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Abstract  Recent development of cluster detection 
methods focuses on the improvement of efficiency 
or accuracy, with the latter yielding a wide range 
of variants in the shape of the search window, from 
a simple circle and elliptic shape to more irregular 
shapes. Detection of irregular-shaped clusters has 
seen various new approaches as it is considered to 
capture the shape and extent of clusters more accu-
rately. One of these newly developed approaches 
achieves the irregularity of the clusters by placing a 
penalty on the shape complexity of a candidate clus-
ter. This study extends this approach and applies it to 
a network-space to detect irregular-shaped clusters 
along a street network segments in a small urban area. 
The study uses a genetic algorithm to search candi-
date clusters and identify the most likely cluster using 
the framework of spatial scan-statistics. Application 

of the method to a small synthetic data and a real data 
set revealed that providing options of different clus-
ter patterns with different compactness parameters 
helps find more accurate as well as geometrically and 
contextually more meaningful clusters, as opposed to 
those detected without a shape controlling parameter.

Keywords  Cluster detection · Genetic algorithm · 
Network-based analysis · Scan statistic · Shape 
compactness

Introduction

In an urban environment, configuration of a street net-
work affects and even determines the characteristics 
of each street block and segment, often in conjunc-
tion with zoning, land use plans, building control and 
other types of regulations. Attributes attached to these 
neighborhoods and streets often determine the type 
and the spatial arrangement of point features, events 
and activities observed in these areas. For instance, 
areas with narrower and intricate streets tend to result 
in residential usage, while areas with greater acces-
sibility and a major throughway tend to be used for 
commercial facilities. Key urban and public facili-
ties such as schools, churches and hospitals tend to 
be located in accessible places near a major junc-
tion. Consequently, each neighborhood and street 
come to form their own identity and characteristics, 
which allows these areas to provide a geometrical and 
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contextual meaning to a cluster of features and events 
detected at that scale and extent. In a small-scale 
urban setting, these clusters are formed either on 
a single street or on a connected collection of street 
segments, which may take a simple or an irregular 
shape. Such variation in the shape of clusters is dif-
ficult to capture with existing cluster detection meth-
ods, especially when those clusters are confined by 
the street network.

This study proposes a cluster detection method 
that can identify irregular-shaped clusters of fea-
tures that are confined by and formed along an urban 
street network. It extends the notion of spatial scan 
statistics that is widely used in spatial epidemiology 
and applies it to network space, whilst also adding a 
shape-controlling procedure as a parameter during the 
scan statistics calculation so that more than one clus-
ter sets with different shape irregularity are derived. 
The aim of this approach is to provide options that 
may increase the chance of detecting clusters that are 
closer to the shape and extent of true clusters.

Literature review

The purpose of detecting clusters among point fea-
tures or cases of events is to find the shape and the 
intensity of their concentration and, thereby, to inves-
tigate its aetiology to characterise their determinants. 
The shape of a cluster is usually unknown a priori, 
there is no right answer as to what shape, size and 
extent we should expect a cluster to take. Existing 
studies on cluster detection tend to identify the extent 
of the detected clusters by (1) whether and how the 
data (point features) are aggregated, and/or (2) the 
analytical procedure used for identifying clusters.

Detecting clusters in aggregate and disaggregate data

Point features are often aggregated to areal units 
defined by administrative boundaries or regular 
square grids for variety of reasons, e.g. to stand-
ardise by the background population in each area 
to derive the relative intensity of the features; or 
to maintain privacy by concealing the exact loca-
tions of features. Aggregating point features by 
administrative boundaries and other predetermined 
shapes means that the detected cluster also becomes 

connected areas. There are many cluster detection 
methods for finding clusters of aggregated point 
features.

One such method developed in the domains of 
quantitative geography and spatial analysis focuses 
on the notion of spatial autocorrelation. Methods 
that belong to this group use a spatial correlation 
coefficient such as local Moran’s I, local Geary’s 
C and local Getis-Ord’s Gi* and Gi (Anselin, 1995; 
Getis & Ord, 1992; Ord & Getis, 1995) to extract 
local clusters. These statistics help us find a group 
of adjacent areas with similar attribute values. 
Aldstadt and Getis (2006) also developed A Mul-
tidimensional Optimum Ecotope-Based Algorithm 
(AMOEBA), which extends the concept of spatial 
autocorrelation and finds clusters as flexibly com-
bined neighbouring areas.

Another group of methods use the concept of a 
search window. A search window usually takes a 
circular shape and is used for sweeping exhaustively 
across the study area to find an area with a high con-
centration of events or features. This approach is also 
used for detecting a sequence of connected areas that 
determines the shape and the extent of a cluster. A 
number of relevant statistical techniques have been 
developed to facilitate these methods (e.g. Turnbull 
et al., 1990, Besag & Newell, 1991, Diggle & Chet-
wynd, 1991, Tango 1995, Kulldorff & Nagarwalla, 
1995, Rushton & Lolonis, 1996). In particular, Spa-
tial Scan Statistics (Kulldorff, 1997; Kulldorff & 
Nagarwalla, 1995) has become arguably the most 
prominent search-window method, partly because 
it addressed most of the limitations of the previous 
search window type methods, and also because the 
method has been offered as software called SaTS-
can that found users in epidemiology and many other 
fields (Kulldorff, 2022). In principle, most of these 
methods can be also used for analysing the distribu-
tion of disaggregate point features. In these contexts, 
the cluster detection methods are not explicitly used 
for delineating the boundary of a cluster area; rather, 
they are intended for identifying a point set that con-
stitutes a cluster. However, in the process of identify-
ing a significant concentration of points as a cluster, 
the shape of that cluster will be explicitly defined. 
Furthermore, as explained below, the shape of the 
detected cluster will be also affected by the shape and 
the procedure of the search window used for identify-
ing that cluster.
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The shape of a search window

In pursuit of a method for that captures the shape 
and extent of clusters accurately, several methods 
have been developed mainly in the computer science 
field. The main focus of these studies is to configure 
a search window with the right shape and size so that 
it can efficiently capture the most highly concentrated 
set of point features. Search-window-type meth-
ods have most rigorously explored this point, espe-
cially after Kulldorff’s scan statistics became widely 
known. Many of the search-window-type methods, 
including the original scan statistic, use a circular 
search window which means that the shape of the 
detected clusters will be also bound by that circular 
shape. Although it is simple and computationally 
efficient, the circular spatial scan statistic works well 
with compact-shaped clusters only, and it may strug-
gle to correctly identify non-circular clusters (Kim & 
Jung, 2017). Tango and Takahashi (2005), Tango and 
Takahashi (2012), Tango (2021) suggest that the orig-
inal spatial scan statistic using circular windows tends 
to extract an area that is larger than the true cluster by 
absorbing neighbouring areas with non-elevated risk. 
This phenomenon may occur more easily if the true 
cluster is non-circular in shape. Patil (2004) refers 
to the case of a cholera outbreak along a winding 
river floodplain and explains how poorly the circu-
lar window fits—the small circles miss out on much 
of the outbreak while the large circles include many 
unwanted areas. Kim and Jung (2017) also note how a 
circular search window is ill suited for detecting clus-
ters of events along roads. To overcome this shortfall, 
various extensions were added to the original circu-
lar scan statistic to find clusters with  a non-circular 
(and non-compact) shape. These include Kulldorff 
et al. (2003), Tango and Takahashi (2005), Neill et al. 
(2005), Asunção et al. (2006), Kulldorff et al. (2006), 
Moura et  al. (2007), Takahashi et  al. (2008), Costa 
et  al. (2012), Neill (2012), Neill et  al., 2013 with a 
comprehensive review of these methods given by 
Duczmal et al. (2009), Duczmal and Cançado (2017).

Firstly, as a natural extension to a circular-shaped 
search window, Kulldorff et  al. (2003) proposed an 
elliptic shaped search window for capturing clusters 
that are extend in a certain direction. Although their 
power comparison indicates that the overall perfor-
mance of elliptic scan statistic is only slightly better 
than that of the circular variant, they suggest that the 

advantage of the elliptic scan statistic lies in its abil-
ity to give a better estimate of the true cluster area, 
especially if the true cluster area was elongated. Inter-
estingly, they also point out that the elliptic, like the 
circular, is a parametric shape which comes with 
some constraint and, to detect very irregular shaped 
clusters, a non-parametric spatial scan statistic would 
yield a better outcome.

Unlike the circular and the elliptic scan statistic, 
the non-parametric type of scan statistics is designed 
to find irregularly shaped clusters. For instance, Patil 
and Taillie (2004) proposed new method called an 
upper-level set scan statistic. It adopts a data-driven 
search algorithm for detecting a cluster of connected 
areas by utilising a tree structure for identifying the 
adjacency among the areas nearby. They used the 
notion of upper-level set to reduce the size of win-
dows to be scanned. Similarly, Duczmal and Assun-
ção (2004) proposed a new technique of adaptive 
Simulated Annealing (SA). It is also based on the 
likelihood ratio test formulated in the same way as 
the circular spatial scan statistic was. However, in 
this method, the set of areas comprising the irregu-
larly shaped cluster could result in a large collection 
of areas, and it would not be feasible to derive the 
likelihood for all areas. It is for this reason that an SA 
method has been adopted, where they test only the 
most promising windows to derive the local maxima 
with a certain likelihood function over a subset of 
areas comprising the irregularly shaped cluster.

Both Patil and Taillie (2004) and Duczmal and 
Assunção (2004)’s approaches were designed to avoid 
computationally infeasible searches, but they also 
had weaknesses in that Patil and Taillie (2004) failed 
to select the upper-level set (Tango  and Takahashi 
2005). Also, while their method offers faster alterna-
tives, there is a risk of overlooking many interesting 
clusters in this procedure, due to the small cardinal-
ity of the upper-level set tree (Duczmal, 2009). Duc-
zmal and Assunção’s method (Duczmal & Assunção, 
2004), on the other hand, detects a cluster of irregular 
shape but is the results tend to be much larger than 
the extent of a true cluster (Tango  and Takahashi, 
2005). The overshooting of the clusters mainly arises 
from the application of the algorithm where it tends 
to find elongated clusters that link the highest likeli-
hood ratio cells only in the map.

Tango and Takahashi (2005) proposed another way 
to find clusters of flexible shapes, facilitated by their 
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software called FleXScan (Takahashi et  al., 2010). 
They state that their method is suitable for situations 
where relatively small clusters are expected, as they 
have an upper limit of 30 areas that can fit in a sin-
gle cluster. Later, Tango (2008), Tango and Takahashi 
(2012), Tango (2021) eliminated this limitation of 30 
nearest neighbours and achieved faster computational 
time than the original flexible spatial scan statistic 
took by proposing a flexible spatial scan statistic with 
a restricted likelihood ratio.

Bounding the cluster shape with penalties

The algorithms presented above managed to iden-
tify irregular-shaped clusters. However, without any 
control on their search, the detected irregular shaped 
clusters would likely exceed the extent of true clus-
ters. To alleviate this, Tango  and Takahashi (2005) 
constrained the Maximum Search Window Size 
(MSWS) to a small value to keep the detected clus-
ter from becoming excessively large. Another way 
would be to introduce some form of a penalty func-
tion to constrain the cluster from taking too irregular 
a shape.

The idea of applying a penalty function on spatial 
clusters for controlling the irregularity of its shape 
was first used for ellipses (Kulldorff et al., 2006), but 
many studies presented alternatives since then. For 
instance, Duczmal et  al. (2006) proposed a variant 
of simulated annealing scan statistic that considers 
the geometric non-compactness of the cluster shape. 
The penalty on the shape irregularity is introduced in 
the form of a modified maximum likelihood function, 
which is a general form of that used in the case of 
ellipses (Kulldorff et al., 2006). Compactness correc-
tion is a parameter that is incorporated into the likeli-
hood ratio function in the scan statistics and serves as 
a penalty to control the extent of irregularity of the 
cluster shape. Similarly, Yiannakoulias et  al. (2007) 
proposed adjacency-constrained spatial scans, which 
applies double penalties on the standard scan statis-
tics; the first penalty pertains to controlling highly 
irregular shapes with non-connective relationship, 
while the other constrains searches to prevent small 
clusters from getting merged into a single large clus-
ter. More recently, Cançado et al. (2010), Tango and 
Takahashi (2012), Somanchi et al. (2015), and Tango 
(2021) respectively introduced notions linked to a 
penalty for the purpose of controlling the irregularity 

of a cluster shape. For instance, Somanchi et  al. 
(2015) proposed Star Scan, where changes in the 
radius of a cluster is penalised to ensure smoothness 
of the circumference of a cluster.

Besides the use of a penalty to control the shape 
of a cluster, efforts have been placed on developing 
new algorithms to rapidly and efficiently find the 
most likely cluster. One of the increasingly widely 
used approaches is Genetic algorithm (GA). GA is a 
heuristic method that adopts the notion of evolution 
and natural selection to simulate certain scenarios 
for computing the optimal solutions. The method 
adopts the equivalent of biological operators such as 
mutation, crossover and selection to run the iterative 
process of natural selection to derive the solution, 
including the optimisation of decision trees for bet-
ter performances. It is known to date back to Turing’s 
learning machine (1950) that took on the principles of 
evolution, followed by computer simulation of evolu-
tion proposed by Barricelli (1957), Fraser (1957) and 
others for controlling measurable traits using a  heu-
ristic selection process (Fogel, 2006).

Sahajpal et  al. (2004) and Conley et  al. (2005) 
are early examples that adopted GA in the context 
of cluster detection across point data. Duczmal et al. 
(2007a) also proposed the application of GA called 
genetic-algorithm scan for extracting clusters using 
a flexible search window. Their algorithm repeats the 
crossover and the selection processes under a set of 
predefined parameters until the solution converges to 
the most likely cluster. Graph-related operations are 
minimised by adopting a fast offspring generation and 
efficient evaluation of Kuldorff’s spatial scan statistic. 
It is a faster and more robust alternative to their pre-
vious method, simulated annealing scan (Duczmal & 
Assunção, 2004); yet performance tests suggest that 
both methods return a comparable power of detection 
for clusters that are moderately irregular, but GA-
based method is much better when it comes to highly 
irregular clusters.

In summary, a number of studies have been pro-
posed for using search windows that are irregularly 
shaped and they have demonstrated that these irregu-
lar search windows provide better performance on 
detecting irregularly shaped clusters. Tango (2021) 
notes that the original scan statistics tend to detect 
an area much larger than the true cluster as the most 
likely cluster, and it does so by merging the neigh-
bouring regions with non-elevated risks. While the 
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performance of a cluster detection method depends 
on the underlying shape and the spatial arrangement 
of true clusters, the flexible shaped cluster detec-
tion methods discussed so far seems to return better 
performance than the circular or the elliptic types. 
However, they also have shortfalls. For instance, the 
flexible-type scan statistics can detect a very irregu-
lar and complex shape, but these clusters often do not 
provide a geographically meaningful solution that 
delineates the location of the true clusters correctly. 
To avoid this, applying some control over the shape 
of a cluster by imposing a penalty seems to be effec-
tive. Duczmal et  al. (2006) developed a significant 
improvement in shape control by using a geometric 
“non-compactness” as a penalty function against 
highly irregular-shaped clusters.

However, there is no conclusive evidence on which 
method delivers the closest solution to the true irreg-
ular-shaped clusters, as there is lack of research that 
has comprehensively compared these methods. Given 
the lack of consensus on which searching algorithms 
and which shape controlling method are the best, this 
study extends Duczmal et  al. (2007a) that employed 
a penalty function to control the shape and GA for 
deriving the solution fast and develops a variant that 
can be applied to the network dimension in an urban 
space where certain types of events and features are 
confined by the street network. We will be using GA 
because, algorithmically, it is a well-established algo-
rithm and is proven to provide fast calculation for 
flexible shaped cluster detection. Also, while some 
of the methods proposed in the literature do not show 
any programmable procedure of their method, GA is 
readily available for extension.

While some recent studies have developed net-
work-based cluster detection methods, they are not 
designed to detect flexible-shaped clusters. For 
instance, Shiode and Shiode (2020) proposed a con-
cept of a networks-shaped search window called 
NetScan. It detects clusters along a street network but 
remains focused on the detection of relatively com-
pact clusters which may not be suited for scenarios 
where we need to extract larger irregular clusters 
that are stretched across a neighbourhood. The size 
of their target clusters is small, not because they set 
a MSWS but because it is a disaggregate method and 
the true cluster size that they aimed to detect in their 
application are small in nature. This is understand-
ably so, as Shiode and Shiode (2020) proposed their 

method in response to the recent trend towards micro-
scale crime opportunities, i.e. identifying crime hot-
spots at specific locations, as many crime events con-
centrate at very specific small places. This shows that 
the suitability of the methods may vary and depends 
on the actual data and the context. There are also 
some other studies that involve street networks in the 
cluster detection. For instance, Duczmal and Buck-
eridge (2006) extended the spatial scan statistic to 
account for the mobility of individuals between their 
home address and workplace. Also, Duczmal et  al. 
(2007b) presented a concept of creating a graph struc-
ture where traffic between cities is represented by 
the population, similar to the framework of a spatial 
interaction model. However, both studies presented 
their concepts only and did not analyse data from the 
physical street network. For this reason, this study 
proposes a network-segment based approach that can 
detect irregular-shaped clusters along a street net-
work by (1) utilising a penalty controlling procedure 
as means to increase a chance to identify cluster with 
better performance; and (2) utilising GA to find a 
solution within a reasonable amount of time.

Methodology

Scan statistics (and network‑based scan statistics)

A standard spatial scan statistic (Kulldorff, 1997; 
Kulldorff & Nagarwalla, 1995) creates a search win-
dow around the centroid of each spatial region and the 
radius of this window changes continuously to take 
any value between zero and a predefined upper limit 
MSWS. Using the likelihood ratio test, the scan sta-
tistic detects areas where the underlying event occur-
rence rates are significantly higher within the window 
than it is outside. In other words, for each scanning 
window, a likelihood ratio test statistic is calculated 
for comparing the event rate within and outside the 
window. The window with the maximum likelihood 
ratio will be detected as the most likely cluster; i.e. 
a cluster that is most likely to be generated under the 
alternative hypothesis of clustering. The test statistic 
is evaluated through Monte Carlo simulations. Ran-
domisation testing is used for computing the p-value 
of each detected region, correctly adjusting for multi-
ple hypothesis testing, and identifying potential clus-
ters and assessing whether they are significant.



	 GeoJournal

1 3
Vol:. (1234567890)

Let Z denote the extent of the candidate cluster 
comprising a combination of adjacent (connected) 
regions, nZ denote the number of point features that 
exist within Z, and ZC denote the area outside Z (i.e. 
the remainder of the study area). Next, we define �(Z) 
as the expected number of points within Z, �

(
Z
C
)
 as 

the expected number of points in ZC and assume that 
their point pattern follows that of the Poisson distri-
bution. The null hypothesis H0 is that n

Z
= �(Z) and 

the alternative hypothesis H1 is n
Z
> 𝜆(Z). The Like-

lihood Ratio (LR) is calculated for the network cluster 
in much the same way as standard scan statistic:

Compactness index and compactness correction

To control the shape complexity of a detected cluster 
through scan statistic, Duczmal et  al. (2006) intro-
duced a compactness index. Let A(Z) denote the area 
of Z, and H(Z) denote the perimeter of a convex hull 
of Z. The compactness index K(Z) is defined by the 
ratio of A(Z) and the area of a circle with perimeter 
H(Z); i.e.

K(Z) takes values between 0 and 1–it approaches 0 
if Z takes a complex shape with long perimeter and 
reaches 1 if Z has a compact, circular shape. Duczmal 
et  al. (2006, 2007a) employ LR(Z)K(Z)

a

 as a penalty 
function by modifying the original likelihood ratio 
LR(Z) derived in the scan statistic (Eq. 1), where a is 
a compactness correction parameter which is a user-
specified exponent that controls the degree of pen-
alty placed on the geometric shape of the candidate 
clusters. Like the Compactness Index, the Compact-
ness Correction can take values between 0 and 1—a 
of a greater value increases the effect of the penalty, 
prioritising more compact clusters, whereas a lower 
a value allows more flexibility for the shape of a 
cluster. Specifically, no compactness constraints are 
imposed on the shape of a cluster when a is 0, and the 

(1)

LR(Z) =
⎧

⎪

⎨

⎪

⎩

(

nZ
�(Z)

)nZ
(

nZC

�
(

ZC
)

)nZC

, ifnZ > �(Z), and

1 , otherwise

(2)K(Z) = A(Z)∕�

(
H(Z)

2�

)2

penalty on the shape becomes stricter as a increases 
(e.g. a = 0.5 means medium compactness correction 
is made, and a = 1 means full compactness correction 
is in effect).

The notions of compactness index and compact-
ness correction can be also adopted for measuring 
the shape complexity of network-segment clusters. 
This study proposes a network-based compactness 
index (hereafter NT-compactness index) to quantify 
the compactness of the candidate network-segment 
clusters. Unlike a regular, circular-shaped cluster 
in the Euclidean space, the shape of a network-
segment cluster is constrained by the geometrical 
configuration of the sub-network area; i.e. it is not 
possible to define the single most compact form 
of a network that applies across the study area, as 
what constitutes the most compact network differs 
from place to place. Therefore, this study defines 
the most compact network as the link set in which 
‘all endpoint vertices are at the same shortest-path 
distance along the network from the central node’. 
This definition retains the equidistance property of 
a circle in the Euclidean space in which ‘all end 
points (points on the circumference) are at the same 
distance from the centre of the circle.’

Let C(Z) denote the most compact sub-network 
corresponding to a candidate sub-network Z. In 
other words, C(Z) has the same central node as Z 
does as its generator point from which the min-
imum-spanning tree is extended in all direction to 
cover the same total length as Z. Here, the central 
node ZO of network Z can be defined as the node 
that has the shortest network distance to the far-
thest node(s) within Z. As this study uses network 
segments as the smallest unit of measurement, we 
can revise and simplify this statement as follows: 
the central node ZO of a network Z is defined as the 
node that has the shortest network distance to the 
end node of the farthest network segment(s) in Z. 
Then, C(Z) is generated by extending the minimum-
spanning tree from ZO in all possible directions and 
selecting the connected links in the shorter-distance 
order from the central node until the total length 
exceeds that of Z. Let N(Z) denote the node set in 
a sub-network Z and D(n, ZO) denote the network 
distance to the farthest node n from the central node 
ZO of Z. Then, NT-compactness index KNT(Z) can 
be derived as
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By replacing K(Z) with KNT(Z), we aim to find Z that 
maximises the LR(Z)KNT (Z)

a

 under the predetermined 
compactness correction parameter.

Figure 1 shows an illustrative example of a candi-
date sub-network Z (Fig.  1a) and its corresponding 
most compact sub-network C(Z) (Fig. 1b). The white 
circle is the central node Z0, and the grey bold line 
segments show the extent of Z and C(Z), respectively. 
The black arrows show examples of the shortest-path 
route from Z0 to the end note of the farthest network 
segment.

Figure 2 shows another example of the comparison 
between a complex sub-network (KNT(Z) = 0.3) and 
the corresponding most compact network (KNT(Z) = 1) 
defined on a real street network. While both sub-net-
works share the same starting point Z0 and the same 
total length, the two subnetworks have contrasting 
appearance in that Fig. 2a shows a sub-network with 
an irregular and elongated sub-network, whereas 
Fig. 2b shows the arrangement of a compact network.

Extracting an irregular shaped network‑segment 
cluster using genetic algorithm (GA)

Using NT-compactness correction as a means to 
apply penalties to regulate the shape of sub-networks, 
this study employs the Genetic-Algorithm (GA) Scan 
for detecting clusters that consist of spatially contigu-
ous network segments. It expands on the GA Scan 
proposed by Duczmal et  al. (2007a) for searching 
flexible-shaped clusters on a Euclidean plane. In the 
case of network-segment cluster detection using GA, 

(3)K
NT
(Z) =

max
n∈N(C(Z))

D
(
n, Z0

)

max
m∈N(Z)

D
(
m,Z0

)

each individual in the GA scan represents a candi-
date cluster, where the set of network segments that 
comprises a candidate cluster is recorded as its chro-
mosome information. Here are the steps of GA for 
searching candidate network-segment clusters.

Step 1: Initialisation
To improve the odds of identifying clusters faster, 

the initial population is generated against all network 
segments that contain at least one of the point fea-
tures. Each individual (candidate cluster) is expanded 
by randomly selecting adjacent segments and add-
ing them to construct its sub-network area. In order 
to generate sub-networks with a higher concentration 
of point features, segments that contain no features 
are only added stochastically. This process will be 
repeated until the number of segments in the sub-net-
work reaches a predetermined threshold value, or the 
likelihood of the respective sub-network falls below a 
threshold.

Step 2: Crossover
Select two individuals randomly from the initial 

population and examine if they share any network 
segment(s). If they do, implement crossover using 
those segment(s) to breed the second generation. 
Specifically, for each parent, create an ordered list of 
network segments in ascending order of their con-
nectivity (those with the same degree of connectiv-
ity will be ordered randomly). Next, implement an 

Fig. 1   An illustrative example of a an irregular sub-network Z, 
and b the corresponding most compact network C(Z)

Fig. 2   Illustrative examples of sub-networks with a an irregu-
lar, complex network (KNT(Z) = 0.3), and b the most compact 
network (KNT(C(Z)) = 1.0)
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order-based crossover by combining the parent seg-
ments in the order of the list to create the second-
generation population. If the remnants outside the 
crossover points constitutes m and n number of seg-
ments respectively, generate m x n sets of individuals 
and retain all solutions that satisfy a predefined shape 
complexity constraint.

Step 3: Selection (replacement)
The crossover step generates numerous solutions 

from the same combination of parents which, in turn, 
reduce the diversity of the gene pool among the indi-
viduals. For this reason, this study selects a portion of 
the parent generation that have low likelihood ratios 
and replaces them with the child generation that have 
higher likelihood ratios.

The process of crossover and selection (replace-
ment) will be repeated until such time that the same 
individual has retained the maximum likelihood ratio 
for a sufficient number of iterations, which will be 
identified as the Most Likely Cluster (MLC). The 
significance of this MLC will be tested by compar-
ing it against the MLC distribution derived from the 
random point distribution obtained by Monte Carlo 
simulation.

Sensitivity analysis with a synthetic data set

To test the effectiveness of the proposed method, the 
impact of the NT-compactness correction parameter 
on the shape of the detected clusters (i.e. KNT(Z) of 
the most likely cluster) and the performance of the 
proposed method were examined using a simple syn-
thetic data. Performance of the method was assessed 
using sensitivity and Positive Predictive Value (PPV), 
where the sensitivity is defined as the proportion of 
network segments correctly detected among all net-
work segments in the true cluster, and PPV is defined 
as the proportion of network segments correctly 
detected among all detected segments. These tests 
were conducted against two small synthetic cluster 
data sets (with distinct shapes and arrangements). 
Figure 3 shows a regular grid-type street network that 
consists of 220 same-length links, on which the fol-
lowing cluster(s) are generated: (a) a single cluster 
(in red) which mimics a non-compact cluster; e.g. a 
cluster formed along arterial streets in an urban set-
ting, and (b) two separate small clusters (moderately 
compact and non-compact clusters) that are located 

near each other. Points were then placed along the 
street network within and outside the cluster(s) using 
Poisson distribution with the following parameters: 
(1) the expected number of points inside the cluster(s) 
(red links) was set to 100 points per link, and (2) the 
expected number of points outside the clusters (black 
links) was set to 10 points per link.

Results from the analysis are shown in Fig.  4. 
Firstly, the true non-compact cluster is detected when 
no compactness correction was made (a = 0). As the 
compactness correction value increases, links outside 
the true cluster are gradually added to the detected 
cluster which reduces the PPV to 0.5 in the end when 
the compactness correction value reaches 1 (Fig.  5a 
and Table 1).

Secondly, the two clusters located near each 
other are detected as a single large cluster, if there 
is no penalty on the shape. Although the sensitiv-
ity is 1 (i.e. all true cluster links are included in 
the detected cluster) (Table  2), some excessive 
links (those located between these two links―8 
in total) are also included, and this is reflected in 
the low PPV value. As the compactness correction 
value increases, the constraint on the shape com-
pactness is tightened and PPV gradually decreases 
(i.e. the number of links that have been incorrectly 
detected increases gradually (Table  2). However, 
when the compactness correction value reaches 0.7, 
only one of the two true clusters gets detected (the 
cluster in red) as the MLC, and this continues until 
the compactness correction value reaches 1. This is 
why the PPV suddenly drops to 0.6 when the com-
pactness correction reaches 0.7. To avoid multiple 
testing problems, spatial scan statistics restricts us 
from detecting clusters simultaneously at multiple 

(a) (b)

Fig. 3   Examples of synthetic data: a a single non-compact 
cluster, b two clusters located near each other
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locations (Zhang et  al., 2010). For this reason, we 
detect the second MLC, the third, and so on in dif-
ferent rounds of execution by eliminating the extent 
of previously detected cluster(s). The blue cluster 
in Fig.  4b therefore is detected as the MLC in the 
second round of cluster detection under the condi-
tion that the first cluster exist at the detected place. 
This suggests that when the penalty is low, the 
method allows more flexibility on the shape of a 
cluster and can detect irregular-shaped clusters, but 
the method may fail to distinguish nearby clusters 
separately and may detect them together as a single 
large cluster. The results from two sample distribu-
tions exhibit an interesting comparison. In the case 
of simple small clusters used here, a strong penalty 
hampered the detection of a non-compact cluster, 
but it also helped distinguish the two separate clus-
ters located near each other.

Application

Data

To test the effectiveness of the proposed method 
with real-world data, this study uses distribution 
of taverns (casual restaurant-style pubs that tend 
to cluster in highly populated areas) along a street 
network of a regional city, the central area of Sen-
dai City, Japan. The street area extends to roughly 
7 km by 6 km (Fig. 6). The area serves as an ideal 
test case, as it covers a variety of street configura-
tions and street densities, ranging from a grid-based 
tightly knit urban structure of downtown Sendai, to 
the radial configuration in the suburb, as well as the 
sparse and irregular street configuration on the out-
skirt. Taverns are casual diners serving alcohols and 
are prevalent across different types of urban land-
scape in Japan, including downtown, suburbs and 
outskirts. The street network was obtained through 
the Digital Topographic Map 25,000 dataset, cover-
ing a total of 647  km across 7953 street segments 
in the area. Locations of taverns were extracted 
from the TelePointⓇ Pack database (September 2010 
edition) which listed the xy-coordinates of 492 
taverns in the area. Each tavern is assigned to the 
nearest street segment and the number of taverns 
is recorded for each street segments. Of the 7953 

0.0 0.0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

1.0 1.0

(a)                        (b)

Fig. 4   Detected clusters across different compactness correc-
tion values for a a single non-compact shape cluster, and b two 
clusters located near each other
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street segments in the area, 217 segments contained 
one or more taverns.

Detection of non‑weighted network‑segment clusters

During the initialisation stage, parameters for the GA 
model were set as follows: the tolerance level for con-
necting a segment with no tavern locations was set 
at 1/3, the maximum number of street segments that 
could be connected as a single cluster was set at 217 
(i.e. the number of segments containing at least one 
tavern), and the lower bound of the log-likelihood 
ratio was set at 5. In the selection process, 10% of 

the parent generation were replaced by individuals 
from the child generation; and the iterative process of 
crossover and selection was set to be terminated after 
the same individual has remained as the MLC for 10 
generations. These parameters were determined in 
an exploratory manner, as restraining the maximum 
number of connected street segments too low could 
lead to compact, local optimal solutions, whilst allow-
ing too high a log-likelihood ratio may result in gen-
erating a homogeneous set of initial population that 
cover similar areas in such a way that each individual 
of the initial population would comprise sufficient 

Fig. 5   Assessment of the performance in the forms of a sensitivity and b PPV

Table 1   Result statistics 
for the single non-compact 
cluster (cluster (a))

Compactness correction 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Compactness index (KNT(Z)) 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 1 1
#Dectected links 12 14 13 12 13 13 14 14 12 24 24
#True cluster links detected 12 12 12 12 12 12 12 12 12 12 12
#Links wrongly dectected 0 2 1 0 1 1 2 2 0 12 12
Sensitivity 1 1 1 1 1 1 1 1 1 1 1
PPV 1 0.86 0.92 1 0.92 0.92 0.86 0.86 1 0.5 0.5

Table 2   Result statistics 
for the two clusters located 
near each other (clusters 
(b))

Compactness correction 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Compactness index (KNT(Z)) 0.5 0.5 0.5 0.5 0.5 0.58 0.64 1 1 1 1
#Dectected links 28 28 27 29 30 31 33 12 12 12 12
#True cluster links detected 20 20 20 20 20 20 18 12 12 12 12
#Links wrongly dectected 8 8 7 9 10 11 15 0 0 0 0
Sensitivity 1 1 1 1 1 1 0.9 0.6 0.6 0.6 0.6
PPV 0.71 0.71 0.74 0.69 0.67 0.65 0.55 1 1 1 1
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number of segments but are different in the area they 
cover and maintain diversity.

The first step of the empirical analysis was carried 
out with the maximum extent of an individual set at 
the total length of all segments. Under the assump-
tion that the distribution of taverns along the street 
network would follow a Poisson point distribution, 
we use GA to search for MLC by exploring areas that 
have higher density of taverns within the sub-network 
than outside. Using Monte Carlo simulation, the dis-
tribution of stores was generated on each link (under 
the null hypothesis that there is no difference in the 
point density within and outside a sub-network of 
interest), repeated the process of detecting clusters 
1,000 times, and determined the rejection region of 
MLC. In the case of detecting clusters with no pen-
alty on shape, the rejection region by one-sided test 
with a significance level of 1% was greater than the 
log-likelihood ratio of 24.5.

Next, different degrees of compactness correction 
were set and clusters of taverns were detected. The 
red lines in Fig.  7 denote the detected sub-network 
clusters under different compactness correction val-
ues. All results yielded high log-likelihood ratio, con-
firming their significance. It turns out that 50–70% 
of all taverns are found on a small number of street 
segments that account for approximately 1% of the 
total length of the streets in the study area, supporting 

the validity of the outcomes. It should be also noted 
that the relative risk, which represents the ratio of 
point densities within and outside the sub-network, 
remained high under all shape constraints.

Figure  7a shows the outcome under the condi-
tion of no penalties. The result is the least compact 
sub-network (with the KNT(Z) = 0.35); i.e. a long and 
complex form of sub-network that covers the main 
boulevards stretching west from the Sendai Terminal 
Train Station on the right and extending all the way 
to the city’s main entertainment district area in the 
upper left (highlighted in pale blue). The result marks 
the highest log-likelihood ratio but lowest tavern den-
sity among all scenarios with different compactness 
correction values (Table  3). This is partly because 
the likelihood ratio tends to become large for a larger 
spatial extent, prioritising a greater difference in 
point densities within and outside the search window, 
despite that the point density decreases as the spatial 
extent increase. In other words, when there is no pen-
alty on shape, the result tends to take a highly irregu-
lar, wide area which may be a collection of multiple 
clusters.

As the penalty becomes stronger, the network seg-
ment cluster reduces in size, and its shape becomes 
more compact (Fig. 7b, c). This shows that the pen-
alty prevents the network segments from annexing the 
surrounding regions freely, resulting in the detection 
of a compact area with a moderate likelihood ratio but 
with a high point density. At the same time, the shape 
of the network segment cluster retains some degree of 
freedom which may lead to the inclusion of adjacent 
segments without points. Finally, as we impose the 
strongest penalty (a = 1) (Fig. 7d), it yields the most 
compact cluster, but it also includes segments with no 
points, thus reducing the point density and the rela-
tive risk.

It seems that the excessively strong penalty has 
created some noise (in Case (d)). The other extreme 
(Case (a)) does not also seem to be the most suita-
ble cluster due to the lowest point density among all 
results. Case (c) may be the most appropriate cluster 
(because of the highest point density and a moder-
ately high relative risk), but Case (a) also provides 
important information in that it identified a geograph-
ically meaningful cluster—the boulevard with a rela-
tively high density of taverns.

Fig. 6   Distribution of 492 taverns (black points) in the study 
area
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Fig. 7   Detection of clusters of taverns along the street seg-
ment network. The black circles denote tavern locations and 
the red line segments show the extent of the detected NT-seg-
ment cluster. The main boulevard and the entertainment dis-
trict are shown in purple lines and pale blue polygon, respec-

tively. a MLC NT-segment cluster detected at a = 0.0 (no 
NT-compactness constraint); b MLC NT-segment cluster at 
a = 0.6; c MLC NT-segment cluster at a = 0.8; and d MLC NT-
segment cluster at a = 1.0

Table 3   Result statistics of NT-segments detection against taverns in Sendai City

Compactness 
correction (a)

Compact-
ness index 
(KNT(Z))

Log-
likelihood 
Ratio

p-value # Taverns (% of total) Street length 
(km) (% of 
total)

Relative risk Tavern 
density (/
km)

(a) 0.0 0.35 1201  > 0.001 350(71%) 8.99(1.4%) 174 38.9
(b) 0.6 0.60 924  > 0.001 270(55%) 6.03(0.93%) 129 44.8
(c) 0.8 0.81 867  > 0.001 241(49%) 4.32(0.67%) 142 55.8
(d) 1.0 0.90 802  > 0.001 242(49%) 5.80(0.90%) 107 41.7
Study area – – – – 492 647 – 0.764
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Detection of weighted network‑segment clusters

As this study uses street segments as the aggrega-
tion unit (equivalent to an areal unit in the Euclid-
ean space analysis), we could apply a weight factor 
against each street segment (instead of a simple street 
length) in the same analysis. The weight factor could 
be an environmental, social and any other attribute. 
As an illustrative example, this study uses the total 
floor space of buildings in each area as a weight factor 
to calculate the expected number of stores against the 
floor space available. The floor space of each building 
is derived from the building footprint and the number 
of floors for each building is obtained from Zenrin 
Co’s commercial “ZmapTown II”. These values are 
assigned to the nearest street segment as a weight fac-
tor. The assumption is that the distribution of taverns 
along the street network would follow a Poisson dis-
tribution with the parameter of the total floor space 
for each street segment (instead of the street length). 
This works in the same way as the weighting of the 
population at risk used in the scan statistics analysis 
in spatial epidemiology.

Figure 8a shows the outcome of the analysis with 
respect to the floor space of taverns as the weight fac-
tor with no penalty for compactness (a = 0.0). As the 
central district around the station has a larger num-
ber of multi-story buildings and a relatively high 

volume of floor space assigned to the street seg-
ments in that area, the expected number of taverns in 
the area has increased in the analysis, which in turn 
reduced the log-likelihood ratio to 773 and relative 
risk to 51.0, respectively; compared to the outcomes 
of a non-weighted scenario. The spatial arrangement 
of the resulting cluster still resembles that of Fig. 7a 
(Fig.  7a: KNT(Z)  =  0.35, #Taverns  =  350; Fig.  8a: 
KNT(Z)=0.36, #Taverns = 331).

Figure 8b shows the outcome of the same weighted 
scenario but with a = 0.8. The cluster highlighted in 
red shows the MLC, which is much more compact 
and smaller, created by truncating the areas that are 
less significant within the non-constrained MLC. It 
should be noted, however, that areas that fell outside 
the MLC may still hold significant concentration of 
taverns. Therefore, the method was applied repeat-
edly by eliminating the extent of previously detected 
cluster(s) as we have done with a small synthetics 
data. Figure 8b shows the three most likely clusters: 
namely, red, blue and green clusters—in the order of 
highest likelihood—all of which are statistically sig-
nificant. Interestingly, the total extent covered col-
lectively by the three clusters is similar to that of the 
single MLC with no penalty (Fig. 8a).

The fact that the three clusters are detected in that 
order implies that the strongest concentration evi-
dently exists within the entertainment district; whilst 

Fig. 8   Detection of clusters of taverns along the street seg-
ment network around Sendai Station, weighted by the floor 
space. The black circles denote tavern locations, and the 
red line segments show the extent of the detected weighted 

NT-segment cluster. The main boulevard and the entertain-
ment district are shown in purple lines and pale blue polygon, 
respectively. a MLC NT-segment cluster detected at a = 0.0; b 
MLC NT-segment cluster at a = 0.8
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the secondary and tertiary clusters are respectively 
located around the station and the in-fill between the 
two areas. Interestingly, these areas seem to form a 
clear territory of their own in the sense that the clus-
ters did not result in an intricate combination that 
goes in and out of the streets in the other areas but, 
rather, seem to form a relatively compact cluster of its 
own. Each district naturally forms clusters of differ-
ent likelihood ratios, i.e. the expected density and the 
likelihood within each cluster will likely reflect the 
extent and the nature of their concentration.

Discussion

In this study, we proposed a new spatial cluster detec-
tion method to find irregular-shaped clusters along a 
street network. The study took an approach to derive 
different cluster sets by changing the compactness 
correction parameter values which controls the degree 
of geometric shape penalisation. The method was 
firstly applied to a simple, synthetic data set and then 
to a real-world data. If we call a detected cluster that 
achieves the highest detection accuracy as the opti-
mum solution, then the optimum solution for each of 
the two small synthetic data sets was at the opposite 
extreme ends; one was achieved with no compactness 
correction (a  =  0) and the other with full compact-
ness correction (a  =  1). This is partly because the 
shape of the synthetic test clusters was too simple, 
but it also means that the result would depend on the 
shape of the underlying true cluster and their spatial 
arrangement. The accuracy of the cluster detection 
was measured with respect to sensitivity and PPV, 
but this was only possible because we knew the exact 
shape and location of the synthetic clusters. In other 
words, we cannot measure the sensitivity or PPV with 
the real-world data, as there is not enough informa-
tion about the shape and the arrangement of the true 
clusters.

The sensitivity analyses have indeed demonstrated 
a benefit of running cluster detection across different 
compactness correction values. In the case of the tav-
erns in Sendai City, the optimal solution did not seem 
to be at the either extreme end of the compactness. 
What forms the optimum could be a debatable, but 
the relative risk and the point density of the detected 
clusters could be referred to as two diagnostic meas-
urements for selecting the optimum, as they reflect 

accuracy of cluster detection. Under the unweighted 
scenario (Fig. 7), the optimum cluster with the highest 
accuracy seemed to be achieved at a = 0.8 (Fig. 7c). 
This may change if other criteria are imposed in the 
form of weight factors, and the subsequent analysis 
demonstrated how this can be facilitated.

This study delivered a proof-of-concept analysis to 
demonstrate that it can deliver solutions of network-
segment-based clusters with a flexibility in their 
shape. It would benefit from applications to other 
events and features observed along a street network, 
including events such as crime and epidemiological 
outbreaks that could benefit from different criteria 
and scenarios to weigh and configure the shape of the 
clusters. While its effectiveness in different contexts 
still needs to be explored, the proposed method is 
expected to offer the analysts a better chance of find-
ing more accurate clusters among a range of possible 
solutions along networks.

Detecting clusters whilst changing the extent of 
penalties on the compactness also shows that there 
is a range of values that enables us to increase the 
chance of discovering more than one statistically sig-
nificant clusters which, with a different compactness 
penalty, may be detected as a single larger cluster. 
This would give new interpretation on the context of 
cluster formation and meaning to the detected clus-
ters in that some clusters may be close enough to be 
related with one another, but they can be also recog-
nised as a group of conjoined clusters. In the context 
of taverns, this typically arises because they are con-
centrated in an entertainment district, but they tend 
to create small sub-clusters within the district around 
a landmark or along a main boulevard to make them 
visible to their potential customers. In this sense, the 
capacity to offer solutions with different degrees of 
complexity could help capture the clusters under dif-
ferent criteria and, thereby, provide new knowledge 
and understanding of the features studied.
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