove of MHC-I molecules is blocked 

at both ends, that of MHC-II molecules is open-ended and can accommodate much 

longer peptides. Lengths ranging between 10 and 34 residues have been observed (Chicz 
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et al., 1993), with the same 9-mer core sub-sequence often recurring in multiple 

sequences of different lengths, known as a nested set (Lippolis et al., 2002).  Peptide 

length has a significant impact on binding affinity, with lengths of around 18-20 residues 

considered optimal (O’Brien et al., 2008), and the presence or absence of specific 

flanking residues may impact CD4
+

 T cell function (Holland et al., 2013). Although the 

cleavage preferences of certain cathepsins have been investigated experimentally 

(O’Donoghue et al., 2012), our understanding of the factors that shape the pool of 

peptides available for binding to MHC-II molecules is far from complete. 

It is also worth noting that professional APCs, most notably dendritic cells, are capable of 

presenting extracellular antigens via MHC-I molecules, a process known as cross-

presentation. Two main pathways have been observed: the vacuolar pathway that involves 

antigen degradation by cathepsins and the endosome-to-cytosol pathway that involves 

proteasomal cleavage (Embgenbroich & Burgdorf, 2018).  

1.1.3 MHC structure and binding 

MHC molecules play a critical role in both antigen presentation pathways and deserve 

detailed consideration in their own right. MHC molecules of both class I and class II 

share a similar structural form. They are both heterodimers with transmembrane helices 

(one in MHC-I, two in MHC-II) that secure the molecule on the cell surface. Both have a 

pair of α-helices forming the sides of the peptide-binding groove and a seven-stranded β-

sheet forming its floor, and the floor has binding pockets that accommodate the side-

chains of amino acids from the peptide (Rudolph et al., 2006). Figure 1.2 shows structural 

units that form MHC-I and MHC-II molecules with their bound peptides and interacting 

TCRs.  
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Figure 1.2 Structures of an MHC I-peptide-CD8
+

 T cell complex (PDB accession code 6MTM) and an 

MHC II-peptide-CD4
+

 T cell complex (PDB accession code 6R0E) in image A and B respectively. The 

TCR constant (C) and variable (V) regions are displayed with α and β chain annotation. The peptide is 

displayed in yellow. MHC-I α helices, α1 and α2, that form the binding groove, and the α3 domain are in 

green. The β2M domain is coloured in orange. MHC-II α domains are in green and the β domains are 

coloured in orange. 

At the same time, there are several differences between the MHC-I and MHC-II 

molecules. In the MHC-I heterodimer, the groove is formed by two copies of the α chain 

(domains α1 and α2), and domain α3 is involved in CD8 coreceptor recognition, while 

the β chain is small and invariant. In the MHC-II heterodimer, the β chain is only 

moderately shorter than the α chain, both are polymorphic, both contribute to the 

formation of the MHC-II groove (domains α1 and β1), and both contribute to CD4 co-

receptor recognition (domains α2 and β2). Most importantly from an antigen 

presentation perspective, the MHC-I and MHC-II grooves are different. The MHC-I 

groove is blocked at both ends, and typically has binding pockets at positions P1 and P9, 

whereas the MHC-II groove is open at both ends and typically has pockets at positions 

P1, P4, P6 and P9 (Rudolph et al., 2006).  
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A key event in both presentation pathways is the binding of peptides within the MHC 

groove. 

The contrast between blocked and open grooves is the major factor determining the 

length differences between class I and class II peptides, as discussed in section 1.1.1. 

However, it is worth noting that, although the close groove of MHC-I commonly restricts 

binding to peptides of length 8 to 10, it has been recognised for some time that longer 

peptides — up to at least 14 residues — can bind to MHC-I molecules with high affinity 

(see Figure 1.1) and “elicit dominant cytotoxic T lymphocyte responses” (Burrows et al., 

2006).  Owing to their “super-bulging” conformation, these longer peptides can adopt 

unusual conformations and form diverse interactions with the TCR. Indeed, a recent 

analysis of 29 structural complexes involving MHC-I molecules and long antigenic 

peptides found that the bulged peptides were capable of forming rigid secondary 

structures such as β-hairpins, β-turns or α-helices, and these facilitated the formation of 

more diverse TCR docking modes, some of which involve unusually large numbers of 

contacts with the peptide and correspondingly few contacts with the MHC molecule 

(Josephs et al., 2017). (Canonical TCR-peptide-MHC binding is discussed in section 1.2.)  

Not all pairings of MHC molecule and peptide have equal potential to be immunogenic 

(i.e., induce a T cell response). The most widely used correlate of immunogenicity is 

binding affinity. Competition binding assays indicate that around 80% of class I epitopes 

have an of IC50 ≤ 500 nmol/L (Sette et al., 1994; Paul et al., 2013), whereas a threshold of 

IC50 ≤ 1,000 nmol/L is commonly adopted for class II epitopes (Southwood et al., 1998; 

Paul et al., 2015; Paul et al., 2020). In both cases, the distribution of binding affinities 

varies between alleles (the allelic variability of the genes that encode MHC molecules is 

discussed in section 1.1.4) (Paul et al., 2013; Paul et al., 2020), which has potential 

implications for the choice of thresholds for deciding whether a given MHC-binding 

peptide is a potential epitope. 

Although binding affinity is widely used, it has long been argued that immunogenicity is 

better correlated with the stability of the peptide-MHC (pMHC) complex than with its 

affinity — originally in the context of MHC-I (van der Burg et al., 1996) and more recently 

MHC-II (Lazarski et al., 2005). The rationale is straightforward enough: the “sustained 

presentation” of a peptide increases the chances that a TCR will encounter it, and this 

implies “some degree” of peptide-MHC stability (Harndahl et al., 2012). However, 
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although assays for measuring the rate of peptide dissociation have been developed for 

MHC-I (Harndahl et al., 2011) and MHC-II (Chaves & Sant, 2007), they do not appear 

to be widely used.  

1.1.4 The genetics of MHC molecules 

An important role of MHC molecules is to ensure that a variety of peptides are presented 

at both the individual and population levels so that it is much harder for pathogens to 

successfully evade presentation by mutating. In this context, the genes that encode MHC 

molecules exhibit two key properties: they are polygenic (i.e., each individual has multiple 

class I and class II genes and therefore sets of different MHC molecules within each 

class); and they are highly polymorphic (key MHC genes are highly variable at the 

population level) (Janeway et al., 2001).  

Human MHC molecules are encoded by the Human Leukocyte Antigen (HLA) region 

of the human genome located on chromosome 6 at position 6p21.3 and consists of 

around 4 megabases. The HLA region contains genes associated with a variety of 

functions, not all of them immune-related (for a thorough survey of the region, see [Shiina 

et al., 2009]), but the focus here is exclusively on MHC. Humans have multiple class I 

and class II MHC molecules. These can be broadly divided into “classical” and “non-

classical” MHC molecules. The former are highly polymorphic, have been extensively 

studied, and represent a major aspect of the research presented in this thesis; the latter are 

monomorphic (or nearly monomorphic), are often associated with the surveillance of 

entities other than standard peptides (e.g., lipids and post-translationally modified 

peptides), and have arguably been neglected (D’Souza et al., 2019). The focus of this 

research has been on a subset of classical MHC molecules. 

There are 3 classical HLA loci that encode for MHC class I molecules — HLA-A, -B and 

-C — and 3 classical loci that encode for MHC class II molecules — HLA-DP, -DQ and -

DR. In class II molecules, both α and β chains contribute to peptide binding and are 

polymorphic in HLA-DQ and -DR (though not -DP), hence the letters A and B are 

commonly appended (e.g., HLA-DQA and HLA-DQB). HLA-DR β chains are encoded 

by 4 loci: HLA-DRB1, -DRB3, -DRB4 and -DRB5. HLA-DRB1 is expressed in all 

haplotypes, with one of DRBs 3, 4, 5 present on each chromosome (hence any individual 

will have at most 3 of the 4 HLA-DR molecules). Linkage disequilibrium between certain 
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HLA loci is well established, although a comprehensive picture has yet to emerge. One 

example is that between theDRB1 genes and the DRB3/4/5 genes (Dorak et al., 2002). 

MHC encoding genes are polygenic and among the most polymorphic in human 

genome. As of 24th April 2022, the IPD-IMGT/HLA database reports that there are 

more than 24,000 HLA class I alleles and 9,000 HLA class II alleles (Robinson et al., 

2020). MHC molecules are implicated to some extent in human mate selection via body 

odour (Dandine-Roulland et al., 2019); mating between individuals with different MHC 

molecules increases the likelihood that the offspring will be heterozygous with respect to 

their MHC molecules. Given that the HLA allelic variations are disproportionately 

associated with the encoding of residues that contribute to the peptide binding groove, 

MHC heterozygosity may increase an individual’s chances of combating a wider range of 

pathogens.  

MHC polymorphism may also be beneficial at the population level, as it increases the 

chances that some individuals will have the “ideal” HLA haplotypes for supporting an 

effective and strong immune response against a given infective agent. In accordance with 

this view, certain HLA alleles and haplotypes have been associated with susceptibility to, 

or protection against, various diseases. Hodgkin’s lymphoma was the first disease found to 

be associated with HLA-B (Amiel, 1967). Since then, HLA has been associated with 

many autoimmune and infectious diseases. A meta-analysis study including 42 genome-

wide linkage studies for 11 autoimmune diseases determined that the most significant link 

obtained was with the HLA region (Forabosco et al., 2009).  

1.2 Antigen recognition 

Section 1.1 explained how a complex is formed between an MHC molecule and an 

antigenic peptide (commonly derived from a pathogen or a self-protein). The surface 

formed by this complex is the target for T cell receptors (TCRs) on the surface of T cells, 

which play a critical role in the adaptive immune response, including killing infected host 

cells (CD8
+

 T cells) and regulating the B cell (antibody) response (CD4
+

 T cells). Whereas 

antigen presentation makes no distinction between peptides of self and non-self origin, it 

is crucial that such a distinction is made if the adaptive immune system is to mount a 

vigorous response against foreign antigens but not an autoimmune response that targets 

self-proteins. The role of “policing” the boundary between self and non-self rests 



19 

 

primarily with T cells, and depends on complex T cell development and selection 

mechanisms that originate in the thymus. 

Each TCR consists of two amino-acid chains. Most T cells are known as αβ T cells with 

TCRs consisting of a single α and a single β chain. A subset of T cells is γ𝛿 T cells (with γ 

and 𝛿 chains) that (though poorly understood) appear to be associated with lipid antigens 

and to lie outside the “classical” antigen presentation pathways of αβ T cells (Adams et 

al., 2015). Further consideration of γ𝛿 T cells lies outside the scope of this thesis. 

The remainder of this section will focus on practical issues of relevance to the research 

presented in the thesis, while also engaging with some of the broader characteristics of the 

T cell response, and briefly with some of the underlying mechanisms: How are responses 

to self-peptides (i.e., autoimmune responses) generally prevented? How diverse are T 

cells within a human repertoire? How do TCRs bind to peptide-MHC (pMHC) 

complexes? To what extent does the response of an individual to given challenge focus on 

one or more antigenic peptides rather than more broadly across a larger number of 

epitopes? And to what extent are responses to the same challenge shared between 

individuals? 

1.2.1 Thymic antigen presentation and the self-/non-self boundary 

New T cells are produced by haematopoiesis within the bone marrow, but subsequently 

migrate to the thymus. Immature T cells in the thymus are known as thymocytes, and 

each has a single type of TCR, but within the population of thymocytes, TCR sequences 

are highly diverse (as discussed in section 1.2.2). However, this initial diversity is reduced 

by selection processes that depend on their exposure to complexes between a self-peptide 

and an MHC molecule (self-pMHC). The aim here is two-fold: to favour, through 

positive selection, TCRs that may potentially respond to some unknown foreign antigen 

by weeding out TCRs that are non-responsive to self-pMHC; and to remove, through 

negative selection (also known as central tolerance), TCRs that bind strongly to self-

pMHC and hence T cells that may potentially lead to autoimmune diseases (Janeway et 

al., 2001).   

Various mechanisms — including so-called “promiscuous gene expression” by medullary 

thymic epithelial cells (mTECs), and the presentation of blood-born and tissue-specific 
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antigens by dendritic cells subsets (Hasegawa & Matsumoto, 2018) — combine, in the 

words of Derbinski and Kyewski, to ensure “a maximal representation of the 

‘immunological self’” (Derbinski & Kyewski, 2010). Nevertheless, “holes” in central 

tolerance may occur, for example when certain antigens are expressed at very low levels 

by mTECs (Klein et al., 2014), and have been linked to autoimmune disease in specific 

cases (see, for example, Lv, et al., 2011).  Self-reactive T cells that escape central tolerance 

may be picked up by additional mechanisms associated with peripheral tolerance. (For a 

recent review of distinct “tolerance checkpoints” that contribute to peripheral tolerance, 

see [EITanbouly & Noelle, 2021].) 

One important mechanism contributing to peripheral tolerance involves the suppression 

of the immune response by regulatory T cells (Tregs). Whereas T cells that bind strongly 

to self-pMHC are destroyed and those that bind weakly to self-pMHC become (after 

exposure to their cognate antigens) effector or memory T cells, T cells with an 

intermediate level of binding become Tregs (Li & Rudensky, 2016). The majority of 

Tregs are associated with the MHC class II antigen presentation pathway. Given the focus 

on epitope recognition in the research undertaken for this thesis, one intriguing aspect of 

Treg biology is the possibility that they recognise epitopes – termed Tregitopes – that 

have distinctive sequence properties. This perspective has been pioneered by de Groot 

and colleagues for many years (de Groot et al., 2008), but the prevalence of Tregitopes in 

proteins other than immunoglobulins is unclear (Cousens et al., 2013), and there are no 

public methods for Tregitope detection.  

Distinguishing non-self from self is a particular challenge for the immune system in cases 

where non-self is very similar to self, i.e., the number of protein residues that are different 

in non-self compared to self is small (potential only a single residue). On the one hand, 

the non-self-specific residue(s) may go undetected, either because they are never 

presented at TCR-facing positions by the individual’s MHC molecules, or because TCRs 

capable of binding to the corresponding peptide-MHC complex do not exist in sufficient 

numbers. On the other hand, the proliferation of TCRs that bind to a non-self-epitope 

that is very similar to a self-epitope may increase the risk of a cross-reactive autoimmune 

response to that self-epitope and hence the failure of central tolerance. A prerequisite to 

gaining insights into these effects, it is important to understand the number and position 

of non-self-specific residue(s), which implies a comparison of non-self and self, where self 

corresponds to the entire host proteome. In this context, the notable contribution of this 
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research is that a methodology (described in detail in section 3.2) has been developed that 

takes into account all the proteins within the host proteome, the predicted MHC binding 

characteristics of self and non-self peptides, and the likely orientation of residue side-

chains with respect to TCR binding in order to assess whether a given non-self epitope is 

likely to be distinguishable from self.  

For the practical purposes of the research presented here, the working assumption is that 

tolerance to self-peptides is effective — which, in all but a small fraction of cases, it is — 

and hence, from the perspective of T cell recognition, foreign peptides that are 

indistinguishable from self-peptides will not induce a T cell response. 

1.2.2 T cell receptor diversity 

The TCRs found within the T cell repertoire of a single individual are highly diverse. The 

key underlying process that generates TCR diversity is V(D)J recombination. The TCR α 

chain is formed by the combination of germline gene segments located on chromosome 

14q11: a constant (C) segment, one of 44 variable (V) segments, and one of 61 junction 

(J) segments. The TCR β chain is formed by the combination of germline gene segments 

located on chromosome 7q34: one of two C segments, one of 64 V segments, one of two 

diversity (D) segments, and one of 14 J segments. Note, however, that the precise number 

of genes may vary between individuals owing to duplication and deletion events, although 

the prevalence of such events is poorly understood in the TCR-encoding loci (Collins et 

al., 2020).  

The diversity attributable to the combination of gene segments, known as combinatorial 

diversity, is further enhanced by the additional and removal of nucleotides at the junction 

between segments, a process known as junctional diversity. The consequence is that the 

greatest diversity is at the junction of the V, D and J segments of the β chain, which 

corresponds to the CDR3 loop (the third Complementarity Determining Region) that has 

a special role in antigen binding (see section 1.2.3). An additional contribution to TCR 

diversity comes from the pairing of α and β chains. 

A recent review paper conveniently summarises some key finding regarding the diversity 

of αβ TCRs within the T cell repertoire of a single individual (Davis & Boyd, 2019). 

There are, in effect, two ways of defining an upper bound on TCR diversity: a theoretical 
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limit derived by pairing all possible α chain sequences with all possible β chain sequences 

equates to around 10
15

 TCRs, whereas the total number of T cells within a single 

individual is around 2 × 10
11

. But the actual number of unique TCRs is likely much 

smaller. For example, a 2009 next generation sequencing study based on peripheral 

blood from two adult donors estimated the number of unique TCR β chains within a 

single individual to be approximately 3 × 10
6

 (Robins et al., 2009).  

It is worth noting that a 2016 deep sequencing study (not cited by [Davis & Boyd, 2019]) 

based on blood samples from four infant donors estimated that the thymus contains 40 to 

70 × 10
6 

unique TCR β chains and 60 to 100 × 10
6 

unique TCR α chains (Vanhanen et al., 

2016). Given that these estimates are an order of magnitude higher than those from 

peripheral blood samples, it appears likely that this study has captured at least part of the 

TCR diversity exhibited by thymocytes prior to negative selection. However, the reason 

for the higher reported diversity in the α chain compared to the β chain is unclear and, 

given the known challenges of estimating TCR diversity from relatively small samples 

(Laydon et al., 2015), it is worth treating all such estimates with a degree of caution.   

In addition to the diversity within individuals, there is diversity at the population level that 

builds on polymorphisms within the loci that encode TCRs. A recent inferential analysis 

of TCR repertoire data suggests there are many as yet undocumented germline gene 

polymorphisms, notably within the TCR V β gene, some of which are “strongly associated 

with dramatic changes in the expressed repertoire” (Omer et al., 2022). Research into this 

interesting topic is in its infancy, and the potential implications for the research presented 

here are currently hard to judge. 

1.2.3 The binding of TCRs to peptide-MHC complexes 

Each of the two TCR chains have three loops, known as complementarity determining 

regions (CDRs), within their respective V regions that contribute to the binding of a TCR 

to a given pMHC complex. The position and orientation of binding is notably 

constrained. Given a vector pointing along the long axis of the MHC groove and a second 

vector separating the CDRs of the TCR α from those of the TCR β chains, the “crossing 

angle” between these two vectors, and hence the docking orientation of TCR to MHC 

molecule, is a diagonal (a precise algorithm for calculating this angle is given in [Rudolph 

et al., 2006]). The canonical docking orientation ensures that the main contacts between 
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TCR and antigenic peptide involve the CDR3 loops, with that of the TCR α chain 

positioned over the N-terminal region of the peptide and that of the TCR β chain 

positioned over the peptide’s C-terminal region. The other CDRs are mainly involved in 

forming contacts with the MHC molecule (Rossjohn et al., 2015).  

As noted in a recent review, crossing angles are commonly in the range 22 to 69 degrees 

(Barbosa et al., 2021). However, it is worth noting that some dramatically different 

binding orientations have been observed, such as TCRs that bind with “reversed polarity” 

(i.e., where the crossing angle is approximately 180 degrees away from the canonical 

angle) (Beringer et al., 2015). The prevalence of non-canonical binding modes within a 

“typical” developing T cell response is unclear, as is their relevance in the context of 

combatting or susceptibility to disease. 

Although the number of unique TCRs in a T cell repertoire is very large (section 1.2.2), 

this number is much smaller than the potential number of potential foreign peptides, 

estimated to be >10
15

 (assuming peptides of length 8 to 14 residues in length have a 1% to 

3% MHC binding rate) (Sewell, 2012). Consequently, it has been argued that, in order to 

provide sufficient coverage of foreign peptides, it is crucial that TCRs are cross-reactive 

(or promiscuous), i.e., bind to multiple peptide-MHC surfaces (Sewell, 2012). In certain 

cases, the degree of cross-reactivity is extreme — witness the paper A Single Autoimmune 

T Cell Receptor Recognizes More Than a Million Different Peptides, in which a large 

sample of peptides were experimentally verified to bind to the chosen CD8
+

 TCR with 

sufficient strength for the association to be considered functionally relevant (Wooldridge 

et al., 2012). This included a peptide that differed from the original, “reference” peptide 

(derived from preproinsulin) at 7 out of 10 positions.  

Several complementary mechanisms underpin the cross-reactivity of TCRs (Barbosa et 

al., 2021). Potential differences in the crossing angle between TCR and peptide-MHC 

complex have already been mentioned, but this may be combined with difference in the 

vertical angle (tilt) between TCR and MHC (Rudolph et al., 2006). Conformational 

flexibility is another key factor — in particular, that of the β chain CDR3, in which large 

shifts in the bound versus unbound conformation have been observed, with at least one 

known example in excess of 11 Å (Petrova et al., 2012). Certain TCR binding modes are 

thought to have a particular association with autoimmunity, such as: binding that involves 

a large shift of the TCR towards the N-terminus of the peptide such that interactions with 
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the central region of the peptide are minimal or absent; and binding with large tilt that 

reduces the number CDRs in contact with the peptide (Yin et al., 2012).    

Although the mechanisms associated with cross-reactivity are interesting (and discussed 

more fully in [Barbosa et al., 2021]), their relative prevalence within a typical T cell 

repertoire is poorly understood. 

1.2.4 Systemic properties of T cell responses: immunodominance and 

the public repertoire 

Having considered the foundations of T cell immunity in terms of antigen presentation, 

TCR diversity and MHC-peptide-TCR binding, it is important to address some of the 

broader systemic properties of the T cell response. There are many complexities, and 

most of these lie outside the scope of this thesis, where the emphasis is firmly on antigen 

presentation and recognition. One such area relates to T cell differentiation. Three major 

subpopulations of T cell have been mentioned in earlier sections — CD8
+

 T cells, CD4
+

 T 

cells and regulatory T cells — but these can be further subdivided into distinct subsets with 

different functions. Taking just one example, CD4
+

 (or helper) T cells can be divided into 

two major subsets — TH1 cells that may be regarded as “classical” CD4
+

 T cell, and TH2 

cells that typically target extracellular pathogens such as parasitic worms (helminths) 

(Walker & McKenzie, 2018) – but several other CD4
+

 T cell subsets have been identified. 

(A list of distinct subsets of T cells that are currently recognised and the complex 

signalling events that trigger their emergence are discussed in a recent review [Broere & 

van Eden, 2019].) 

Nevertheless, there are at least two systemic features of T cell responses that are highly 

relevant to this research. The first concerns concerned the breadth of the response to a 

given challenge: there may be many peptide-MHC combinations that an individual’s 

TCRs are capable of binding to, but the response is typically focused on a small number 

of peptide-MHC complexes, and perhaps only one. This characteristic is known as 

immunodominance and has been observed in both CD8
+

 T cells (Yewdell, 2006) and 

CD4
+

 T cells (Sant et al., 2007). Although many of the factors contributing to 

immundominance have been identified, the balance of factors that determine which 

TCR-peptide-MHC complexes emerge as dominant in a particular context is far from 

clear, and subdominant responses may also afford protection from disease (Tscharke et 
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al., 2015). One factor known to make a partial contribution – and one that is available (via 

prediction) in this research (see section 2.2) – is the affinity with which the epitope binds 

to the MHC molecule (Kotturi et al., 2008).    

It has long been recognised that individuals sharing the same HLA allele often target the 

same antigenic peptide, with potential implications for vaccine design (Chen & 

McCluskey, 2006; Sant et al., 2007). For example, individuals having a human 

cytomegalovirus (HCMV) infection that share the very common MHC class I allele HLA-

A*02:01 have CD8
+

 T cell responses that mainly target a single HCMV peptide from 

protein pp65 (Wills et al., 1996). In some cases, such as HCMV, the T cells that target 

these immunodominant peptides have public TCR sequences (i.e., sequences that are 

shared between multiple individuals). (For an analysis of the public TCRs that target the 

HCMV pp65 immunodominant epitope, see [Yang et al., 2015].) Underpinning the 

occurrence of public TCRs targeting a specific antigen is the high frequency of public 

TCRs within the naïve T cell repertoire, which (notwithstanding the high levels of TCR 

diversity) is attributable to biases in the V(D)J recombination process (discussed in section 

1.2.2) and to the impact of central tolerance mechanisms (discussed in section 1.2.1) 

(Shugay et al., 2013).   

1.3 Overview of research 

The aims of the research presented in this thesis is to develop and refine computational 

strategies for applying existing MHC binding prediction tools to address biomedical 

problems that share two key characteristics: firstly, they arise close to the boundary 

between self and non-self; and secondly patient outcomes are stratified with respect to 

their personal complement of HLA alleles. In the simplest case, a single residue 

difference between a self-protein and a non-self “alternative” protein may or may not be 

detectable by the host immune system depending on that host’s specific set of HLA 

alleles, determining whether or not that host has the potential to mount a mature immune 

response to that “alternative” protein. Three contrasting examples of “alternative” protein 

are explored in this research: a replacement therapeutic (Factor VIII in chapter 3); 

mismatched MHC molecules in organ transplantation (chapter 4); and tumour antigens 

(hepatocellular carcinoma in chapter 5). 
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To conclude this chapter (before moving on to consider the specific computational 

methods developed for this research and their areas of application), it is worth 

considering the underlying “philosophy” of this research, bearing in mind the various 

background topics discussed in preceding sections.  

The approaches developed for this research are consistent in three important respects. 

Firstly, they are applied to tasks where the efficacy of experimental methods on their own 

is limited by the scale of the combinatorial challenge that the tasks entail. For example, 

the first application – missense mutation haemophilia A (chapter 3) – entailed the 

evaluation of over 4 million peptide-MHC combinations.   

Secondly, the focus is on aspects of the T cell response where computational methods are 

sufficiently accurate. Given the current limitations of TCR binding prediction (discussed 

in section 2.3), the focus here was on the prediction of peptide-MHC binding, but the 

extent to which peptide-MHC binding can be deemed “sufficiently accurate” depends on 

the context. Taking as an example the third application – the selection of potential 

diagnostic biomarkers for hepatocellular carcinoma from a large pool of antigenic peptide 

candidates (chapter 5) – the minimum requirement was that peptide-MHC binding 

prediction is sufficiently better than random to justify the (non-trivial) time taken and (very 

limited) computational resources required.  

Thirdly, in handling areas of uncertainty about T cell responses, this research has 

generally made simplifying, and rather conservative, assumptions. For example, although 

tolerance mechanisms sometimes fail – and, given the high incidence of certain 

autoimmune diseases, this is clearly not a rare occurrence – in the absence of an ability to 

predict such occurrences, the practical assumption for the antigens of interest is that 

tolerance always works. There are likely to be additional holes in an individual’s T cell 

repertoire (i.e., presented peptides for which no TCRs capable of binding to the 

corresponding peptide-MHC surface exist), but in the absence of an ability to predict 

where such holes may occur, the working assumption is that only central tolerance creates 

holes in the coverage of TCRs. And although a given TCR will not necessarily make 

contact with all the TCR-facing residues of an antigenic peptide, in the absence of an 

ability to predict which of these residues (if any) are not in contact with the TCR, the 

working assumption is that a TCR makes contact with all of the TCR-facing residues.  
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2  Computational Methods and Resources 

2.1 Data resources 

The methods used and developed for the research presented here are computational, but 

there is an underlying reliance on experimental data during the development process and 

for the evaluation of performance. A variety of different kinds of data relevant to this 

research is available in a set of key public resources. 

Vital information about human MHC molecules is available from two key sources. Firstly, 

the official sequences of human MHC molecules named by the appropriate WHO 

nomenclature committee are available from the IPD-IMGT/HLA database 

(https://www.ebi.ac.uk/ipd/imgt/hla/) (Robinson et al., 2020). As already noted in section 

1.1.4, as of 24th April 2022 the IPD-IMGT/HLA database contains more than 24,000 

HLA class I alleles and 9,000 HLA class II alleles. Secondly, the frequencies with which 

HLA alleles occur in different populations is stored in the Allele Frequency Net Database 

(http://allelefrequencies.net), with data collected from various sources, including peer-

reviewed publications, dedicated workshops and individual lab submissions (Gonzalez-

Galarza et al., 2020). Data can be interrogated at various levels of granularity, ranging 

from individual studies (which may focus on a particular region or minority within a single 

country) to worldwide aggregations with respect to a geographical region or ethnic group. 

As of 24th April 2022, the database has HLA information collated from nearly 1,300 

population studies, with data collected from over 14 million individuals.      

The largest resource for information about experimentally verified epitopes, including T 

cell epitopes, is the Immune Epitope Database (IEDB, https://www.iedb.org/), with 

information mainly collected from peer-reviewed papers and “manually curated followed 

structured curation guidelines” (Vita et al., 2019) The available metadata varies 

considerably between epitopes, but commonly includes the source organism and location 

of the epitope within an antigenic protein (identified by name and UniProt ID), the 

associated host species and MHC alleles, and the source citations and type of 

experimental assays undertaken. As of 24th April 2022, the IEDB contains nearly 

640,000 HLA class I entries and over 450,000 HLA class II entries.   

https://www.ebi.ac.uk/ipd/imgt/hla/
http://allelefrequencies.net/
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A second resource containing epitope sequences is SYFPEITHI 

(http://www.syfpeithi.de/) (Rammensee et al., 1999). Although it contains far fewer 

epitope sequences than the IEDB, it provides a useful MHC-oriented perspective, 

deriving information about MHC-specific motifs — that is, residue preferences at anchor 

(binding pocket) and other positions within the MHC groove. Whereas the SYFPEITHI 

motifs specify amino-acid types belonging to specific categories (e.g., anchor residues), the 

MHC Motif Viewer 

(https://services.healthtech.dtu.dk/services/MHCMotifViewer/Home.html) provides 

MHC-specific sequence logos and position-specific scoring matrices (Rapin et al., 2008). 

Information about TCRs is available from various sources. Information about the 

germline genes that encode TCRs is available from the IMGT reference directory 

(https://www.imgt.org/vquest/refseqh.html) (Lefranc & Lefranc, 2001). TCR sequences 

from individual T cell repertoires are available from various repositories, many of which 

can be queried in an integrated manner via the iReceptor Gateway 

(http://ireceptor.irmacs.sfu.ca/) (Corrie et al., 2018). A typical T cell repertoire dataset 

contains tens of thousands of sequences — often just β chain sequences — each having its 

CDRs and germline genes annotated. Although many such repertoires are associated with 

specific diseases, there is no information about the antigenic targets of individual 

sequences. The largest source of information about known ternary MHC-peptide-TCR 

complexes is VDJdb (https://vdjdb.cdr3.net/). VDJdb is a manually curated database in 

which each TCR entry contains information about the TCR α and/or β chain V and J 

genes together with their CDR3 sequences, the associated MHC allele, the sequence of 

the bound epitope, and other relevant metadata (Bagaev et al., 2019). As of 24th April 

2022, VDJdb contains entries for nearly 40,000 human TCR β chains, of which over 

20,000 have information about their corresponding α chains.  Note, however, that the 

number of unique epitopes is much smaller — only 1,087 for the complete set of TCR β 

chains. 

The primary database for solved 3D structures of biomolecules is the Protein Data Bank 

(PDB, http://rcsb.org) (Berman et al., 2000). IMGT/3Dstructure-DB 

(https://www.imgt.org/3Dstructure-DB/) is a secondary database that incorporates PDB-

derived structures of MHC molecules, peptide-MHC complexes, and the variable regions 

of TCRs either unbound or forming a ternary complex with peptide and MHC 

http://ireceptor.irmacs.sfu.ca/
http://rcsb.org/
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(Ehrenmann et al., 2010). As of 24th April 2022, IMGT/3Dstructure-DB contains over 

950 human MHC structures (of which more than 720 are in complex with peptides) and 

over 350 TCR structures (of which 180 are part of a ternary complex with peptide and 

MHC).   

2.2 Antigen presentation prediction methods 

Of the various aspects of antigen presentation and the engagement between MHC 

molecules, peptides and TCRs, by far the most widely addressed challenge using 

computational methods is that of predicting whether a given peptide binds to a given 

MHC molecule with sufficient affinity to be a candidate T cell epitope (subject to the 

presence of a TCR capable of binding that peptide-MHC complex) — a task that is 

generally referred to as T cell epitope prediction or MHC binding prediction. Given the 

combinatorial challenges associated with large numbers of both HLA alleles and novel 

antigens, and given that MHC binding experiments are both costly and time-consuming, 

the attractions of using computational prediction methods are clear.  

MHC binding predictors are typically developed using information about known epitopes 

from curated databases such as the IEDB and/or SYFPEITHI (see section 2.1). It is 

notable that peptides with a negative outcome (i.e., peptides experimentally determined 

not to bind to a given MHC molecule) are under-reported in the literature and under-

represented in curated databases. Hence, whereas the IEDB contains (as of 24th April 

2022) over 1 million positive peptide-MHC entries, there are less than 100,000 negative 

entries. In reality, only a small fraction of peptides are binders, although the numbers vary 

between MHC molecules. Consequently, method developers commonly make the 

assumption that, if a set of binding peptides have been identified for a given combination 

of MHC molecule and antigen, all other peptides from that antigen are non-binders with 

respect to the same MHC molecule.    

As noted in a recent review, several motif- and matrix-based prediction methods were 

developed in the 1990s, but more accurate predictions because possible from the late 

1990s with the creation of epitope databases (notable, in 2003, the IEDB, as described in 

section 2.1) that contained sufficient data for training machine learning methods — 

notably artificial neural networks (ANNs) (Peters et al., 2020). Another key advance, 

given the highly polymorphic nature of the HLA locus, was the development of pan-
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specific methods capable of making predictions for MHC molecules for which there are 

insufficient known epitopes to support conventional training. Such methods utilise 

information about the amino acids that occur within the binding groove and/or pockets of 

the MHC molecule (Peters et al., 2020).  

A 2015 survey listed 20 different T cell epitope predictors (Soria-Guerra et al., 2015).  

The fair evaluation of such methods is challenging, as it requires data that was not used in 

the training of any of the methods to be available for testing. Within the past decade, this 

challenge has been overcome for an important subset of methods that are available as 

online servers via automated benchmarking frameworks for MHC class I (Trolle et al., 

2015) and class II (Andreatta et al., 2018). The benchmark is run weekly using new data 

in the IEDB prior to its public release, with results made available on the IEDB website 

(http://tools.iedb.org/auto_bench/mhci/weekly/ and 

http://tools.iedb.org/auto_bench/mhcii/weekly/ respectively). In both cases, a threshold 

for positive predictions is set as < 500 nmol/L for IC50 binding measurements and over 2 

hours for the half-life of binding measurements.  

Prediction tools developed at the Technical University of Denmark (DTU) — notably 

NetMHC (Andreatta & Nielsen, 2016; Nielsen et al., 2003), NetMHCpan (Hoof et al., 

2009), NetMHCII (Jensen et al., 2018) and NetMHCIIpan (Reynisson et al., 2020) — 

have consistently performed well in benchmark assessment for many years, are widely 

used, and have been the tools of choice in this research. The pan-specific versions of the 

tools have been evaluated by the IEDB automated benchmarking framework since its 

inception and have accumulated AUC scores of over 0.85 for most HLA class I alleles 

and over 0.8 for a set of key HLA class II alleles
1

. HLA class II prediction is generally 

considered more difficult than class I prediction because it is necessary to predict the 

register of peptide binding within the open groove of the MHC class II molecule and 

needs to take into account the effect of the flanking regions of the peptide that lie outside 

the groove. It has recently been suggested that “MHC class II binding predictions have 

broadly caught up to where MHC class I binding predictions were a decade ago” (Peters 

et al., 2020). 

 

1

 Note that predictions for certain HLA class II alleles are absent from the benchmark report for reasons 

that are unclear.  

http://tools.iedb.org/auto_bench/mhci/weekly/
http://tools.iedb.org/auto_bench/mhcii/weekly/
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Additional aspects of the MHC class I antigen presentation pathway that are amenable to 

computational prediction are TAP transport efficiency and C-terminal proteasomal 

cleavage. Methods for predicting both have been integrated into two additional DTU 

tools, NetCTL (Larsen et al., 2007) and NetCTLpan (Stranzl et al., 2010), with cleavage 

prediction also available as a stand-alone tool, NetChop (Nielsen et al., 2005; Kesmir et 

al., 2002). In both tools, TAP transport efficiency and C-terminal proteasomal cleavage 

are given low weighting in terms of their contribution to the overall score (0.05 for TAP 

transport efficiency and 0.15 for C-terminal cleavage in the case of NetCTL).  

2.3 TCR binding prediction 

TCR binding prediction is intrinsically more challenging than MHC binding prediction 

(section 2.2). In the latter, a peptide adopts an extended conformation within an 

essentially static MHC binding groove (see section 1.1.3), whereas TCRs adopt somewhat 

different orientations to peptide-MHC surfaces and binding involves the engagement of 

up to six flexible loops – the CDRs (see section 1.2.3). Moreover, the number of known 

TCR-peptide-MHC complexes is much smaller than the number of known peptides-

MHC complexes (see section 2.1), making it more difficult to understand the “rules” of 

TCR binding (in so far as they exist) or train machine learning algorithms to make 

predictions.  

Given the extent of the challenge and the limited amount of data – most particularly 

paired TCR chain data – the task of predicting TCR binding from sequence has often 

been formulated in somewhat restrictive ways. Generally, the task is treated as a binary, 

binding/non-binding problem, with no attempt made to predict binding affinity. Certain 

methods only make predictions for specific peptides, bearing in mind that many TCRs 

can bind to the same epitope, and some utilise only the TCR β chain that typically makes 

dominant contact with the peptide (as noted in section 1.2.3). As an example, all the 

preceding restrictions apply to the web tool TCRex (https://tcrex.biodatamining.be) 

(Gielis et al., 2019).  

One notable contribution to this space has been the development of NetTCR (the latest 

version, 2.0, is available at https://services.healthtech.dtu.dk/service.php?NetTCR-2.0) by 

the same research group that developed the NetMHC tools (Montemurro et al., 2021). 

NetTCR uses a type of deep learning architecture known as a convolutional neural 

https://services.healthtech.dtu.dk/service.php?NetTCR-2.0
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network (CNN). The authors experimented with different input data and concluded that 

“TCR-peptide interactions can only to a very limited extent be characterized using current 

CDR3β peptide data” (Montemurro et al., 2021). The degree of similarity between data 

used for training and evaluation makes the fair measurement of predictive performance 

particularly challenging. Using a NetTCR model that utilises paired α and β chain data, 

performance largely depended on the number of TCRs associated with a given peptide: 

the AUC for peptides characterised by “200 or more” TCRs was 0.88, but only 0.38 for 

those characterised by “20 or fewer” TCRs (Montemurro et al., 2021). Given the kinds of 

scenario addressed by the research presented in this thesis, where there is no expectation 

that a given epitope will have any TCRs that are known to bind to it, these conclusions 

appear distinctly unpromising. TCR binding prediction was not undertaken for this 

research. 

If a breakthrough in predictive performance occurs in the near future, it appears likely to 

involve the exploitation of advanced deep learning approaches that have proved highly 

effective in the field of Natural Language Processing (NLP) and are being used 

increasingly in address challenges in other areas of biology, with AlphaFold 2 as the most 

notable example (Jumper et al., 2021). One such NLP-derived strategy is called BERT 

(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018), which 

has been adapted to address the TCR binding problem in the recently released TCR-

BERT (Wu et al., 2021) and TCRBert (Han & Lee, 2021). Undertaking a fair 

benchmark assessment of these new methods is a current research goal for Prof. Adrian 

Shepherd’s research group. 

2.4 Repository 

The source code for the computational pipeline to undertake the analysis and post 

processing of the results for the various applications presented in chapter 3, chapter 4 and 

chapter 5 can be viewed at the GitHub repository 

https://github.com/nuzun/NetPredictionApplication.  

https://github.com/nuzun/NetPredictionApplication
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3 Predicting Inhibitor Risk in Missense Mutation 

Haemophilia A 

3.1 Introduction 

Haemophilia A (HA) is an X-linked hereditary disorder, which results from deficiency of 

Factor VIII (FVIII), one of the blood clotting proteins. The X chromosome involves the 

genes coding for FVIII, hence HA is overwhelmingly a condition that affects men 

(approx. 1 in 5000 male births), whereas women are carriers. The activity level of the 

FVIII determines the severity of the disease: severe when < 1%, moderate when 1-5%, 

and mild when > 5%. The standard treatment for patients diagnosed with HA is 

replacement FVIII – either recombinant or plasma derived – to prevent or treat bleeding 

episodes. HA patients mostly have bleeding in soft tissue, the joints or muscles. Whereas 

severe HA patients may have frequent and spontaneous bleeds from infancy, bleeding in 

non-severe patients is typically associated with injury or medical procedure such that first 

treatment with therapeutic FVIII (tFVIII) may be delayed into, or beyond, middle age.  

For patients with HA of all severities, by far the most important risk to the effectiveness of 

tFVIII treatment is the development of anti-FVIII antibodies, known as inhibitors. 

Inhibitor formation occurs in 25-30% of severe HA patients and 7-15% in non-severe 

group (Lieuw, 2017). Such patients typically require alternative treatment regimens 

involving costly FVIII immune tolerance induction (ITI) to suppress the immune 

response to FVIII, or more recently, the use of bypassing agents such as activated 

recombinant Factor VII to control bleeding (Konkle et al., 2007). In around half of non-

severe patients, inhibitors cross-react with the patient’s endogenous FVIII result in a more 

severe disease phenotype (Hay et al., 1998).  

For all HA patients, the ability to predict the risk of inhibitor formation has potential 

therapeutic advantages. For example, severe HA patients with high inhibitor risk might be 

candidates for pre-emptive ITI, whereas non-severe HA patients might be offered 

alternative therapeutics, such as desmopressin (which stimulates the release of von 

Willebrand factor, which in turn reduces the rate at degradation rate of FVIII in the 

bloodstream) (Fanchini & Mannucci, 2011). Indeed, accurate prediction of inhibitor risk 

in non-severe patients would be of immediate therapeutic advantage (Dr Dan Hart, Barts, 

personal communication). 
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In this research, the primary focus is on HA patients with a single missense mutation. 

Missense mutation HA is associated with disease phenotypes of all severities, depending 

on the location of a given mutation within the FVIII molecule, but most commonly with 

non-severe HA. As noted in the paper to which this research contributed, “inhibitor 

screening in the setting of non-severe hemophilia A is currently more reactive and 

sporadic [than for severe HA] but recognized to be of increasing importance given the 

aging population of those living with non-severe hemophilia A” (Hart et al., 2019). 

Inhibitor formation is a CD4
+

 T cell dependent process (Jacquemin et al., 2003). The 

missense mutation in the patient’s endogenous FVIII is the trigger for the patient’s 

immune system in recognizing the tFVIII-derived peptides as foreign, notably those 

peptides spanning the location of the missense mutation. Peptides bound to MHC class 

II molecules are presented to CD4
+

 T cells by professional antigen presenting cells (as 

described in section 1.1). This may lead to CD4
+

 T cell activation and ultimately the 

formation of inhibitors; however, the immune response towards tFVIII-derived peptides 

that are undistinguishable from the patient’s endogenous peptides is supressed by self-

tolerance mechanisms; in particular, self-reactive CD4
+

 T cells are removed from the 

naïve repertoire in the thymus by central tolerance mechanisms (discussed in section 

1.2.1).  

Three key factors determine whether a given tFVIII-derived peptide triggers a T cell 

response. Firstly, the peptide may, or may not, be presented, depending on whether it is 

capable of binding to any of the individual’s MHC molecules (as encoded by his HLA 

class II genes) with sufficient avidity (as discussed in section 1.1.3). Secondly, if presented, 

the peptide may, or may not, form a novel peptide-MHC surface, i.e., one that is 

distinguishable from those formed by self-peptides; only if such a surface differs from 

those formed by endogenous peptides is a CD4
+

 T cell response normally possible. 

Thirdly, if a novel peptide-MHC surface is presented, the individual’s CD4
+

 T cell 

repertoire may, or may not, contain T cells capable of binding to that surface – although 

their presence is by no means improbable given the diversity of T cell receptors within 

the repertoire (see section 1.2.2) and TCR cross-reactivity (discussed in section 1.2.3). 

Whereas the first two factors are potentially testable in advance, the third factor depends 

on the (at least partially) stochastic V(D)J recombination process by which T cell 

receptors are generated and may vary over time. Hence prediction of (potential) risk 

depends on predicting the formation, or otherwise, of novel peptide-MHC surfaces.  
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Given the highly polymorphic nature of HLA genes (discussed in section 1.1.4) together 

with the hundreds of FVIII missense mutations that have been reported so far, and given 

the relatively low-throughput characteristics of peptide-MHC binding assays, undertaking 

a large-scale in vitro analysis of inhibitor risk is infeasible. The aim of this research is to 

address this challenge utilising in silico techniques, building on an approach developed 

previously in Dr Shepherd’s research group at Birkbeck, University of London 

(Shepherd et al., 2015). The key innovation of the work presented here was to greatly 

extend the search for potential cross-matches between non-self (a given therapeutic 

peptide) and self; originally only the corresponding FVIII location was considered, 

whereas in this research cross-matches to other locations in endogenous FVIII and to 

other proteins in the human proteome were considered. Preliminary analyses were 

undertaken by several individuals, but all the final code and results published in (Hart et 

al., 2019) were generated by me. 

3.2 Methods 

3.2.1 The identification of novel peptide-MHC surfaces 

The underlying methodology for predicting inhibitor development risk of patients with 

missense mutation HA has been well described in (Shepherd et al., 2015).  Briefly, all 

tFVIII (UniProt FVIII sequence P00451(The UniProt Consortium, 2016)) 15-mers that 

span the location of the missense mutation were analysed NetMHCII, one of the accurate 

MHC binding predictors developed by the Technical University of Denmark (DTU) that 

are listed in section 2.2. For this research, a downloadable version of NetMHCII 2.2 was 

used (Nielsen and Lund 2009); this has now been superseded by NetMHCII version 2.3 

(available at https://services.healthtech.dtu.dk/service.php?NetMHCII-2.3). Any such 

peptide that was predicted to i) have a binding register that places the location of the 

missense mutation within the 9-residue binding groove of the MHC molecule and ii) bind 

to the MHC molecule with sufficient affinity was considered a candidate for forming a 

novel peptide-MHC surface. In this research, the “sufficient affinity” threshold was 

considered to be IC50 < 1000 nmol/L – as noted in section 1.1.3, a widely accepted 

threshold taken to indicate biologically relevant binding (Southwood et al., 1998; Paul et 

al., 2015; Paul et al., 2020). A peptide was subsequently predicted to form a novel 

peptide-MHC surface if either: 
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 a) The corresponding endogenous peptide (i.e., with the equivalent predicted binding 

core) was a non-binder. This situation may arise when the missense mutation is at an 

MHC facing position; for most HLA alleles, these are positions 1, 4, 6 and 9 within the 

binding groove. In this case, it was predicted that T cells capable of binding to the 

peptide-MHC complex will not have been eliminated by self-tolerance mechanisms; or 

b) The residue difference between endogenous FVIII and tFVIII was at a TCR-facing 

position, namely at position 2, 3, 5, 7 or 8 within the binding groove. Hence the 

presented surface is different to that presented by the same MHC molecule bound to the 

endogenous peptide. These scenarios are summarised in Figure 3.1A. 

For this research, the original set of 14 HLA-DR alleles (Shepherd et al., 2015) was 

expanded to incorporate common HLA-DP and HLA–DQ alleles, giving a total of 25 

HLA class II alleles. This set has been used in previous MHC class II research because 

of their estimated global population coverage: greater than 70% for HLA-DR alleles, 

greater than 90% for HLA-DP alleles, and greater than 80% for HLA-DQ alleles (Wang 

et al., 2010). 
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Figure 3.1 Schematic diagram explaining how side-chain differences can lead to the presentation of novel 

peptide-MHC surfaces. The FVIII missense mutation is denoted by a red diamond (figure adapted from 

[Hart et al., 2019] with permission to reuse the material granted by Ferrata Storti Foundation). A) Image 

depicts the scenarios how a FVIII missense mutation can be at different positions along the peptide 

affecting the prediction of forming a novel-peptide-MHC surface. B) Following the preceding assessment, if 

a tFVIII peptide is associated with the potential formation of a novel peptide-MHC surface, such a surface 

will not be novel if there is a peptide from a different location within the human proteome that is a binder 

and has the same TCR-facing residues. 

3.2.2 Scanning novel peptides against the human proteome 

The main innovation of the research presented here involved taking into account the 

possibility that some of the apparently novel peptide-MHC surfaces identified by the 

preceding approach may not be associated with an inhibitor risk because of cross-matches 

to self-peptides other than those spanning the equivalent location in the individual’s 

endogenous FVIII. This scenario is summarised in Figure 3.1B. To undertake this 

analysis, the core 9-mer from the peptide forming a putative novel peptide-MHC 

complex was scanned against more than 11 million unique 9-mers forming the human 

proteome, derived from the more than 100,000 human protein sequences (including 

isoforms) retrieved from Ensembl database (Yates et al., 2016). Each relevant cross-match 
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(i.e., at positions 2, 3, 5, 7 and 8 of the 9-mer) was then analysed; if any 15-mer spanning a 

cross-matching 9-mer was predicted to bind with i) that 9-mer as its binding core and ii) 

with sufficient affinity, the original peptide-MHC surface was no longer deemed to be 

novel, and hence no longer associated with inhibitor risk.  

This approach was termed proteome scanning and the peptides with eliminated risk were 

considered proteome protected. In cases where multiple novel peptide-MHC surfaces 

were identified for a single missense mutation and only a subset was associated with 

proteome protection, that mutation was considered partially proteome protected. Figure 

3.2 summarizes the computational pipeline used in this analysis. 
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Figure 3.2 Flowcharts showing how the assessment of HA inhibitor risk is undertaken for a given FVIII 

missense mutation, taking into account potential cross-matches to the human proteome where necessary (A) 

and elaboration of the proteome scanning step (B) (figures adapted from [Hart et al., 2019] with permission 

to reuse the material granted by Ferrata Storti Foundation). Following the standard usage of flowchart 

symbols, “pill” or “stadium” shapes represent start or end points, rectangles represent processes, diamonds 

represent decisions (yes or no), and arrows represent the direction of flow.  

3.2.3 Evaluating statistical significance 

Patient data was retrieved from the Factor VIII Gene Variant Database of European 

Association for Haemophilia and Allied Disorders, EAHAD (http://www.factorviii-

db.org, accessed on November 26, 2016). Data was filtered based on the patients’ 

inhibitor formation status and excluded patients with an inhibitor formation status 

“unknown”. There were 2,225 individuals with 956 distinct FVIII mutations reported at 

605 different locations. The number of patients with inhibitors was 160. 

B 

http://www.factorviii-db.org/
http://www.factorviii-db.org/
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The two-tailed Fisher’s Exact Test was implemented in the R statistical programming 

language to evaluate the strength of the predictions against the real patient data with a null 

hypothesis that predicted inhibitor formation rates and rates calculated from the patient 

data are independent at the 0.05 p-value of significance. In this research, a revised 

method to determine a patient’s predicted inhibitor formation risk was introduced. In 

previous research, an “unknown risk” category was not defined for evaluation purposes, 

whereas for this research a missense mutation is assigned to one of three predicted-

degree-of-risk categories: “low/negligible risk”, “at risk” or “unknown risk”. A missense 

mutation is considered in the “at risk” category if risk is predicted for one or more of the 

4 HLA class II allele sets: HLA-DRB1 (11 alleles), HLA-DRB3/4/5 (3 alleles), HLA-DP 

(5 alleles) and HLA-DQ (6 alleles). Each gene set is predicted to be associated with risk if 

no more than a single allele in the set is predicted to be no-risk (here we assume that all 

individuals are heterozygous). A patient is predicted to be at “low/negligible” risk of 

inhibitor formation if all HLA allele/mutation combinations are predicted to be 

associated with no risk. The risk status of any other patient is considered “unknown”; all 

such patients are excluded from the statistical calculations. 

3.3 Results 

3.3.1 A proteome scanning example 

Here, a single example of proteome scanning is worked through in detail. The example 

combines the FVIII missense mutation Arg593Cys - R593C is the “traditional” 

numbering based on the mature protein that appears in most publications. The equivalent 

numbering used by the Human Genome Variation Society (https://www.hgvs.org/) is 

R612C - with the common HLA-DR allele HLA-DRB1*01:01. R593C was chosen 

because it is a relatively common FVIII missense mutation that is reportedly associated 

with a comparatively high risk of inhibitor formation. For example, one major study 

containing 106 individuals with the R593C mutation reported that 12 of these individuals 

(or 11.3%) developed inhibitors (Eckhardt et al., 2013). 

Step one involves predicting which, if any, tFVIII 15-mers that span position 593 are 

predicted to be binders using NetMHCII (Nielsen & Lund, 2009). In this case, two 

binding cores (i.e., 9-mers positioned within the MHC groove) that span position 593 – 
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IQRFLPNPA and YLTENIQRF – were associated with multiple predicted binding 15-

mers, as shown in Figure 3.3A. 

The second step involves assessing whether any cores are predicted to form a novel 

peptide-MHC surface in comparison with the surfaces formed by their respective 

endogenous peptides. In this case, both preceding endogenous cores – with a Cys (C) 

replacing the Arg (R) at positions 3 and 8 respectively – belong to predicted binding 15-

mers. Given that both of these positions are TCR facing (bearing in mind that the MHC 

binding pockets associated with the HLA-DRB1*01:01 allele are at positions 1, 4, 6 and 

9), both cores are deemed to form novel peptide-MHC surfaces (as shown in Figure 

3.3B) and hence – at this stage of the analysis – constitute a risk in terms of potential 

inhibitor development. 
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Figure 3.3 An example of novel peptide-MHC surface formation, using the combination of Arg593Cys and 

allele HLA-DRB1*01:01 as an example (figure adapted from [Hart et al., 2019] with permission to reuse 

the material granted by Ferrata Storti Foundation). A) 15-mers from tFVIII containing two cores that span 

Arg593 (R593) – IQRFLPNPA and YLTENIQRF – are predicted to bind to the MHC molecule 

associated with allele HLA-DRB1*01:01 by NetMHCII. B) As both cores have R593 at a TCR-facing 
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position, both are predicted to form peptide-MHC surfaces that are novel in comparison to those formed 

by the patients’ endogenous FVIII, which have a TCR-facing Cys593 (C593). 

The third and fourth steps involve proteome scanning and are designed to establish 

whether the peptide-MHC surfaces that (by the end of step two) are deemed novel with 

respect to the location of the missense mutation within the individual’s endogenous FVIII 

are also novel in the wider context of their other proteins. Given that matching peptides is 

much quicker that predicting MHC binding, step three involves hunting for proteome 9-

mers that match the binding cores of interest at their TCR-facing positions. In the current 

example, this corresponds to scanning against the pre-calculated library of 11,272,502 

unique proteome 9-mers using the patterns XQRXLXNPX (for core IQRFLPNPA) and 

XLTXNXQRX (for core YLTENIQRF), where each X is at an MHC-facing position 

and matches any amino-acid type. In this case, pattern XQRXLXNPX matches the 9-mer 

FQRELNNPL found in human tubulin polyglutamylase (UniProt sequence Q6ZT98), 

and pattern XLTXNXQRX matches the 9-mers GLTENSQRD and ELTKNAQRA 

found in dystrobrevin binding protein 1 (dysbindin) (UniProt sequence D6RJC6) and 

uncharacterized human protein C2orf48 (UniProt sequence Q96LS8) respectively (as 

shown in Figure 3.4A). Tubulin polyglutamylase is an enzyme which is highly expressed 

in the nervous system including the spinal cord, thalamus, hippocampus, hypothalamus, 

and cerebellum (Ikegami et al., 2006). Similarly, dysbindin is expressed in the prefrontal 

cortex and hippocampus and has been identified as one of the susceptibility genes for 

schizophrenia. It modulates prefrontal brain functions and is involved in neuronal 

development (H. Wang et al., 2017). Given their critical and life-long functional roles, 

there is no reason to expect that either protein is likely to “avoid” thymic central 

tolerance. 
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Figure 3.4 An example of proteome cross-matching, using the combination of Arg593Cys and allele HLA-

DRB1*01:01 as an example (figure adapted from [Hart et al., 2019] with permission to reuse the material 

granted by Ferrata Storti Foundation).  

The fourth and final step involves checking whether any of the proteome cross-matching 

9-mers occur as binding cores for HLA-DRB1*01:01. In this case, NetMHCII predicts 

that both FQRELNNPL (from tubulin polyglutamylase) and ELTKNAQRA (from 

C2orf48) form cores within 15-mers that bind with IC50 <1000 nmol/L, as shown in Figure 

3.4B. Based on these predictions, the combination of missense mutation R593C and 

allele HLA-DRB1*01:01, which at the end of step two (and in earlier computational work 

[Shepherd et al., 2015]) was predicted to confer a risk of inhibitor development, is 

ultimately predicted to confers “no, or negligible, risk of inhibitor formation owing to 

fortuitous cross-matches to peptides in the human proteome” (Hart et al., 2019). 

3.3.2 Overview of predicted FVIII inhibitor risk 

The calculated inhibitor risk of each distinct combination of HLA allele/missense 

mutation combination was plotted as a single square on a heatmap (Figure 3.5 and Figure 

3.6). The colour of the square represents the highest predicted binding strength of any 
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risk-associated 15-mers spanning the location of the missense mutation location, with 

black square indicating that either there is no 15-mer that has that missense mutation 

within its predicted binding core for that HLA allele, or no such peptides are predicted to 

form a novel peptide-MHC surface; hence representing low/negligible risk prior to 

proteome scanning. In Figure 3.6, a grey square represents full proteome protection and 

implies that the predicted status of the relevant FVIII missense mutation/HLA allele 

combination has changed (owing to the detection of one or more proteome cross-

matches) from being associated with the risk of inhibitor formation to being of low or 

negligible risk. A change to a colour with respect to Figure 3.5 other than grey implies 

partial proteome protection – one or more peptides are no longer considered risk 

associated (owing to the detection of one or more proteome cross-matches), but there 

remains at least one peptide-MHC surface predicted to be risk associated. Full heatmaps 

covering all FVIII missense mutations with and without proteome scanning are available 

in Appendix 1 (Figures A2 and A1 respectively). 

 

 

Figure 3.5 Heatmap showing inhibitor risk for a set of missense mutation/HLA allele combinations without 

proteome scanning (figure reused from [Hart et al., 2019] with permission to reuse the material granted by 

Ferrata Storti Foundation). The full heatmap for all available missense mutations in the Factor VIII Gene 

(F8) Variant Database without proteome scanning is available in Appendix 1, Figure A1. 
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Figure 3.6 Heatmap showing inhibitor risk for a set of missense mutation/HLA allele combinations with 

proteome scanning (figure reused from [Hart et al., 2019] with permission to reuse the material granted by 

Ferrata Storti Foundation). Differences between this heatmap and that in Figure 3.5 are attributable to the 

impact of proteome scanning. The full heatmap for all available missense mutations in the Factor VIII 

Gene (F8) Variant Database with proteome scanning is available in Appendix 1, Figure A2. 

Our overall assessment of the significance of proteome scanning on predicted inhibitor 

risk was as follows. Taking account of all HLA allele/FVIII missense mutation 

combinations in the set (25 alleles x 956 mutations), it was predicted that, with a 

conservative threshold of IC50 < 1000 nmol/L, the percentage of inhibitor risk-associated 

squares falls from 49% to 31% when proteome cross-matches are taken into account. The 

rate falls from 37% to 21% with a threshold of IC50 < 500 nmol/L and from 29% to 15% 

with a threshold of IC50 < 300 nmol/L. Note that, whereas different binding thresholds 

may be important in the context of inhibitor risk (given that stronger-binding peptides are 

more likely to induce an immune response), the standard IC50 < 1000 nmol/L threshold 

was consistently retained for calculating the likelihood of self-tolerance with respect to 

peptides in the human proteome. 

The predicted inhibitor risk associated with individual HLA alleles was also calculated 

and is shown in Table 3.1. Clearly the predicted risk for each HLA allele differs 

significantly, indicating the importance of the HLA type in prediction of inhibitor risk. 
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Table 3.1 Breakdown of predicted inhibitor risk with respect to different HLA alleles at different thresholds 

before and after proteome scanning (adapted from [Hart et al., 2019] with permission to reuse the material 

granted by Ferrata Storti Foundation) 

 

HLA allele 

Risk (%) with 1000 

nmol/L threshold 

Risk (%) with 500 

nmol/L threshold 

Risk (%) with 300 

nmol/L threshold 

 before after before after before after 

DRB1*01:01 86 48 78 41 71 33 

DRB1*03:01 34 25 24 16 19 12 

DRB1*04:01 62 38 47 25 38 22 

DRB1*04:04 66 38 53 26 44 19 

DRB1*04:05 60 35 49 28 39 21 

DRB1*07:01 70 46 60 39 47 30 

DRB1*08:02 36 23 16 10 8 4 

DRB1*09:01 66 41 50 25 40 8 

DRB1*11:01 58 37 43 24 38 22 

DRB1*13:02 34 25 26 16 19 12 

DRB1*15:01 64 36 49 25 37 8 

DRB3*01:01 35 25 24 17 18 11 

DRB4*01:01 60 33 39 16 30 12 

DRB5*01:01 58 40 48 31 40 23 

DPA1*01-DPB1*04:01 41 27 33 23 28 18 

DPA1*01:03-DPB1*02:01 46 29 36 21 30 8 

DPA1*02:01-DPB1*01:01 59 34 47 25 37 20 

DPA1*02:01-DPB1*05:01 30 18 17 8 12 6 

DPA1*03:01-DPB1*04:02 52 33 41 22 29 12 

DQA1*01:01-DQB1*05:01 27 21 19 15 15 10 

DQA1*01:02-DQB1*06:02 54 34 36 20 26 16 

DQA1*03:01-DQB1*03:02 21 15 10 6 5 3 
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HLA allele 

Risk (%) with 1000 

nmol/L threshold 

Risk (%) with 500 

nmol/L threshold 

Risk (%) with 300 

nmol/L threshold 

 before after before after before after 

DQA1*04:01-DQB1*04:02 21 13 11 6 7 4 

DQA1*05:01-DQB1*02:01 36 18 24 12 6 7 

DQA1*05:01-DQB1*03:01 58 32 40 20 30 13 

 

Additionally, missense mutations associated with “low/negligible risk” independent from 

the HLA allele were identified; for the IC50 < 1000 nmol/L threshold, these correspond to 

all-black (Figure 3.5) or grey-black (Figure 3.6) columns in the heatmaps. At this 

threshold, 25 mutations out of 956 were predicted to be associated with “low/negligible 

risk” without proteome cross-matches, compared with 40 when proteome cross-matches 

are taken into account. This number increases with less conservative thresholds, as shown 

in Table 3.2. Nevertheless, it is clear that inhibitor risk is largely HLA dependent. 

Table 3.2 Number of missense mutations (from a total of 956) associated with “low/negligible” inhibitor risk 

Threshold (nmol/L) Low risk mutations before 

proteome scanning  

Low risk mutations after 

proteome scanning  

1000 25 40 

500 40 80 

300 55 154 

200 79 209 

100 152 353 

50 277 492 

 

3.3.3 Analysis of proteome cross-matches 

The cross-matches to the human proteome were analysed for all the missense 

mutation/HLA allele combinations and the set of proteins affording the most proteome 

protection were identified (see Table 3.3). The protein affording the most protection is 

coagulation factor V, which is known to have a high sequence similarity to FVIII 
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(Davidson et al., 2003). It is also worth noting that the top four protective proteins – 

coagulation factor V, hephaestin-like protein 1, ceruoplasmin and hephaestin – all have 

copper-binding sites, a property they share with FVIII itself.  

Table 3.3 List of 15 human proteins affording the highest number of proteome cross-matches (adapted 

from [Hart et al., 2019] with permission to reuse the material granted by Ferrata Storti Foundation) 

Ensembl ID UniProt 

ID 

Protein Name Protected peptide 

count 

ENSP00000356771 P12259 Coagulation factor V 640 

ENSP00000313699 Q6MZM0 Hephaestin-like protein 1 457 

ENSP00000264613 P00450 Ceruloplasmin (ferroxidase) 437 

ENSP00000430620 Q9BQS7 Hephaestin 389 

ENSP00000353393 P00451 Coagulation Factor VIII (match to different 

location within the protein) 

251 

ENSP00000355910 O75445 Usherin 150 

ENSP00000431216 Q14585 Zinc finger protein 345 142 

ENSP00000444412 Q14587 Zinc finger protein 268 134 

ENSP00000254579 Q96M86 Dynein heavy chain domain 1 83 

ENSP00000367086 O00154 Acyl-CoA thioesterase 7 76 

ENSP00000326563 Q7LBC6 Lysine (K)-specific demethylase 3B 75 

ENSP00000358407 Q9UKF2 Disintegrin and metalloproteinase domain-

containing protein 30 

75 

ENSP00000444747 Q9Y2P0 Zinc finger protein 835 74 

ENSP00000224600 P10745 Retinol binding protein 3 73 

ENSP00000439288 Q5T5N4 Chromosome 6 open reading frame 118 67 

The “protected peptide count” for a given human protein aggregates all the protective cross-matches for all 

combinations of missense mutations and HLA alleles. A single risk-associated FVIII peptide may 

increment the counts for multiple proteins and increment the count for a single protein by more than one 

(if the same matching core occurs at multiple locations within that protein). Note that a cross-match for a 

given peptide is only deemed protective if that peptide is predicted to confer an inhibitor risk before 

proteome scanning is undertaken.   

3.3.4 Evaluation of risk prediction accuracy 

The accuracy of the predictions made by the methodology described in preceding 

sections was evaluated by comparing them to the real patient data from FVIII Gene (F8) 
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Variant Database. Table 3.4 reports the statistical calculations for missense mutation HA 

patient data.  

Given that there are multiple reasons why an individual that is genuinely at risk of 

developing inhibitors may not yet have developed them (e.g. if they have had insufficient 

exposure to tFVIII, or they have developed anti-tFVIII antibodies that are non-

neutralising), the most appropriate numerical indicator of the accuracy of our method is 

the number of false negatives (i.e. the number of patients predicted to have 

“low/negligible risk” of inhibitor formation who actually developed inhibitors). Table 3.4 

shows that the number of false negatives is low at conservative cut-offs (column 3). Using 

the novel proteome scanning approach, the number of false negatives is somewhat higher 

(the lower half of column 3), but the total number of patients predicted to be at 

low/negligible risk is considerably higher. Overall, the proteome scanning predictions 

have considerably higher statistical significance (final column of Table 3.4). 

The higher number of false negatives with proteome scanning implies that some of 

the cross-matches that are predicted to be protective are not actually protective. There are 

several reasons why a putative protective cross-match may not be protective in reality: the 

predicted binding of the cross-matching peptide (either its register or its strength) may be 

inaccurate; assumptions about one or more HLA anchoring positions may be incorrect 

(such that a residue mismatch at a presumed anchoring position is in fact TCR-facing); the 

individual's self-peptide may not match that from the canonical proteome (because it 

contains a non-synonymous SNP); the cross-match may be to a protein that participates 

ineffectively in the central tolerance process; or the individual may have one or more 

comparatively uncommon HLA alleles not considered in the evaluation.  
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Table 3.4 Fisher’s Exact Tests evaluating the accuracy of predicted inhibitor (adapted from [Hart et al., 

2019] with permission to reuse the material granted by Ferrata Storti Foundation) 

IC50 binding 

threshold 

(nmol/L) 

Patients predicted to have 

low/negligible risk 

Patients predicted to have an 

inhibitor risk 

P 

No inhibitors Inhibitors Inhibitors No inhibitors 

Without proteome scanning 

1000 28 1 116 1344 0.72 

500 49 3 92 985 0.62 

300 122 3 84 787 5.84-04 

200 179 9 76 660 0.02 

100 362 20 37 338 0.02 

50 593 36 31 228 2.01-03 

With proteome scanning 

1000 103 4 80 622 0.02 

500 157 7 65 339 4.50e-05 

300 322 14 57 261 1.14e-08 

200 465 26 53 232 1.07e-08 

100 777 42 23 133 6.57e-05 

50 1114 66 22 115 3.72e-05 

Column 2 (true-negatives): Patients without inhibitors having a missense mutation predicted to have 

“low/negligible” risk of inhibitor development 

Column 3 (false-negatives): Patients with inhibitors having a missense mutation predicted to have 

“low/negligible” risk of inhibitor development 

Column 4 (true-positives): Patients with inhibitors having a missense mutation predicted to have risk of 

inhibitor development 

Column 5 (false-positives): Patients without inhibitors having a missense mutation predicted to have risk of 

inhibitor development 

3.4 Discussion 

The results presented in this chapter have potential clinical relevance in that they reveal 

the extent to which inhibitor risk is HLA-dependent, and hence (as noted in the paper 

based on this work) provide “compelling evidence of the importance of HLA class II 

genotyping for analysing the inhibitor risk of patients with missense mutation hemophilia 

A” (Hart et al., 2019). This research also represents the first application of a new strategy 
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termed proteome scanning – the identification of cross-matching peptides within the 

human proteome as sources of “protection” against adverse immune responses (driven by 

underlying tolerance mechanisms). The inhibitor risk predictions presented in section 

3.3.2 in combination with the statistical analysis of section 3.3.4 demonstrate that 

proteome scanning offers useful insights (it reduces the predicted level of inhibitor risk 

development from 49% to 31% using a conservative threshold of IC50 < 1000 nmol/L) and 

is sufficiently accurate (using the same threshold, only 4 out of 107 patients predicted to 

have negligible risk of inhibitor development were reported to have developed them). 

The potential wider applicability of proteome scanning is addressed in the next chapter. 

Notwithstanding these highly promising results, there are several ways in which the 

method presented here has been simplified in ways that are likely to affect its accuracy, 

some of which may be addressed in future work. Firstly, the relationship between 

endogenous and therapeutic FVIII has been simplified in ways that potentially 

underestimates the number of sequence differences that may trigger a T cell response and 

ultimately lead to inhibitor formation. An increasing number of patients has been treated 

using B-domain-deleted (BDD) tFVIII products incorporating novel linker sequences. 

While these novel linker sequences may be associated with increased inhibitor risk 

(Sauna et al., 2012), one particular study attempted to assess the immunogenicity of the 

linker peptides of three BDD recombinant FVIII products via in vitro and in silico 

methods and concluded that novel linker sequences of the studied products posed low 

immunogenicity potential (Bartholdy et al., 2018). And for a relatively small subset of 

patients, there may be one additional (non-disease associated) mismatch between their 

endogenous FVIII and tFVIII owing to the presence of uncommon FVIII alleles in the 

wider population (Viel et al., 2009). 

Secondly, only a single proteome is used for proteome scanning purposes. In cases where 

the proteome of an individual patient is available, a personalised approach to proteome 

scanning would be possible. However, given that individual genomes vary by only around 

0.1%, using a personalised proteome approach is unlikely to change peptide cross-

matching for most individuals. 

Thirdly, there are several ways in which the relationships between peptides, MHC 

molecules and TCRs have been simplified in this research. Certain MHC class II 

molecules have pockets at non-canonical positions (i.e., other than positions 1, 4, 6 and 
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9), although which HLA alleles fit into this category is unclear, as information about them 

not systematically documented. Predictions for such MHC molecules would clearly be 

improved by integrating knowledge of their anchor positions into the prediction workflow. 

The current model also focuses exclusively on 15-mers, whereas peptides of various 

lengths may be presented by MHC class II molecules and the impact of different lengths 

of flanking peptide can be modelled to some degree by tools such as NetMHCII. In the 

absence of tools capable of predicting peptide cleavage within the class II presentation 

pathway, the only way to address this point would be to routinely make predictions using 

peptides of different lengths containing the same core. Whether this would be useful and 

justify the additional compute time is unclear. It is also worth noting that it is known that, 

in specific cases, differences in peptide-MHC surfaces are attributable to differences in 

amino acids at anchoring positions in the MHC groove (Kersh et al., 2001) or outside the 

binding core (Deng et al., 2007). However, given that the prevalence of such effects is 

poorly understood, it is unclear how they might be incorporated into a revised 

computational model. 

Finally, it is worth noting that the patient data used in the current work was retrieved from 

the EAHAD FVIII Gene Variant Database in November 2016. Subsequently, additional 

data has been added to this database, including patient data from the My Life, Our Future 

initiative (MLOF) that involved the genotyping of 3000 haemophilia patients (Johnsen et 

al., 2017). Data is also available (though not via the EAHAD database) for 1112 non-

severe haemophilia A patients that was generated as part of the INSIGHT study 

(Eckhardt et al., 2013). This additional data could be used to update the statistical 

evaluations presented in this thesis, but the lack of information about the HLA types of 

patients limits its usefulness. Consider two of the key missense mutations identified in the 

INSIGHT study: Arg2150His (57 patients, 15.8% inhibitor rate) and Trp2229Cys (10 

patients, 50% inhibitor rate). From the heatmap with proteome scanning covering 25 

common HLA alleles (Figure A2), Arg2150His and Trp2229Cys are predicted to have an 

inhibitor risk with 8 and 5 alleles respectively. Hence, our prediction of inhibitor risk is 

consistent with the observed occurrence of patient inhibitors. However, given that we 

don’t know how many of the INSIGHT patients have one or more of the HLA alleles we 

predict to be risk-associated, there is limited scope for us to make more compelling 

inferences (e.g. about whether our method successfully predicts the degree of inhibitor 

risk for a particular missense mutation). 
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4 Predicting the Risk of Transplant Rejection 

4.1 Introduction 

4.1.1 Proteome scanning and alloimmunity 

In chapter 3, a novel proteome scanning method for assessing inhibitor risk formation 

was introduced in the context of missense mutation haemophilia A, which is an example 

of alloimmunity – an immune response to a non-self-antigen that originates from the same 

species, known as an alloantigen, commonly involving alloantigen recognition, or 

allorecognition, by T cells. Given this broader perspective on proteome scanning, a 

natural question to ask is: in what other alloimmune contexts might this or a similar 

approach prove potentially useful?  

As an example of alloimmunity, haemophilia A has several characteristics that make it a 

fertile target for the proteome scanning approach. Firstly, although haemophilia A is a 

rare disease, it is well studied and there is a good deal of data in the public domain (see 

http://www.factorviii-db.org). Secondly, the inhibitor rate among individuals with 

haemophilia A is up to 30% (Lieuw, 2017), and the prediction of inhibitor risk is 

potentially useful. Thirdly, the number of differences between endogenous and 

therapeutic FVIII (tFVIII) may, in many cases of missense mutation haemophilia A, be as 

few as one. By way of contrast, alternative causes of haemophilia A include large 

inversions or deletions (Gouw et al., 2012), which imply large differences between 

endogenous and therapeutic FVIII. In such cases, it is highly likely that novel peptide-

MHC surfaces will be presented and that individuals with these mutations will, from a T 

cell perspective, be at risk of developing inhibitors. In such cases, the proteome scanning 

approach is unlikely to be very informative.  

 Dozens of other protein therapeutics are known to trigger an adverse immune response 

among a proportion of their recipients, although rarely as high a proportion as that 

associated with tFVIII (Baker et al., 2010). What is less clear is whether any of these 

diseases a) are (at least) sometimes associated with small differences between endogenous 

and therapeutic and b) have sufficient available data for predictions to be evaluated.      

 

http://www.factorviii-db.org/
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Bearing these points in mind, a different alloimmune challenge was undertaken for this 

thesis concerning the risk of transplant rejection. 

4.1.2 Transplant rejection: overview  

Organ or tissue transplantation is the only treatment option left for some patients with 

severe and well-advanced illnesses. A within-species transplant is known as an allograft. 

The most important difficulty to overcome in the transplantation process is the possibility 

of allograft rejection by the recipient. Immunosuppressive medication is commonly used 

to prevent allograft rejection but often has significant side effects (see, for example, [Moini 

et al., 2015]). Kidneys are the most commonly transplanted organ globally, mostly from 

deceased donors; a fairly recent review quotes a 5-year allograft survival rate of just over 

70% for deceased donor kidney transplants in the US (Wang et al., 2016). 

The most important cause of allograft rejection are MHC molecule mismatches between 

donor and recipient (Wood & Goto, 2012), although rejection is possible even with 

perfect HLA matching (e.g., because of minor histocompatibility antigen mismatches 

[Perreault et al., 1990]). Henceforth, this chapter focuses exclusively on MHC molecule 

mismatches as the cause of allograft rejection.  

T cell-mediated alloimmunity can be triggered via two main mechanisms, known as the 

direct and indirect pathways. The direct pathway involves recipient T cells recognising 

intact donor MHC molecules presented on the surface of donor antigen presenting cells 

(APCs). The indirect pathway involves recipient T cells recognising peptides derived from 

donor MHC molecules after they have been internalised, processed and presented on the 

surface of recipient APCs via the antigen presentation pathways described in sections 

1.1.1 and 1.1.2. Given that the number of donor dendritic cells is limited and decreases 

over time, the direct pathway is associated with short-term, acute rejection. The indirect 

pathway, on the other hand, is associated with long-term, chronic rejection. (A third 

pathway –the semi-direct pathway – has also been proposed whereby donor MHC 

molecules are internalised by recipient APCs and are presented intact on the cell surface 

[Herrera et al., 2004].) 

Although both CD4
+

 and CD8
+

 T cells are involved in the direct pathway, CD4
+

 T cells 

dominate the indirect pathway, and facilitate the development of anti-graft antibodies 

(alloantibodies). However, there is “limited but intriguing” evidence that CD8
+

 T cell 
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allograft rejection can also be associated with the indirect pathway via “cross-priming” (Lin 

& Gill, 2016), with skin allograft rejection as a notable example (Valujskikh et al., 2002). 

Both CD4
+

 and CD8
+

 T cell responses are considered in this research. 

In the context of bone marrow and stem cell transplants, an additional complication may 

occur whereby T cells within the allograft (marrow or stem cells) attack the host, and in 

particular the host MHC molecules, causing a condition known as graft versus host 

disease (GVHD). GVHD occurs in two forms – acute and chronic – that are 

immunologically distinct and involve different T cell subsets. For a recent and thorough 

review, see (Hill et al., 2021). 

4.1.3 HLA matching strategies 

As explained in section 1.1.4, an individual has several different kinds of MHC class I 

and class II molecules, is likely to exhibit high levels of heterozygosity with respect to 

these molecules, and the number of other individuals sharing the same MHC molecules 

is likely to be small because the HLA genes that encode these molecules are highly 

polymorphic. Consequently, perfect HLA matching between donor and recipient is rarely 

possible. In practice, the desirability of a close HLA match (with potential benefits in 

terms of allograft and/or patient survival and reduced immunosuppression) has to be 

balanced against the impact of longer waiting times (Zachary & Leffell, 2016). The 

optimal degree of donor/recipient HLA matching is context dependent. For example, 

exact allelic matching at (at least) four loci (HLA-A, -B, -C and -DRB1) has generally been 

the preferred option in the context of bone marrow transplantation (Lee et al., 2007); in 

the latter case, HLA matching is additionally important with respect to GVHD (Loiseau 

et al., 2007). 

But what constitutes an HLA match? Until comparatively recently, HLA typing methods 

have focused on the most variable region of MHC molecules, the peptide binding groove 

(Erlich, 2012), thereby ignoring variation in other parts of the molecule. In 2019, an 

“ultra-high resolution” sequencing method – one that uses Pacific Biosciences Single 

Molecule Real-Time sequencing (PacBio) as a way of overcoming the ambiguities that 

arise with standard short-read Next Generation Sequencing – for HLA-A, -B, -C, -DRB1, 

-DQB1 and DPB1 was published (Mayor et al., 2019), but this has yet to be widely 

adopted. PacBio sequencing is a third-generation sequencing method offering major 
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improvements over the common problems and limitations of the second-generation 

sequencing (SGS) methods. For example, short read lengths require the usage of multiple 

overlapping sequences that makes the SGS methods vulnerable to incorrect alignments 

and consequently to HLA allele typing errors. As the HLA gene region is one of the most 

polymorphic loci in the human genome, incorrect phase resolution of the polymorphism 

may preclude identifying the correct allele assignment. PacBio enables HLA sequencing 

to be achieved in a single reaction with longer reads, allowing accurate isoform detection 

and more reliable allele assignments (Mayor et al., 2015). 

Irrespective of the resolution of matches, the simplest strategy for measuring the degree of 

mismatch is to count the number of mismatching residues between the MHC molecules 

of the donor and those of the potential recipient. In effect, all mismatches are treated 

equally. Alternatively, individual mismatches may be considered “permissive” or 

“nonpermissive” depending on their observed or predicted impact on transplantation 

outcomes. The most notable example of this approach involves mismatches in the HLA-

DPB1 locus; predictive algorithms have been developed that assign mismatches to the 

permissive or nonpermissive class according to whether the mismatched DPB1 molecules 

are functionally similar in terms of the T cell epitopes they present (Meurer et al., 2021; 

Zino et al., 2004).  

A completely different strategy for identifying permissive mismatches has been developed 

that is based on a structural appraisal of the location of MHC residue mismatches: if they 

are at exposed positions on the intact MHC molecule, they are likely to be detected as 

non-self by alloantibodies and hence should be considered nonpermissive. The 

HLAMatchmaker algorithm that implements this approach originally focused on 

sequence triplets (in effect short, linear B cell epitopes) (Duquesnoy, 2002), but 

subsequently accommodated potential discontinuous B cell epitopes by defining a 3-3.5 Å 

radius around a given surface location (Duquesnoy, 2006). 

4.1.4 A proteome scanning-based strategy for the detection of permissive 

mismatches 

The method presented here takes a different approach to the identification permissive 

and nonpermissive mismatches based on the strategy for identifying novel peptide-MHC 

surfaces described in section 3.2.1 and the proteome scanning strategy described in 3.2.2. 
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The basic rationale behind this approach is that certain mismatches can be labelled 

permissive because they are effectively invisible to the immune system because a) they do 

not occur within the binding core of a T cell epitope, or b) they occur in a binding core, 

but not at a TCR-facing position, or c) they cross-match to peptides elsewhere in the 

human proteome.   

4.2 Methods 

4.2.1 Modifications to the proteome scanning approach 

To implement this approach, an important modification to proteome scanning approach 

was required to ensure that the correct MHC molecules (and only the correct MHC 

molecules) were incorporated in the reference proteome. To achieve this, all MHC 

molecules were removed from the Ensembl reference proteome (see section 3.2.2) and 

the correct sequences added on a case-by-case basis as appropriate – either the transplant 

recipient’s MHC sequences or, in the context of a GVHD evaluation, the donor’s MHC 

sequences.  

The most recent versions (in 2019) of the Technical University of Denmark (DTU) tools 

were used in this research: NetMHCIIpan for MHC class II binding prediction and 

NetCTLpan for combined MHC class I C-terminal proteasomal cleavage, TAP transport 

efficient and binding prediction (see section 2.2).   

4.2.2 The selection of examples for method valuation 

Unfortunately, there is a lack of data in the public domain about rejection rates associated 

with specific HLA mismatches
2

. For this research, a single published case study became 

the key focus for analysis: a case of bone marrow allograft rejection where donor and 

recipient were perfectly HLA matches except for a single amino-acid residue difference in 

HLA-B*44 – the donor had allele HLA-B*44:03 with a Leucine (L) at position 180 

(numbered 156 in the original paper), and the recipient allele HLA-B*44:02 with an 

 

2 To remedy this problem, a collaboration (covered by a non-disclosure agreement) was initiated that would 

have facilitated access to a large set of patient data containing information about their HLA allelic 

mismatches and rejection status. Unfortunately, progress with this collaboration has not, as yet, taken place 

because of Covid.   
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Aspartic Acid (D) at the same position. This represents a minimal mismatch using a 

“default” strategy of residue-mismatch counting. The recipient died 68 days after 

transplantation, with “allocytotoxic host-derived CD8
+

 T cells [observed] in the patient’s 

circulation at the time of rejection” (Fleischhauer et al., 1990). 

In the paper describing this case study, shared HLA alleles are listed as HLA-A2, -A3, -

B7, -B44, -DR2 and -DR7, but this is not in full; most class II alleles are absent, and none 

of the alleles are specified at full resolution. To assess the impact of this specific HLA-

B*44 mismatch on potential novel peptide-MHC surface formation for a) the individual 

recipient in the case study and b) other potential donors/recipients with the same, singular 

mismatch, the following analyses were undertaken. For MHC class II, the set of 25 alleles 

with wide population coverage that was used in the haemophilia A research (see section 

3.2.1) were again used here. For MHC class I, two approaches were adopted. Firstly, the 

most common allelic variants of the listed HLAs – HLA-A*02, HLA-A*03 and HLA-

B*07 – were tested (e.g. HLA-A*02:01 and HLA-A*02:02 for HLA-A*02) based on the 

population frequencies recorded in the Allele Frequency Net Database (see section 2.1). 

Secondly, a panel of 20 common HLA alleles with wide population coverage were 

compiled from the Allele Frequency Net Database and used to give a broader insight into 

the potential risks associated with this HLA-B*44 mismatch.   

4.3 Results 

4.3.1 The HLA-B*44:03 (donor) vs. HLA-B*44:02 (recipient) mismatch 

Given that CD8
+

 T cells were observed in the recipient at the time of allograft rejection 

(section 4.2.2) and his HLA class I alleles were at least partially specified, this is the 

natural place to start the analysis. The outcome is shown in Figure 4.1. The allograft 

recipient was known to have the HLA-B*44:02 allele together with alleles from HLA-

A*02, HLA-A*03 and HLA-B*07. Common alleles from the latter three were chosen (2 

for HLA-A*02, 2 for HLA-A*03 and 1 for HLA-B*07) based on their global population 

frequencies. The colour of a square represents the highest binding affinity of any 9-mer 

spanning location 180 within the HLA-B*43:03 sequence that has location 180 at a TCR-

facing position. Black implies there is no such binding peptide with a binding affinity ≤ 

1,000 nmol/L. 
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These results suggest that the recipient was likely to have had an HLA-A*02 allele 

capable of initiating a CD8
+

 T cell response to the allograft. In this instance, proteome 

scanning (Figure 4.1B) made no difference. It is worth noting that, MHC class I-bound 

peptides are less likely to cross-match to the human proteome than MHC class II-bound 

peptides because the former typically have 7 TCR-facing residues (given canonical class I 

anchoring positions 2 and 9) whereas the latter typically have only 5 TCR-facing residues 

(given canonical class II anchoring positions 1,4, 6 and 9).   

 

 
Figure 4.1 Heatmap showing the immunogenicity of the HLA-B*44:03 (donor) vs. HLA-B*44:02 

(recipient) mismatches for recipient HLA class I alleles. (For a temperature key, see Figure 3.5.) A) 

Without proteome scanning. B) With proteome scanning. 

Given that the allograft recipient’s HLA class II alleles were unspecified, an equivalent 

evaluation was carried out using the set of 25 common HLA class II alleles previously 

used in Chapter 3. The outcome is shown in Figure 4.2. The colour of a square 

represents the highest binding affinity of any 15-mer spanning location 180 within the 

HLA-B*43:03 sequence that has location 180 at a TCR-facing position. Black implies 

there is no such binding peptide with a binding affinity ≤ 1,000 nmol/L. A grey square 

implies that all relevant peptides (i.e., those that bind to the relevant MHC molecule with 

an affinity ≤ 1,000 nmol/L and form a novel peptide-MHC surface) cross-match to 

A B 
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binding peptides in the proteome. A change to a colour other than grey implies the 

peptide(s) with the strongest binding affinity and forming a novel peptide-MHC surface 

cross-match to binding peptides in the proteome, but there remains at least one such 

peptide with a binding affinity ≤ 1,000 nmol/L. These results suggest that the recipient was 

rather unlikely to have had an HLA class II allele capable of initiating a CD4
+

 T cell 

response to the allograft – but only when cross-matches to the human proteome (using 

the novel proteome scanning method) are taken into account, as shown in Figure 4.2B.  

 

Figure 4.2 Heatmap showing the immunogenicity of the HLA-B*44:03 (donor) vs. HLA-B*44:02 

(recipient) mismatches for a set of 25 common HLA class II alleles. The colour of a square represents the 

highest binding affinity of any 15-mer spanning location 180 within the HLA-B*43:03 sequence that has 

A B 
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location 180 at a TCR-facing position. Black implies there is no such binding peptide with a binding affinity 

≤ 1,000 nmol/L. (For a temperature key, see Figure 3.6.) A) Without proteome scanning. B) With 

proteome scanning.  

4.3.2 Mismatch counts for different HLA-B*44 alleles 

To put the HLA-B*44:03 vs. HLA-B*44:02 mismatch in wider context, the number of 

pairwise mismatches between four HLA-B*44 alleles was calculated together with the 

corresponding assessment of mismatch “permissiveness” using the proteome scanning 

approach. The number of pairwise mismatches is shown in Table 4.1; each number in a 

cell represents the count of residue differences between the corresponding HLA 

sequences in the row and the column. The number of HLA class I alleles (from a set of 

20 common alleles) associated with the risk of transplant rejection are shown in Table 

4.2. and the number of HLA class II alleles (from a set of 25 common alleles) associated 

with the risk of transplant rejection are shown in Table 4.3. Note that the additional 

proteome scanning step made no difference with respect to the class I predictions (Table 

4.2), for the reasons given in section 4.3.1. 

Table 4.1 Pairwise mismatch counts for HLA-B*44 alleles 

Donor (down) HLA-B*44:02 HLA-B*44:03 HLA-B*44:05 HLA-B*44:04 

HLA-B*44:02 - 1 1 2 

HLA-B*44:03 1 - 2 2 

HLA-B*44:05 1 2 - 3 

HLA-B*44:04 2 2 3 - 
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Table 4.2 Number of HLA class I alleles (from a list of 20 common alleles) associated with a predicted 

rejection risk given mismatching HLA-B*44 alleles between donor and recipient 

Donor (down) HLA-B*44:02 HLA-B*44:03 HLA-B*44:05 HLA-B*44:04 

HLA-B*44:02 - 3 0 5 

HLA-B*44:03 7 - 7 9 

HLA-B*44:05 2 4 - 6 

HLA-B*44:04 5 5 5 - 

 

 

Table 4.3 Number of HLA class II alleles (from a list of 25 common alleles) associated with a predicted 

rejection risk given mismatching HLA-B*44 alleles between donor and recipient 

Donor (down) HLA-B*44:02 HLA-B*44:03 HLA-B*44:05 HLA-B*44:04 

HLA-B*44:02 - 3 (1) 0 21 (16) 

HLA-B*44:03 20 (4) - 20 (4) 22 (20) 

HLA-B*44:05 3 (2) 6 (3) - 22 (18) 

HLA-B*44:04 10 (3) 10 (3) 10 (3) - 

The number of risk-associated alleles after proteome scanning is given in brackets. 

The most important feature of this analysis is that the number of mismatches (Table 4.1) 

is poorly correlated with the predicted rejection risk aggregated across different HLA 

alleles (Table 4.2 and Table 4.3). For example, the HLA-B*44:03 (donor) vs. HLA-

B*44:02 (recipient) mismatch that has been the main focus of this chapter involves only a 

single sequence mismatch, but this is associated with a predicted rejection risk with 7 out 

of 20 common HLA-I alleles (Table 4.2), whereas the HLA-B*44:04 (donor) vs. HLA-

B*44:05 (recipient) involves three sequence mismatches (i.e. three times as many), yet the 

predicted rejection risk is lower (only 5 out of 20 common HLA-I alleles). In the case of 

HLA-II alleles (Table 4.3), there is an even more striking example: the HLA-B*44:03 

(donor) vs. HLA-B*44:04 (recipient) mismatch involving two sequence mismatches has a 
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high predicted rejection risk (20 out of 25 common HLA-II alleles) whereas the HLA-

B*44:04 (donor) vs. HLA-B*44:05 (recipient) mismatch involves an additional sequence 

mismatch (i.e. three residues) but a much lower predicted rejection risk (only 3 out of 25 

common HLA-II alleles).    

4.4 Discussion 

In this chapter, a single HLA allele mismatch known to be associated with bone marrow 

allograft rejection has been analysed using a modified version of the proteome scanning 

approach presented in Chapter 3. This narrow focus, which reflects the lack of publicly 

available data, is an obvious limitation, and one that (through appropriate collaboration) 

there is scope to remedy in the near future. 

Nevertheless, the results presented here suggest there is considerable scope for the 

computational prediction of transplant rejection risk using an assessment of whether a 

given mismatch will be visible to the recipient’s MHC molecules – or, in the case of 

GVHD, the donor’s MHC molecules. Such an approach would be particularly timely 

given that the HLA typing of donors and recipients is routinely undertaken and 

increasingly with high resolution (in clear contrast with haemophilia A patients, who are 

rarely HLA typed). In principle, such an approach could make a two-fold contribution: 

by identifying high-risk mismatches, transplants that are likely to result in early rejection 

may be prevented; and by identifying low-risk mismatches, the pool of potential donors 

for a given recipient could be expanded.  

Ultimately, as in the haemophilia A case, the accuracy of this new computational method 

is a crucial issue, and one we will return to in the Conclusion of this thesis. The main 

obstacle in the context of our work on transplant rejection prediction is the lack of 

available data. The priority, therefore, to facilitate further progress with this research is to 

gain access to a dataset containing detailed information about many (preferably hundreds 

of) transplant patients. Such data should contain a high-resolution specification of donor 

and recipient HLA types, both class I and class II, together with an assessment of each 

donor’s post-transplantation outcomes. Such data exists, but is not currently available in 

the public domain. 
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5 T cell epitopes and the detection of anti-tumour 

immunity in HCC 

5.1 Introduction 

In the research presented within this chapter, the methods previously applied to identify 

the peptides associated with the risk of Factor VIII inhibitor development (Chapter 3) 

and transplant rejection (Chapter 4) are used in the detection of anti-cancer immunity in 

the specific context of hepatocellular carcinoma (HCC) as part of a collaboration with 

researchers at the Institute of Hepatology. Before discussing HCC, it is worth introducing 

the topic of cancer immunotherapy more broadly. 

5.1.1 Cancer immunotherapy: an overview 

Cancer immunotherapy utilises a patient’s own immune system by stimulating their 

immune cells or inhibiting certain suppressive pathways to control and eliminate tumours. 

In 1891, orthopaedic surgeon Dr. William Coley attempted to treat tumours by injecting 

live and inactivated bacteria into them based on his observation that patients who 

developed serious wound infections after bone cancer surgery showed regression in the 

remaining tumour mass. This is considered the first attempt at immunotherapy against 

cancer (Esfahani et al., 2020).  Since that time, researchers have encountered many 

obstacles in the design and application of effective cancer immunotherapy protocols, and 

significant progress has arguably only been made in the 21
st

 century, and most particularly 

in the past decade.  

The steps required to establish an effective and long-lasting anti-cancer immunity in a 

patient is broadly similar to the immune response against pathogens. The process 

typically begins with dendritic cells capturing and processing antigens that originate from 

the tumour. Dendritic cells can present tumour antigens via both the class I and class II 

antigen presentation pathways (sections 1.1.1 and 1.1.2) and activate both CD4
+

 and CD8
+

 

T cells that are tumour-antigen specific (Gardner & Ruffell, 2016). To be effective, 

activated tumour-specific T cells commonly need to overcome immunosuppressive 

mechanisms in the tumour microenvironment, with implications for anti-cancer 

immunotherapies (for a recent and detailed review, see [Labani-Motlagh et al., 2020]).  
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In spite of the complexities and challenges, immunotherapy has become a viable 

treatment option for cancer alongside classical modalities such as surgery, radiotherapy 

and chemotherapy. By 2019, the U.S. Food and Drug Administration (FDA) approved 

immunotherapies for patients for over 20 cancer types (www.cancerresearch.org). This 

includes cancer vaccines for the treatment of early-stage bladder cancer (TheraCys and 

TICE), metastatic castration-resistant prostate cancer (PROVENGE) and metastatic 

melanoma (IMLYGIC) (DeMaria & Bilusic, 2019). 

Cancer immunotherapy methods can be classified into two groups – active or passive – 

based on their status as stimulators of the host’s own immune cells. Active therapies 

attempt to stimulate the host immune system and include cancer peptide vaccines that 

contain fragments of tumour-associated antigens, dendritic cell-based therapies, 

immunostimulatory cytokines and checkpoint inhibitors. Passive therapies, on the other 

hand, supply the relevant immune system components (i.e., without relying on the host 

immune system) and include tumour-targeting monoclonal antibodies (mAbs) and the 

adoptive transfer of T cells (ACT). The latter includes: tumour-infiltrated lymphocytes 

(TIL) therapy, whereby unmodified tumour-infiltrating autologous T cells are isolated, 

expanded ex vivo, then infused back into the patient; TCR gene therapy, whereby 

autologous T cells are modified via the introduction of tumour-targeting TCRs; and 

chimeric antigen receptor (CAR) T cell therapy, whereby autologous T cells are modified 

such that their TCRs incorporate a single-chain variable fragment (scFv) from a tumour-

targeting mAb (Rohaan et al., 2019). 

To develop effective cancer immunotherapies, the ability to detect and characterise anti-

tumour immune responses is crucial, but far from straightforward. Anti-tumour T cells 

commonly form against two types of tumour antigen: tumour-specific antigens (TSAs) that 

are expressed exclusively within tumour cells, but which (owing to a property known as 

tumour heterogeneity [Reardon & Wen, 2015]) may vary within a single tumour, between 

different tumours in the same individual, and between individuals; and tumour-associated 

antigens (TAAs) that are expressed (often overexpressed [Bright et al., 2014]) by certain 

tumour cells, but also by certain non-tumour cells. The mutations associated with TSAs 

may lead to the presentation of peptides that are novel – known as neoepitopes – capable 

of inducing a T cell response. TSAs, however, may be susceptible to self-tolerance, 

although this may be incomplete (see, for example, [Cloosen et al., 2007]). 

http://www.cancerresearch.org/
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In many respects, antigenic peptides have a clear therapeutic advantage over whole 

antigenic proteins: peptides from multiple antigens can be synthesised much more 

cheaply and used in combination. Antigenic peptides can also be used in therapeutic 

cancer vaccines, and in this context have the added advantage that they may induce 

immune responses that are more focused on key (neo)epitope targets. However, a 

peptide-based approach raises additional challenges: appropriate sets of HLA alleles need 

to be identified that will give good population coverage and a corresponding set of T cell 

epitopes capable of binding to these HLA alleles needs to be identified, or predicted (e.g., 

using the tools described in section 2.2) (Kumai et al., 2017). 

The optimal selection of antigenic peptides, whether for identifying anti-tumour immune 

activity or for vaccination, depends on the type of cancer and the therapeutic context. A 

strategy for addressing this challenge in the context of hepatocellular carcinoma (HCC) at 

the Institute of Hepatology will be described in due course. 

5.1.2 Hepatocellular carcinoma (HCC) 

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer 

accounting for 80-90% of cases. According to Cancer Research UK, around 6,100 people 

are diagnosed with liver cancer every year in the UK. Although not one of the most 

common types of cancer, accounting for around 2% of all new cases, it is the 8
th

 most 

common cause of cancer death in the UK; only around 13% of people diagnosed with the 

disease are expected to survive for 5 years or more.  

The liver environment is intrinsically immunosuppressive and tolerogenic as it is exposed 

to a large and varied range of antigenic products, associated with food and pathogens, 

transported from the gut via the portal vein. Liver sinusoidal endothelial cells (LSECs) 

have APC functions, and express both MHC class I and class II molecules. However, 

LSECs also express high levels of inhibitory molecule PD-L1 and low levels of co-

stimulatory molecule CD80 and CD86, and thus create an unsuitable environment for 

the activation of T cells. Owing to secretion of cytokines such as IL-10 and TGF-β1, 

MHC expression is also downregulated in these cells. Liver-specific macrophages, known 

as Kupffer cells, play a similar role in inducing tolerance in the liver microenvironment by 

secreting immunosuppressive cytokines and facilitating Treg proliferation. Overall, the 

liver has a large population of CD8
+

 T cells but relatively smaller population of CD4
+

 T 
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cells, natural killer (NK) cells and natural killer T (NKT) cells. Functionally, these 

immunosuppressive and tolerogenic characteristics are important, as they help prevent 

liver damage in the context of constant antigen exposure. However, these same 

characteristics may delay effective anti-tumour immune responses (Crispe, 2011; 

Ringelhan et al., 2018).  

Hepatocellular carcinoma (HCC) is the commonest form of liver cancer and is associated 

with hepatocytes, the liver’s main functional cell type.  The development of HCC is 

closely linked to chronic liver inflammation, fibrosis formation and cirrhosis. Although 

alcohol related liver disease, obesity and diabetes are HCC-associated risk factors, chronic 

hepatitis B virus (HBV) infection is the leading cause of HCC worldwide and hepatitis C 

virus (HCV) infection the leading cause in Western countries (Ringelhan et al., 2018).  

These characteristics of HCC may further reduce the effectiveness of anti-tumour 

immune responses. Chronic liver inflammation promotes T cell exhaustion. CD8
+

 T cells 

derived from patients with chronic HBV and HCV infections show high expression levels 

of CTLA-4 (CD152) and PD-1 (CD279), both of which downregulate immune responses. 

And CD4
+

 and CD8
+

 T cells derived from HCC tumours commonly have diminished 

functionality (Harding et al., 2016). 

Surgical resection, ablation, transplantation and transarterial chemoembolisation are 

proven treatment options for early to intermediate stage HCC. Tyrosine kinase inhibitors 

such as serofenib are approved for treating patients with advanced-stage disease, but the 

survival benefits are comparatively modest (i.e., weeks or months) (Forner et al., 2018). 

5.1.3 HCC Immunotherapy 

Immunotherapy currently represents the most promising strategy for treating HCC. Given 

recent advances in checkpoint blockade therapy for the treatment of various cancer types, 

many HCC patients in the advanced stages of the disease are now being offered 

checkpoint inhibitor treatment as a first or second line of treatment following the 2017 

FDA approval of nivolumab (anti-PD-1). 

The most extensively studied immune checkpoint molecules are PD-1 and CTLA-4, both 

of which have important roles in constraining the T cell response and preventing 

autoimmunity under normal physiological conditions. CTLA-4 expression is upregulated 
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in T cells upon TCR binding to peptide-MHC, and CTLA-4 competes with the co-

stimulatory molecule CD28 to bind CD80 and CD86 ligands on the APC surface (Wei et 

al., 2018). PD-1, which is expressed by activated T cells, inhibits T cell activation via 

binding to its ligands, PD-L1 and PD-L2. Recent research has also shown that PD-1, like 

CDLA-4, interferes with the CD28 co-stimulatory-signalling pathway (via the recruitment 

of a phosphatase signalling molecule upon binding) (Hui et al., 2017). 

CTLA-4 inhibiting antibody therapy prevents CTLA-4 competing with CD28 for binding 

to CD80 and CD86 on APCs, thereby promoting the activation of CD8
+

 T cell and 

specific CD4
+

 T cell subsets within lymph nodes. PD-1 blockade therapy mainly acts to 

revive the effector function of exhausted tumour-specific CD8
+ 

T cells (the impact on the 

CD4
+

 T cell response remains unclear). PD-L1 blocking therapy is broadly similar, but 

may have an additional mode of action involving antibody-dependent cellular toxicity 

(ADCC) (Wei et al., 2018). 

There are four FDA-approved checkpoint inhibitor therapies for HCC. Nivolumab, an 

anti-PD-1 antibody, was approved in 2017 as a second-line therapy for patients treated 

with sorafenib with unresectable HCC (El-Khoueiry et al., 2017).  A recent clinical phase 

III study (CheckMate 459) of nivolumab versus sorafenib as first line treatment in patients 

with advanced HCC failed to achieve predefined statistical significance for overall survival 

(OS) but nevertheless demonstrated some clinically meaningful improvements in OS 

(Yau et al., 2019). Subsequent approval has been granted for pembrolizumab (an anti-

PD1 antibody), ipilimumab (an anti-CTLA-4 inhibitor) and atezolizumab (an anti-PD-L1 

antibody). In addition to the approved drugs, durvalumab (anti-PD-L1) and 

tremelimumab (anti-CTLA-4) have been granted orphan drug designation and a phase III 

clinical trial evaluating their combination for first-line treatment is still active. Many other 

clinical trials of checkpoint inhibitors are underway as mono or combination therapy for 

HCC – see (Nakano et al., 2020). 

A different immunotherapeutic approach for HCC is cancer vaccination. The dominant 

strategy here is to utilize HCC TAAs with the aim of increasing tumour-specific T cell 

responses. There are several recognized HCC-associated antigens. α-fetoprotein (AFP) is 

expressed during foetal development, but its expression falls to very low levels shortly 

after birth. AFP is commonly reactivated in HCC patients. Many AFP-specific class I 

epitopes have been identified (Breous & Thimme, 2011). A phase I clinical trial of AFP-
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derived vaccine demonstrated a complete response in one patient and stable disease in 

eight out of 15 patients (Nakagawa et al., 2017).  

Glypican-3 (GPC3) is a foetal oncoprotein that is overexpressed in HCC on the surface of 

HCC cells. GPC3 derived peptides have been evaluated in multiple phase I and phase II 

clinical trials involving either vaccines or CAR-T cell therapy. In a phase I trial with 33 

HCC patients, GPC3 peptide vaccine induced GPC3-specific CTL responses in 30 

patients, where CTL frequency correlated with overall survival (Sawada et al., 2012).  

Melanoma-associated antigen gene A (MAGE-A) is a family of cancer-testis (CT) antigens 

expressed in germ cells and various cancers, including HCC. In one study, MAGE-A1 

and MAGE-A3 specific tumour CD8
+

 T cells were shown to exist in HCC patients and 

these were successfully induced by MAGE-derived epitopes in vitro (Zerbini et al., 2004). 

In another study, researchers evaluated the expression of several TAAs in the HCC 

tissues from 142 patients and showed that MAGE-A3 and MAGE-A4 expression was 

correlated with serum AFP, one of the most widely-used early diagnosis and monitoring 

marker for HCC (M. Wang et al., 2015).   

Cancer/testis antigen 1B (NYESO-1) is another CT antigens. Flecken et al. (2014) studied 

the CD8
+

 T cell responses to specific peptides from various TAAs, including NYESO-1, 

in 96 HCC patients, and detected IFN-γ producing CD8
+

 T cells for all TAAs after in 

vitro expansion and antigen-specific stimulation of T cells (Flecken et al., 2014). 

Baculoviral IAP repeat-containing protein 5 (survivin) is an apoptosis inhibitor. It is 

expressed during foetal development, but its expression is largely repressed in cells during 

normal development and termination. Survivin expression is upregulated in various 

tumours including HCC, with expression level correlated with tumour cell proliferation, 

to unsatisfactory responses to chemotherapy and radiotherapy, and ultimately to poor 

prognosis (Su, 2016).  

Cellular tumour antigen p53 is a transcription factor that acts as a tumour suppressor, 

notably via its role in regulating the cell cycle and activating DNA repair. Around half of 

cancers, including HCC, involve mutations in p53. Although wild type p53 is still 

expressed in tumours, its function may be inhibited by the mutant p53 (Vousden & Lane, 

2007). 
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5.1.4 Context: research at the Institute of Hepatology 

The research presented in this chapter is part of a collaboration with wet-lab scientists at 

the Institute of Hepatology led by Dr. Shilpa Chokshi. The aim of the research was to 

utilize peptides, predominantly from HCC tumour-associated antigens, to stimulate T 

cells and NK cells, to monitor immune responses, and to determine whether blockading 

the PD-1/PD-L1 pathway can stimulate and restore dysfunctional T cells in the presence 

of selected antigenic peptides. The set of 8 HCC tumour-associated antigens chosen by 

Dr. Chokshi were as follows: Alpha-fetoprotein (AFP), Glypican 3 (jglyp-3), Melanoma-

associated antigen 1 (MAGE1), Melanoma-associated antigen 3 (MAGE3), Melanoma-

associated antigen 4 (MAGE4), Cancer/testis antigen 1B (NY-ESO1), Cellular tumour 

antigen p53 and Baculoviral IAP repeat-containing protein 5 (survivin). 

My own contribution was to select an appropriate set of antigenic peptides, as described 

in the Methods (section 5.2).  

5.2 Methods 

5.2.1 HLA class I allele selection 

The selection of HLA class I alleles was confined to HLA-A and HLA-B, as these were 

considered of prime importance in the immune response to HCC (Dr. Shilpa Chokshi, 

personal communication). The objective was to select HLA alleles that give high levels of 

population coverage at both loci, but proceeded in two stages owing to a change in the 

target patient cohort – initially Bulgarian nationals (from whom the original HCC tumour 

samples were acquired), but this was subsequently extended to allow for samples from any 

major regional population.  

As the single Bulgarian sample available in the Allele Frequencies Net Database (accessed 

in February 2015) contained only 55 individuals, the decision was taken to base the initial 

selection of alleles on a Romanian sample with HLA-A and HLA-B data for around 

6,000 individuals  (http://www.allelefrequencies.net/pop6001c.asp?pop_id=2259), 

Romania being in close geographical proximity and sharing ethnic similarities with 

Bulgaria. Population coverages of 98% and 96% were achieved for HLA-A and HLA-B 

alleles respectively.  

http://www.allelefrequencies.net/pop6001c.asp?pop_id=2259
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Regional allele frequencies were taken from the NCBI’s dbMHC database for Europe, 

South-East Asia, South-West Asia and Sub-Saharan Africa. dbMHC is no longer 

maintained (an archive of dbMHC data is available here: 

https://ftp.ncbi.nlm.nih.gov/pub/mhc/mhc/Final%20Archive/). A population coverage of 

greater than 90% was achieved for both HLA-A and HLA-B for all regions. 

The final selection of HLA alleles was as follows (alleles are listed in the order in which 

they were added): 

HLA-A: 02:01, 01:01. 03:01, 24:02, 11:01. 29:02. 32:01, 68:01, 31:01, 26:01. 25:01, 

23:01, 68:02, 30:02, 30:01, 02:02, 74:01, 36:01, 33:03 (total 19). 

HLA-B: 07:02, 08:01, 44:02, 35:01, 51:01. 40:01, 44:03, 15:01, 18:01, 57:01, 14:02, 

27:05, 13:02, 38:01, 55:01, 37:01, 35:03, 14:01, 49:01, 50:01, 39:01, 40:02, 53:01, 15:03, 

42:01, 58:02, 58:01, 52:01, 78:01, 41:01, 56:01 (total 31). 

5.2.2 Selection of tumour-specific epitopes 

Although HCC tumours are known to be heterogeneous in many patients (Craig et al., 

2020), the COSMIC database (https://cancer.sanger.ac.uk/cosmic) (Forbes et al., 2017) 

was consulted (February 2015) to identify any mutations that have been observed to occur 

with relatively high frequency in the tumours of HCC patients.  

A single substitution, Arg249Ser, in tumour antigen p53 was observed in 231 unique 

HCC samples representing a frequency of 0.25 (COSMIC Genomic Mutation ID 

COSV52661594, COMSIC Legacy Identifier COSM10817). Interestingly, the current 

(12
th

 May 2022) number of unique samples containing this mutation is 374, with a 

frequency of 0.60. This mutation occurred rarely as a non-HCC natural variant 

(frequency < 0.03) within the 1000 Genomes Project catalogue (Via et al., 2010).  

Predictions were made for 9-mers spanning the p53 Arg249Ser substitution (based on 

UniProt sequence P04637) using The MHC class I binding prediction tool NetMHCpan 

2.4 (Nielsen et al., 2007; Hoof et al., 2009) together with the tool NetCTLpan 1.1 (Stranzl 

et al., 2010), which makes combined predictions for proteasomal cleavage, TAP transport 

and MHC class I binding). In both cases, a binding threshold of IC50 ≤ 500 nmol/L was 

chosen. (Both tools are discussed in section 2.2 and thresholds in section 1.1.3.) The 9-

https://ftp.ncbi.nlm.nih.gov/pub/mhc/mhc/Final%20Archive/
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mer SPILTIITL (containing the substitution at its first position) was predicted to bind to 

15 of the HLA alleles listed in section 5.2.1 when the results from NetMHCpan and 

NetCTLpan were aggregated. Other 9-mer spanning the same substitution were bound by 

an additional 3 HLA alleles from the list. 

5.2.3 Selection of tumour-associated epitopes 

MHC binding predictions (using the same tools and thresholds) were made for the 

following HCC TAA sequences: AFP (UniprotId: P02771), jglyp-3 (UniprotId: 

Q8IYG2), MAGE1 (UniprotId: P43355), MAGE3 (UniprotId: P43357), MAGE4 

(UniprotId: P43358), NY-ESO1 (UniprotId: P78358), p53 (UniprotId: P04637) and 

survivin (UniprotId: O15392). 

The core criteria for the selection of epitopes from these HCC TAAs was a combination 

of predicted binding strength and population coverage (based on the known HLA allele 

frequencies). However, two distinct pools of peptides were constructed based on their 

predicted proteasomal cleavage propensities – either high or low propensities. Predictions 

were made using NetCTLpan with a weighting of 0.225 for proteasomal cleavage. The 

logic behind the “unlikely to be cleaved” pool is that such peptides may nevertheless be 

presented, even if in relatively low numbers, and their (predicted) low cleavage rates may 

reduce the possibility that T cells capable of binding to these peptides will have been 

removed from the repertoire by self-tolerance mechanisms. 

5.2.4 Final peptide selection 

The candidate peptides generated by the preceding steps were reviewed by scientists at 

the Institute of Hepatology and resolved into the following four peptide pools:  

Pool A: TAA peptides predicted to have a high likelihood of both cleavage and binding. 

Pool B: TAA peptides predicted to have a high likelihood of binding but a low likelihood 

of cleavage. 

Pool C: TAA peptides predicted to have a high likelihood of both cleavage and binding 

with more than 3 HLA alleles.  
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Pool D: Key TSA neoepitope SPILTIITL from p53 together with an aggregation of 

additional neoepitopes spanning substitution Arg249Ser (see section 5.2.2). 

The rationale for Pool C was to evaluate a smaller and cheaper set of peptides than those 

in Pool A. (10 of the 16 peptides in Pool C are identical to peptides in Pool A.)  The 

peptides in each pool are shown in Table 5.2 with colour key in Table 5.1. 

Table 5.1 Colour key for the selected peptide source protein 

Tumour Antigen 

Alpha-fetoprotein 

Glypican 3 

Melanoma-associated antigen 1 

Melanoma-associated antigen 3 

Melanoma-associated antigen 4 

Cancer/testis antigen 1B 

Cellular tumour antigen p53 

Survivin 

 

Table 5.2 The final pools of TAA and TSA peptides used experimentally 

Pool A 

(n=32) 

Pool B 

(n=50) 

Pool C 

(n=16) 

Pool D 

 

APAAPTPAA AEISLADLA EELSVMEVY SPILTIITL 

CTYSPALNK APRMPEAAP ERFEMFREL MGGMNRSPILTIITL 

EELSVMEVY ARVRFFFPS EVDPIGHLY  

ELFDSLFPV ARVRIAYPS FLASFVHEY  

EVDPIGHLY ASMELKFLI HPFLYAPTI  

FLASFVHEY EIARRHPFL ISYPPLHEW  

FMNKFIYEI ELIQKLKSF KTYQGSYGF  

FVQENYLEY ETYVPPAFS LEFYLAMPF  

GSDCTTIHY FAYYPEDLF LESEFQAAL  
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Pool A 

(n=32) 

Pool B 

(n=50) 

Pool C 

(n=16) 

Pool D 

 

ISYPPLHEW FEFVGEFFT MPFATPMEA  

KLKSFISFY FLIFLLNFT NRRPCFSSL  

KPTPASIPL FLKDHRIST RPILTIITL  

KTYQGSYGF FPKTGLLII RVRAMAIYK  

LEFYLAMPF FPVIFGKAS TTISFTCWR  

LYAPTILLW FSDDKFIFH YEIARRHPF  

MMVKPCGGY FSDLWKLLP YPSLTPQAF  

MPFATPMEA FTVSGNILT   

MPKTGFLII FYLAMPFAT   

NEISTFHNL GEYYLQNAF   

NRRPCFSSL IELMEVDPI   

RELNEALEL IMPKTGFLI   

RRRELIQKL KFIYEIARR   

RVRFFFPSL KKHSSGCAF   

SQKTYQGSY KLCAHSQQR   

TTINFTRQR LWAARYDKI   

TTISFTCWR MAITRKMAA   

WQYFFPVIF MEQLLQSAS   

YFFPVIFSK MPKAGLLII   

YPSLREAAL NQLLRTMSM   

YPSLTPQAF QEAASSSST   

YWREYILSL QQEALGLVC   

YYLQNAFLV RETFMNKFI   

 RMAEAGFIH   

 RTLHRNEYG   

 RTMSMPKGR   

 SQALAKRSC   

 SSCMGGMNR   
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Pool A 

(n=32) 

Pool B 

(n=50) 

Pool C 

(n=16) 

Pool D 

 

 SVVGNWQYF   

 TAKKVRRAI   

 TKAEMLESV   

 TKAEMLGSV   

 TTIGKLCAH   

 VSARVRFFF   

 VTKAEMLER   

 VVGNWQYFF   

 VVRHAKNYT   

 VVRVNARVR   

 WPFLEGCAC   

 YEIARRHPF   

 YQCTAEISL   

 

5.3 Results 

In preliminary laboratory work, scientists at the Institute of Hepatology tested PBMC 

from 5 healthy controls, 5 individuals with non-viral HCC and 5 individuals who 

developed HCC as a result of hepatitis B virus (HBV) infection. PBMC sub-samples were 

stimulated with each of the four peptide pools with or without the immune checkpoint 

inhibitor anti-PD-1. As a measure of anti-tumour immunity, ELISpot (enzyme-linked 

immunospot) assays were used to determine the frequency of anti-tumour cytokines IFN-

γ (Figure 5.1) or Granzyme B, a serine protease secreted by both NK and CD8
+

 T cells 

(Figure 5.2). Buffer with no peptide pool was included as an additional negative control, 

but elicited no detectable response. 
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Figure 5.1 Total number of peptide pool-specific IFN-γ producing PBMCs, with and without anti-PD-1, by 

group. IFNg = IFN-γ, CTRL = control group, HCC = HCC without viral infection, B-HCC = HCC 

associated with HBV infection, +aPD-1 = in the presence of anti-PD1. 

 

 
Figure 5.2 Total number of peptide pool-specific Granzyme B producing PBMCs, with and without anti-

PD-1, by group. GrB = Granzyme B, other abbreviations as for Figure 5.1. 

The IFN-γ (Figure 5.1) and Granzyme B (Figure 5.2) results are largely consistent and can 

therefore be considered together. In all cases, anti-tumour antigen immunity is low in the 
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absence of anti-PD-1 (with the control group Pool C response in the Granzyme B plot as 

perhaps a partial exception). In the presence of anti-PD-1, the highest response for all 

four pools is for the non-viral HCC group. The corresponding HBV-associated HCC (B-

HCC) response is consistently low (though somewhat higher than nearly all the responses 

in the absence of anti-PD-1). The anti-PD-1control responses are intermediate between 

those for HCC and B-HCC, with Pool D having the lowest response. 

Additional experiments of were performed using the same PBMC samples and 

experimental combinations with individual, whole TAAs, rather than peptides. The 

outcomes of these experiments are compared to the preceding peptide-based results for 

IFN-γ and Granzyme B in Figure 5.3 and Figure 5.4 respectively. 

 

 

 
Figure 5.3 Comparison of peptide pools and individual TAAs with respect to total number of TAA-specific 

IFN-γ producing PBMCs. 
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Figure 5.4 Comparison of peptide pools and individual TAAs with respect to total number of TAA-specific 

Granzyme B producing PBMCs. 

Once again, the IFN-γ (Figure 5.3) and Granzyme B (Figure 5.4) results are largely 

consistent, as are the overall trends for the peptide pools in comparison to the individual 

TAAs.  

A greater response to Pool C is seen in some of these initial experiments. This may be 

attributable to the fact that Pool C contains 16 peptides with high binding affinity and 

broad HLA coverage that may induce a strong T cell response among a large proportion 

of patients.  

Given the relatively small number of individuals involved, further exploration of particular 

details risks over-interpretation. 

5.4 Discussion 

Two key aspects of these preliminary results are (reassuringly) in line with expectations. 

The restorative impact of anti-PD-1 is in line with its known efficacy (discussed in section 

5.1.3); and the low immune responses detected for individuals with HBV-associated HCC 

are consistent with HBV’s well documented suppressive impact on the host immune 

system, causing dysfunction in both the innate and adaptive immune responses (Li et al., 

2019). Differences in the responses associated with viral versus non-viral HCC are 

unsurprising given the known differences between these two forms of HCC in terms of 

their associated protumourigenic mechanisms and impact on host T cell immunity (for a 

recent review, see Song &Ma, 2020).  
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The performance of all peptide pools can be regarded as promising, particularly with 

respect to the "concise” (and therefore cheap) Pool C, which suggests that optimising the 

choice of peptides may prove to be an effective strategy. 

However, there are two key limitations with this preliminary study. Firstly, the cohort size 

is too small for firm conclusions to be drawn. Secondly, the results are aggregated within 

the groups, which means potentially vital information about individuals is unavailable. 

The next stage of this research will be to expand the sample cohort so that it includes a 

broader mixture of HLA subtypes, and to test the efficacy of the peptide pools in animal 

models of HCC and in ex vivo models such as precision cut tumour slices. 

There are several key questions that need to be addressed as the study progresses. What 

proportion of HCC individuals are identifiable by each of the peptide pool, and to what 

extent is there an overlap in the individuals identified by each pool (i.e., do different 

individuals respond to different pools)? Are individuals with the Arg249Ser substitution 

consistently identified by Pool D? Although relatively modest, what does the response of 

control individuals to certain peptides signify (and can anything be done about it)? And 

what is the therapeutic potential of these peptides (e.g., in terms of a cancer vaccine)? 

Finally, it is worth noting that the selection of the current peptide pools pre-dated the 

development of our proteome scanning pipeline (see section 3.2.2). In any future 

selection of peptide pools, proteome scanning could be used to filter out any cross-

matching peptides, as these are unlikely to detect a host immune response, given the 

expectation that any T cells capable of binding to such a peptide will have been 

eliminated during the central tolerance process. 
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6 Conclusion 

In this thesis, several computational techniques and data resources have been combined 

to address three contrasting applications. The main achievements have been: 

• The development and efficient implementation of a new technique called 

proteome scanning that can be used, in conjunction with MHC binding 

predictions, to predict whether (given assumptions about the efficacy of self-

tolerance mechanisms that are reasonable in most cases) a given T cell epitope is 

likely to be “visible” to an individual’s immune system. 

• Demonstrating, via two contrasting applications – inhibitor risk prediction in the 

context of missense mutation haemophilia A and the prediction of transplant 

rejection risk – that proteome scanning has broad applicability. 

• Combining multiple computational techniques and data resources to make 

predictions that are insightful from a biological perspective and potentially 

impactful in three areas of biomedical importance. 

The latter point deserves further elaboration. Firstly, the large-scale analysis of known 

haemophilia-causing Factor VIII missense mutations in combination with data about 

inhibitor formation in individuals with missense mutations haemophilia A has provided 

compelling evidence that knowledge of these individuals’ HLA types is potentially 

important if we are to understand their inhibitor risk. Ultimately such knowledge has the 

potential to inform decisions about patient treatment (for example, pre-emptive immune 

tolerance induction might be an option for individuals with a high risk of developing 

inhibitors). This research also provides insights into the underlying biology: as claimed in 

the associated paper, “it closes part of the gap between predicted/potential inhibitor risk 

and observed inhibitor rates” (Hart et al., 2019). In other words, we now have a plausible 

explanation why many more individuals with missense mutations haemophilia A do not 

develop inhibitors — they are “proteome protected”. 

Secondly, the application of a modified proteome scanning approach to transplant 

rejection risk prediction was limited by available data, but nevertheless provided a 

compelling explanation why certain HLA residue mismatches between donor and 

recipient are likely to be benign and others associated with rejection risk. If this 
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hypothesis is confirmed by subsequent analyses with larger datasets, there is potential for 

proteome scanning to improve the way transplant patients are matched to potential 

donors. 

Thirdly, the selection of HCC tumour antigen peptide pools shows early promise in 

terms of the detection of anti-tumour immunity, although a lot of additional laboratory 

work is needed before the diagnostic and/or therapeutic potential of these peptides (or a 

subset of them) becomes clear. 

In the first two of these applications, our novel proteome scanning approach made an 

important contribution in terms of refining the predicted levels of risk that an adverse T 

cell response will develop. In the Factor VIII missense mutations case, taking a 

conservative threshold of IC50 < 1000 nmol/L, proteome scanning reduced the number 

of HLA/missense mutation combinations predicted to confer a risk of inhibitor formation 

from around a half to less than a third (see section 3.3.2). When predicting the risk of 

transplant rejection, the application of proteome scanning to the published case study 

(involving a HLA-B*44:03 donor versus HLA-B*44:02 recipient) reduced the number of 

risk-associated mismatches for a set of 25 common HLA class II alleles from 20 (80%) to 

only 4 (16%) (see Figure 4.2).    

Before considering potential future work that could build on the research presented in 

this thesis, it is worth acknowledging some of its limitations and the challenges associated 

with addressing them. The boundary between self/non-self plays a pivotal role in this 

research, but certain factors that help to shape that boundary within an individual are 

difficult to model given current knowledge and available data, notably the role of the 

microbiome in the development of immune tolerance (see, for example, Catrina et al., 

2016). Our approach to estimating risk relies on peptide-MHC binding thresholds, 

whereas a more effective model might consider the length of time an epitope is resident 

in the MHC binding groove, whether it is competing for groove occupancy with other 

epitopes, and the relative abundance of competing epitopes.       

Notwithstanding the scale of the preceding challenges, there are several ways in which the 

core methodology could be improved. As noted at the end of Chapter 3, no account is 

currently taken of different epitope lengths, non-canonical MHC anchoring positions, and 

different TCR binding modes. The first may be addressed trivially by generating more 
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binding predictions for different peptide lengths. Some non-canonical MHC anchoring 

positions are document in the literature, are discernible via an examination of their crystal 

structures, or might be inferred from peptide-MHC binding motifs (see, for example, 

MHC Motif Viewer 

at https://services.healthtech.dtu.dk/services/MHCMotifViewer/Home.html). Different 

TCR binding modes imply that certain TCRs will be in contact with fewer epitope 

sidechains; this is easy to model but deciding how to utilise those models in terms of their 

contribution to a given prediction is unclear.  

However, perhaps the most important area of improvement in the context of potential 

clinical applications would be to provide explicit and accurate estimates of the accuracy of 

the predictions for a single individual (e.g., potential transplant recipient). In this context, 

the likely accuracy of MHC binding predictors for different HLA alleles (based on the 

independent evaluations described in section 2.2), are unlikely to be sufficient.     

Finally, it is also worth pointing out that there are additional application areas where these 

approaches could be applied. In addition to protein therapeutics other than Factor VIII, 

there are potential applications related to infection. In particular, proteome scanning may 

be useful in the detection of molecular mimicry, i.e., similarity between a foreign antigen 

and self-antigen that is a possible causative mechanism for autoimmune disease (Cusick et 

al., 2012). 

In all of these contexts, the availability of sufficient and appropriate data is vital for 

computational method development and evaluation. But this is not simply about the 

quantity of data; much of the current data vital to our research is susceptible to biases (e.g. 

T cell repertoire data comes disproportionately from individuals who come from nations 

that play a dominant role in undertaking scientific research). Although the desirability of 

removing such biases is widely recognised, a case can now be made for something more 

radical, given recent scientific breakthroughs involving computational tools such as 

AlphaFold 2 (Jumper et al., 2021): namely that computational scientists should 

increasingly be involved in setting the experimental agenda of wet lab scientists, so that 

experiments are designed to improve or validate the prediction of computational tools.     
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8 Appendices 

8.1 Appendix 1: Full heatmaps covering all FVIII missense 

mutations in the Factor VIII Gene (F8) Variant Database with 

and without proteome scanning 
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Figure A1 Heatmaps sowing all available missense mutations in the Factor VIII Gene (F8) Variant Database 

without proteome scanning 
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Figure A2 Heatmaps sowing all available missense mutations in the Factor VIII Gene (F8) Variant Database 

with proteome scanning 
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