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Introduction 1 

The ancient Greeks already claimed the relation between the brain and 2 

psychological and physiological states. Aristotle (BC 384–322) argued that the heart was 3 

the centre of the psychophysiological system and the brain function existed to cool the blood 4 

arising from the heat and seething of the heart (Smith, 2013). Since the 1990s, brain 5 

imaging technologies have advanced both in hardware (e.g. functional magnetic resonance 6 

imaging: fMRI) and software (e.g. machine learning). Subsequently, brain mapping of 7 

cognitive functions has rapidly progressed and neural substrates of cognition have been 8 

clarified and brain imaging techniques have been widely used to investigate internal 9 

processes in psychological research. However, measures of the autonomic nervous system 10 

(ANS) remain commonly used to investigate internal states behind cognitive processes and 11 

psychological states. How do these psychological studies use ANS measurements? Are 12 

there specific suitable ANS measurements depending on the psychological function to be 13 

examined? This paper summarises the characteristics of each ANS measurement 14 

predominantly used in psychological studies. In addition, it reviews the results of recent 15 

literature which has investigated core topics in psychophysiology such as attention and 16 

emotion recognition. Finally, the strengths of ANS measurements are summarised 17 

compared to brain imaging techniques. As the aim of this paper is to broadly communicate 18 

the utility of the ANS measures to psychologists who are not familiar to use them, this paper 19 

focuses on recent results of psychophysiological studies and details to each topic such as 20 

mechanisms will be limited. If the research area has recently been the subject of a 21 

meta-analysis or systematic review, the empirical studies cited in the meta-analysis or 22 

review are introduced. Apart from references to the history of the method, the literature was 23 

mainly selected from 2010 to 2021. Searches were conducted in PsychArticles databases. 24 

The search strategy was as follows: (“heart rate” OR “skin conductance” OR “pupil” OR “eye 25 

blink” AND “attention” OR “cognitive load” OR “cognitive effort” OR “emotion” OR “stress” 26 

OR “reward” AND Peer-Reviewed Journals only AND Year 2010 To 2021). This search 27 
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found 248 papers including the terms in the abstract. Then, the papers are reviewed and 28 

assessed for their relevance to each topic. The results of 63 empirical papers are introduced 29 

(Table 1-3). Psychophysiological research has a long history and various studies have been 30 

conducted, sometimes showing controversial results. It is important to note that what can be 31 

presented in this paper is only a small number of empirical studies and this is not a 32 

meta-analysis, so it is not intended to dismiss other results. 33 

 34 

What is indexed in ANS measurements? 35 

Many psychological studies using physiological methods measure activations in 36 

the ANS. The ANS represents the principal neural channels through which the brain and 37 

internal bodily organs interact (Brading, 1999). Sympathetic and parasympathetic nervous 38 

systems (branches of the ANS) regulate vegetative autoregulatory processes in the human 39 

body and responses elicited by dynamic interactions with the environment (Critchley, 2009). 40 

The balance of activations in the sympathetic and parasympathetic nervous systems 41 

modulates physiological responses such as pupil dilation and heart rate increase 42 

(Karemaker, 2017). The sympathetic nervous system is responsible for the ‘fight or flight’ 43 

response—an automatic physiological reaction to a harmful or stressful event, preparing the 44 

animal for fighting or fleeing (Jansen et al., 1995). The sympathetic nervous system works 45 

facilitatively, and sympathetic fibres use the neurotransmitter noradrenaline to dilate the 46 

pupil, increase the skin sweat and raise the heart rate. In contrast, the parasympathetic 47 

fibres typically work inhibitory, with acetylcholine as the main neurotransmitter to contract 48 

the pupil and decrease the skin sweat and heart rate. The influence of these two systems, 49 

sympathetic and parasympathetic systems, on organs does not on a single continuum. It 50 

has been shown that these systems function independently and the activity of sympathetic 51 

and parasympathetic nervous systems are not reciprocal (Cacioppo, Uchino, & Berntson, 52 

1994; Berntson et al., 1991). In other words, the sympathetic and parasympathetic nervous 53 

systems are not on one axis, but two axes of activity determine the effects on organs. 54 
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In the regulation of the ANS, there are two important processes: homeostasis and 55 

allostasis. Homoeostasis is defined as the ability of an organism to maintain the internal 56 

environment of the body within limits that allow it to survive (McEwen, 2016). Due to 57 

homeostasis, it has been claimed that motivations arise from the physiological need to 58 

maintain the internal environment of the body, and cognitive processing of external stimuli 59 

and behavioural reactions to the surrounding environment can be modulated by 60 

physiological states (Critchley, 2009). Homeostasis is described as stability through 61 

constancy, while allostasis is defined as achieving stability through change (Sterling & Eyer, 62 

1988). Allostasis is the adaptive process of an organism to change the defended levels of 63 

one or more regulated parameters as needed to adjust to new or changing environments. 64 

For example, an elevated level of heart rate is maintained in a stressful environment relative 65 

to the level maintained in a less-stressful environment. Homeostasis and allostasis ate 66 

complementary rather than exclusive each other. To maintain the internal environment of the 67 

body and adaptively respond to the external environment, both types of control are needed 68 

(Schulkin & Sterling, 2019). For an overview of the mechanisms of homeostasis and 69 

allostasis, see the Handbook of Psychophysiology (Cacioppo, Tassinary, Berntson, 2007). 70 

 71 

Characteristics of each measurement 72 

Figure 1 shows how the activities in the ANS are reflected in each measure. 73 

However, can these measurements be used to investigate psychological processing in the 74 

same way?  75 

Heart rate and heart rate variability. Heart rate refers to the number of times that 76 

the heart muscle contracts or beats, usually measured by Ag/AgCl electrodes of 77 

electrocardiogram (ECG). Heart rate is calculated by the standard measure of beats per 78 

minute (bpm), averaged heart rate in a specific period. The normal resting adult human 79 

heart rate is 60–100 bpm (American Heart Association), thus a minimum sampling 80 

frequency of 500 Hz may be required to detect the R-spikes. Heart rate measurement has 81 
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started to be used in psychophysiology since the late 1950s, investigating the relationship 82 

between ANS responses and cognitive processing (e.g. Lacey, 1959). Heart rate variability 83 

(HRV) has been well examined since 1996 when a standard was established and 84 

parameters defined (Malik et al., 1996; Berntson, 1997). HRV is defined as the beat-to-beat 85 

variation in heart rate, and it has become a popular clinical and psychological investigational 86 

tool (Billman, 2011). HRV has been widely used to investigate autonomic cardiovascular 87 

control and/or target function impairment (Montano et al., 2009). In these studies, HRV has 88 

been assessed by time domain and frequency domain metrics (for more details see Shaffer 89 

& Ginsberg, 2017). Time domain metrics are calculated by the variance among heart 90 

periods, the variance of the differences among heart periods, and the shape characteristics 91 

of heart period distributions. Frequency domain metrics are calculated by decomposing the 92 

overall heart period variance into specifiable frequency bands. The oscillatory components 93 

of HRV are typically differentiated into various spectral profiles, primarily separated into low 94 

frequencies (LF; 0.04–0.15 Hz) and high frequencies (HF; 0.15–0.40 Hz). It has been 95 

suggested that the LF reflect the cardiac outflow influenced by both sympathetic and 96 

parasympathetic nervous systems, while the HF can index cardiac parasympathetic tone 97 

(Laborde et al., 2017; Reyes del Paso et al., 2013). 98 

The temporal resolution of the heart rate measurement is flexible, and studies 99 

using heart rate as an index of event-related ANS activities have shown that heart rate 100 

increase can be measured in a couple of seconds (2–3 s; Wascher et al., 2009; Ishikawa & 101 

Itakura, 2019; Ishikawa et al., 2022). In general, HRV can be measured over shorter (e.g. 5–102 

10 min) or longer (12 or 24 h) periods (Ernst, 2017). However, longer recording epochs 103 

include slower fluctuations such as circadian rhythms and the cardiovascular system’s 104 

response to a wider range of environmental stimuli, short-term and long-term HRVs are not 105 

interchangeable with each other (Shaffer & Ginsberg, 2017). On the other hand, the 106 

short-term recording includes the effects of respiratory sinus arrhythmia (RSA), the 107 

respiration-driven speeding and slowing of the heart via the vagus nerve (Karemaker, 2009). 108 



MEASURING THE AUTONOMIC NERVOUS SYSTEM AS A WINDOW INTO THE MIND 
AND BRAIN: A SELECTIVE REVIEW 

5 

 

 109 

Figure 1. The autonomic nervous system functions indexed by each measure. 110 

 111 

Skin conductance. Simultaneously with HR growth, other ANS measurements 112 

such as skin conductance (SC) and pupil diameter began to be used in psychological 113 

studies. 114 

Initially, SC was used simultaneously with HR to test the consistency of ANS 115 

responses (Campos & Johnson, 1966; Johnson & Campos, 1967). The measurement of SC 116 

in psychological research was standardised in 1971 (Lykken, & Venables, 1971), and the 117 

terminology was defined; skin conductance level (SCL): tonic levels of conductance or 118 

resistance; skin conductance response (SCR) or galvanic skin response: phasic, usually 119 

elicited by an event, increase in SC. As a common term for all electrical phenomena in the 120 

skin, electrodermal activity (EDA) has also been used. SC has been used as an index of 121 

changes in sympathetic arousal that are tractable to emotional and cognitive states as it is 122 

the only autonomic psychophysiological variable that is not contaminated by 123 

parasympathetic activity (Braithwaite et al., 2013). The levels of SCR to a visual stimulus 124 

can reach the maximum within two seconds and no effects of the presentation time of the 125 

stimulus on the averaged SCR between two and five seconds (Helminen, Kaasinen, & 126 
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Hietanen, 2011). In addition, SCL slowly returns to baseline after reaching a peak (Breska, 127 

Maoz, & Ben‐Shakhar, 2011). Around 20 years ago, interstimulus intervals (ISIs) for SCR 128 

measurement ranged between 20–60 s (e.g. Dawson, Schell, & Filion, 2000). Advances in 129 

deconvolution techniques have contributed to detecting SCRs even at ISIs as short as 3 s 130 

(Bach et al., 2010). Breska et al. (2011) compared SCRs between the long ISI ranging from 131 

16 s to 24 s and the short ISI ranging from 8 s to 12 s. There was no effect of ISI on the 132 

differential skin conductance responses to the stimuli and nearly identical detection 133 

efficiency was observed in both ISI conditions. For more details on deconvolution and 134 

analysis methods, Kuhn et al. (2022) has summarised seven different approaches used in 135 

the literature on SCR. 136 

 137 

 Pupil dilation and eye blinks. Although pupil dilation has been investigated since 138 

the early 1960s (Hess & Polt, 1964; Kahneman & Beatty, 1966), pupillometry research has 139 

improved in the last two decades. The pupil diameter has been measured to investigate 140 

hedonic valence and emotional arousal during the presentation of visual stimuli (Bradley et 141 

al., 2008). Due to the advancement of eye-tracking technology, pupil dilation is relatively 142 

easy to study compared to the early studies. Recent eye trackers typically provide high 143 

temporal resolution (e.g. Tobii Pro Spectrum: Maximum 1200 Hz; EyeLink 1000 Plus: 144 

Maximum 2000 Hz) and can detect minor changes in pupil diameter (0.01 mm). The pupil 145 

size changes in response to an event or stimulus and peaks after approximately 1 s, with 146 

higher temporal resolution than HR and SCR (Stefan et al., 2012). The pupil size is affected 147 

by the brightness of visual stimuli; thus it is necessary to measure baseline pupil size and 148 

compare to evoked changes in pupil diameter to interpret cognitive processing (Joshi & Gold, 149 

2020).  150 

Eye blinks have also been measured since the 1970s (Graham, Putnam, & Leavitt, 151 

1975). In human adults, spontaneous eye blinks appear every 3–5 seconds, with an 152 

average eye blink rate (EBR) of 20 blinks per minute, although with a large inter-individual 153 
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variability (Nakano, 2017; Nakano, 2015). The eye blink duration is 50–500 ms (Caffier, 154 

Erdmann, & Ullsperger, 2003). Most psychophysiological studies measuring eye measures 155 

have used eye blink magnitude or amplitude as an index of startle reactions, rather than eye 156 

blink rate (Ventura‐Bort et al., 2022). The startle blink response has been assumed as a 157 

defensive reflex and mainly used to investigate affective responses (Bradley, Codispoti, & 158 

Lang, 2006). As the research topic is limited, we focus on the blink rate rather than the 159 

startle responses.  160 

 161 

Psychological studies using ANS measurements 162 

How have these ANS measurements been used to investigate the human cognitive 163 

process and psychological states? This section introduces recent results of 164 

psychophysiological studies using ANS measurements in some core topics of psychology. 165 

Tables show the summary of studies introduced in this section (Table 1: HR; Table 2: SC; 166 

Table 3: eye measures). 167 

 Attention. The Aston–Jones model of attention states that animals are relatively 168 

less sensitive and unresponsive to changes in external stimuli at very low levels of arousal. 169 

However, they are more sensitive and responsive to peripheral stimuli at high levels of 170 

arousal (Aston–Jones, Chiang, & Alexinsky, 1991; Aston–Jones, Rajkowski, & Cohen, 1999). 171 

In particular, physiological arousal modulates to maintain visual attention focusing on a 172 

central target stimulus even in the presence of peripheral distractors (Aston–Jones & Cohen, 173 

2005; Rajkowski, Kubiak, & Aston–Jones, 1994). Some studies have shown that increases 174 

in physiological arousal measured by heart rate correspond to a more vigilant visual 175 

attention indexed by short look durations (Wass, Clackson, & de Barbaro, 2016; de Barbaro, 176 

Clackson, & Wass, 2017). However, many recent studies have examined the correlation 177 

between HRV and attention. Resting-state HRV indexed by RMSSD (defined as root-mean 178 

square differences of successive R-R intervals) has been known to be associated with 179 

attention (Siennicka et al., 2019). It has been shown that individual differences in resting 180 
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HRV indexed by RMSSD predict the capacity to control attention while exposed to emotional 181 

stimuli (Appelhans & Luecken, 2006; Park et al., 2012). In these studies, individuals with low 182 

levels of HRV demonstrated significantly worse performance to maintain attention when 183 

distracted by fearful faces. Furthermore, other studies have indicated that individuals with 184 

high levels of HRV demonstrated greater attention over the distractors (Park et al., 2013a, 185 

Park et al., 2013b). It has been suggested that parasympathetic arousal, characterised by 186 

decreased HR and greater HF-HRV in resting states, is associated with attention 187 

maintenance (Thayer et al., 2009; Siennicka et al., 2019; Barber et al., 2020). Attention 188 

responding to external stimuli is associated with increases in HR, while decreases in HR 189 

have been observed during sustaining attention (Petrie et al., 2012; Tonnsen et al., 2018; 190 

Cobos et al., 2019). 191 

A study examining the influence of attention levels on psychophysiological 192 

responses measured EEG, HRV, respiration rate, eye blinks and SCL during the low visual 193 

attentional task and high visual attentional task (Chang & Huang, 2012). The results 194 

suggested that EEG such as theta synchronization and LF-HRV during the task are 195 

correlated with attentional investment, while other measures did not indicate a significant 196 

change when the participants’ attention levels increased. Thus, HR measurements would 197 

have a high sensitivity to index attentional levels. 198 

Studies with HR measures have suggested that parasympathetic arousal is 199 

associated with attention, however, pupillometry studies have shown pupil dilation with 200 

enhanced attention.  201 

Pupil dilations can index attentional effort (Smallwood et al. 2011; Kang, Huffer, & 202 

Wheatley, 2014). A possible explanation is that maintaining visual attention requires 203 

selecting a target. Pupil dilation reflects levels of noradrenaline (NA) released from the locus 204 

coeruleus (LC). The LC–NA complex is involved in behavioural selections, optimising the 205 

balance between exploitation (continue what you are doing) and exploration (disengage and 206 

choose between one of the alternative possibilities; Devilbiss, Page, Waterhouse, 2006). 207 
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Therefore, it has been suggested that attention maintenance is a perceptual selection as in 208 

behavioural decision-making, which can be related to the LC–NA complex indexed by pupil 209 

dilation. Other studies have also suggested that visual attention is an outcome of 210 

behavioural selection. For example, pre-stimulus pupil dilation correlated with the 211 

preparatory control of attention (Irons, Jeon, & Leber, 2017) and individual differences in 212 

temporal selective attention are predicted by pupil dilation (Willems, Herdzin, & Martens, 213 

2015). SCL and SCR had been used in early studies before 2010 (e.g. Frith & Allen, 1983; 214 

Codispoti, & De Cesarei, 2007), however, recent studies have not used them to investigate 215 

attention.  216 

 217 

Information process. A recent meta-analysis investigated the validity of ANS 218 

measures to index cognitive load (Ayres et al., 2021). It included 33 studies over five years 219 

(2016–2020) and found that eye measures such as pupil diameter and blinks were more 220 

sensitive than other physiological measures (heart rate, skin conductance, EEG). Therefore, 221 

we focus on the studies using pupil diameter and blinks for the index of cognitive load. Also, 222 

van der Wel & Steenbergen (2018) has reviewed studies on task-evoked pupil dilation 223 

measuring effort in cognitive control tasks.  224 

The noradrenergic system has been suggested to influence the maintenance of 225 

appropriate levels of arousal for cognitive performance (Sara, 2009). Thus, pupil dilations 226 

are believed to reflect changes in mental effort. The early pupillometry studies reported that 227 

the pupil diameter is larger under conditions of higher attentional allocation or memory use, 228 

suggesting that pupil dilation can index cognitive load (Beatty, 1982). In the studies requiring 229 

participants to recall numbers of digits, larger numbers of digits induced greater pupil 230 

dilations (e.g. Granholm et al., 1996). In addition, in cognitive control tasks requiring 231 

switching and inhibition, pupil dilation responds to changes in task demands. This suggests 232 

that pupil dilation can be used as an index of cognitive effort (van der Wel & van 233 

Steenbergen, 2018). Pupil diameter can index cognitive load in both processes of auditory 234 
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and visual information (Klingner, Tversky, & Hanrahan, 2011).  235 

The measure of eye blinks is another robust index of cognitive load. The number of 236 

eye blinks increases in the task demanding high cognitive load (Ohira, 1996) or during 237 

information processing (Ichikawa & Ohira, 2004). In the auditory task, the EBR increases as 238 

a function of cognitive load (Magliacano et al., 2020). In addition, blinks occur during 239 

sensory processing and following sustained information processing (Siegle, Ichikawa, & 240 

Steinhauer, 2008). However, other studies have reported that eye blinks are suppressed 241 

during the task with high cognitive load, and the results of eye blinks are controversial. For 242 

example, Oh and colleagues (Oh, Jeong, & Jeong, 2012) showed that eye blinks were 243 

increasingly suppressed as the task difficulty increased. The suppression of eye blinks has 244 

been observed in tasks with high cognitive demands (Maffei & Angrilli, 2018; Hoppe et al., 245 

2018; Ranti et al. 2020). It is suggested that, during a high cognitive load demanding visual 246 

task, the blinking behaviour might be reduced in order to avoid the loss of important 247 

information (Nakano et al., 2009). Thus, task type may affect the results of eye blinks 248 

whether the tasks require visual information keeping eyes opened.  249 

 250 

Emotion recognition. Porges’ polyvagal theory (Porges, 2007) proposes that the 251 

mammalian ANS has evolved to support survival, especially for social engagement. The 252 

ANS is influential in the recognition of facial expressions and inferring the mental states of 253 

other people (Appelhans & Luecken, 2006). The majority of psychophysiological studies 254 

have indicated strong links between ANS measurements and emotion recognition. 255 

Studies of HRV have been well-examined in the last decade. For example, 256 

HF-HRV during resting is positively associated with performance on the emotion recognition 257 

task (Quintan et al., 2012). In addition, Quintana and colleagues controlled a variety of 258 

confounding variables affecting resting HRV – gender, body mass, smoking habits, physical 259 

activity levels, depression, anxiety and stress – however, the correlation between HRV and 260 

emotion recognition remained. A recent study using simultaneous measurements of fMRI 261 
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and HRV tested links between resting HRV indexed by SDNN (standard deviation of 262 

interbeat intervals) and neural response to emotional faces (Miller, Xia, & Hastings, 2019). It 263 

showed that the higher HRV correlated with less activities in the mirror neuron system, 264 

insula and amygdala. Therefore, HRV is considered to be related to brain activations in the 265 

mentalising network, which is involved in emotion recognition.  266 

SCR has been used to measure ANS responses to emotional stimuli from earlier 267 

studies before 2010. For example, negative (fear, sad) emotional stimuli elicited a larger 268 

SCR than positive (happy) emotional stimuli (Baumgartner, Esslen, & Jäncke, 2006). 269 

Studies have reported that both positive and negative stimuli were associated with greater 270 

SCR than neutral stimuli (Lane et al., 1997; Cuthbert et al., 2000), however, SCR is known 271 

for its high sensitivity to negative stimuli. A simultaneous fMRI and skin conductance 272 

recording has shown that SCR was increased to fearful faces than to neutral faces, and the 273 

amygdala activations strongly correlated with SCR (Williams et al., 2001). In addition, SCR 274 

and amygdala activations are elicited by subliminally presented emotional stimuli (Gläscher 275 

& Adolphs, 2003). A recent systematic review paper indicated that the effects of emotional 276 

stimuli on physiological states were most pronounced in fear-related studies measuring 277 

SCR (van der Ploeg et al., 2017). 278 

While the SCR appears biased to fear-related stimuli, pupil dilation has been 279 

suggested as an index of valence intensity. Bradley and colleagues (Bradley et al., 2008) 280 

measured pupil diameter during viewing emotional pictures. The results showed that the 281 

pupil diameter was larger during watching pleasant and unpleasant stimuli than neutral 282 

stimuli. Pupil dilation during emotion processing can be observed in the process of auditory 283 

stimuli in addition to visual stimuli. Oliva & Anikin (2018) showed that human nonverbal 284 

vocalisations (e.g. laughing, crying) induced pupil dilation irrespective of whether they were 285 

perceived as expressing positive or negative emotional states. Therefore, pupil dilation may 286 

reflect the process of valence in emotional pictures irrespective of the type of emotion. 287 

 288 
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Stress. Another psychological state indexed by ANS measurements is stress.  289 

In laboratory settings, acute stress has been induced by various tasks (Bali & Jaggi, 2015). 290 

The Trier Social Stress Test (TSST) is one of the most popular methods of inducing acute 291 

stress in experimental settings (Allen et al., 2014). The TSST consists of an interview-style 292 

presentation and a surprise mental arithmetic test. Cognitive tasks such as Stroop, mirror 293 

tracking and mental arithmetic tasks have been used as stressors (Steptoe, Hamer, & Chida, 294 

2007). In addition, the cold pressor, requiring participants to place their hands into a 295 

container with cold water (0–3℃), is another manipulation of stress.  296 

ANS responses to stress are generally consistent across measurements, 297 

increasing sympathetic activations. From the early physiological study on stress, HR and SC 298 

have been correlated with psychological stress (Lazarus, Speisman, & Mordkoff, 1963). 299 

The experimental stressors increase HR (Henckens et al., 2009) and SCL (Jezova 300 

et al., 2004; Pisanski et al., 2018). Although acute stress has been shown to induce pupil 301 

dilation (Pedrotti et al., 2013), studies measuring pupil dilation remain poorly examined 302 

because of the characteristics of the stressors (de Witte et al., 2020). A meta-analysis has 303 

shown that resting HRV is also correlated with psychological stress (Thayer et al., 2012). 304 

For example, work stress is partly mediated by increased heart rate reactivity to a stressful 305 

workday (Vrijkotte, Van Doornen, & De Geus, 2000) and cognitive task increases LF/HF in 306 

HRV (Hjortskov et al., 2004). In addition, in a clinical study, patients with stress disorder 307 

indicated higher baseline HR and higher LF/HF ratio in the frequency domain during resting 308 

(Agorastos et al., 2013). A recent meta-analysis has also suggested that the most frequently 309 

reported HRV variable associated with stress is a decrease in HF-HRV and an increase in 310 

LF-HRV (Kim et al., 2018). 311 

HR and SCL can be continuously measured throughout testing, including during 312 

the stressor. However, participants must avoid movement artefacts during the HR and SCL 313 

measurements. Thus, salivary cortisol has been used in many stress-related studies. 314 

Cortisol is considered the major stress hormone in humans (Lupien et al., 2007). Cortisol 315 
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levels are controlled by the hypothalamic-pituitary-adrenal axis which is the major endocrine 316 

stress axis of the human organism (Hellhammer, Wüst, & Kudielka, 2009). Kidd, Carvalho, & 317 

Steptoe (2014) tested associations between cortisol responses to a set of laboratory 318 

stressors (colour/word interference and mirror tracing) and cortisol output throughout the 319 

day. It was shown that cortisol responses to acute stress in laboratory settings were 320 

positively associated with cortisol output over the day independently of sex, age, 321 

socioeconomic status, smoking, body mass index and time of laboratory testing.  322 

 323 

Reward. HR and SCR are believed to be related to the reward perception 324 

reflecting implicit liking and wanting of a stimulus (Kuoppa et al., 2016; Cecchetto et al., 325 

2022). An early study indicated that HR increased when participants were paid a monetary 326 

reward for each success feedback compared to participants who received feedback only 327 

(Fowles, Fisher, Tranel, 1982). Heart rate linearly increases with levels of monetary reward 328 

(Brinkmann & Franzen, 2013). Furthermore, a recent study has reported that HR correlates 329 

with the amount of incentive values, more incentive values induce higher HR (Silvia et al., 330 

2019). SCR is also enhanced when receiving a monetary reward (Zink et al., 2004; Choi et 331 

al., 2014). In addition, SCR increases also reflect reward-related psychological states such 332 

as alcohol and cigarette cravings (Nees et al., 2012; LaRowe et al., 2007).  333 

In addition, eye measures can index the reward process. It has been suggested 334 

that reward-related striatal dopamine activity is correlated with increases in pupil dilation and 335 

eye blinks, thus these eye measures can index activations in the reward system (Eckstein et 336 

al., 2017). Pupil dilation can be observed during watching a rewarding stimulus and while 337 

watching a reward-predictive stimulus (Anderson & Yantis, 2012; O’Doherty et al., 2006). 338 

Furthermore, pupil dilation predicts expected action values, which are the outcomes of 339 

reward-based action choices (Ishikawa & Itakura, 2022). Eye blinks are strongly linked to 340 

dopamine activity in the brain. Primate studies have suggested that eye blinks positively 341 

correlate with dopamine receptors availability in the striatum (Groman et al., 2014). The 342 
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number of eye blinks is a predictor of dopaminergic activity and reward maximisation during 343 

decision-making (Barkley-Levenson & Galvan, 2016). Increases in the EBR can be 344 

observed from infancy about 7-month-olds while observing a socially rewarding stimulus 345 

(e.g. mother; Tummeltshammer, Feldman, & Amso, 2019).  346 

These studies compared ANS responses between the reward gain and the 347 

no-reward condition. However, ANS responses have been observed to have a higher 348 

sensitivity to punishment rather than reward gain. Studies directly comparing responses to 349 

reward and punishment have found greater responses, as measured by HR, SCR and pupil 350 

diameter, to monetary losses in comparison to gains (Hochman & Yechiam, 2011; Yechiam 351 

& Telpaz, 2011; van’t Wout et al., 2006). 352 

 353 

Complexities of ANS indexes  354 

        In the previous section, a brief overview of the use of ANS measures in each 355 

research topic was provided. Also, the results of the recent meta-analyses have been 356 

included if applicable. However, psychological research using ANS measures sometimes 357 

yields inconsistent results. This section refers to the complexities of ANS indexes that 358 

contribute to such inconsistencies in psychological research. 359 

 360 

        Interactions between cognitive and affective processes. Firstly, each of the 361 

research categories summarised in the previous section interacts with each other. It was 362 

simplified to provide an overview how ANS measures are used in psychophysiology. 363 

However, ANS activities can be affected by multiple psychological processes at the same 364 

time. For example, during the reward presentation, physiological states are increased, which 365 

is assumed as a cognitive process of reward (e.g. reinforcement learning). While the 366 

enhanced physiological states during the reward presentation possibly include positive 367 

valence, which is an affective process. Similarly, physiological measures of attention to 368 

emotional stimuli include a cognitive aspect of attentional control and an affective aspect of 369 
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emotional stimuli. ANS activities could be induced as outcomes of interactions between 370 

cognitive and affective processes. Thus, interpretations of ANS activities should be carefully 371 

considering what psychological processes can be included.  372 

 373 

        Tonic and phasic changes. Secondly, the differences between tonic and phasic 374 

levels of ANS activities should be considered. Tonic activation refers to shifts in the overall 375 

baseline of activity such as SCL and baseline pupil size, whereas phasic activity refers to 376 

fluctuations occurring in response to an event such as SCR and task-evoked pupil 377 

responses (Wass et al., 2015). Neuroimaging studies have shown differences in the neural 378 

correlates between tonic and phasic activities (for more details on neural mechanisms 379 

please see Mathôt, 2018: pupil; Zhang et al., 2014: SC). In psychological studies, it has 380 

been shown that tonic and phasic ANS activities are differentially related to cognitive 381 

processes. For example, Howells et al. (2010) investigated how tonic or phasic SC and HR 382 

correlate with mental efforts during attentional tasks. The results showed that increases in 383 

SCL and HR were seen from rest to completion of the attentional tasks and between the 384 

attentional tasks rather than responses to each trial. These results indicate that mental effort 385 

for information processing is reflected in tonic rather than phasic changes in the ANS 386 

activities during the tasks of attention. More recently, tonic and phasic pupil sizes were 387 

measured before and during multiple object tracking to investigate correlations between 388 

pupil responses and cognitive load (Aminihajibashi et al., 2020). They found no correlations 389 

between tonic pupil sizes and cognitive load, however, participants with high performance in 390 

the highest cognitive load condition showed larger phasic pupil responses, suggesting 391 

increases in phasic pupil responses reflect the high cognitive load. Tonic and phasic 392 

changes in ANS activities have different correlations with psychological processes. 393 

 In addition, within the phasic changes, time scales of effects on ANS activities could affect 394 

inconsistent results of psychophysiological research. For example, as introduced in the 395 

above section, some studies have shown increases in HR associated with attention levels, 396 
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while other studies have shown decreases in HR associated with attention. Although the 397 

ANS activities depend on which function of attention is measured, these controversial 398 

results would be observed because of the phasic changes. As illustrated in Figure 1, both 399 

sympathetic and parasympathetic nervous systems modulate responses in each index. The 400 

activation of the parasympathetic nervous system decreases HR and this effect is mediated 401 

by the neurotransmitter acetylcholine, whereas the activation of the sympathetic nervous 402 

system increases HR and this effect is mediated by the neurotransmitter noradrenaline 403 

(Berntson et al., 2017). It has been shown that acetylcholine affects HR faster than 404 

noradrenaline, thus the decrease in HR is observed earlier than the increase in heart rate 405 

due to the activity of the sympathetic nervous system. In empirical studies, it has been 406 

observed that immediate HR deceleration (after exposure to an emotional stimulus) and HR 407 

acceleration following the initial HR deceleration (Bradley et al., 2001; Osumi & Ohira, 2016). 408 

The time scale of changes in ANS activities should be considered.    409 

 410 

Pros and Cons of ANS measurements 411 

ANS measurements have been widely used in psychological studies and have 412 

contributed to understanding the biological mechanisms of human cognition.  413 

First, ANS measurements are easier and cheaper than neuroimaging but it is 414 

possible to suggest neurophysiological mechanisms. Using an fMRI requires technicians, 415 

expensive running costs and long testing periods. Functional near-infrared spectroscopy 416 

(fNIRS) is considered an easier brain imaging technique than fMRI. However, the fNIRS can 417 

only measure from regions near the cortical surface. In contrast, ANS measurements are 418 

easier to obtain when recording data, HR and SC can be measured after putting electrodes 419 

on the proper position, and pupil diameter and eye blinks can be measured during running 420 

an eye tracker after short calibrations. Neural correlates of ANS activities have been 421 

reported. For example, HRV is controlled by the central autonomic network including brain 422 

regions of the prefrontal cortex, anterior cingulate cortex, insula, amygdala, periaqueductal 423 
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grey, pons and medulla (Mulcahy et al., 2019). Also, Pupil dilations are modulated by the 424 

activity of the noradrenergic system’s locus coeruleus, suppling NA to the cortex, cerebellum, 425 

and hippocampus (Wilhelm et al., 1999). Thus, ANS measurements cannot directly 426 

investigate brain activations, but it is possible to use them with hypotheses based on 427 

mechanisms suggested in neuroimaging studies.  428 

Furthermore, ANS measurements can be used in a wide range of situations or 429 

tasks. In brain imaging studies, due to the high impact of artefacts such as body movements 430 

and speech, tasks are quite limited. Social neuroscience is one of the core topics in 431 

cognitive neuroscience, however, brain imaging studies in social neuroscience have been 432 

criticised for their lack of ecological validity, as participants do not engage in real interaction 433 

(Schilbach et al. 2013). On the other hand, ANS measurements have been known for their 434 

utility in situations with high ecological validity (Hoehl, Fairhurst, & Schirmer, 2020). For 435 

example, to investigate emotion regulation in real interaction, Wass et al. (2019) measured 436 

HR, HRV, and movement in infants and parents concurrently in naturalistic settings. Also, 437 

SCL has been used to measure acute stress during an interview-style oral presentation 438 

included in the TSST (Montero-López et al., 2016). Thus, ANS measurements have 439 

advantages in naturalistic situations including physical activity and real interaction compared 440 

to brain imaging techniques.   441 

Since ANS activities can be easily measured, it is possible to include a variety of 442 

populations. Although there are some fMRI studies in awake infants, it is difficult to have 443 

infants conduct cognitive tasks in the fMRI (Yates, Ellis, & Turk-Browne, 2021). Eye-tracking 444 

has been used widely in developmental studies, and the eye tracker records pupil diameter 445 

to capture eye areas, which can be used more to investigate infants’ cognitive processing 446 

(Eckstein et al, 2017). Because ANS measurements are relatively easier to measure than 447 

brain measurements, they are easier to investigate on a large scale. 448 

In addition, the devices are more affordable than fNIRS and EEG systems. Studies 449 

simultaneously using fMRI and ANS measurements have highlighted correlations between 450 



MEASURING THE AUTONOMIC NERVOUS SYSTEM AS A WINDOW INTO THE MIND 
AND BRAIN: A SELECTIVE REVIEW 

18 

 

specific brain areas and ANS responses during cognitive tasks (e.g. Napadow et al., 2008; 451 

Schneider et al., 2018). Therefore it is possible to discuss neurophysiological mechanisms 452 

of cognitive processing by using ANS measures. This is especially beneficial for students 453 

and early career researchers who cannot afford brain imaging techniques. 454 

Another characteristic is that ANS measurements have different temporal 455 

resolutions. Therefore, researchers can choose a measurement appropriate to their 456 

research objectives. For example, in extreme cases, pupil dilation can index event-related 457 

ANS responses in several seconds, while HR and HRV can be measured throughout the 458 

entire day. Because of this flexibility in the temporal scale, ANS measurements such as HRV 459 

can also be applied in the evaluation of stress and psychiatric disorders (Kim et al., 2018). 460 

Researchers need to consider the time resolution required for the cognitive processing they 461 

aim to investigate. 462 

However, ANS measurements cannot directly investigate neural mechanisms of 463 

cognitive processing. An fMRI study has shown that smiling faces enhance activation in the 464 

ventral striatum, a core region of the reward system, whereas angry faces increase 465 

activation in the amygdala processing emotion and threatening information (Vrtička et al., 466 

2008). This suggests the different cognitive processing of each emotional face respectively. 467 

However, in a passive viewing paradigm measuring pupil diameter, it is predicted that pupil 468 

dilation can be observed while observing smiling and angry faces because pupil diameter 469 

increases while watching pleasant and unpleasant stimuli (Bradley et al., 2008). Measuring 470 

ANS responses in cognitive tasks may have this problem of interpretation. Also, ANS 471 

measures have been mainly used to investigate relations with psychological 472 

states/processes. However, as discussed in Complexity of ANS indexes, the results of 473 

psychophysiological studies using ANS measures are inconsistent sometimes. Thus, it is 474 

essential to combine other indexes to identify which psychological aspects affect ANS 475 

activities. For example, behavioural measurements in reward learning tasks requiring to 476 

participants learn associations between cues and outcomes can be applied to investigate 477 
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reward-related pupil dilations (Tummeltshammer et al., 2019; Schneider et al., 2020). Also, 478 

many brain regions have been defined by each function in neuroimaging (Genon et al., 479 

2018), thus simultaneous measurements of ANS and brain activations could contribute to 480 

the identification of psychological functions. In psychophysiological studies using ANS 481 

measures, designing experiments focusing on specific processing is essential and 482 

combining other indexes would be helpful to identify psychological factors. 483 

In addition, ANS measures can be used in broader situations than neuroimaging, 484 

they are affected by variables such as temperature, luminance, and loudness during 485 

recording. For example, lighting affects levels of HR and SC (Smolders & de Kort, 2017) and 486 

modulations of air temperature on ANS states have been shown to be associated with 487 

cognitive processing such as emotional evaluation (Barbosa Escobar et al., 2021). 488 

Consequently, researchers should ensure the similarity of the testing environment across 489 

participants and report information on room brightness and temperature.  490 

By designing experiments with these points in mind, ANS measures can be useful 491 

in psychological research. The ANS measures can provide data that are objective and can 492 

be described as physical quantities such as voltage or frequency. Also, the process by which 493 

psychological activity occurs can be analysed along the time course of ANS activities 494 

change. Some of the ANS measures can detect unconscious physiological responses such 495 

as SCR to subliminally presented stimuli (Gläscher & Adolphs, 2003). Also, these 496 

measurements can be used for sleep research (Laborde et al., 2017). By making use of 497 

these features, the ANS measurements can be applied to a wide range of psychological 498 

research which may contribute to investigating neurophysiological mechanisms of 499 

psychological processes. In addition, ANS measures could be used as a biomarker in health 500 

and affective disorders. For example, cardiac dysregulation can be observed in clinical 501 

states that include affective disorders (for a review see Mulcahy et al., 2019). HF-HRV 502 

suppression is observed in mood disorders (Alvares et al., 2016), depression (Sgoifo et al., 503 

2015), and anxiety (Makovac et al., 2016), suggesting that HRV can be used as a biomarker 504 
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for autonomic dysregulation in clinical conditions. Similarly, it has been suggested that pupil 505 

dilation can be used as a biomarker for sleep disorders, seasonal affective disorders, and 506 

also Alzheimer's disease (Zele & Gamlin, 2020). Because ANS activities can be easily 507 

measured and have a strong association with the central nervous system, they can be 508 

applied to support diagnosis in clinical situations. 509 

 510 

Conclusion 511 

Physiological measures in psychology primarily index activations in the ANS, 512 

consisting of sympathetic and parasympathetic nerve activations. HR, SC and eye 513 

measures have been used in a variety of psychophysiological studies and these 514 

measurements have different characteristics. These data can be more easily collected than 515 

the neuroimaging techniques, and correlations between ANS responses and activations in 516 

specific brain areas have been shown in fMRI studies. However, ANS measures are 517 

affected by various environmental factors. Also, increases or decreases in each index 518 

measuring ANS activities can be induced by multiple psychological processes. It is 519 

important to design experiments so that it is possible to identify which psychological state or 520 

cognitive processing is associated with the measured ANS activities. 521 

To clarify the interpretation of ANS activities, it is necessary to design experiments 522 

which are effective for each measurement and use other index types such as behavioural 523 

measurements. Ayres et al. (2021) conducted a meta-analysis with a sample of 33 524 

experiments that used ANS measures to measure cognitive load. Their objective was to test 525 

the validity of ANS measures indexing cognitive load. They showed that pupil diameter and 526 

eye blinks are the most sensitive followed by the HR and lungs, SC and brain activities. 527 

However, subjective measures of cognitive load by self-rating had the highest levels of 528 

validity. Therefore, a combination of ANS and subjective measures is suggested to be most 529 

effective in detecting changes in cognitive load. Thus, psychophysiological research should 530 

measure subjective and/or behavioural measures simultaneously. Coles (1989) described 531 
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psychophysiological measures are ‘windows on the mind’ and ‘windows on the brain’. 532 

Therefore, by using well-designed experiments and creating proper paradigms, ANS 533 

measurements contribute to our understanding of psychological states and cognition. 534 
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Table 1. Studies measuring heart rate cited in this paper.  1035 

Study Measure Main factor Correlation with main factor 

Wass et al. (2016) HR Visual attention duration HR increase 

de Barbaro et al. (2017) HR Vigilant visual attention HR increase 

Petrie et al. (2012) HR Attention focus HR decrease 

Tonnsen et al. (2018) HR Sustained attention HR decrease 

Cobos et al. (2019) HR Perceptual sensitivity HR decrease 

Siennicka et al. (2019) Resting HRV Attention control Higher HRV 

Park et al. (2012) Resting HRV Attention to fearful face 

cues 

Higher HRV 

Park et al. (2013a) Resting HRV Attention maintenance Higher HRV 

Park et al. (2013b) Resting HRV Attention maintenance Higher HRV  

Barber et al. (2020) HR Attention maintenance HR decrease 

Chang & Huang (2012) Task-related  

LF-HRV 

Attention levels LF-HRV decrease 

Quintan et al. (2012) Resting HF-HRV Emotion recognition HF-HRV increase 

Miller et al. (2019) Resting HRV Neural response to 

 emotional faces 

Lower HRV 

Lazarus et al. (1963) HR Acute stress HR increase 

Henckens et al. (2009) HR Acute stress HR increase 

Vrijkotte et al. (2000) Long-term HRV Work stress Higher HRV 

Hjortskov et al. (2004) HR & LF/HF ratio Cognitive stress HR increase & higher LF/HF ratio 

Agorastos et al. (2013) LF/HF ratio Stress disorder Higher HR & higher LF/HF ratio 

Kuoppa et al. (2016) Task-related HRV Food reward HRV increase 

Fowles et al. (1982) HR Monetary reward HR increase 

Brinkmann & Franzen (2013) HR Monetary reward HR increase 

Silvia et al. (2019) HR Monetary reward HR increase 

Hochman & Yechiam (2011) HR Monetary loss HR increase 

Note. HR = Heart rate is usually calculated by the standard measure of beats 1036 

per minute (bpm), averaged heart rate in a specific period.  1037 

HRV = Heart rate variability is defined as the beat-to-beat variation in heart 1038 

rate.  1039 

LF = Low-frequency is a frequency domain index of HRV, influenced by both 1040 

sympathetic and parasympathetic activity.  1041 

HF = High-frequency is a frequency domain index of HRV, usually considered 1042 

as a measure of parasympathetic activity. 1043 
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Table 2. Studies measuring skin conductance cited in this paper.  1044 

Study Measure Main factor Correlation with main factor 

Frith & Allen (1983) SCR Attention during cognitive task SCR increase 

Codispoti & De Cesarei (2007) SCR Visual attention SCR increase 

Baumgartner et al. (2006) SCR Emotional stimuli           SCR increase 

Lane et al. (1997) SCR Emotional stimuli SCR increase 

Cuthbert et al. (2000) SCR Emotional stimuli SCR increase 

Williams et al. (2001) SCR Emotional faces SCR increase 

Gläscher & Adolphs (2003) SCR Subliminal emotional stimuli SCR increase 

Lazarus et al. (1963) SCR Acute stress SCR increase 

Jezova et al. (2004) SCL Social stress Higher SCL 

Montero-López et al. (2016) SCL Social stress Higher SCL 

Cecchetto et al. (2022) SCR Food reward SCR increase 

Zink et al. (2004) 

Choi et al. (2014) 

SCR 

SCR 

Monetary reward 

Monetary reward 

SCR increase 

SCR increase 

Nees et al. (2012) SCR Alcohol craving SCR increase 

LaRowe et al. (2007) SCR Cigarette craving SCR increase 

van’tWout et al. (2006) SCR Monetary loss SCR increase 

Note. SCR = Skin conductance response is a phasic, usually elicited by an event, increase in 1045 

skin conductance.  1046 

SCL = Skin conductance level is a tonic level of conductance or resistance 1047 

 1048 

  1049 
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Table 3. Studies measuring eyes cited in this paper. 1050 

Study Measure Main factor Correlation with main factor 

Smallwood et al. (2011) PD Attentional effort PD increase 

Kang et al. (2014) PD Attentional effort PD increase 

Irons et al. (2017) PD Attention control PD increase 

Willems et al. (2015) PD Predictive attention control PD increase 

Granholm et al. (1996) PD Cognitive load PD increase 

Klingner et al. (2011) PD Cognitive load PD increase 

Ohira (1996) EBR Cognitive load Higher EBR 

Ichikawa & Ohira (2004) EBR Information processing Higher EBR 

Magliacano (2020) EBR Cognitive load Higher EBR 

Siegel et al. (2008) EBR Information processing Higher EBR 

Oh et al. (2012) EBR Task difficulty Lower EBR 

Maffei & Angrilli (2018) EBR Attentional load Lower EBR 

Hoppe et al. (2018) EBR Task-related cost Lower EBR 

Ranti et al. (2020) EBR Task engagement Lowe EBR 

Bradley et al. (2008) PD Emotional stimuli PD increase 

Oliva & Anikin (2018) PD Nonverbal vocalisations PD increase 

Pedrotti et al. (2013) PD Cognitive stress PD increase 

Anderson & Yantis (2012) PD Monetary reward PD increase 

O’Doherty et al. (2006) PD Food Reward PD increase 

Ishikawa & Itakura (2022) PD Expected reward value PD increase 

Barkley-Levenson & Galvan (2016) EBR Reward prediction Higher EBR 

Tummeltshammer et al. (2019) EBR Social reward Higher EBR 

Hochman & Yechiam (2011) PD Monetary loss PD increase 

Yechiam & Telpaz (2011) PD Monetary loss PD increase 

Note. PD = Pupil diameter is usually compared between the baseline and 1051 

evoked changes in pupil size.  1052 

EBR = Eye blink rate is an average number of blinks per minute which is 1053 

reflective of cognitive factors such as attention and reward processing. 1054 

 1055 

 1056 

 1057 


