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Abstract

Cloud computing emerged as a technology that offers scalable access to

computing resources in conjunction with low maintenance costs. In this do-

main, cloud users utilize virtualized resources to benefit from elastic comput-

ing and efficient pricing strategies. Although, cloud users have access to large

amount of resources, it is yet a challenging task to efficiently manage the re-

sources in cloud computing environments. In that context, cloud providers

offer auto-scaling services that need to be configured by the users according to

application requirements. Still, tuning scaling parameters is not trivial, since

it is mainly based on static scaling rules that may lead to unreasonable costs

and quality of service violations. This thesis introduces a reliable adaptive

resource provisioning framework for database applications in cloud comput-

ing environments. The framework is organized around three main services to

enable a) anomaly detection for reliable decision making, b) resource provi-

sioning for effective and efficient workload execution and c) constrained op-

timization to identify the optimal configurations that maximize application

performance based on user requirements. The services included in this thesis

utilize a variety of artificial intelligence techniques including Artificial Neu-

ral Networks for supervised learning, K-means for unsupervised learning and

Genetic Algorithms for constrained optimization. The proposed techniques

are based on monitored metrics collected from the running systems deployed

in the cloud. Finally, this thesis presents an extended experimental analy-

sis using industry standard applications and state-of-the-art benchmarks to

demonstrate the robustness and effectiveness of the proposed framework.
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1 Introduction

This chapter provides background work on cloud computing and intro-

duces key terms and concepts that are discussed in the thesis. It further

presents the motivation, research questions and objectives as well as the

methodological approach taken to produce this research work. Finally, the

thesis organization and structure is presented.

1.1 Cloud Computing

Today, advancements in networking and other technological domains are

mainly responsible for the acceptance of the idea that information processing

can be done more efficiently in distant data centers rather than local comput-

ing systems (Marinescu, 2022). Therefore, cloud computing has emerged as a

successful computing paradigm which aims to provide a fertile environment

for deploying application and services. Fundamentally, it offers an infrastruc-

ture where various services and applications are available to users through the

public Internet (Sotiriadis, 2021).

Various cloud providers such as Amazon, Google, IBM and Microsoft have

made computational services available to clients to form a public cloud. How-

ever, there are various types of clouds depending on the service availability

and accessibility levels with the most common being public, private, virtual

15



private, community and hybrid cloud.

• The public cloud is owned by an organization that provides services to

the general public or a large industry group using the public Internet.

• The private cloud provides services to a single organization. It can be

managed by the organization or a third party and could be hosted inside

or outside the premises of the organization (Marinescu, 2022).

• The virtual private cloud is a derivative of the private cloud deployment

model but it further provides an isolated segment of resources on top of

public infrastructure (Buyya, Broberg, and Goscinski, 2010).

• The community cloud provides an infrastructure that is shared by sev-

eral organizations and supports a specific community that has shared

concerns (Marinescu, 2022).

• The hybrid cloud is a composition of two or more clouds (private, com-

munity, or public) that are bounded together in order to compose a sin-

gle, optimal cloud environment.

Clouds offer three predominant service models namely Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).

In principle, cloud service models consist of different levels of abstraction

at which virtualized resources are being offered and managed by the cloud

provider (Kächele et al., 2013). IaaS model offers the lowest level of abstrac-

tion since it provides virtualized resources on hardware level. In such model,

cloud users can directly use infrastructure components such as Central Pro-

cessing Unit (CPU), memory, disk and networks in the form of Virtual Ma-

chine (VM) instances. On the other hand, PaaS and SaaS offer higher levels of

abstraction in terms of specific solution stacks and application software suites

(Bruneo, 2013). In particular, PaaS service model provides an environment for

deploying application and services while SaaS service model offers the highest

level of abstraction where software is provided to the end-users as a service.

In a SaaS model, the end-users execute their applications without having any

control on the host environment (Stavrinides and Karatza, 2019).
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Cloud scalability and elasticity are key aspects of cloud computing sys-

tems that support rapid and dynamic resource provisioning to everyday users.

Cloud scalability refers to the ability of the system to accommodate larger

loads, while elasticity refers to the ability of the system to scale with loads

dynamically (Sotiriadis et al., 2016). Additionally, cloud providers offer flexi-

ble pricing models including on-demand plans that enable cloud users to pay

just for the services they need and for the time they use them (Grossman,

2009). As a result, users can adjust cloud resources at any moment accord-

ing to their needs without paying any penalty (Mireslami et al., 2021). Cloud

providers also offer discount rates on reserved resources in specific availability

zones (Amazon, 2022b). Ergo, cloud users benefit from long term-contracts to

launch a number of low-cost reserved instances that ensure high performance

under various workloads.

1.2 Brief Discussion of the Problem Area

Cloud computing technology is on the rise, as it provides an easy to scale

environment for Internet users in terms of computational resources. Although,

cloud computing offers various types of delivery models with numerous ben-

efits, it also presents challenges that need to be considered. With a dramatic

increase in complexity of cloud infrastructure, cloud users face difficulties to

configure cloud resources based on application requirements. In particular,

the over-provisioning problem can occur where cloud users reserve more re-

sources than the actual workload demand (Chaisiri, Lee, and Niyato, 2011),

leading to unnecessary costs. Similarly, under-provisioning problem can oc-

cur when cloud users underestimate workload tasks and allocate inadequate

amount of resources that often lead to Quality of Service (QoS) violations.

Moreover, cloud users are being challenged to choose between different

pricing models based on application requirements. For instance, on-demand

pricing models introduce additional flexibility to the system that can increase

or decrease in size to support workload changes. Although, this solution looks

more appealing to cloud users, it comes with a higher cost compared to long-
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term contracts that include reserved resources. However, cloud users could

benefit from long-term contracts as long as they can produce accurate esti-

mations of future workload demand. In that context, inaccurate estimations

can introduce over-utilized or under-utilized resources that lead to application

performance degradation and cost-inefficiency.

Furthermore, cloud systems do not currently support customized solutions

for optimizing application performance based on user requirements. This is

due to the fact that, it is a challenge to address both adaptive resource allo-

cation and application tuning over various workload executions. In addition,

users usually introduce various requirements that need to be considered dur-

ing the optimization process such as cost, performance and resource efficiency.

Thus, the problem is formulated as a challenging multi-objective task where

a framework needs to provide the optimal amount of system resources based

on application demands, tune the application configurations as well as satisfy

user requirements. Since cloud providers struggle to deliver a combination of

features that satisfy all the aforementioned requirements, users often attempt

to optimize application performance offline to the best of their knowledge.

However, this approach could increase rapidly the infrastructure expenditures

while often becomes infeasible due to time constraints.

In addition, data is becoming massive in terms of volume, variety and ve-

locity, while different techniques have been implemented in order to deal with

this new phenomenon. A NoSQL (meaning ‘not only SQL’) has come to de-

scribe a large class of databases sufficient to deal with massive amounts of data,

supporting also non-schema structure and real-time analysis (Gudivada, D.

Rao, and Raghavan, 2014). Such systems can store data from different sources

without a specific structure, a characteristic that makes them powerful for di-

verse applications such as e-commerce, navigation systems, Web services and

the Internet of Things (IoT). However, the robustness and the reliability of

cloud systems remains a key problem for information technology companies

as cloud systems could suffer from hardware, software and network failures.

Therefore, efficient ways on detecting abnormalities are more important than

ever, since anomalies in the system can cause performance degradation, un-

reasonable energy consumption as well as false scaling estimation from auto-

18



mated algorithms. The latter, indicates the importance of finding techniques

in order to automatically detect abnormal system behavior of cloud systems.

1.3 Research Questions and Objectives

The aim of this PhD thesis is to develop an adaptive framework to provision

cloud resources based on user and application requirements. To achieve this,

the following research questions have to be addressed.

1. Is it possible to develop a framework that automatically allocates virtu-

alized resources that ensure cloud application performance?

2. Is it possible to identify and propose the configurations that improve

application performance while they also satisfy user requirements?

3. Is it possible to automatically detect system abnormalities to ensure that

scaling-decision mechanisms are not prone to errors due to abnormal

system behavior?

To answer the research questions, the following objectives should be met:

O1 A literature review of techniques and methods for reliable and adaptive

resource provisioning in cloud environments with the aim of identifying

relevant critical issues.

O2 The development of a novel framework for adaptive resource provision-

ing in cloud computing environments. This includes the implementation

of three main services for anomaly detection, resource provisioning and

optimization of cloud applications.

O3 The identification of methods that improve the overall system perfor-

mance. This includes efficient deployment strategies to increase the ef-

fectiveness of the proposed framework.
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O4 The design and deployment of real-world applications to experimentally

evaluate the proposed framework. This includes the identification of ap-

plication performance metrics with the aim of selecting state-of-the-art

benchmarks to evaluate the proposed method.

1.4 Major Contributions

Cloud provisioning enables resource anticipation in a proactive manner.

As a result, cloud users have the ability to plan resource allocation based on

future workload demand as well as to benefit from cost-efficient strategies.

However, provisioning systems often face the under-provisioning and over-

provisioning problems that lead to unreasonable costs and performance SLA

violations. Additionally, such systems are prone to incorrect decisions under

abnormal system behavior (e.g., network delays).

This research study presents an auto-scaling framework for adaptive re-

source provisioning in cloud environments. The contributions of this work is

fourfold:

C1 An anomaly detection service to automatically detect aberrant patterns

in cloud computing environments.

C2 An auto-scaling service that enables adaptive resource provisioning

based on workload demands.

C3 A constrained optimization service to identify system configurations that

maximize application performance and satisfy user requirements.

C4 An experimental setting that utilizes efficient strategies, state-of-the-art

benchmarks and novel datasets to evaluate framework functionalities.

To further demonstrate the contributions of this thesis, the following sce-

nario is being presented. A database application is being deployed in the cloud

while a number of resources utilized to execute different types of workloads.

In such a scenario, the user has to monitor the running application to ensure
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that application performance (e.g., throughput) remains above normal thresh-

olds and is not disrupted due to abnormal system behavior. Additionally, the

user needs to manually configure application resources in order to meet work-

load requirements without over-provisioning or under-provisioning any of the

resources. Lastly, the application resources need to be optimized based on user

requirements to ensure feasible and efficient solutions.

Figure 1.1: Major Contributions.

Figure 1.1 illustrates the major contributions of this thesis to address the

aforementioned challenges in cloud computing environments. Firstly, it pro-

poses an anomaly detection service for detecting abnormal application behav-

ior using application monitoring metrics. Then, it ensures that cloud appli-

cations scale dynamically to meet workload demands without over-estimating

or under-estimating the amount of allocated resources. Additionally, it en-

ables application optimization to identify system configurations that maxi-

mize application performance based on user requirements including cost, cost-

performance ratio, baseline performance and idle resources. Finally, intro-

duces an experimental setting to evaluate the effectiveness of the proposed

framework.
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1.5 Thesis Organization

This thesis is organised as follows:

Chapter 2 presents techniques and algorithms used for anomaly detection,

resource provisioning and optimization of cloud applications. Specifically, it

presents a survey of database systems widely used to store and manage large

volumes of data in the cloud. Furthermore, it discusses a family of algorithms

and techniques used to support the proposed methodology. Lastly, a state-of-

the-art literature review of existing works is presented focusing on the prob-

lem of anomaly detection, auto-scaling and resource optimization in cloud en-

vironments.

Chapter 3 presents the model of Performance-Aware Cloud Elasticity

(PACE) framework and describes its main services that support anomaly de-

tection, resource provisioning and optimization of cloud applications. In more

detail, Anomaly Detection based on Metric Monitoring (ADM2) service is pre-

sented to automatically detect performance degradation in cloud systems us-

ing LSTM Autoencoders. Additionally, Adaptive Resource Provisioning (ADA-

RP) service is introduced to enable both reactive and proactive auto-scaling of

cloud applications using K-means and CNN algorithms. System Optimization

using Neuro-genetic Algorithm (SONA) service is also presented to support

constrained performance optimization of cloud applications using a hybrid

approach of Genetic Algorithms and Artificial Neural Networks. This chapter

also presents the algorithmic structure of each service along with their pseudo-

code.

Chapter 4 presents the experimental platform of the PACE framework that

includes the deployment environment, systems and benchmarks. The dis-

cussion presents the cloud computing environment, cloud computing service

models and the virtualization techniques used throughout this research. Ad-

ditionally, it discusses the database application systems, including MySQL,

MongoDB, HBase and Redis, as well as state-of-the-art benchmarks used to

emulate different cloud application scenarios, such as TPC-C, TPCx-IoT and

YCSB.
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Chapter 5 presents the dataset creation process to form the datasets used to

support the proposed methodology. It includes the monitoring, data storage

and data transformation phases. The monitoring phase supports the collec-

tion process of various metrics that describe the behavior of a running cloud

system. These metrics are being stored and transformed in order to create the

datasets used by ADM2, ADA-RP and SONA services, respectively.

Chapter 6 presents the experimental design and evaluation of the PACE

framework and its services namely a) the ADM2 service for anomaly detection,

b) the ADA-RP service for adaptive resource provisioning and c) the SONA

service for constrained optimization. It also presents the experimental map of

PACE services to illustrate the experiments conducted in the cloud to evaluate

PACE models, algorithms and methods. As a result, chapter 6 demonstrates

the ability of PACE framework to detect performance degradation in cloud sys-

tems, to auto-scale cloud applications using reactive and proactive techniques

as well as to optimize system configurations in order to maximize application

performance based on user requirements.

Finally, chapter 7 summarizes the research findings and presents the con-

tribution of this research. It concludes with study’s limitations and proposes

future research directions.
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2 Literature Review

Chapter 1 presented an introduction to cloud computing technology and

its key characteristics. It also provided a brief discussion of the problem area

and demonstrated the aims, the research questions and the objectives of this

thesis. This chapter explores these ideas in greater depth, presenting a survey

of systems and techniques used for cloud anomaly detection, resource provi-

sioning and optimization that realize the key aspects of this thesis.

Section 2.1 provides a discussion around database systems and their key

characteristics. Understanding the attributes of each database system moti-

vates architecture design choices throughout the rest of this thesis. Section

2.2 and 2.3 provide a background on machine learning and evolutionary com-

putation. Section 2.4 explains the different aspects of an anomaly detection

problem including the types of anomalies and detection techniques.

Section 2.5 and 2.6 discuss auto-scaling, resource provisioning and opti-

mization techniques in cloud computing environments. Finally, section 2.7

presents the summary of this chapter.

2.1 Database Systems

A database is a collection of integrated records that is represented of some

physical or conceptual object (Berg, Seymour, Goel, et al., 2013). The end-
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user interacts with the database via a software called database management

system (DBMS). These interactions include defining a database (i.e., specify

data structures), constructing the database (i.e., storing the data), manipulat-

ing the database (i.e., querying and retrieve data) and sharing databases among

users and applications (Elmasri et al., 2000). In that context, database man-

agement systems are categorized based on the database models they support.

A database model is a collection of conceptual tools used to model real-world

entities and their relationships (Silberschatz, Korth, and Sudarshan, 1996). It

consists of three main components: a collection of data structure types, a col-

lection of operators and a collection of general integrity rules (Codd, 1980).

Although various database models have been proposed this research focuses

on the relational and non-relational database models.

2.1.1 SQL databases

The relational database model was first introduced in 1970 from IBM re-

search laboratory (Codd, 2002). In this model, a database uses a collection of

tables to represent both data and their relationships. In that context, a struc-

tured query language (SQL) has been accepted as the standard query language

for relational database management systems (Lu, Chan, and Wei, 1993). Rela-

tional databases considered the most popular database management systems

with a variety of available implementations including IBM DB2, Oracle, Mi-

crosoft SQL server, MySQL and PostgreSQL.

A database application running into a relational database mainly executes

a number of transactions, that is, a collection of database operations including

read, insert, delete and update (Elmasri et al., 2000). Various database appli-

cations execute a large number of concurrent transactions without imposing

excessive delays known as Online Transaction Processing (OLTP) applications

(Sumathi and Esakkirajan, 2007). In that context, DBMS should ensure four

desirable properties of atomicity, consistency, isolation and durability known

as ACID (Haerder and Reuter, 1983).

• Atomicity requires that a transaction is indivisible and must be processed
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in its entirety or not at all. This property ensures that there are no incom-

plete transactions in case of a system failure or any unexpected situation.

• Consistency requires that each successful transaction preserves the con-

sistency of the database after its completion.

• Isolation requires that transaction events must be hidden from other

transactions executing concurrently.

• Durability requires that after the completion of a transaction, the system

guarantees the changes applied to the database.

Relational databases consist of a schema that defines the structure of a

database as a set of table definitions and derivation rules (Halpin and Morgan,

2010). Although, a database schema is useful for managing database objects

in logical groups, various applications cannot conform to a rigid relationship

schema and more flexible solutions are required.

2.1.2 NoSQL databases

Nowadays, data are becoming massive in terms of volume, variety and ve-

locity. As a result, non-relational databases have been proposed to deal with

this new phenomenon. A NoSQL (meaning ‘not only SQL’) has come to de-

scribe a large class of databases sufficient to deal with massive amounts of

data, supporting also non-schema structure and distributed computing (Gu-

divada, D. Rao, and Raghavan, 2014). Such systems can store data from dif-

ferent sources without a specific structure, a characteristic that makes them

powerful for different applications such as e-commerce, navigation systems,

web services and IoT.

NoSQL systems are mainly categorized into four major types including

document-oriented, key-value, column-oriented and graph databases. Each

type consists of different characteristics as follows:

1. Document-oriented databases: These databases are designed to store,

retrieve and manage document data using various formats such as
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JavaScript Object Notation (JSON) and Extensible Markup Language

(XML). Popular document-oriented databases include MongoDB1, Ama-

zon DocumentDB2 and Apache CouchDB 3.

2. Key-value: These databases are based on a simple data model where ev-

ery data element is stored as a key value pair. In these systems, the key

is used to uniquely identify and access the value that can be a record,

a document or an object. Popular key-value databases include Redis4,

Riak5 and Voldermort6.

3. Column-oriented databases: These databases partition a table by column

with values belonging to the same column stored contiguously, com-

pressed and densely packed (Abadi, Boncz, and Harizopoulos, 2009).

Examples of this type of databases are Apache HBase7 and Apache Cas-

sandra8.

4. Graph-based databases: In these databases, data are represented by

graphs and data manipulation is expressed by graph-oriented operations

(Angles and Gutierrez, 2008). Examples of graph-based databases in-

clude Neo4j9 and Nebula10.

The three main requirements in a distributed system are consistency, avail-

ability and partition tolerance. Consistency means that each node will have the

same version of a replicated data item. Availability means that the system will

remain operational and each request will eventually receive a response. Par-

tition tolerance refers to system endurance if a communication fails between

two nodes within a system.

1https://www.mongodb.com/
2https://aws.amazon.com/documentdb/
3https://couchdb.apache.org/
4https://redis.io/
5https://riak.com/
6https://www.project-voldemort.com/voldemort/
7https://hbase.apache.org/
8https://cassandra.apache.org/_/index.html
9https://neo4j.com/

10https://nebula-graph.io/
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NoSQL applications often require a continuous system availability. As a

result, data are being replicated to multiple machines to ensure that are still

available if a node fails to perform. However, data distribution may slow down

write performance if consistency is required due to the fact that every copy of

the replicated data needs to be updated (Elmasri et al., 2000). In that context,

the CAP (Availability, Consistency, Partition tolerance) theorem introduced

the idea that there is a general trade-off between the three desirable proper-

ties. (Brewer, 2000). As a result, the CAP theorem states that it is not possible

to guarantee availability, consistency and partition tolerance at the same time.

Figure 2.1 shows the CAP theorem. Although, SQL applications guarantee

consistency through the ACID properties, many NoSQL applications adopt a

more relaxed form of consistency known as eventual consistency in order to

guarantee availability and partition tolerance (Burckhardt, 2014).

Figure 2.1: Visualization of CAP theorem.

SQL and NoSQL systems are being widely used to serve different types

of applications. In this thesis, both SQL and NoSQL systems are being used

to demonstrate the effectiveness of the proposed methodology. Ergo, database

systems will be deployed in the cloud while state-of-the-art workloads tailored

for each type of system will be used to emulate various realistic application

scenarios.
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2.2 Machine Learning

This thesis uses a variety of machine learning algorithms to enable anomaly

detection, resource provisioning and optimization in cloud environments. Ma-

chine learning refers to a set of tools and methods that can learn from data.

The learning process has been defined in the past as follows: “A computer

program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E” (Mitchell, 1997). This type of learning can

be applied to solve a variety of tasks including natural language processing,

computer vision, anomaly detection and software engineering.

Machine learning algorithms can be categorized as supervised or unsuper-

vised based on the experience they allowed to have during the learning process

(Goodfellow, Bengio, and Courville, 2016). In most cases, machine learning

algorithms experience an entire dataset that consists of a number of observa-

tions. These are also called training examples and used to train the algorithm

given a supervised or unsupervised learning approach.

2.2.1 Supervised learning

Supervised learning considered to be a method that learns with an external

‘teacher’ or a supervisor (Negnevitsky, 2005). In this setting, supervised learn-

ing algorithms experience a training dataset to learn a mapping from inputs x

(features) to outputs y (labels). Ergo, the training set contains a collection of

observations as follows:

D = {(xi , yi)}ni=1 (2.1)

where each observation contains a feature vector xi that is associated with a

label yi for i = 1, ...,n. In that context, two main supervised tasks are being

defined namely as classification and regression.

• Classification: In this task, the classification algorithm performs a map-

ping between an input vector x and an output variable y that is a qual-
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itative variable from a finite set of categories such that yi ∈ {1, ...,K}. As

a result, the learning algorithm produces a mapping function f : Rn →
{1, ...K}. Other variants of classification tasks have been seen in the lit-

erature where f function outputs a probability distribution over classes

(Goodfellow, Bengio, and Courville, 2016). Some examples of classifica-

tion tasks include image recognition and sentiment analysis.

• Regression: This type of task is similar to classification except that the

output is a quantitative variable also called numeric variable. In regres-

sion, the learning algorithm performs a mapping between an input vec-

tor x and a numerical output value y. Ergo, the algorithm produces a

mapping function f : Rn→ R. An example of a regression task is the pre-

diction of future performance metric values such as database through-

put.

2.2.2 Unsupervised learning

The second main type of machine learning is the unsupervised learning

method. In this type of learning there are inputs variables but without a su-

pervising output variable (James et al., 2013). As a result, algorithms expe-

rience a dataset of numerous training examples in order to discover useful

properties and relationships in the data. For that reason, this type of learning

is also called knowledge discovery (Murphy, 2012). The training set contains

a collection of observations as follows:

D = {xi}ni=1 (2.2)

where xi is the input vector and n is the number of observations. Unsupervised

learning tasks include clustering and dimensionality reduction.

• Clustering: In this type of task, the clustering algorithm learns to parti-

tion the observations into subgroups or clusters that share similar char-

acteristics. As a result, observations that belong to the same cluster are

similar to each other while observations that belong to different clusters

are not similar (James et al., 2013). In this domain, there are clustering
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algorithms that partition the data into a predefined number of groups

(e.g., K-means) and clustering algorithms that do not need to know this

information in advance (e.g., hierarchical clustering). Clustering used in

many fields including biology and astronomy.

• Dimensionality reduction: A dataset may consist of numerous feature

variables that increase the processing time during the learning process

and the space required for storage. In that context, dimensionality re-

duction is useful to project the data into lower dimensional subspace that

explains most of the variability in the data (Murphy, 2012). The most

common approach is the Principal Component Analysis that projects the

data into a lower dimension by minimizing the mean squared distance

between the data points and their projections (Bishop and Nasrabadi,

2006). Real-world applications include image compression and data

noise reduction.

There is a third type of machine learning algorithms, namely, reinforce-

ment learning. In this type of learning, algorithms do not experience a training

dataset with numerous observations. On the contrary, reinforcement learning

focused on goal-directed learning from interaction with its environment (Sut-

ton and Barto, 2018). As a result, reinforcement learning consists of closed-

loop problems that explore which actions to take on a given environment in

order to maximize a reward signal. More of this type of learning will be dis-

cussed later in this chapter in section 2.5 where different auto-scaling tech-

niques will be reviewed.

2.2.3 Artificial neural networks

Artificial neural networks (ANN) is a special type of machine learning al-

gorithms widely used to solve a variety of problems such as pattern recogni-

tion, forecasting and optimization (Jain, J. Mao, and Mohiuddin, 1996). ANN

contain connected computational units called neurons organised together in

layers. The idea behind this type of models is to simulate the human brain

where neurons are being activated to perform functions faster and more ac-
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curate (Negnevitsky, 2005). Figure 2.2 shows an example of Artificial Neural

Network architecture with two inputs x1,x2, one output y1 and two hidden

layers.

x1

x2

y1

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

h1 h2

Figure 2.2: Artificial Neural Network architecture with two inputs x1,x2, one
output y1 and two hidden layers.

In more detail, an ANN consists of an input layer, a set of hidden layers

and an output layer. An ANN architecture also determines the number of ar-

tificial neurons in each layer. Figure 2.2 illustrates an ANN architecture with

one input layer of two neurons, two hidden layers of four neurons in each layer

and one output layer of one neuron. Each neuron in hidden and output layers

are interconnected via adaptive weights that are calibrated during the train-

ing process (Bre, Gimenez, and Fachinotti, 2018). Thus, a neuron computes

the weighted sum of the input neurons and then compares the result with a

threshold value, θ (McCulloch and Pitts, 1943). Then, an activation function

is being used to calculate the output of the neuron. For example, sign acti-

vation function outputs −1 if the weighted sum is less than θ threshold and
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+1 if the weighted sum is greater or equal than θ threshold. Figure 2.3 illus-

trates the computation process of a single neuron also known as perceptron

(Rosenblatt, 1958) with two inputs x1 and x2.
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Figure 2.3: Single-neuron computation given two inputs x1 and x2.

It has to be mentioned that activation functions in neural networks have a

significant effect on the training dynamics and task performance (Ramachan-

dran, Zoph, and Le, 2017). The most common activation functions are the

logistic sigmoid, the tangent sigmoid and the Rectified Linear Unit (Relu).

Recurrent Neural Networks (RNN) proposed as powerful neural networks

models for sequential data. This type of models have been used to remem-

ber patterns, maintaining context and process complex signals for long time

periods (Williams and Zipser, 1989) which makes them ideal for real-time re-

source usage analytics. Figure 2.4 demonstrates the architecture of RNN. In

RNN the information flows from the input layer denoted as x(t) in time step

t as well as the hidden layer denoted as h(t − 1) from the previous time step

t −1. The latter allows the network to have a memory of past events (Raschka,

2015). Wxh is the weight matrix between the input x(t) and the hidden layer

h, Whh is the weight matrix associated with the information from the previous

time step, that is, the recurrent edge, and Why is the weight matrix between

the hidden layer h and the output layer y.
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Figure 2.4: RNNs Architecture.

Long Short-Term Memory (LSTM) model is a type of a RNN that promises

a substantial improvement in sequential data with temporal sequences and

long-range dependencies (Hochreiter and Schmidhuber, 1997). An LSTM

model contains special units called memory cells that are organised inside the

recurrent hidden layer. Each memory cell contains an input gate, an output

gate and a forget gate. The forget gate has been subsequently added in order to

enable processing continuous input streams that are not segmented into sub-

sequences (Sak, Senior, and Beaufays, 2014). The forget gate gives the ability to

LSTM cell to learn to reset itself at appropriate times and prevent the network

to break down in situations where time series grow arbitrary through time

(e.g., continuous input streams) (Gers, Schmidhuber, and Cummins, 2000).

An LSTM receives an input sequence x = ⟨x1,x2,x3, ...,xT ⟩ and maps it to

an output sequence y = ⟨y1, y2, y3, ..., yT ⟩ by calculating the following equations

iteratively from t=1 to T:

it = σ (Wixxt +Wimmt−1 +Wicct−1 + bi) (2.3)
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ft = σ (Wf xxt +Wf mmt−1 +Wf cct−1 + bf ) (2.4)

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcmmt−1 + bc) (2.5)

ot = σ (Woxxt +Wommt−1 +Wocct + bo) (2.6)

mt = ot ⊙ h(ct) (2.7)

yt = φ(Wymmt + by) (2.8)

where the i is the input gate that uses the logistic sigmoid function denoted

as σ in order to control the information that flows into the cell, f is the forget

gate that uses the logistic sigmoid function to decide what information to keep

outside the cell state, o is the output gate that uses the logistic sigmoid func-

tion to control the information that flows out of the cell, c is the cell activation

vectors, m is the output activation vector where ⊙ is the element-wise product

of the vectors, g is the cell input activation function, h is the cell output acti-

vation function which is usually the tanh function, φ is the output activation

function of the output sequence y which is usually the sof tmax function, W

terms denote weight matrices and b terms denote bias vectors.

Another type of artificial neural networks namely as Convolutional Neu-

ral Networks (CNN) has been widely used for different tasks including image

recognition (Hijazi, R. Kumar, Rowen, et al., 2015) and time series forecast-

ing (Chouliaras and Sotiriadis, 2022), (Barino et al., 2020). CNN design in-

spired from the visual cortex, that is brain’s visual mechanism. CNN contains

convolution layers that are responsible for extracting different patterns in the

data. Ergo, CNN uses the extracted information to predict future events based

on a given task. CNN architecture promises a much simpler and easier to

train alternative to recurrent neural networks while achieving at least as good
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or better performance in time series forecasting tasks (Borovykh, Bohte, and

Oosterlee, 2017).

This thesis focuses on both supervised and unsupervised learning tasks.

The proposed methodology uses a variety of algorithms including K-means,

ANN, LSTM and CNN. For example, CNN have been used as a supervised

learning approach to predict the future CPU utilization values based on his-

torical time series data. Furthermore, ANN used during the resource opti-

mization process to support an ANN-based objective function. Additionally,

unsupervised learning algorithms also used for triggering scaling decisions. In

more detail, K-means clustering algorithm used to partition time series data

into different groups based on CPU utilization levels. Lastly, unsupervised

learning methods used for detecting abnormalities in cloud systems.

2.3 Evolutionary Computation

Evolutionary computation represents a powerful method to simulate nat-

ural evolution. It consists a series of optimization algorithms usually referred

to as evolutionary algorithms. These algorithms make use of genetic-inspired

operations in order to evolve a set of candidate solutions (Dumitrescu et al.,

2000). Ergo, during the optimization process the algorithms iteratively im-

prove a set of solutions until an optimal or a feasible solution is found (Neg-

nevitsky, 2005). In this thesis, evolutionary computation algorithms used to

enable constrained resource optimization of cloud database systems. In more

detail, PACE framework uses evolutionary computation algorithms to explore

the optimum configurations that maximize application performance based on

user requirements.

2.3.1 Simulation of evolution

Biological evolution entails changes in the characteristics of biological pop-

ulations over time, leading to differences among them (Strickberger, 2000).

Most organisms evolve through natural selection and reproduction. The for-
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mer refers to the process of selecting members of the population to repro-

duce while the latter ensures recombination among the genes of their offspring

(Holland, 1992b). As a result, the evolutionary process improves population’s

ability to survive and reproduce in a specific environment, an ability known

as evolutionary fitness (Negnevitsky, 2005).

Let us take as an example a population of rabbits (Michalewicz, 1996b).

Some rabbits in the population are faster and smarter while some other rabbits

are slower and dumber. The faster and smarter rabbits have a higher chance

to avoid foxes thus, surviving. Nevertheless, some slower and dumber rabbits

are going to survive but with lower chances. Consequently, the surviving pop-

ulation starts breeding resulting to some fast rabbits breed with fast rabbits,

fast rabbits breed with slow rabbits and slow rabbits breed with slow rabbits.

The new population will be faster and smarter (on average) than the original

population since a greater number of faster and smarter parent rabbits sur-

vived the foxes. It has to be mentioned that some rabbits experience genetic

mutation resulting to changes of their genetic material.

Evolutionary computation algorithms designed to follow the principles of

natural selection and the “survival of the fittest” (Michalewicz, 1996b). These

stochastic algorithms model some natural phenomena including genetic in-

heritance and Darwinian strife for survival (Michalewicz, 1996a). Although,

evolutionary computation refers to a family of algorithms, this work focuses

on Genetic Algorithms inspired by natural evolution to solve both constrained

and non-constrained optimization problems.

2.3.2 Genetic algorithms

Genetic Algorithms (GA) are a class of stochastic search algorithms that

simulate the process of natural evolution (Negnevitsky, 2005). This type of

algorithms explore a much greater range of candidate solutions to a prob-

lem than conventional programs do (Holland, 1992b). GA involve individuals

and populations. Individuals are being encoded to represent a single solu-

tion while the population consists a set of individuals involved in the search

process (Sivanandam and Deepa, 2008). Each individual is represented by a
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chromosome that is subdivided into genes. Ergo, a chromosome is a sequence

of genes that represent a single factor of the solution.

GA apply the following steps during the optimization process (Negnevit-

sky, 2005):

1. Represent the problem variable as a chromosome that contains a fixed

number of genes, a size of population N, a crossover probability pc and a

mutation probability pm.

2. Define the objective function, that is the fitness function, to evaluate each

chromosome in the population.

3. Randomly generate a population of size N.

4. Evaluate the fitness of each individual chromosome in the population

using the objective function.

5. Select a pair of chromosomes with a probability related to their fitness.

6. Generate a pair of offsprings by applying crossover and mutation opera-

tors.

7. Include the generated offsprings to the new population.

8. Repeat step 5 until the size of the new population equals to N.

9. Replace the old population with the new population.

10. Repeat the process starting from step 4 until a desired criterion is

reached (e.g., number of generations).

GA take advantage of modern parallel processing systems and provide so-

lutions in areas ranging from the design of integrated circuits to the design

of aircraft turbines (Holland, 1992a). In this work, GA used to solve a con-

strained optimization problem. The chromosome defined as a sequence of

genes to represent resource and application configuration parameters. During

the optimization process an ANN-based objective function used to evaluate

the fitness of each chromosome while numerous constraints applied to explore

solutions that satisfy user requirements.
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2.4 Anomaly Detection

Anomaly detection refers to the process of identifying data points, events

or patterns that deviate from the normal data distribution. These nonconform-

ing patterns inherited different names based on application domain including

anomalies, outliers, surprises, or peculiarities (Chandola, Banerjee, and V. Ku-

mar, 2009). Anomaly detection has a wide variety of applications, including

network intrusion detection for cyber security and fraud detection in finance.

2.4.1 Data types

Data types refer to the nature of input and output data during the anomaly

detection process. The following two types define the problem characteris-

tics and the anomaly detection techniques to be used in different application

domains.

Input data

Input data are usually a collection of attributes that contain information to

be analyzed by the detection system. These attributes can be of the same type

or a mixture of different types such as binary, categorical or continuous (Chan-

dola, Banerjee, and V. Kumar, 2009). Furthermore, an input might consist of

multiple data attributes (multivariate) or a single attribute (univariate). For

example, a monitoring system collects resource usage metrics as a sequence

of data points indexed in time order. Then, a detection system analyzes the

time series to detect abnormal behavior of the running system. In that con-

text, anomaly detection for multivariate data refers to a system that takes de-

cision based on multiple metrics (e.g., CPU, memory and disk usage). On the

contrary, anomaly detection for univariate data refers to a system that detects

abnormalities based on a single metric (e.g., database throughput).
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Output data

Given different application scenarios, anomaly detection systems report

anomalies in two types of outputs. These are as follows:

• Scores: Anomaly detection scoring techniques used to compute an

anomaly score for each test data instance. In this type of systems, an-

alysts have the ability to order all data instances based on the anomaly

score and define the most important anomalies in the system.

• Labels: In this type, the anomaly detection system assigns a label to each

data instance. For example, an anomaly detection system may use a ma-

chine learning algorithm that learns from historical data in order to clas-

sify future instances as normal or abnormal.

Score-based techniques allow the administrator to use thresholds based on

application requirements in order to effectively detect abnormal instances. On

the other hand, label-based techniques promote an automated solution where

no predefined thresholds required, however, availability of labeled data is usu-

ally a major issue (Chandola, Banerjee, and V. Kumar, 2009).

2.4.2 Anomaly types

The type of anomaly defines the nature of the problem and the techniques

needed to solve it. There are three main types of anomalies as follows:

• Point Anomalies: In this type of anomalies a single data instance flagged

as an anomaly with respect to the rest of data. Real-world examples in-

clude credit card fraud detection and system intrusion detection.

• Contextual Anomalies: In this type, a data instance is flagged as anoma-

lous in a specific context. This type of anomaly also referred as condi-

tional anomaly in the literature (Song et al., 2007). Contextual anomalies

can be found in surveillance video and in big sensor data systems.
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• Collective Anomalies: This type refers to a collection of data instances

that have been classified as anomalies. Such anomalies suggest a combi-

nation of abnormal events that may be identified based on various data

sources (Y. Zheng, H. Zhang, and Y. Yu, 2015).

Of the three aforementioned anomaly types, point anomalies are the sim-

plest type of anomalies and the easiest to detect. This is due to the fact that

can be treated independently during detection and no temporal relationships

need to be considered (Lin et al., 2020). On the other hand, contextual and col-

lective anomalies are more challenging since additional information is needed

during the detection process. It has to be mentioned that, a point anomaly or

a collective anomaly can be also a contextual anomaly (Chandola, Banerjee,

and V. Kumar, 2009). For example, time series data points may be flagged as

anomalies based on the value of surrounding data points.

2.4.3 Anomaly detection techniques

Anomaly detection approaches can be categorized in three main classes:

supervised, unsupervised and semi-supervised.

Supervised anomaly detection

Supervised anomaly detection includes a training dataset that contains a

number of observations. Each observation consists of attributes mapped to a

specific label variable (e.g., normal or abnormal) that adds informative context

to the data. In that context, the most common use case is to build a machine

learning model that learns to classify normal and abnormal events. However,

there are two main issues that arise using supervised anomaly detection meth-

ods: imbalanced data and data labeling (Chandola, Banerjee, and V. Kumar,

2009). Imbalanced data refers to datasets where the classification categories

are not approximately equally represented (Chawla, 2009). In general, obser-

vations of abnormal instances appear less frequently in a dataset compared to

normal instances that may negatively impact the performance of the model.

Additionally, data labeling is not a trivial task since it requires a high degree

of consistency, accuracy and precision.
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Unsupervised anomaly detection

In this anomaly detection technique, the objective is to assign a score to

each data instance that reflects the degree to which the instance is an anomaly

(Tan, Steinbach, and V. Kumar, 2016). This type of techniques appear to be

powerful especially in the setting where labels are not available or the abnor-

mal class appears less frequently in the dataset. However, this type of anomaly

detection make two basic assumptions. The first assumption is that the num-

ber of normal instances appear more frequently in the dataset compared to the

abnormal instances. Secondly, unsupervised anomaly detection methods as-

sume that the anomalies are qualitatively different from the normal instances

(Eskin et al., 2002). However, in some application areas unsupervised methods

fail to achieve the required detection rates (e.g., network intrusion detection)

(Görnitz et al., 2013). The main reason is that intrusion instances may appear

in the same number as normal instances, thus can cause them all to be labeled

as normal since they are not distinct from one another (Tan, Steinbach, and V.

Kumar, 2016).

Semi-supervised anomaly detection

Semi-supervised anomaly detection techniques assume that labels exist

only for the normal instances, while there is no information about the ab-

normal instances. In that context, semi-supervised methods use the informa-

tion from a small pool of labeled normal instances to find an abnormal label

for a set of given instances (Tan, Steinbach, and V. Kumar, 2016). In semi-

supervised anomaly detection methods the occurrence of many abnormal test

instances does not effect the detection rates. However, in many cases finding

a representative set of normal instances is not a trivial task (Tan, Steinbach,

and V. Kumar, 2016). Furthermore, semi-supervised anomaly detection meth-

ods are vulnerable to noisy instances that have been mistakenly labeled (Pang

et al., 2021). In such cases unsupervised anomaly detection techniques can be

utilized.
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2.4.4 Discussion of anomaly detection approaches

This subsection presents a discussion around different methods that are

based on resource usage and application monitoring for detecting abnormal

events in the cloud.

Dhingra, Lakshmi, and Nandy (2012) underlined the importance of re-

source usage cloud monitoring for both cloud-user and service provider. The

cloud-user’s interest is to arrive at an appropriate Service Level Agreement

(SLA) while the cloud-provider’s interest is to ensure user’s satisfiability. In

order to meet the aforementioned requirements, they propose a distributed

monitoring framework, which enables application monitoring and ensures

SLA based on application’s Quality of Service (QoS) requirements. Three Web

Servers hosted on three VMs on a single host and httperf (Mosberger and Jin,

1998) benchmarking tool was used to measure web server performance by

generating specific HTTP workloads. The basic architecture of their virtual

environment consist four components VM Agent, Dom0 Agent, Metrics Col-

lector and Customer Interface Module. The VM agent collects the metrics for

each VM while The Dom0 Agent is specific to Xen hypervisor and collects the

per-VM effort. Both Agents communicate with the Metrics Collector which

in turn communicates with the Customer Interface Module in order to meet

customer’s monitoring requirements.

Lately, different approaches have been used to detect abnormalities in

cloud systems based on resource usage data. Such techniques consist a power-

ful tool to tackle denial-of-service (DoS) attacks that occupy large amounts

of computing resources from unauthorised users. S. Zhao, Chen, and W.

Zheng (2009) proposed a defending schema that uses virtual machine mon-

itor (VMM) to detect DoS attacks effectively based on a resource availability

threshold. Due to the fact that DoS attacks occupy available resources without

crashing the operating system, the VMM collects resource usage metrics (e.g.,

CPU usage) to acquire information on lower level. Consequently, they detect

an abnormal behavior as the resources of a virtual machine decrease to a pre-

defined threshold. Additionally, if the defending system assures an attack, it

will migrate the operating system alongside the tagged applications, on-the-
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fly, in a new isolated environment while the initial VM will be interrupted or

even destroyed.

Bertero et al. (2017) introduced the logging as a key source of informa-

tion on a system state. Their work presented efficient algorithms for log

mining with minimum human intervention. They applied a word embed-

ding technique based on Google’s word2vec algorithm that requires little in-

tervention and promises strong predictive performance. Natural language

processing techniques give a linguistic approach to anomaly detection that

promises automation and further performance improvements. However, log-

based anomaly detection techniques face their own challenges in modern

cloud environments. As virtual machines scale horizontally in huge sizes, the

complexity of those systems is rising and auditing becomes a challenging task

as the volume of logs increases accordingly.

Malhotra et al. (2016) proposed an LSTM based Encoder-Decoder scheme

for Anomaly detection as an alternative of standard approaches. In their find-

ings, the LSTM Autoencoder learns to reconstruct normal time series behavior.

Then, their model used the reconstruction error to effectively detect anomalies

from predictable, unpredictable, periodic, aperiodic and quasi-periodic time

series. Nguyen et al. (2020) proposed an LSTM Autoencoder network-based

method combined with a one-class support vector machine algorithm used for

anomaly detection. The LSTM Autoencoder network trained on normal repre-

sentations and used to calculate a prediction error vector. Then, the one-class

Support Vector Machine algorithm used to separate the abnormal observations

from normal samples based on the predicted error vector.

Longari et al. (2020) proposed CANolo, an intrusion detection system

based on LSTM Autoencoder to identify anomalies in controller area networks.

Their framework automatically trained on controller area networks streams to

build a model based on the legitimate data sequences. Then, the reconstructed

error used to detect anomalies between legitimate sequences and simulated

attacks. Trinh et al. (2019) proposed an LSTM Autoencoder to reconstruct mo-

bile traffic data samples and an LSTM traffic predictor to predict the traffic of

future time instants. In both cases, they analyzed the reconstructed and the

predicted error to assess if the mobile traffic presents anomalies or not.
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Although, all the aforementioned techniques proposed alternative solu-

tions in order to detect abnormalities in cloud systems, they are mainly fo-

cused on log mining and data storage techniques. On the contrary, this thesis

focuses on LSTM Autoencoders to reconstruct normal sequence representa-

tions of application metric data streamed from MongoDB and HBase systems.

Then, unseen observations are being classified as normal or abnormal on-the-

fly based on the reconstruction error produced by the LSTM Autoencoder. It

has to be mentioned that anomaly detection techniques improve system aware-

ness and enhance the ability of system administrators to automatically detect

application performance degradation. Furthermore, aberrant patterns may

negatively effect the proposed auto-scaling decision mechanism that is vul-

nerable to abnormal system behavior. Thus, anomaly detection techniques

improve the auto-scaling process and the overall effectiveness of PACE frame-

work.

2.5 Auto-scaling

An auto-scaling system automatically adjusts allocated resources to a run-

ning application to incorporate workload demands. As a result, the system is

able to run more effectively and more efficiently with minimum human inter-

vention.

2.5.1 Auto-scaling process

Auto-scaling process follows the MAPE loop for autonomous systems that

consists of Monitoring, Analysis, Planning and Execution phases (Maurer et

al., 2011). Figure 2.5 illustrates the four phases of MAPE loop given a managed

resource (e.g., cloud application).

The monitoring phase enables the collection of different measurements

about the running application (managed resource) including application re-

sources (e.g., allocated CPU cores, allocated memory) and application usage

metrics (e.g., CPU usage, memory usage and throughput). Next, auto-scaling
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Figure 2.5: Auto-scaling MAPE (Monitoring, Analysis, Planning, Execution)
loop.

systems enable the analysis phase where the system processes the monitored

metrics. In that context, reactive auto-scalers trigger scaling decisions based

on the current system status. However, more complex strategies known as

proactive auto-scaling, predict future demands to adjust system resources

with enough anticipation (Lorido-Botran, Miguel-Alonso, and Lozano, 2014).

Once the future demand is known, the auto-scaler enables the planning phase

to adjust system resources based on application and user requirements. Fi-

nally, the execution phase triggers all the scaling actions through the effector.

2.5.2 Auto-scaling techniques

Recent works suggested different auto-scaling techniques to facilitate re-

source provisioning in the cloud. Lorido-Botran, Miguel-Alonso, and Lozano

(2014) suggested that most reviewed works can be fit in one or more of the

following categories: a) threshold-based rules, b) reinforcement learning, c)

queuing theory, d) control theory and e) time series analysis.
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Threshold-based rules

Threshold-based rules or policies are being widely used by cloud providers

such as Amazon EC2 (Amazon, 2022a) and Google Cloud Platform Com-

pute Engine (Google, 2022c). Threshold-based auto-scaling rules enable cloud

users to define an upper and a lower threshold based on one or more perfor-

mance metrics such as CPU utilization and average response time. As a result,

if the performance metric value is over the upper threshold or under the lower

threshold, then a scaling decision will be triggered.

This technique has been widely used in the literature. R. Han et al. (2012)

proposed a lightweight threshold-based approach to enable cost-effective elas-

ticity for cloud applications. The proposed framework triggers scaling deci-

sions based on predefined utilization thresholds (e.g., CPU usage and mem-

ory usage) to satisfy response time requirements. F. Zhang et al. (2019) pro-

posed a lightweight container auto-scaler for elastic auto-scaling. Their frame-

work monitors containers resource usage and accordingly scales in or out the

containers based on a threshold-based strategy. Gulisano et al. (2012) intro-

duced an elastic and scalable data streaming system where provisioning and

decommissioning are triggered based on an upper and lower CPU utilization

threshold. Threshold-based techniques promise lightweight and faster solu-

tions, however setting the corresponding thresholds is not a trivial task since

it requires a deep understanding of the running application. Furthermore,

the effectiveness of a threshold-based approach is questionable under bursty

workload behavior where metrics fluctuate strongly.

Reinforcement learning

Reinforcement learning (RL) involves a mapping between situations and

actions so as to maximize a numerical reward signal (Sutton and Barto, 2018).

In this domain, RL uses a trial-and-error approach to automate the scaling

task by learning the most suitable scaling action for each particular state. RL

techniques are suitable for automatic scaling decisions as they do not require a

priori knowledge of the application performance model. As a result, an agent,

that is the auto-scaler, reinforces scaling decisions that lead to high rewards.
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The reward system is based on application performance improvement such as

increase application throughput or reduce response time.

RL techniques have been extensively used by several authors to imple-

ment auto-scalers. Schuler, Jamil, and Kühl (2021) proposed an RL-based

auto-scaling technique for dynamic resource provisioning in serverless envi-

ronments. Barrett, Howley, and Duggan (2013) used a reinforcement learning

algorithm known as Q-learning to determine optimal scaling policies. Arabne-

jad et al. (2017) proposed a self-adaptive fuzzy logic controller that combines

two reinforcement learning approaches: (i) Fuzzy SARSA learning and (ii)

Fuzzy Q-learning. J. Rao et al. (2009) recommended an RL-based agent to au-

tomate the VM configuration process that includes VM’s memory size, sched-

uler credit and virtual CPU number respectively. Their agent automates VM

reconfiguration process by generating policies learned from iterations with the

environment. Horovitz and Arian (2018) presented Q-Threshold algorithm as

an innovative auto-scaling approach based on RL. Q-Threshold learns the best

utilization thresholds to enable dynamic auto-scaling according to application

behavior. Although, RL-based auto-scaling techniques have been widely used

to automatically adjust application resources, they present several problems

including a long period of training time and poor performance before an ac-

ceptable solution is found.

Control theory

Control theory has been applied to automate the scaling tasks of cloud ap-

plications. The main objective of a controller is to adjust system resources in

order to maintain the controlled variable (e.g., memory usage) closed to a de-

sired level. Control theory has been widely used in the literature. H. C. Lim,

Babu, and Chase (2010) proposed an elastic controller to adjust the number

of VMs based on average response time and CPU utilization. Gandhi et al.

(2016) used control theory for auto-scaling cloud-deployed data processing

clusters. They employed a simple reactive controller to ensure execution time

SLA compliance for Hadoop jobs. Ali-Eldin, Tordsson, and Elmroth (2012) in-

troduced two adaptive hybrid controllers that use both reactive and proactive
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control for scaling cloud resources based on present and future demand re-

spectively. Padala et al. (2009) presented AutoControl, a resource control sys-

tem that automatically adapts to dynamic workload changes to satisfy service-

level objectives. The AutoControl is able to adjust CPU and disk I/O usage to

mitigate system bottlenecks. However, their approach does not control appli-

cation adaptive parameters which can impact both the application benefit and

execution time.

Queuing theory

Queuing theory enables auto-scaling by modeling applications and sys-

tems based on specific performance metrics such as the queue length or the

average waiting time for requests. This technique has been widely used as an

auto-scaling method in the literature.

Jiang et al. (2013) proposed a novel cloud resource auto-scaling scheme

for web application providers. They predicted the number of requests by ex-

ploiting machine learning techniques and then they utilized queuing theory

and multi objective optimization to discover the optimal number of VMs. G.

Huang et al. (2016) used queuing theory for auto-scaling virtual machines in

web applications. In their work, a queuing model has been used to predict the

arrival time of each customer in order to calculate the minimum amount of

resources needed to meet application needs.

Ali-Eldin, Kihl, et al. (2012) enabled queuing theory to construct an au-

tonomous elasticity controller that changes the number of virtual machines

allocated to a service based on load changes and predictions of future load.

Feng et al. (2012) used queuing theory to formalize the resource allocation

problem in cloud computing environments. They proposed optimal solutions

for the problem considering various QoS parameters such as pricing mecha-

nisms and available resources. The main limitation of queuing theory models

is that they need to be recomputed when changes applied to application envi-

ronment.
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Time series analysis

Time series analysis covers a wide range of methods mainly focused on

learning historical sequences in order to make future estimations about vari-

ous metrics such as CPU and memory usage (Chouliaras and Sotiriadis, 2019).

In this domain, time series analysis consists the main enabler of proactive

auto-scaling techniques, where scaling decisions are being planned based on

the predicted values.

Roy, Dubey, and Gokhale (2011) developed a model-predictive algorithm

for workload forecasting that is used for resource auto-scaling. The proposed

algorithm used to allocate or deallocate resources that satisfy application QoS

with low operational costs. Marie-Magdelaine and Ahmed (2020) used a

proactive auto-scaling algorithm based on Long Short-Term Memory (LSTM)

to improve latency for cloud-native applications. Gong, Gu, and Wilkes (2010)

presented a novel predictive resource scaling system for cloud systems. They

used an auto-regression method for resource usage forecasting and performed

elastic VM resource scaling based on the prediction results. Nikravesh, Ajila,

and Lung (2015) considered the number of user requests per time unit as

the performance metric and utilized Support Vector Machines and Artificial

Neural Networks as time series prediction techniques. Golshani and Ash-

tiani (2021) used convolutional neural networks to predict future workload

demand of cloud services. Furthermore, they proposed a mechanism for scal-

ability decisions based on the predicted workload demand and user require-

ments. However, their multi-criteria decision making method consists of var-

ious threshold-based parameters that need to be set according to application

and SLA requirements.

2.5.3 Auto-scaling containerized applications

Data centers use two main types of virtualization technologies in order to

decouple applications from hardware namely as hardware level virtualization

and operating system level virtualization (Sharma et al., 2016). Hardware level

virtualization includes a hypervisor that virtualize resources across multiple

VMs. However, applications deployed on a VM require the installation of an
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operating system that increase the demand for resources on the server. On the

contrary, operating system level virtualization involves containers that make

available protected portions of the operation system (Merkel et al., 2014). As

a result, containers continue to gain traction as lightweight solution where

resource utilization is more efficient and the deployment is faster.

In that context, numerous orchestration platforms have been proposed for

automating deployment, scaling, and management of containerized applica-

tions including Amazon Elastic Container Service (Amazon ECS) (Amazon,

2022c) and Kubernetes (Kubernetes, 2022). One of the main aspects of these

platforms is the dynamic resource configuration in terms of vertical and hor-

izontal elasticity. Vertical scaling refers to the resizing of existing containers

(scale up or down), while horizontal scaling consists of decreasing or increas-

ing the number of containers in a cloud environment (scale in or out). Figure

2.6 illustrates vertical and horizontal scaling in cloud computing.

Figure 2.6: Horizontal and vertical scaling in cloud computing.

A variety of auto-scaling techniques and methods have been proposed to

enable horizontal and vertical scaling in cloud environments. These are dis-

cussed in the next subsections.
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Horizontal auto-scaling

Horizontal scaling of container-based applications has been extensively

supported by cloud providers including AWS and Google Cloud. For instance,

Kubernetes Horizontal Pod Autoscaler (HPA) used by Google Kubernetes En-

gine (GKE) to increase or decrease the number of Pods in response to work-

load’s CPU and memory demand (HPA, 2022). Many researchers also pro-

posed different techniques to support horizontal scaling of containerized ap-

plications. Imdoukh, Ahmad, and Alfailakawi (2020) proposed a proactive

machine learning-based approach to perform auto-scaling of Docker contain-

ers in response to dynamic workload changes. In their work, LSTM model used

to predict future HTTP workload to decide the number of containers needed to

handle requests ahead of time. Klinaku, Frank, and Becker (2018) presented

CAUS, a controller that consists of two auto-scaling mechanisms that man-

age the number of replicated containers. Kan (2016) introduced DoCLoud, an

elastic cloud platform for web applications based on docker. DoCloud uses a

hybrid elasticity controller that dynamically increases or decreases the number

of containers to maintain higher resource utilization. Bello et al. (2021) pro-

posed a predictive horizontal auto-scaling mechanism that scales container-

ized mobile core network entities based on their CPU utilization. Although,

most of the works focus on horizontal elasticity, fewer studies address the

problem of vertical elasticity of container-based applications

Vertical auto-scaling

Vertical elasticity considered to be a better option than horizontal elasticity

when enough resources are available to the server. One of the main reasons is

that vertical elasticity eliminates booting delays of adding new instances to the

server, as opposed to horizontal elasticity. Furthermore, horizontal elasticity is

restricted to applications that can be replicated or decomposed while vertical

elasticity is applicable to any cloud application (Al-Dhuraibi et al., 2017). Ad-

ditionally, vertical elasticity does not require supplementary tools (e.g., load

balancers) or replicated instances that may add extra overhead and additional

costs to the running system.
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Vertical auto-scaling has enabled cloud customers to automatically ad-

just the size of containers based on workload requirements. As for example,

Amazon Elastic Kubernetes Service (Amazon EKS) and GKE use the Kuber-

netes Vertical Pod Autoscaler (VPA) to automatically analyze and set CPU

and memory reservations in the Pods (VPA, 2022). Additionally, numerous

works proposed different mechanisms to scale containerized applications ver-

tically. Paraiso et al. (2016) proposed a model-driven approach to address ver-

tical elasticity of Docker containers. In their work, they designed a graph-

ical model-driven tool called Docker Designer to design, reason and deploy

containers. Furthermore, they used Model-Driven Engineering techniques for

managing the Docker containers. Their tool allows the synchronization be-

tween the designed and the deployed containers respectively. However, their

approach suggests that users need to manually adjust container’s resources to

enable vertical elasticity.

Nicodemus, Boeres, and Rebello (2020) presented VEMoC, a tool that im-

plements vertical memory elasticity in containers. The management iteration

of VEMoC tool consists seven phases: 1) calculate memory demand of inactive

containers, 2) classify running containers by recent memory consumption, 3)

passive memory limit reduction, 4) active memory limit reduction, 5) increase

container memory limits, 6) pause or suspend containers and 7) start or re-

sume inactive containers. Their solution manages to increase the utilization in

the server without affecting the performance of each container. However, their

tool does not yet integrate CPU throttling with memory elasticity to reduce the

number of preemption events. Furthermore, VEMoC does not consider user

requirements (e.g., budget constraints) in cases where the containers need to

scale up in order meet workload demands.

Baresi et al. (2016) presented an auto-scaling technique based on a discrete-

time feedback controller for containerized cloud applications. Their auto-

scaling technique vertically scales the resources of cloud-based Web applica-

tions by increasing the number of allocated cores in the container. As a result,

they managed to improve the performance of web applications by keeping

the response time under a desired threshold. However, their approach only

considers the amount of CPU cores required per tier, while their controller
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requests a specific amount of RAM per core. As a result, their approach is

limited to Web applications where memory saturation is not an issue.

Al-Dhuraibi et al. (2017) proposed ElasticDocker for powering vertical

elasticity of Docker containers autonomously. Their system scales up and

down both CPU and memory container’s resources according to application

workload demand. ElasticDocker consists of two main components namely a

monitoring system and an elasticity controller. The monitoring system is re-

sponsible for collecting metrics and limits from Docker containers including

CPU usage and the number of allocated vCPU cores. The elasticity controller

adjusts memory, CPU time and the number of vCPU cores based on workload

requirements. Furthermore, their system supports live container migration

when the host machine has inadequate resources. However, the proposed con-

troller does not support predictive approaches to estimate future workload

demand. Thus, ElasticDocker does not have the ability to anticipate workload

requirements and rapidly adjust the resources accordingly.

Although, the techniques discussed in this section propose different auto-

scaling techniques, they do not provide an end-to-end solution that includes

automatic scaling decisions based on the predicted workload demand. Fur-

thermore, the aforementioned techniques do not include a mechanism to rec-

ognize abnormal conditions in a cloud environment. As a result, the proposed

auto-scaling mechanisms are prone to incorrect decisions under unusual sys-

tem behavior.

2.6 Resource Provisioning and Optimization

This section discusses relevant methods for resource provisioning and op-

timization of cloud applications. There has been a lot of research in the area

of provisioning virtualized resources. Abrahao et al. (2006) presented a dy-

namic capacity management framework in a multi-service environment based

on an optimization model so as to maximize provider’s business objective. L.

Zhao, Sakr, and Liu (2013) introduced a framework that facilitates adaptive

and dynamic provisioning for consumer-centric service level agreements man-
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agement of cloud-hosted databases. Singh, Chana, and Buyya (2017) proposed

an SLA-aware autonomic resource management technique that focuses on re-

ducing SLA violation rate and satisfy QoS requirements. Comellas, Presa, and

Fernández (2010) presented an elastic web hosting provider that makes use

of cloud computing infrastructures for scaling the web applications deployed

on it. However, monitoring the SLA compliance in (Abrahao et al., 2006; L.

Zhao, Sakr, and Liu, 2013; Singh, Chana, and Buyya, 2017; Comellas, Presa,

and Fernández, 2010) may require centralized services.

Previous works have introduced control theory techniques to facilitate vir-

tualized resource management. Padala et al. (2009) introduced AutoControl, a

resource control system that automatically allocates the right amount of CPU

and disk I/O in order to adapt to dynamic workload changes. However, their

approach does not control application adaptive parameters which has a sig-

nificant impact to the application benefit. Zhu and Agrawal (2012) used a

multi-input-multi-output feedback control model for dynamic resource provi-

sioning to ensure the optimal application benefit within a time constraint. In

addition, their model changes resource allocation based on budgets. However,

the dynamic resource provisioning algorithm introduces a runtime overhead

to the main application.

In addition, many approaches introduced resource provisioning with bud-

get constraints. J. Yu and Buyya (2006) proposed a new type of GA to solve a

budget constraint based scheduling that minimizes the execution time while

meeting a specified budget. Mohan et al. (2016) proposed a big data work-

flow scheduler that supports scheduling in heterogeneous cloud computing

environments under a provided budget constraint. Faragardi et al. (2019) in-

troduced a resource provisioning mechanism and a workflow scheduling algo-

rithm for minimizing the makespan of a given workflow subject to a budget

constraint. Sakellariou et al. (2007) implemented an algorithm to schedule

directed acyclic graphs onto heterogeneous machines to optimize the overall

time of the workflow application under budget constraints. PACE framework

not only supports resource provisioning based on budget constrained, but also

enables the user to further penalize the recommended system based on idle

CPU resources, cost-performance ratio and baseline performance.
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Islam et al. (2012) proposed Neural Networks and Linear Regression mod-

els as a prediction-based resource measurement and provisioning strategy. In

their work, both prediction techniques, used a dataset obtained by using TPC-

W e-commerce application benchmark for forecasting resource utilization in

the cloud. However, their prediction framework does not follow an adaptive

and optimal resource provisioning strategy since business-level SLAs such as

performance and monetary cost are not integrated into the prediction mod-

els. Biswas et al. (2014) proposed a proactive approach based on machine

learning algorithms for automatic resource provisioning. Both Support Vector

Machines and Linear Regression models used past workload data to predict

the characteristics of future requests and determine the number of the allo-

cated resources. However, their approach increases the execution time and

adds extra overhead to the system in contrast with PACE framework that uses

a cloning strategy. In addition, their framework does not support online train-

ing, thus, the system cannot adapt to application changes, as opposed to this

work.

2.7 Summary

This chapter presented a literature review of systems and techniques used

throughout this thesis. The discussion encompassed the characteristics of

SQL and NoSQL databases and introduced machine learning and evolution-

ary computation. This chapter also presented anomaly detection process to

identify patterns that deviate from the normal data distribution. Furthermore,

the chapter discussed auto-scaling methods to automatically adjust resources

of a running system in order to satisfy application requirements. Lastly, the

chapter discussed different resource provisioning and optimization techniques

found in the literature. The next chapter introduces the PACE framework and

its three main services that enable adaptive resource provisioning in cloud en-

vironments.
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3 Modeling the PACE
Framework

This chapter presents PACE, a framework for adaptive resource provision-

ing in cloud environments. The chapter is organized as follows. Section 3.1

and 3.2 explain the topology of the proposed framework and give an overview

of its architecture components. Section 3.3 demonstrates the anomaly detec-

tion service of PACE framework. Section 3.4 and 3.5 present the resource pro-

visioning and optimization services respectively. Finally, section 3.6 gives the

summary of this chapter.

3.1 The PACE Topology

The PACE framework enables an adaptive technique for reliable resource

provisioning in cloud environments. This research focuses on database sys-

tems that are being deployed in the cloud while state-of-the-art workloads are

being executed to emulate different real-world application scenarios. Then,

the target application is being monitored for collecting and analyzing resource

usage and application metrics. These metrics are being used as an input for

learning algorithms to support the proposed data-driven approach. Figure

3.1 illustrates PACE framework support operations and its interactions in a
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cloud environment. The key entities of the PACE are the users (represented by

workloads), the cloud application, the support operations (monitoring, analy-

sis, planning and execution), and the low-level infrastructure (datacenter and

hosts).

Figure 3.1: PACE support operations in a cloud environment.

The datacenter is the core of the cloud system where multiple servers and

communication gear are co-located. A host represents the physical machine

of the datacenter and its computational units including CPU, memory, storage

and bandwidth that is available for virtualization (Sotiriadis, 2021). Initially,

the cloud database application is being deployed in a virtualized environment

with a particular amount of allocated resources. Then, PACE monitors the

database application for collecting and analyzing resource usage and applica-

tion metrics. Consequently, PACE enables planning and execution phases to

dynamically adjust virtualized resources based on workload demand and user

requirements.

PACE support actions, i.e., monitoring, analysis, planning and execution,

are the stronghold of PACE services to support reliable and adaptive resource

provisioning in the cloud. The PACE framework consists of three main services

as follows.

• Anomaly detection based on metric monitoring (ADM2) service.

• Adaptive resource provisioning (ADA-RP) service.

• System optimization using neuro-genetic algorithm (SONA) service.
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ADM2 service automatically detects system abnormalities based on real-

time resource usage and application metric monitoring. Time series are being

monitored, collected and analyzed on-the-fly using state-of-the-art monitoring

tools and advanced machine learning techniques. As a result, ADM2 service

alarms the administrator each time the system generates aberrant patterns.

Furthermore, ADM2 ensures that PACE framework is not prone to incorrect

scaling decisions due to abnormal system behavior.

ADA-RP service automatically provisions system resources based on moni-

tored metrics. Ergo, ADA-RP avoids over-utilized and under-utilized resources

that may lead to unnecessary costs and QoS violations. It enables both a) reac-

tive auto-scaling using threshold-based rules to avoid application failures dur-

ing intensive workload tasks and b) proactive auto-scaling to generate elastic

scaling policies that incorporate future workload demands.

SONA service enables constrained resource optimization based on user re-

quirements. SONA collects historical monitoring data to identify the opti-

mal configurations that maximize application performance in the long term.

The optimization process is being constrained based on user requirements, in-

cluding the cloud infrastructure expenditures, the cost-performance ratio, the

baseline performance and the average percentage of idle CPU resources.

Figure 3.2 illustrates the aforementioned service capabilities: a) ADM2 for

anomaly detection, b) ADA-RP for resource provisioning and c) SONA for sys-

Figure 3.2: PACE framework main services for anomaly detection, resource
provisioning and system optimization.
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tem optimization. As mentioned earlier, each service enables different func-

tionalities to support PACE framework. These are as follows:

a) The detection of aberrant patterns to alarm application user and to pro-

vide information regarding system status.

b) The automated resource provisioning than enables dynamic resource al-

location based on workload demand.

c) The constrained system optimization that explores the optimal features

that maximize application performance based on user requirements. The

latter consists a fine-grained resource provisioning solution.

The methodology, architecture and algorithmic structure of each service is

being discussed in the next sections.

3.2 Architecture of PACE

This section discusses the architecture components of PACE framework.

Figure 3.3 illustrates the flow of events described as follows.

Figure 3.3: Architecture of PACE framework.

60



1. PACE monitors the target application to extract a variety of metrics in-

cluding CPU resource usage, memory usage, disk usage and application

throughput among others. Consequently, ADM2 service analyzes appli-

cation metrics to automatically detect aberrant application behavior.

2. ADM2 service ensures that PACE collects data that have been extracted

under normal application behavior. The latter suggests that ADA-RP and

SONA services are not prone to incorrect decisions due to abnormal sys-

tem behavior.

3. PACE manager extracts the required datasets (e.g., SONA dataset) to

support the proposed data-driven techniques of ADA-RP and SONA ser-

vices.

4. The manager injects the datasets and the configuration settings to ADA-

RP service to enable the auto-scaling mechanism for resource provision-

ing. Ergo, the manager adjusts system resources based on ADA-RP scal-

ing plan.

5. The manager injects the datasets and configuration settings to SONA ser-

vice that enables constrained system optimization based on user require-

ments. The manager incorporates SONA recommendations to consider

long-term application requirements.

It has to be mentioned that PACE manager incorporates the information

from both ADA-RP and SONA services. First, ADA-RP service is used to en-

able both reactive and proactive auto-scaling in order to adjust application re-

sources based on workload demands. ADA-RP uses time series analysis based

on CPU usage and memory usage metrics to respond to workload fluctuations.

In that context the user has the ability to configure the frequency of scaling

actions. For example, a lower frequency suggests short-term resource adjust-

ments so as to adapt to workload fluctuations. Consequently, ADA-RP service

communicates with the resource manager to manage system resources accord-

ingly.

At the same time, aggregated time series data and contextual application

information is being collected into the database. Time series data that describe
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a single workload execution (e.g., 300 records for 300 seconds of workload ex-

ecution) are being aggregated to a single record in the database. Additionally,

each record is enriched with information about the running system during the

workload execution including the number of vCPU cores, the size of memory,

the size of disk and the system cost among others. SONA uses the aforemen-

tioned records to support the constrained optimization process. Finally, PACE

manager decides to configure system resources based on SONA recommenda-

tions that enable long-term improvements and fine-grained resource manage-

ment over numerous workload executions.

3.3 ADM2 Service for Anomaly Detection

This section introduces ADM2 service for anomaly detection in cloud com-

puting environments. In particular ADM2 identifies abnormal patterns to

alert system administrators. This also ensures that only normal patterns are

being collected and used for further analysis. In more detail, ADM2 service

uses LSTM Autoencoders to reconstruct normal sequence representations of

application metric data streamed from cloud systems. Then, unseen observa-

tions are being classified as normal or abnormal based on the reconstruction

error produced by the LSTM Autoencoder. The LSTM model introduced as an

algorithm that follows RNN architecture but promises a substantial improve-

ment in sequential data with long-range dependencies. As a result, the LSTM

Autoencoder model architecture used to support the proposed methodology

for detecting abnormal patterns in time series.

3.3.1 LSTM Autoencoder for anomaly detection

Autoencoder is a fundamental paradigm of unsupervised learning with the

ability to reconstruct input features with the least possible amount of distor-

tion (Baldi, 2012). The Autoencoder consists of an encoder and a decoder.

The encoder extracts the hidden features from the input data and encodes the

information into a learned representation vector. Then, the decoder receives
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the encoded vector as an input and reconstructs the original sequence with a

reconstruction error.

LSTM Autoencoder combines the ability of the Autoencoder to extract the

most representative information with the advantage of the LSTM to process

sequential data with long-range dependencies. ADM2 uses normal data to

train the LSTM Autoencoder that learns to reconstruct normal univariate time

series data while on the contrary produces high reconstruction error on ab-

normal time series. Thus, the reconstruction error used as a score to classify

future data points as normal or abnormal. Figure 3.4 shows the architecture of

the LSTM Autoencoder. ADM2 uses one LSTM layer for the encoder and one

LSTM layer for the decoder. The encoder takes the input sequence ⟨x1,x2, ...,xn⟩
and encodes the information into an encoded feature vector. Then, the en-

coded feature vector is being used as an input for the decoder that tries to

reconstruct the original sequence into ⟨x̂1, x̂2, ..., x̂n⟩.

x1 x2 xn

x̂1 x̂2 x̂n

LSTM LSTM LSTM

Encoded Vector LSTM LSTM LSTM

Encoder
Decoder

Figure 3.4: Univariate time series data representation based on LSTM Autoen-
coder.

The LSTM Autoencoder is trained to minimize the Mean Absolute Error

(MAE) that measures the average of the absolute differences between the ob-

served and the reconstructed observation as follows

MAE =
∑n

i=1 |xi − x̂i |
n

(3.1)
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where xi and x̂i are the actual and the reconstructed observations respectively.

Then, the reconstruction error is used as a score to detect future outliers. Since

the LSTM Autoencoder trained on normal sequences, it produces low recon-

struction error on future normal series while on the contrary generates high

reconstruction error on abnormal sequences. Thus, new observations are being

classified as normal if the reconstruction error is lower than user’s threshold

or abnormal if it is not.

3.3.2 The Algorithmic structure of ADM2 service

Algorithm 1 illustrates the algorithmic structure of ADM2 service. The

input values include the time series of normal workload executions T n, the

time series of monitored data Tm (e.g., CPU usage), the training parameters

P t to train the LSTM Autoencoder and the reconstruction error threshold Et

to label a series as normal or abnormal.

Algorithm 1 ADM2
Input
T n Time series of normal workload executions
Tm Time series of monitored data
P t Training parameters
Et Reconstruction error threshold

1: procedure Anomaly Detection(T n,Tm,P t,Et)
2: LSTM AE train(T n,P t)
3: Rs = LSTM AE reconstructed(Tm) ▷ Reconstructed series
4: for series in Rs do
5: if error(series) > Et then
6: System Alert()
7: else
8: System not Alert()
9: end if

10: end for
11: end procedure

Then, the anomaly detection procedure is being initialized to automati-

cally detect aberrant patterns in cloud environments. As mentioned earlier,

the LSTM Autoencoder is being trained on normal times series data, that is
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workload executions without abnormal interference such as network delay,

CPU overload or disk failure. Consequently, the LSTM Autoencoder recon-

structs new monitored data that labeled as normal or abnormal based on their

reconstruction error and the threshold parameter Et. For example, if the re-

construction error of a data sequence is greater than the reconstruction error

threshold, then the record is being labeled as abnormal and the system admin-

istrator is being alarmed. On the other hand, if the reconstructing error is less

than the reconstruction error threshold, the record is being labeled as normal

and stored into the database.

3.4 ADA-RP Service for Resource Provisioning

This section presents the ADA-RP service to support resource provisioning

in cloud environments. ADA-RP enables both reactive auto-scaling based on

threshold-based rules and proactive auto-scaling based on time series analy-

sis. This section discusses i) the ADA-RP service, ii) the elasticity process of

ADA-RP service, iii) the algorithmic structure of ADA-RP service and iv) the

learning phase to support proactive auto-scaling based on time series analysis.

3.4.1 ADA-RP service

ADA-RP service consists a hybrid auto-scaler that supports both reactive

and proactive scaling techniques. ADA-RP uses threshold-based rules to sup-

port reactive auto-scaling while it also introduces a machine learning-based

proactive approach to adjust system resources based on future workload de-

mand. In more detail, threshold-based rules have been used to auto-scale con-

tainerized applications based on memory usage percentage metric. As a result,

if the memory usage percentage exceeds a predefined upper threshold called

UT , then additional memory is being allocated to the container based on a

scaling parameter called Sv. On the other hand, if the memory usage per-

centage is smaller than a predefined lower threshold called LT , the ADA-RP

service reduces the amount of allocated memory based on Sv parameter.
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Although, various resource usage metrics can be handled by simplified

threshold-based rules, additional techniques required to ensure availability

of virtualized resources. In this thesis, a hybrid machine learning approach

proposed to provision cloud resources based on future workload demand. In

more detail, historical data used to train K-means clustering algorithm to par-

tition time series into High, Medium and Low demand clusters based on CPU

utilization levels. Then, the average sequence of each cluster is measured and

used as a representative sequence for High, Medium and Low demand groups

respectively.

Consequently, the target application is being deployed and monitored to

collect resource usage metrics including the CPU usage percentage. The lat-

ter is being used as an input for the CNN model to predict future workload

demand. The predicted sequence is being segmented into smaller sequences

based on a time window length parameter Wl. Then, the distance between

each segment and the three representative sequences of each cluster is cal-

culated. As a result, each segment inherits the label from the closest repre-

sentative sequence. Finally, ADA-RP creates a scaling plan based on the label

of each segment and a budget limit parameter Bl to automatically adjust the

allocated resources.

3.4.2 The elasticity process of ADA-RP service

The elasticity process of the ADA-RP service enables both reactive and

proactive auto-scaling techniques to ensure QoS requirements of cloud ap-

plications. The reactive approach supports on-demand resource allocation

based on monitored data collected from the running system. In that context,

threshold-based rules have been used to trigger scaling actions based on appli-

cation memory usage percentage. Ergo, the proposed framework considers the

following three parameters to initiate reactive auto-scaling: i) upper threshold

parameter UT , ii) lower threshold parameter LT and iii) the scaling parame-

ter Sv. ADA-RP service analyze the monitored data on-the-fly and increases

the allocated memory resources if the memory usage percentage exceeds the

upper threshold parameter UT . On the other hand, ADA-RP decreases the al-
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located memory resources if the memory usage percentage is below the lower

threshold parameter LT . In this context, the scaling parameter Sv defines the

amount of memory (in GB) that ADA-RP allocates or deallocates on each scal-

ing action. For instance, if the lower threshold parameter has been set to 25%

(LT = 0.25) and the scaling parameter is set to 2 (Sv = 2), ADA-RP service will

subtract 2 GB of memory from the running application each time the mem-

ory usage percentage drops below 25%. The elasticity process of the reactive

technique is as follows:

(i) The user configures the input parameters including the upper threshold

UT , lower threshold LT and the scale parameter Sv.

(ii) ADA-RP service initiates the monitoring engine to retrieve application

and resource usage metrics based on a given scrape interval (e.g., 5 sec-

onds).

(iii) The application is being deployed on cloud while a workload is being

executed to demonstrate a real-world application paradigm.

(iv) Finally, ADA-RP analyzes the monitored data on-the-fly and applies the

threshold-based rules to trigger scaling decisions.

Although, threshold-based rules are efficient for handling memory re-

source requirements, alternative techniques are required to ensure availability

of CPU resources. This is due to the fact that CPU usage percentage metric

fluctuates strongly during the run phase of a workload (e.g., YCSB). As a re-

sult, a reactive approach would introduce QoS violations since it triggers scale

decisions when the application has already reached a saturation level (Iqbal,

Erradi, and Mahmood, 2018).

Having said that, a proactive auto-scaling approach is introduced to incor-

porate future workload demand and meet application requirements. As men-

tioned earlier, ADA-RP uses K-means algorithm to partition historical time

series into High, Medium and Low demand clusters based on the CPU utiliza-

tion metric. Consequently, the Dynamic Time Warping Barycenter Averaging

(DBA) (Petitjean, Ketterlin, and Gançarski, 2011) has been used as a global
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averaging method to compute a) the average sequence during the K-means

clustering algorithm and b) for averaging the sequences of each K-means clus-

ter. The three average sequences form the representative sequences for High,

Medium and Low demand clusters respectively.

In the prediction phase, CNN model is being used to predict future work-

load demand based on the prediction step parameter P s, that is, the prediction

step number. Then, the predicted sequence is being segmented into smaller se-

quences based on a time window length parameter Wl that defines the time,

measured in seconds, before ADA-RP makes a new scaling decision. The dy-

namic time warping (DTW) (Berndt and Clifford, 1994) algorithm has been

used to calculate the distance between each segment and the representative

sequences for High, Medium and Low demand clusters. As a result, each seg-

ment inherits the label from the closest representative sequence. Finally, a

deployment manager adjusts application resources according to the label of

each segment, the scaling parameter Sv and the budget limit parameter Bl.

The latter enables the user to set a cost limit before ADA-RP triggers a scaling

action. The elasticity process of the proactive approach is as follows:

(i) The user configures the input parameters including the prediction step

parameter P s, the time window length parameter Wl, the scale parameter

Sv and the budget limit parameter Bl.

(ii) ADA-RP service initiates the monitoring engine to retrieve application

and resource usage metrics.

(iii) Historical data used to train K-means algorithm that clusters time series

into High, Medium and Low demand clusters.

(iv) The DBA method is used to compute the average sequence of each clus-

ter that form the representative sequences for High, Medium and Low

demand clusters respectively.

(v) The application is being deployed on cloud and the workload is being

executed to stress the running system.
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(vi) CNN model is trained on CPU usage percentage metric and produces

future predictions based on the prediction step parameter P s.

(vii) The predicted sequence is being segmented into smaller sequences based

on the time window length parameter Wl.

(viii) Each segment inherits the label from the closest representative sequence

based on the DTW algorithm.

(ix) ADA-RP creates a scaling plan based on the labels of each segment and

the cost limit constraints.

(x) Finally, PACE manager allocates resources to the running application.

Figure 3.5: ADA-RP proactive auto-scaling stages.

Figure 3.5 illustrates ADA-RP proactive auto-scaling stages. In Stage 1, the

main application is being monitored based on the CPU usage percentage met-

ric. In Stage 2, the CPU usage percentage is being used as a training input

for the CNN model that generates future predictions based on the prediction

step parameter P s (e.g., P s = 8). In Stage 3, the predicted sequence is being
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segmented into smaller sequences based on a time window length parameter

Wl (e.g., Wl = 2). Finally, in Stage 4, each segment is being labeled as High,

Medium or Low demand based on the representative sequences extracted from

each K-means cluster. Given that the predicted workload has been segmented

and labeled as High, Medium or Low demand, ADA-RP service creates a scal-

ing plan that automatically adjusts container’s resources based on application

demand.

To demonstrate the above interactions, an example is introduced as fol-

lows. The CNN model predicts the CPU utilization for the next 60 seconds

(P s = 60) and the time window length parameter Wl is set to 15 seconds.

As a result, ADA-RP service will segment the prediction sequence into 4 sub-

sequences each consisting of 15 time steps (P s/W l). Then, the DTW distance

between each segment and the three representative sequences extracted from

the High, Medium and Low demand clusters is calculated. Consequently, each

sequence will be labeled as High, Medium or Low demand and the values will

be stored into an array i.e., Sr = [High,Medium,Medium,Low]. Then, ADA-

RP will produce a scaling plan, called Sp for the next 60 seconds, such as

Sp = [V c+Sv,V c,V c,V c−Sv] where V c represents the initial amount of vCPU

cores and Sv represents the scaling parameter that specifies the amount of

vCPU cores that will be added or subtracted from the running container. This

example suggests that the application should scale up the initial resources

(V c + Sv) for the first segment [High], return to the initial amount of vCPU

cores (V c,V c) for the next two segments [Medium,Medium] and scale down

resources (V c − Sv) for the last segment [Low].

3.4.3 The algorithmic structure of ADA-RP service

The ADA-RP service enables both reactive and proactive methods for auto-

scaling cloud applications. Algorithm 2 demonstrates the algorithmic struc-

ture of ADA-RP reactive auto-scaling approach.

The input values include the time series of monitored data Tm, the upper

threshold UT , the lower threshold LT and the scaling parameter Sv. The ADA-

RP reactive auto-scaling procedure is being initialized to automatically adjust
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Algorithm 2 ADA-RP reactive auto-scaling
Input
Tm Time series of monitored data
UT Upper threshold
LT Lower threshold
Sv Scaling parameter

1: procedure Reactive Auto-scaling(UT ,LT ,Sv)
2: while Monitoring == true do
3: if Tm > UT then
4: Scale Up(Sv)
5: else if Tm < LT then
6: Scale Down(Sv)
7: else
8: No Scaling Action()
9: end if

10: end while
11: end procedure

cloud resources based on the proposed threshold based approach. Ergo, if a

data point of the monitoring data exceeds the upper threshold parameter UT ,

ADA-RP increases the allocate resources based on the Sv scaling parameter.

On the contrary, if a data point is lower than the lower threshold parameter

LT , ADA-RP decreases the amount of allocated resources based on the Sv pa-

rameter. Lastly, if a data point is neither greater than the UT parameter or

smaller than the LT parameter, no scaling action is being triggered.

Algorithm 3 illustrates the input and output data as well as the step-wise

procedure of ADA-RP proactive approach. As previously discussed, ADA-RP

uses a time series dataset for workload characterization namely Tw, a time

series dataset for workload prediction namely T p and the input parameters

including the prediction step number P s, the initial amount of vCPU cores V c,

the scaling parameter Sv, the time window length Wl and the budget limit Bl.
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Algorithm 3 ADA-RP proactive auto-scaling
Input
Tw Time series for workload characterization
T p Time series for workload prediction
P s Prediction step number
Wl Time window length
V c Initial vCPU cores
Bl Budget limit
Sv Scaling parameter

Output
Dp Deployment Plan

1: procedure Proactive Auto-scaling(Tw,T p,P s,W l,V c,Bl,Sv)
2: Initialize an empty list Sp
3: function CNN(T p,P s)
4: CNN train()
5: CNN predict()
6: return P redicted Workload
7: end function
8: function K-means(Tw)
9: K −means train()

10: DTW Barycenter Averaging()
11: return R ▷ Representative Sequences
12: end function
13: function Segment(P redicted Workload,W l)
14: return S ▷ Segmented Sequences
15: end function
16: function DTW(R,S)
17: return Ls ▷ Labeled Sequences
18: end function
19: function Scale Plan(Ls,V c,Sv)
20: for eachlabel in Ls do
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21: if label == High then
22: Sp.append(V c+ Sv)

23: else if label == Low then
24: Sp.append(V c − Sv)

25: else
26: Sp.append(V c)

27: end if
28: end for
29: return Sp

30: end function
31: function DEPLOYMENT MANAGER(Sp,Bl)

32: Deploy(Sp,Bl) ▷ Budget-aware Deployment

33: return Dp

34: end function
35: end procedure

Firstly, the ADA-RP initializes an empty list Sp that will store the future

scaling plan. Then, the CNN model is trained on time series data collected by

monitoring the target application. During the training process the prediction

step number P s is being considered to estimate the future workload demand,

that is the P redicted Workload sequence. Additionally, the K-means model is

trained on time series to enable workload characterization by clustering each

sequence into High, Medium and Low demand clusters. Consequently, three

cluster representative sequences are being created by using the DBA averaging

method. Given k = 3 number of clusters, let R be a set of three representative

sequences as follows:

R = {H,M,U } (3.2)

where H = ⟨h1,h2, ...,hl⟩ is the representative sequence for High demand clus-

ter, M = ⟨m1,m2, ...,ml⟩ is the representative sequence for Medium demand

cluster and U = ⟨u1,u2, ...,ul⟩ is the representative sequence for Low demand

cluster respectively, while l is the length of each sequence. It has to be men-
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tioned that each representative sequence has the same length with the time

window length where Wl = l seconds.

The P redicted Workload sequence is being segmented into P s/W l seg-

mented sequences based on the time window length parameter Wl that de-

fines the length of each segment, therefore the frequency of decision making.

Let the predicted sequence consisting of P s = p time steps and the time win-

dow length parameter set to Wl = l seconds, ADA-RP will produce s = P s/W l

sequence segments as follows:

S = {S1,S2, ...,Ss} (3.3)

where Ss is the s-th segmented sequence of length l. Then, the distance be-

tween each sequence of the segmented sequences S and the representative se-

quences R produced by the K-means model is being calculated. Ergo, each

segment sequence inherits the label from the closest representative sequence.

As a result a list of labels is constructed as follows:

Ls = (y1, y2, ..., ys) | y ∈ A (3.4)

where the label yi is an element belonging to a finite set of classes A =

{High,Medium,Low} indicate the state of the running application in terms

of CPU utilization level. Then, a scaling plan is being created based on the

labeled list Ls, the initial vCPU cores V c and the scale parameter Sv. Finally,

the deployment manager will initiate the scaling decisions based on user’s cost

limit requirements.

3.4.4 Learning phase

In this thesis, a hybrid learning approach has been proposed to enable

adaptive resource provisioning in cloud environments. A dataset has been

generated under different system and workload configurations and used to

train the K-means clustering algorithm. In the past, the K-means algorithm has

been widely used across a wide range of research fields for clustering time se-

ries data (Niennattrakul and Ratanamahatana, 2007), (Guo, Jia, and N. Zhang,
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2008), (Dong, Qian, and L. Huang, 2017).

K-means clusters time series samples into k predefined number of groups

by trying to minimize the Within Group Sum of Squares (WGSS), also called

inertia, a measure for cluster coherence. Equation 3.5 represents the equation

for the intraclass inertia (Petitjean, Ketterlin, and Gançarski, 2011). Let ET be

the space of all sequences of length T . Given S = {S1,S2, ...,SN } as the set of all

sequences the average sequence C(T ) must fulfill

∀X ∈ ET ,
N∑
n=1

DTW 2(C(T ),Sn) ≤
N∑
n=1

DTW 2(X,Sn) (3.5)

The K-means randomly assigns each sample to a cluster and computes the

average cluster sequence. Then, each sample is being re-assigned to the closest

average cluster sequence and the average sequences are being re-calculated.

The same process is being repeated until a decrease of the objective function

is lower than a tolerance value.

In this domain, various strategies have been proposed for averaging a set of

sequences. Local averaging techniques such as the NonLinear Alignment and

Averaging Filters (NLAAF) (Gupta et al., 1996) and the Prioritized Shape Aver-

aging (PSA) (Niennattrakul and Ratanamahatana, 2009) have been proposed

to compute the average sequence over a set of sequences. Such techniques

compute the mean of N sequences by taking the pairwise averaging. How-

ever, pairwise averaging is quite sensitive to order, thus repeating the averag-

ing process may significantly alter the quality of the result. For that reason,

Petitjean, Ketterlin, and Gançarski (2011) proposed the DBA, a global aver-

aging method, that iteratively refines the initial average sequence in order to

minimize its squared DTW distance to averaged sequences. For each refine-

ment DBA works in two steps: i) computes the DTW distance between each

sequence and the temporary average sequence and ii) updates each coordinate

of the average sequence based on the contribution of one or more coordinates

of each sequence. In step 1, the DTW distance between the average sequence

and an individual sequence involves the searching sequence C at iteration i for

instances on sequence T as:
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C = ⟨C1,C2,C3, ...,Cl⟩ (3.6)

T = ⟨T1,T2,T3, ...,Tl⟩ (3.7)

where C is the average sequence, T is a sequence associated to it and l is the

length of sequences. It has to be mentioned, that DTW can align sequences of

different lengths, however in this work the average sequence and the segment

sequences are of the same length.

As a result, the sequences C and T are used to form a l-by-l square matrix

where each point (i, j) corresponds to an alignment between elements Ci and

Tj . The cumulative distance for each point in the matrix is being calculated

using dynamic programming to evaluate the following recurrence:

γ(i, j) = δ(i, j) +min[γ(i − 1, j),γ(i − 1, j − 1),γ(i, j − 1)] (3.8)

that is the sum of the distance between two elements and the minimum of the

cumulative distances of the adjacent cells. In DBA, the goal is to minimize the

sum of squared DTW distances between the average sequence and the set of

sequences by refining the average sequence iteratively. Thus, in step 2, DBA

updates each of the the average coordinates as the barycenter of coordinates

associated to it during the first step. Given a set of sequences S = {S1, ...,SN } to

be averaged, DBA starts from the initial average sequence C = ⟨C1, ...,Cl⟩ and

iteratively refines the average sequence to C′ = ⟨C1′ , ...,Cl′⟩, that is the updated

average sequence at iteration i + 1, where l is the length of sequences and N is

the number of sequences.

As previously mentioned, ADA-RP uses a pro-active approach to reduce

cloud costs and system inefficiencies based on CNN future predictions. The

CNN model has been widely used in the past for predicting time series (Astillo

et al., 2022), (Koprinska, Wu, and Z. Wang, 2018). In this thesis, the CNN

learns from the historical time series in order to estimate future workload de-

mand. Time series consist of a single dimension, that is the time dimension,

thus can be defined as one dimensional vector. As a result, CNN uses one di-
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mensional convolutions to process the input time series. During the learning

phase, several hyperparameters considered to fine tune the CNN model. Table

3.1 shows the best values of the hyperparameters that obtained after conduct-

ing various experiments.

Table 3.1: Optimal CNN configurations

Parameter Value

Convolutional layers 2
Convolutional layer filters 64
Pooling layers 2
Fully connected layer 1
Fully connected layer neurons 300
Optimizer Adam
Activation function Relu
Loss function RMSE
Learning rate 0.0001
Number of epochs 100
Batch size 64

The CNN model contains an input layer, two convolutional layers, two

pooling layers, a fully connected layer and an output layer. The convolutional

layers consist of 64 filters and a kernel size of two. The max pooling operation

is performed after each convolutional layer to downsample the input represen-

tation by taking the maximum value over a spatial window of size two. Then,

flattening is performed to convert the convolved and pooled features into one

dimensional array that is passed to a fully connected layer. Lastly, an output

layer generates a predicted sequence of equal size with the input sequence.

Rectified Linear Unit (Relu) (Nair and Hinton, 2010) is applied after each con-

volution operation and Adam optimizer used for first-order gradient-based

optimization based on adaptive estimates of lower-order moments (Kingma

and Ba, 2014). The learning rate set to 0.0001 and the model is trained for

100 epochs with a batch size of 64. To evaluate the effectiveness of the pro-

posed model, we use the Root Mean Squared Error (RMSE). The latter can be

represented mathematically as follows:
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RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)2 (3.9)

where yi and ŷi are the observed and the predicted values, and n is the total

number of observations. The train and the test RMSE values are being reported

in the performance evaluation section.

3.5 SONA Service for System Optimization

This section introduces SONA, a service for optimizing cloud application

performance based on user requirements. SONA uses ANN and GA algorithms

as a hybrid approach for enabling constraint performance optimization. This

section discusses i) SONA service, ii) the optimization process of SONA service

and iii) the algorithmic structure of SONA service.

3.5.1 SONA service

SONA service supports constrained performance optimization of cloud-

based systems. The service uses data records that describe application be-

havior across different workload tasks. The records are being organized in a

form of a dataset that contains attributes to describe resource configurations

(e.g., CPU cores, memory, hard disk), type of configurations (e.g., disk type),

application configurations (e.g., InnoDB buffer pool size), workload parame-

ters (e.g., number of warehouses), performance metrics (e.g., transactions per

minute), resource utilization metrics (e.g., average percentage of idle CPU re-

sources), cloud costs, cost-performance ratio, and cloud infrastructure infor-

mation (e.g., cloud region).

Consequently, SONA uses GA to identify the optimal configurations that

produce the highest application performance. However, running all possi-

ble combinations in a virtualized environment, each time the optimization

method needs to evaluate the proposed configurations, is not always feasible

due to time and cost constraints. Thus, ANN have been proposed to model the
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high-dimensional data and extract non-linear relationships among variables.

Then, the ANN model used to evaluate the fitness of each individual in the

optimization process. Furthermore, the proposed method allows users to in-

troduce their requirements in an interactive manner. In more detail, SONA

uses penalty techniques to constrain the optimization process based on four

requirements including (a) the cloud costs, (b) the cost-performance ratio, (c)

the baseline performance as a reference for comparison with the main applica-

tion and (d) the average percentage of idle CPU resources to ensure sufficient

utilization levels.

3.5.2 The optimization process of SONA service

SONA service proposed to support constrained optimization of cloud sys-

tems with zero overhead to the main application. The system includes (a) a

source database application that is monitored on-the-fly, (b) a clone database

application that is used to run test workload executions, (c) the coordinator

for constrained performance optimization and decision making and (d) the

source manager for triggering scaling actions. Thus, SONA service provides

the following functionalities:

• A monitoring engine that collects valuable information of the running

system. The latter, consists of a database system that executes state-of-

the-art workloads to emulate a real-world case scenario.

• A hybrid approach that uses ANN and GA for constrained performance

optimization.

• A lightweight architecture using Linux containers to support fast appli-

cation deployment with zero overhead to the main system.

• An engine that provides recommendations to the system administrator

based on user and application requirements.

The objective of the optimization process is to select the optimal system

parameters that maximize the performance metric and satisfy user require-

ments. SONA uses real-coded GA where each chromosome consists a sequence

79



of genes that represent the optimization variables. However, executing a work-

load each time the GA needs to evaluate an individual of a population is not

always feasible due to time and resource constraints. For that reason, a novel

dataset has been created and used as an input for the ANN to model the un-

derlined relationships and form an ANN-based objective function for the GA.

Instead of generating simulated application executions, the proposed dataset

consists of real experimental observations that have been pre-processed and

used for the neuro-genetic approach. This approach enables SONA to execute

faster and more efficient.

Furthermore, SONA introduces a containerized environment, consisting of

a source and a clone system that allows fast application deployment. The clone

system is being deployed as a replica of the source system to avoid system

overhead. Figure 3.6 illustrates the flow of events described as follows.

1. The source system provides a variety of configurations to the source

manager. These include the system status that characterizes the

baseline performance of the source system and the system policies

that define the constraints based on user requirements.

2. The source manager injects the configuration file in the Coordinator

in order to be used for the constrained optimization process.

3. The Coordinator access the records to insert, update and collect data

for modeling and optimization tasks.

4. The Coordinator applies pre-processing and feature selection tech-

niques to the records to create an input dataset. This latter is used

for the training and validation process of the ANN model. Finally,

the Coordinator saves the trained ANN model.

5. The Coordinator initiates the constrained optimization process

based on the hybrid neuro-genetic approach. The GA uses an ANN-

based fitness function in the optimization process to select the best

parameters that produce the highest application performance in

terms of executed transactions. Furthermore, penalty techniques

applied to constrain the optimization problem based on different

system policies such as the cost-performance ratio.
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6. The Coordinator injects the recommended configurations to the

clone system (e.g., number of CPU cores, Memory Size, InnoDB

buffer pool size, number of warehouses etc.). The clone system re-

sources are being adjusted to create the desired experimental envi-

ronment. The Coordinator configures the database and the selected

workload (e.g., MySQL and TPC-C) in the clone system to execute

the experimental scenario.

7. The clone system returns the experimental records (e.g., resource

size, resource type, TpmC) and the Coordinator updates the records

accordingly. In addition, the Coordinator retrains the ANN model

with the updated data to produce more accurate predictions. Thus,

the fitness function of the GA is dynamic, and it is being improved

online over time, when new runs are executed. It is expected that

as more data is generated from new runs, SONA recommendations

will be improved over time. At this stage the Coordinator identi-

fies the optimal configuration for the particular workload and the

selected user policies.

8. The Coordinator injects the recommended configurations to the

source manager, based on a decision making process, that is the

acceptable difference between the experimental and the predicted

TpmC value. The allowable residual should not exceed 10% of the

experimental value.

9. The source manager communicates the recommended configura-

tions to PACE manager that decides to scale and tune the source

system accordingly.
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Figure 3.6: SONA operation flow diagram.

It has to be mentioned that using a clone container as an experimental set-

ting, does not add overhead to the source system. In addition, the proposed

method is flexible and supports dynamic online configuration, thus, the user

is able to control the System policies in real-time. As a result, the feature

space of the GA is updated based on user policies in order to explore new

possible performance improvements. This dynamic setup is supported by the

Linux Containers (LXC) that support on-the-fly resource allocation using the

LXC control groups (cgroups) 1. The cgroups resource management allows the

clone system to adjust resources and set the size of a container according to

different experimental scenarios.

Data pre-processing

The SONA service supports constraint optimization of cloud applications

based on monitored data. During the monitoring process, SONA extracts

and collects information about the running system including application met-

rics, resource usage metrics and the baseline performance of the source sys-

tem. Next, SONA completes a pre-processing stage to create the input dataset

for training the ANN in a supervised manner. SONA supports a variance

1https://www.kernel.org/doc/Documentation/cgroup-v1/
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threshold-based technique for selecting features that enhance ANN model pre-

dictive power. As a result, ANN uses the number of CPU cores, the memory

size, the disk size, the disk Type, the InnoDB buffer pool size and the number

of Warehouses to predict the executed transactions per minute (TpmC).

The selected features form the input dataset in which data normalization

applied for effective training of the ANN (Sola and Sevilla, 1997). SONA uses

the min-max normalization approach to measure the difference between the

field value and the minimum value, and to scale this difference by the range

(D. T. Larose and C. D. Larose, 2014). Equation 3.10 shows the normalization

formula:

x̃i =
xi − xmin

xmax − xmin
. (3.10)

where x̃i is the normalized value, xi is the original value, and xmin , xmax are

the minimum and the maximum values of the attribute x. Additional features

used to support the constraint optimization process including the Idle CPU,

the Cost and the cost-performance ratio. Next, the hybrid neuro-genetic ap-

proach based on ANN and GA algorithms is being explained.

ANN based objective function

ANN is an algorithm inspired by the biological neurons and it is widely

used in many research fields to solve complex problems. In this work, an

ANN model is trained to relate input configurations with an application per-

formance metric (e.g., transactions per minute), with the aim to accurately

predicting the performance of future configurations. The ANN model uses

the back propagation algorithm (Rumelhart, Hinton, and Williams, 1985) to

find the optimal weights that minimize the loss function, that is the mean

squared error. The number of neurons for the input layer is determined by the

number of features selected to train the model while the output layer consists

of one neuron to produce predictions of the performance metric. SONA uses

2 hidden layers with 50 neurons in each layer to learn the hidden represen-

tations. The Rectified Linear Unit function (ReLU) (Maas, Hannun, and Ng,

2013) used as the activation function with HE weight initialization strategy
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(He et al., 2015). Furthermore, SONA uses the adaptive moment estimation

(Adam) as a computationally efficient algorithm for first-order gradient-based

optimization of stochastic objective functions (Kingma and Ba, 2014).

In the training phase, the ANN fits the training data to find the optimal

weights that produce the lowest mean squared error. However, creating a

highly flexible model that follows the errors too closely may lead to overfit-

ting (James et al., 2013). Thus, SONA enables an early stopping technique

to interrupt the training process before convergence if the validation score

is not improving over a particular number of epochs as shown in (Caruana,

Lawrence, and Giles, 2001). As a result, the ANN model forms an ANN-based

objective function used for the optimization process of the GA.

Neuro-genetic optimization

GA are stochastic search algorithms that mimic biological evolution to lo-

cate optimal solutions in complex landscapes. The objective is to select the op-

timal configurations under certain constraints, in order to obtain the highest

number of executed transactions in the database. GA introduced to optimize

that objective using a fitness function based on the ANN model. As a result, the

ANN model predictions used to evaluate the fitness of each individual during

the optimization process.

Real-coded genetic algorithms

GA’s efficiency strongly depends from the technique used to encode vari-

ables (Deep et al., 2009). In this thesis, real-coded GA used since natural rep-

resentations are more efficient and produce better results (Shen, L. Wang, and

Q. Li, 2007), (Damousis, Bakirtzis, and Dokopoulos, 2003). GA represent each

individual as a chromosome of a fixed length. Ergo, each chromosome con-

tains a sequence of genes that represent the optimization variables while each

gene ranges between its upper and lower boundaries based on the user re-

quirements. Genes are related to data records including CPU cores, Memory,

Disk, Disk type, InnoDB buffer pool size and number of warehouses. The latter

remains stable during the optimization process as a non-tunable component.
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Selection

The selection stage in GA ensures that a fixed size of the chromosome popu-

lation is used to improve the average fitness and ensure the convergence of the

algorithm (Negnevitsky, 2005). In this research, SONA uses the roulette wheel

selection (Goldberg, 2006) where each parent is being selected for mating with

a probability pi based on their fitness score. The probability of selection fol-

lows equation 3.11:

pi =
wi

ΣN
i=1wi

(3.11)

where wi is the fitness of the individual i and N is the number of the popula-

tion.

Genetic operators

GA use crossover and mutation as two basic genetic operators. Crossover

is applied with a probability pc and selects a random crossover point where

the two parents break. Then, two parents exchange the breaking parts to cre-

ate two new offsprings that contain information of both parents. If a pair of

chromosomes does not crossover, with a probability 1 − pc, each offspring is

described as the exact copy of each parent. Mutation genetic operator intro-

duces a randomness in the evolution process as an attempt to avoid a trap on a

local optimum. The mutation operation randomly changes the value of a gene,

between the lower and upper boundaries, with a mutation probability of pm.

Fitness function based on ANN

In this work, a chromosome consists a sequence of genes that represent

system, application and workload configurations. Each chromosome is being

evaluated based on the ability to produce high number of executable trans-

actions. One way to evaluate a chromosome is to execute a workload in a

database system and obtain the experimental throughput. However, this is not

always feasible due to time and resource constraints. Thus, the ANN model is

used to calculate the fitness, that is the throughput of each chromosome. Then,
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selection, crossover and mutation used to create new generations. This hybrid

neuro-genetic approach is repeated for n number of generations until the pop-

ulation convergence is reached.

Penalty Techniques

Penalty techniques enables users to introduce constraints during the opti-

mization process. SONA introduces the following constraint criteria:

C1 The cloud infrastructure expenditures, to penalize costs that exceed

user budget.

C2 The cost-performance ratio, to penalize inefficient configurations.

C3 The baseline performance, to penalize solutions with a lower

throughput in relation to the main application.

C4 The CPU idle, to penalize solutions with high underutilized CPU

resources.

In this work, the additive form is used as follows:

eval(x) = f (x) + p(x) (3.12)

where x represents the chromosome, f (x) represents the fitness of the chromo-

some x and p(x) the penalty term. The penalty term is given as follows:

p(x) =
m∑
j=1

Rjmin[0, gj(x)] (3.13)

where m is the number of constraints, Rj is a positive penalty coefficient for

the j-th constraint and gj is the function of the constraint. The minimization

term ensures that SONA penalizes only infeasible solutions.

To avoid negative fitness values SONA also require that:

|p(x)|max ≤ |f (x)|min (3.14)

where |p(x)|max is the maximum value of the penalty term and |f (x)|min is the

minimum fitness value among the current population (Gen and Cheng, 1996).
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Constraints C1, C2, C3 and C4 are represented by g1(x), g2(x), g3(x) and

g4(x) functions respectively. Cloud infrastructure expenditures constraint (C1)

is given as follows:

g1(x) = B− c(x) (3.15)

where B is a user Budget and c(x) is a cost function using the platform policy.

In has to be mentioned that during the experiments presented later in this

thesis, Google Cloud Pricing calculator (Google, 2022e) is used to estimate the

cost of the CPU cores, Memory, Disk Size and Disk type expressed as genes

of the chromosome x. The more the expected cost exceeds users Budget, the

higher the penalty term.

Cost-performance ratio constraint (C2) is given as follows:

g2(x) = − c(x)
f (x)

(3.16)

where c(x) is the cost function as in equation 3.15 and f (x) is the ANN-

based estimation of the TpmC score given chromosome x. The lower the cost-

performance ratio, the higher the efficiency, thus, the lower the penalty term.

The baseline performance constraint (C3) is given as follows:

g3(x) = f (x)− P (3.17)

where f (x) is the ANN-based estimation of the throughput score and P is the

baseline performance, that is the performance produced by the source system

without using the SONA framework. The smaller the estimated performance

in relation to the baseline performance, the higher the penalty term.

CPU idle constraint (C4) is given as follows:

g4(x) = T − h(x) (3.18)

where T is user threshold for idle CPU resources and h(x) is an ANN-based

estimation of the idle CPU resources given system and application configura-

tions, expressed as genes of the chromosome x. SONA uses an ANN model

that accepts as input the CPU cores, Memory, Disk Size, Disk type, InnoDB
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buffer pool size and Warehouses to estimate the idle CPU resources of each

individual in a population.

Clone system

SONA uses a clone system, as an efficient mechanism to validate SONA

recommendations with zero overhead to the main system. As mentioned ear-

lier, the GA outputs the fittest population, that is, the configuration parame-

ters that produce the highest number of executed transactions based on user

constraints. Then, SONA deploys a clone system as an experimental environ-

ment used to validate the predicted performance of the recommended con-

figurations. As a result, the clone system replicates the main application and

validates SONA recommendations without adding overhead to the running

application. The cloning strategy uses Linux containers to enable fast appli-

cation deployment and replication. Thus, the clone system deploys the repli-

cated application, executes the desired workload and returns the experimen-

tal throughput score of the genuine execution. At this stage the Coordinator

collects the genuine execution configurations and updates the records. Con-

sequently, the ANN algorithm is retrained to learn from new patterns and

increase the overall system effectiveness. The Coordinator forwards the rec-

ommended system configurations to the source manager that in turn injects

them to the source system based on an allowable residual as shown in Line 8

of figure 3.6.

3.5.3 The algorithmic structure of SONA service

Algorithm 4 demonstrates the algorithmic structure of SONA service. The

Workload function initializes the database system (e.g., MySQL) for loading

and executing the desired workload (e.g., TPC-C) based on different configu-

rations. These include the workload configurations parameters (e.g., number

of Warehouses) and the database configurations parameters (e.g., MySQL Inn-

oDB buffer pool size).
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Algorithm 4 SONA service

1: procedure SONA

2: function Workload(workloadConf,DatabaseConf)

3: StartDatabase()

4: LoadWorkload()

5: StartWorkload()

6: return RawDataset

7: end function
8: function Preprocessing(RawDataset)

9: FeatureSelection()

10: DataNormalization()

11: return InputDataset

12: end function
13: function ANN(InputDataset)

14: trainingANN()

15: save ANNModel

16: end function
17: function GA(SystemPolicy)

18: InitP op P ;

19: evaluate P ;

20: while isNotT erminated() do
21: P ′← selectparents P (t);

22: reproduction P ′(t);

23: mutate P ′(t);

24: evaluate P ′(t);

25: P (t + 1)← nextGeneration P (t), P ′(t);

26: t← t + 1;

27: end while
28: return P, eThr ▷ Population, Expected Throughput

29: end function
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30: function CloneRun(P)

31: GenuineWorkloadRun()

32: return aThr ▷ ExperimentalThroughput

33: end function
34: function SourceManager(P )

35: if P opulationV alid() == T rue then
36: UpdateSystem()

37: end if
38: end function
39: end procedure

During the workload execution phase, SONA monitors the running system

in order to collect raw data. The latter, is being pre-processed to create an

input dataset used for the proposed neuro-genetic approach. Ergo, the ANN

model is being trained on the input dataset to predict the number of executable

transactions based on different system and application configurations. As a re-

sult, the neuro-genetic optimization uses a combination of GA and ANN-based

fitness function to select the optimal configuration that maximize the number

of executed transactions based on user’s requirements. The selected configu-

rations are being executed in a clone environment to avoid system overhead.

Finally, the source manager validates the experimental results in order to ad-

just and tune system resource accordingly.

3.6 Summary

This chapter presented PACE framework to effectively provision and opti-

mize cloud applications. The chapter introduced the topology of PACE frame-

work and the algorithmic solution of its services. In particular, ADM2 service

proposed to support anomaly detection in the cloud. As a result, ADM2 ser-

vice ensures that the PACE framework is not prone to incorrect decisions due

to unusual system behavior.

Furthermore, ADA-RP service introduced to enable both reactive and

90



proactive auto-scaling techniques for cloud resource provisioning. ADA-RP

service supports efficient resource allocation to avoid over-utilized and under-

utilized resources during workload executions. Finally, this chapter proposed

SONA service to identify system and application configurations that maximize

application performance. The optimization process included a variety of con-

straints to satisfy user requirements and to ensure QoS requirements. The next

chapter discusses PACE deployment environments and benchmarks.
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4 Deployment Environment and
Benchmarks

This chapter provides a discussion around the deployment environment

and benchmarks of PACE framework. This thesis enables both public and pri-

vate clouds in order to demonstrate the effectiveness of the proposed method-

ology under different use case scenarios. In that context, a variety of database

systems used to emulate real-world case applications using state-of-the-art

benchmarks and workloads.

Section 4.1 presents the cloud environments used to deploy PACE frame-

work and its services. Section 4.2 presents a variety of systems used through-

out this research including SQL and NoSQL databases. Section 4.3 provides

an overview of the benchmarks used to evaluate the proposed framework and

to demonstrate its effectiveness. Finally, section 4.4 presents the summary of

the chapter.

4.1 Cloud Environment

Cloud computing includes various types of clouds depending on the ser-

vice availability and accessibility level. This research enables both public and

private clouds to demonstrate the effectiveness of SONA framework in differ-
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ent cloud environments. In that context, the computing resources of Birkbeck

College have been used as a private cloud while GCP used as public cloud plat-

form offered by Google (Google, 2022a). Google Cloud infrastructure services

are available in different geographical locations across the world including

North America, South America, Europe, Asia and Australia (Google, 2022d).

As a result, Google Cloud offers a variety of service models to the end-user

via the cloud including IaaS, PaaS and SaaS. However, this research focuses

on IaaS service model that offers on demand resources such as networking,

storage and computing.

GCP Compute Engine used to create and run VMs in Google’s infrastruc-

ture (Google, 2022b). A VM consists of an isolated virtual environment that

uses a subset of the physical resources of a computer system (Marinescu,

2022). As shown in Figure 4.1, a hypervisor allows several VMs to share hard-

ware resources. The latter enables resource distribution over multiple ma-

chines improving both flexibility and efficiency. As a result, a VM runs its own

operating system, binaries and libraries while appears to be running on the

Figure 4.1: System organization for Virtual Machines
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bare hardware. In this research, different types of VMs have been deployed

in the cloud to host a variety of database applications that support the exper-

imental analysis and evaluation of ADM2 service. Consequently, VMs have

been configured accordingly in terms of operating system, CPU, memory, net-

work and storage.

Additionally, PACE framework supports dynamic resource provisioning

and system optimization using ADA-RP and SONA services respectively. To

support the proposed methodology, containers have been used as an alterna-

tive virtualization technique also known as containerization. Containers sup-

port virtualization on the operating system level allowing multiple containers

to run on the same host operating system kernel. As a result, containers have

a smaller memory footprint and a shorter start-up time than VMs (Marinescu,

2022) making it feasible to deploy hundreds of containers on a physical host

(Bernstein, 2014). Furthermore, containers offer an isolated environment to

deploy applications and services but without the overhead introduced by vir-

tual machines especially to I/O operations (Felter et al., 2015).

Figure 4.2 presents the system organization for containers. As shown in

Figure 4.2 each container shares the host operating system while it runs its

own application, binaries and libraries. As a result, containers support a light

weight and cost effective solution. In this thesis, Linux containers used to al-

Figure 4.2: System organization for containers
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low fast application deployment in different cloud environments while Linux

containers cgroups used to control containers resources according to PACE

framework decision making.

4.2 System Deployment

This research focuses on both SQL and NoSQL database systems deployed

in the cloud. Thus, this section discusses the characteristics and the function-

ality of each system respectively. Additionally, it provides a discussion around

database applications to a variety of domains.

4.2.1 MySQL

MySQL is an open-source relational database management system where

a database consists of a structured collection of data. In that context, MySQL

server is being used to access and process data stored in the database (MySQL,

2022b). Considering that computers have increased their capability of storing

and computing large volumes of data, database management systems have a

vital role in managing data and enabling integration with other platforms.

It has to be mentioned that, MySQL databases are relational meaning that

data stored in tables of columns and rows that represent their relationships.

As a result, MySQL database server is fast and capable to scale up CPU, mem-

ory and I/O capacity according to available resources. Furthermore, MySQL

sever is open-source meaning that anyone can use and modify the software

according to application requirements (MySQL, 2022b). Similar to other re-

lational database management systems, SQL query language used to access

and manipulate the data stored in MySQL server. For example data definition

statements can be used to create a table in MySQL as follows:

CREATE TABLE users(

user_id INT NOT NULL,

forename VARCHAR(30),

surname VARCHAR(30),
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email VARCHAR(50));

Furthermore, SQL data manipulation statements enable the user to manip-

ulate the data stored in the database. These statements include the INSERT

statement to insert new rows into an existing table, DELETE statement to re-

move rows from a table and UPDATE statement to modify rows in a table.

MySQL is used in different application domains such as aerospace, edu-

cation, financial services, government, healthcare, retail, manufacturing and

technology among others (MySQL, 2022a). In this work, MySQL server has

been deployed as a containerized application hosted on Google Cloud Plat-

form. Then, a large number of concurrent transactions have been executed to

stress the running system and create different real-world application scenar-

ios. The aforementioned database system monitored by PACE framework in

order to analyze the data and automatically adjust system resources according

to workload demand. Furthermore, PACE collects historical data of workload

executions in MySQL to explore the optimum configurations that maximize

application performance based on user requirements.

4.2.2 MongoDB

MongoDB is a NoSQL database management system designed to store

JSON-like documents with dynamic schemas. Thus, a record in MongoDB

consists of a document which is composed of field and value pairs. One of

the main advantages of MongoDB is that the values may also include embed-

ded documents and arrays that reduce the need for expensive joins (MongoDB,

2022b). Here is an example of a record in MongoDB database:

{

name: "irene",

gender: "female",

interests: ["music", "painting"]

}

MongoDB uses collections to group documents inside a database analo-

gous to tables in relational database management systems. Furthermore, Mon-
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goDB uses mongosh, an interactive Javascript environment that enables the

command-line for interacting directly with the database. A variety of com-

mands are available in mongosh including creating a new database and per-

form CRUD operations to create, read, update, and delete documents. The

following example creates a new database and inserts a single document into

a collection:

use databaseExample

use db.collectionExample.insertOne( { x: 1 } );

MongoDB enables database replication to distribute replicas of the data

across multiple machines. Database replication topology known as a replica

set, provides redundancy that enables the system to continue operate in the

event of a server outage (Banker et al., 2016). Additionally, replica sets in-

crease the performance of read-intensive application since users can read op-

erations from different machines. Furthermore, MongoDB embedded data

model reduces I/O activity while it provides low query execution times when

dealing with data-intensive applications that need to support thousands of

users simultaneously (Győrödi et al., 2015).

MongoDB has been widely used in different industries such as healthcare,

energy utilities, education, government, telecommunications, hospitality and

financial services (MongoDB, 2022a). Reported benefits include faster build

time, reduced costs, increased performance and accurate data-driven deci-

sions, to name a few. In this work, MongoDB deployed in VMs hosted in

Google Cloud Platform in order to emulate different application scenarios.

Then, PACE framework monitored the running application and analyzed sys-

tem metrics to automatically detect abnormal system behavior on-the-fly.

4.2.3 HBase

HBase is an open-source non-relational distributed database capable of

storing very large tables consist of billions of rows and millions of columns.

HBase modeled after Google’s Bigtable (Chang et al., 2008) to provide simi-

lar capabilities on top of Hadoop and HDFS (HBase, 2022). HBase stores data
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in a column-oriented format meaning that tables are being stored by column

instead of rows. Ergo, rows are composed of columns that grouped into col-

umn families in order to build semantics boundaries between the data (George,

2011). Figure 4.3 displays column-oriented and row-oriented storage layouts

respectively.

Furthermore, HBase contains a jruby-based (JIRB) shell to interact with

the database (HBase, 2022). General commands include status to provide the

status of the database, version to provide the version of HBase and whoami to

provide information about the user. Data definition commands include create

to create a table, list to list all the tables and drop to delete a table in HBase.

Finally, data manipulation commands include put to add data in a table, get

to retrieve a row from a table and delete to delete a cell value from a table.

Figure 4.3: Column-oriented and row-oriented storage.

Although, traditional databases offer improved real-time access to data,

HBase improves key-based access to a specific cell of data or a sequential

range of cells (George, 2011). Similar to other NoSQL systems, HBase pro-

vides automatic failover between servers due to its distributed nature. Ad-

ditionally, HBase follows strict consistency meaning that changes in the data

appear to take effect instantaneously (George, 2011). As a result, HBase has

near-optimum performance to read operations and excellent performance to
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write operations respectively. Finally, HBase is highly scalable meaning that

it can effectively operate on a cluster of commodity machines to accommodate

large volume of data (Vora, 2011).

HBase has been used as a scalable storage solution in various applications

including IoT (Pramukantoro, Kartikasari, and Siregar, 2019), e-commerce (L.

Li and J. Zhang, 2021), bioinformatics (Taylor, 2010) and geospatial technol-

ogy (D. Han and Stroulia, 2013). In this work, an HBase cluster deployed on

top of Hadoop at Birkbeck college servers. Consequently, PACE framework

monitored the running application and analyzed the collected data to auto-

matically detect aberrant throughput patterns.

4.2.4 Redis

Redis is an open-source non-relational in-memory data structure server

used as a database, cache, streaming engine and message broker (Redis, 2022).

Redis provides a variety of data structures including strings, sets, hashes, lists

and streams, a combination that allows Redis to be flexible and fast at the same

time (Macedo and Oliveira, 2011). Furthermore, Redis implements replication

to support high availability and automatic failover. Redis has been used to

solve a variety of problems including reduce access complexity, improve data

communication, store complex data as well as implement count activities in

computationally efficient ways (Redis, 2022).

Redis command line interface (CLI) consists of a terminal program that

used to interact with Redis server. Key operations using Redis CLI include

SET to set a key that holds a value, GET to return the value held by the key,

INCR, to increment the key value by one and DECR to decrement the key value

by one. Here is an example that sets a key namely key that holds the value of

one and then increments the value by one:

redis> SET key 1

"OK"

redis> INCR key

(integer) 2
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To get the value of the key, GET operation can be used as follows:

redis> GET key

"2"

Redis has been used by numerous reputable companies including Twitter,

GitHub, Snapchat, Craigslist and StackOverflow (Redis, 2022). In this work,

Redis deployed as a containerized application hosted on Google Cloud Plat-

form while state-of-the-art benchmarks have been used to emulate different

realistic application scenarios. Then, PACE monitors the running application

to collect system and applications metrics. These are used as an input to a hy-

brid learning system that automatically triggers scaling decisions in order to

adjust system resources to workload requirements.

4.3 Benchmarks

This research enables both SQL and NoSQL system deployment in the

cloud. In that context, state-of-the-art benchmarks have been used to emulate

different application scenarios and evaluate the proposed framework under re-

alistic workloads. This section discusses the main characteristics of the three

benchmarks used in this work namely TPC-C, TPCx-IoT and Yahoo! Cloud

Serving Benchmark.

4.3.1 TPC-C

TPC Benchmark C (TPC-C) (TPC, 2022a) is an On Line Transaction Pro-

cessing (OLTP) workload approved by TPC council in 1992. The TPC-C bench-

mark consists a mixture of concurrent transactions executed by terminal oper-

ators in order to simulate different OLTP application environments. In more

detail, the TPC-C benchmark emulates activities (transactions) of a wholesale

supplier in an order-entry environment. These include entering orders, de-

livering orders, checking the status of orders, recording payments and moni-

toring the level of stock at the warehouses (TPC, 2022a). In that context, the
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TPC-C designed to scale as additional warehouses are created. It has to be

mentioned that the workload provides skewed access within individual data

types to allow better usage of the main memory database buffer (Leuteneg-

ger and Dias, 1993). The performance metric of TPC-C workload measures

the number of transactions that are fully processed during a minute period of

time. Figure 4.4 illustrates the execution cycle of TPC-C workload available

on TPC website (TPC, 2022a).

Figure 4.4: TPC-C execution cycle

During the execution cycle the following steps are executed: 1) the user

selects a transaction type from the menu, 2) the system waits for the In-

put/Output screen to be displayed, 3) the response time (RT) of the menu is

being measured, 4) the user enters the required number of input fields based

on a minimum Keying time, 5) the system waits for the required number of

output fields to be displayed, 6) the response time of the transaction is being

measured and 7) the system waits for the defined minimum think time while

the input/output screen remains displayed. Finally, at the end of the Think
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time (as shown in Step 7) the user loops back to select a transaction type from

the menu (as shown in step 1).

TPC-C benchmark has been the industry standard to measure the perfor-

mance of OLTP systems (Poess and Nambiar, 2008). Additionally, TPC-C

has been used in numerous research studies to evaluate system performance

(Avula and Zou, 2020; Kamsky, 2019; Cheong, C. S. Lim, and Cho, 2012). In

this work, the TPC-C benchmark executed against MySQL database to emulate

a realistic OLTP application environment. Then, PACE framework monitors

the running application to automatically trigger scaling decisions that adapt

to workload demand. Furthermore, PACE uses historical data of TPC-C exe-

cutions in MySQL in order to find the optimum configurations that maximize

application performance based on workload and user requirements.

4.3.2 TPCx-IoT

The Internet of things (IoT) refers to an interconnected network of smart

physical objects that generate large amounts of data in operation (Siow,

Tiropanis, and Hall, 2018). IoT topology consists of three tiers namely edge

devices, gateway systems and data center. In that context, the TPC Express

Benchmark IoT (TPCx-IoT) introduced by TPC to evaluate different software

and hardware solutions for IoT gateway systems (TPC, 2022b). The TPCx-IoT

workload enables data ingestion and concurrent queries to simulate realistic

tasks that typically appear on IoT gateway systems.

In more detail, the workload used to model sensor data generated by power

substations. The dataset consists data from 200 different types of sensors. As a

result, the workload injects data into the running system while on the the back-

ground it executes analytic queries to retrieve readings of a randomly selected

sensor. Figure 4.5 illustrates TPCx-IoT benchmark execution phases that are

available on TPC website (TPC, 2022b).

As shown in Figure 4.5 the benchmark consists of two runs namely Run 1

and Run 2. Each run executes the workload two times in order to warmup

the system and measure system performance respectively. The TPCx-IoT

workload provides three metrics to measure system throughput, system price-
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Figure 4.5: TPCx-IoT execution phases

performance and system availability. In this research, TPCx-IoT benchmark

executed against HBase to emulate a realistic application environment. Then,

PACE framework monitored the running application to automatically detect

abnormal throughput patterns.

4.3.3 Yahoo! Cloud Serving Benchmark

Yahoo! Cloud Serving Benchmark (YCSB) (Cooper et al., 2010) proposed as

a tool for facilitating performance comparisons of cloud serving systems. In

that context, YCSB designed to evaluate both the performance and the scala-

bility of cloud serving systems. The workload defines a dataset to be loaded

into the database and then executes four main operations against the dataset to

measure system performance. These include insert operation to insert a new

record, update operation to update a record, read operation to read a record

and scan operation to scan record.

The tool consists of a client namely YCSB Client designed to generate and

execute the YCSB benchmark against the running systems. Figure 4.6 illus-

trates the architecture of the YCSB Client. In more detail, the YCSB client is

responsible for generating both the load data and the operations that com-

pose the executable workload. The client takes two main groups of properties

namely workload and runtime properties that enable benchmark execution.
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Figure 4.6: YCSB Client architecture

Workload properties define the workload characteristics to generate the load

data including the record size, record type and the distribution to use. Run-

time properties define the experimental characteristics such as the type of the

database and the workload file to be used.

Then, the YCSB Client enables the workload executor, the database inter-

face layer and the client threads to execute the desired workload. The work-

load executor executes the load and the run phase of the workload while

the database interface layer translates requests (e.g., write()) from the client

threads into calls against the database (e.g., MongoDB) (Cooper et al., 2010).

Finally, the YCSB client statistic module reports the aggregated average la-

tency and throughput metrics. In this work, the YCSB benchmark has been

executed against NoSQL database systems deployed in the cloud to support

the performance evaluation of the proposed framework.

4.4 Summary

To conclude, this chapter presented the deployment environment and the

benchmarks used to evaluate the effectiveness of PACE framework. The design

and implementation of the proposed solution is based on cloud-based storage

systems that execute state-of-the-art benchmarks to emulate realistic applica-

tion scenarios. The next chapter discusses the datasets of PACE framework.
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5 PACE Datasets

This chapter presents the datasets used to support the proposed method-

ology. Section 5.1 discusses the dataset creation process that includes system

monitoring, data storage and data transformation phases. Section 5.2 presents

the dataset used to support the anomaly detection technique of ADM2 service.

Section 5.3 introduces the datasets used by the ADA-RP service in order to en-

able the proposed auto-scaling mechanism. Section 5.4 introduces the datasets

used during the constraint optimization process of SONA service. Finally, sec-

tion 5.5 presents the summary of the chapter.

5.1 Dataset Creation Process

PACE framework enables anomaly-aware resource provisioning and op-

timization of cloud applications based on data-driven techniques. As a re-

sult, PACE uses Prometheus 1 engine to monitor the target system based on

a given scrape interval (e.g., 5 seconds). The latter suggests that PACE moni-

tors the running system to collect data records every 5 seconds. These records

include CPU usage percentage, memory usage percentage, disk reads, disk

writes, database throughput, time spent doing I/Os, disk type, disk size in GB,

memory size in GB and number of vCPU cores among others.

1https://prometheus.io/
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After the monitoring phase, PACE stores the monitored application and

system metrics in a storage service (e.g., Google Cloud Storage 2). Finally,

the collected data are being transformed in order to create the datasets used

by PACE services. Transformations include data aggregation, feature selection

and feature preprocessing described in the following sections. Figure 5.1 illus-

trates the monitoring, collection and transformation phases of PACE frame-

work. PACE uses Prometheus engine to monitor the database application in

order to collect a variety of metrics. These are being transformed according to

the needs of each service.

Figure 5.1: Dataset creation process.

The subsequent sections discuss the datasets used by ADM2, ADA-RP and

SONA services respectively.

5.2 ADM2 Dataset

ADM2 service enables real-time anomaly detection of cloud application

based on throughput performance metric. In more detail, ADM2 uses

Prometheus engine to monitor and collect resource usage and application met-

rics based on a given time interval. Then, it analyzes the data to automatically
2https://cloud.google.com/storage
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detect performance degradation of the running system. ADM2 uses historical

throughput time series data in order to learn the behavior of the running sys-

tem. During the training process, the LSTM Autoencoder learns to reconstruct

normal historical time series. Ergo, LSTM Autoencoder records lower recon-

struction error on normal YCSB workload executions, whereas it expected to

produce high reconstruction error on future abnormal events. As a result,

LSTM Autoencoder classifies future events as normal or abnormal based on

the reconstruction error produced by the trained model and an error thresh-

old parameter.

To support the proposed methodology, two experimental datasets emerged

i) YCSB benchmark executed in MongoDB and ii) TPCx-IoT benchmark exe-

cuted in HBase. For each scenario, a univariate time series dataset has been

created with a single column of database throughput (operations per second)

and a timestep for each value as an implicit variable. It has to be mentioned,

that the historical time series consists of normal workload executions in order

to create repeatable workload patterns to train LSTM Autoencoder.

In more detail, YCSB benchmark executed in MongoDB while PACE mon-

itored the running system to collect data to create ADM2-YCSB dataset. The

first 10 runs include 5 load and 5 run stages that have been used for the train-

ing phase of LSTM Autoencoder. Then, the 11th and 12th runs used to test

the proposed algorithm that successfully detects abnormal throughput pat-

terns. As a result, ADM2-YCSB dataset consists a single column of MongoDB

throughput and a timestep for each value. The dataset has 2663 number of

records, one for each second, stored in a Comma Separated Values (CSV) file

format.

Additionally, TPCx-IoT executed in HBase while PACE framework moni-

tored the running system to create ADM2-TPCx-IoT dataset. The latter con-

sists of 12 TPCx-IoT runs in HBase cluster. The first 8 runs compose the

training set while the last 4 runs compose the test set. In total, ADM2-TPCx-

IoT dataset has 2758 number of records where each record row has a times-

tamp value. Similar with ADM2-YCSB dataset, the ADM2-TPCx-IoT dataset is

stored in a CSV file format.
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5.3 ADA-RP Dataset

ADA-RP service supports both reactive and proactive vertical auto-scaling

of cloud applications. The reactive approach uses a threshold-based rule to

automatically adjust system resources on-the-fly without processing historical

data events. On the contrary, the proactive approach is based on a hybrid ma-

chine learning-based technique that combines CNN and K-means algorithms.

These are being used to forecast and cluster future events so as to create a

scaling plan that avoids over-utilized and under-utilized resources.

In that context, the CNN model is trained on resource usage metrics ex-

tracted from the running application, whereas K-means algorithm is trained

on previous workload executions that include different resource usage and ap-

plication configurations. The next two subsections present the datasets used

throughout this study to support the proposed auto-scaling technique. These

include a) data collection for SQL systems and b) data collection for NoSQL

systems

5.3.1 SQL data collection

As mentioned earlier, ADA-RP service is based on a data-driven approach

to automatically scale cloud resources and ensure application performance.

To support the proposed method, this study uses TPC-C benchmark as a real

world workload and Prometheus monitoring engine for data collection. As a

result, two datasets have been generated: i) a dataset for workload characteri-

zation using the clustering method and ii) a dataset for workload prediction.

For the first dataset, the TPC-C workload executed in a Linux MySQL con-

tainer deployed on GCP with different configurations. In more detail, the

Cartesian product of two sets called C and W is defined as the set of all or-

dered pairs (c,w) where c is an element of C and w is an element of W . The

notation is given as follows:

C×W = {(c,w) | c ∈C and w ∈W } (5.1)
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Set C = {2,4,6,8,10,12,14,16} consists a 8-elements set where each element

defines the vCPU cores allocated to a Linux container. Set W = {1,5,10,15,20}
consists a 5-elements set where each element defines the number of Ware-

houses used in the TPC-C configurations. Table 5.1 shows the dataset config-

uration based on the Cartesian product of sets C and W .

Table 5.1: Dataset configuration based on the Cartesian product of sets C and
W .

vCPU cores

W. 2 4 6 8 10 12 14 16

1 (1,2) (1,4) (1,6) (1,8) (1,10) (1,12) (1,14) (1,16)

5 (5,2) (5,4) (5,6) (5,8) (5,10) (5,12) (5,14) (5,16)

10 (10,2) (10,4) (10,6) (10,8) (10,10) (10,12) (10,14) (10,16)

15 (15,2) (15,4) (15,6) (15,8) (15,10) (15,12) (15,14) (15,16)

20 (20,2) (20,4) (20,6) (20,8) (20,10) (20,12) (20,14) (20,16)

In total, 40 configurations have been used to generate unique CPU patterns

while Prometheus monitoring engine collected the CPU utilization metrics. It

has to be mentioned, that each run consists an average of 10 runs for ensuring

reproducible data. Thus 40 × 10 experiments executed, for 300 seconds each,

whereas the results averaged to obtain 40 runs, one for each configuration.

In this work, ADA-RP makes scaling decisions for MySQL application every

minute, thus each run of 300 seconds is being segmented into five 60 seconds

segments. As a result, a univariate time series dataset of 200 sequences formed

and used as an input to train the K-means clustering algorithm. The latter,

categorizes each unique sequence into High, Medium or Low demand clusters

based on the CPU utilization levels.

To support the workload prediction task, MySQL Linux containers de-

ployed and monitored in GCP. Then, TPC-C workload executed consecutively

to demonstrate real-world experimental scenarios. As a result, a historical

univariate time series dataset has been formed for each scenario with a single

column of CPU utilization and a timestep for each value as an implicit vari-

able. The historical sequence has been pre-processed and used as an input for
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the CNN model to predict future events.

5.3.2 NoSQL data collection

ADA-RP service achieves on-demand scalability based on data collected

directly from the running applications. To support the proposed proactive ap-

proach, two datasets have been generated namely: i) a dataset for time series

clustering and ii) a dataset for time series forecasting. In time series clustering

phase, various YCSB workloads executed in a Linux Redis container deployed

on GCP under different system configurations. In more detail, the Cartesian

product of two sets called Y and V is defined as the set all ordered pairs (y,v)

where y is an element of Y and v is an element of V . Thus, we give the follow-

ing notation:

Y ×V = {(y,v) | y ∈ Y and v ∈ V } (5.2)

Set Y = {1,2,4,6,8} consists a 5-elements set where each element defines

the vCPU cores allocated to a Linux container. Set V = {A,B,C,D} consists a

4-elements set where each element defines the type of YCSB workload. For

instance, (A,1) pair includes YCSB workload A execution in Redis container

with 1 vCPU core. Table 5.2 shows the dataset configuration based on the

Cartesian product of sets Y and V .

Table 5.2: Dataset configuration based on the Cartesian product of sets Y and
V .

vCPU cores

Workload 1 2 4 6 8

A—Update heavy (A,1) (A,2) (A,4) (A,6) (A,8)

B—Read heavy (B,1) (B,2) (B,4) (B,6) (B,8)

C—Read only (C,1) (C,2) (C,4) (C,6) (C,8)

D—Read latest (D,1) (D,2) (D,4) (D,6) (D,8)

In total, 20 configurations have been used to generate different CPU pat-

terns while Prometheus monitoring engine collected CPU utilization metrics.

110



It has to be mentioned that each run consists an average of 10 runs for ensur-

ing reproducibility. Thus, 20× 10 experiments executed for 300 seconds each

and the results averaged to obtain 20 runs, one for each configuration. In this

work, ADA-RP service makes scaling decisions for Redis application every 15

seconds, thus each run of 300 seconds is being segmented into 20 segments of

15 seconds each. As a result, a univariate time series dataset of 400 sequences

is being formed. The latter, used as an input to train K-means algorithm to

partition each sequence into High, Medium and Low demand clusters. Then,

the average sequence of each cluster is calculated and used as a group repre-

sentative.

To support the time series forecasting phase, Redis containers deployed

and monitored in GCP. Consequently, the YCSB workload executed in Redis

to introduce a realistic application scenario. As a result, a univariate time se-

ries dataset has been formed with a single column of CPU utilization and a

timestep for each value as an implicit variable. The dataset has been prepro-

cessed and used as an input for the CNN model to predict future events. Then,

each event will be labeled as High, Medium or Low demand based on the rep-

resentative sequences extracted from K-means clusters.

5.4 SONA Dataset

SONA service supports cloud application optimization and tuning based

on a neuro-genetic data-driven approach. To support the proposed method-

ology, a novel dataset presented consisting of (a) 350 observations of experi-

mental TPC-C runs in MySQL server and (b) 16 features that represent various

components. These are the system resources (Cores, Memory, Disk), type of re-

sources (Disk type), the application parameters (InnoDB buffer pool size), the

workload configurations (warehouses and connections), the workload perfor-

mance metrics (TpmC), the idle CPU resources, the monthly cloud costs , the

cost performance ratio, the system type and the cloud information (platform,

region and zone). The runs represent a total of around 30 hours of TPC-C

workload executions in Google Cloud Platform (GCP) where each observation
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is a unique execution of the TPC-C benchmark. The dataset features are as

follows:

• Cores: The number of CPU cores of the running system.

• Memory: The memory size of the running system in GB.

• Disk: The disk size of the running system in GB.

• Disk.T: The disk type of the running system (magnetic disk coded as 0

and solid-state drive coded as 1).

• IDB: The InnoDB buffer pool size of MySQL server measured in MB.

• Warehouse: The number of warehouses of the TPC-C workload.

• Con: The number of connections of the TPC-C workload.

• TpmC: The number of transactions per minute, provided by the TPC-C

workload.

• IdleL: The average percentage of idle CPU resources during TPC-C load

phase.

• IdleR: The average percentage of idle CPU resources during TPC-C run

phase.

• Cost: The monthly cost of the system in USD ($).

• C-P: The cost-performance ratio ($/TpmC).

• System: The type of the running system in terms of CPU cores and mem-

ory size.

• Platform: The cloud computing platform.

• Region: The cloud geographical region.

• Zone: The cloud geographical zone.
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Table 5.3 presents a sample of SONA dataset. For example, the first obser-

vation consists of 1 CPU Core, 3.75 GB of Memory, 10 GB of magnetic disk

(type 0) and 128MB of MySQL InnoDB buffer pool size. The TPC-C executed

in 1 warehouse, 10 connections and executes 5,334 transactions per minute.

The average idle CPU resources in the load and the run stage are 7.7% and

2.2% respectively. The monthly cost of the system is calculated to 24.67$

according to the Google Cloud Pricing calculator (Google, 2022e). The cost-

performance ratio ($/TpmC) is 0.0046 and System A operates in GCP in Iowa

Region, us-central1-a zone. It has to be mentioned that the proposed dataset

is being preprocessed to support the proposed constrained optimization tech-

nique. The preprocessing phase includes feature selection based on a variance

threshold. As a result, a threshold has been used to discard features with low

variance such as the number of connections, the System, the Platform, the

Region and the Zone. The dataset is available online at IEEE Dataport (Chou-

liaras and Sotiriadis, 2021).

Table 5.3: SONA Dataset.

Cores Mem. Disk Disk.T IDB Wareh. Con. TpmC IdleL IdleR Cost C-P System Platform Region Zone

1 3.75 10 0 128 1 10 5,334 7.7 2.2 24.67 0.0046 A GCP Iowa us-c1-a
2 7.5 500 1 1024 5 10 8,645 42.9 2.7 133.54 0.0154 B GCP Iowa us-c1-a
16 60 500 0 256 1 10 22,821 92.6 63.9 408.36 0.0179 F GCP Iowa us-c1-a
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
4 15 10 0 128 1 10 14,100 71.1 14.8 97.49 0.0069 C GCP Iowa us-c1-a

5.5 Summary

This chapter presented the datasets used to support the research of this the-

sis. It presented ADM2 dataset used for detecting anomaly detection based on

YCSB and TPCx-IoT historical workload executions in NoSQL databases. Fur-

thermore, this chapter introduced the datasets to support the ADA-RP service

for clustering and forecasting time series events. The proposed auto-scaling

mechanism is based on historical time series data to enable both reactive and
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proactive auto-scaling of cloud applications.

This chapter also presented SONA dataset that includes information about

historical TPC-C runs on MySQL server. The dataset used as an input for

the SONA service to explore the underlying relationship between config-

urations and performance metrics using ANN. As a result, SONA uses a

neuro-genetic optimization method to select the optimal configurations that

maximize application performance in terms of executable transactions. The

datasets are available online at https://github.com/SpyrosChouliaras/

PACE-Datasets.git.
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6 Performance Evaluation

This chapter presents the performance evaluation of PACE models, algo-

rithms and methods. Section 6.1 describes the experimental design of PACE

framework and presents the experimental map of PACE services. Section 6.2,

6.3 and 6.4 present the experimental evaluation of PACE services, namely

ADM2, ADA-RP and SONA respectively. Finally, the summary of the chap-

ter presented in section 6.5.

6.1 Experimental Design

This section discusses the experimental design of PACE framework to

demonstrate the effectiveness of its services, namely ADM2, ADA-RP and

SONA. These are as follows:

(a) The ADM2 experimental evaluation demonstrates the ability of PACE

framework to detect aberrant patterns based on application and resource

usage monitoring. Real-world database systems have been deployed in

the cloud including MongoDB and HBase. Additionally, state-of-the-art

benchmarks have been used to emulate realistic application scenarios

such as TPCx-IoT and YCSB respectively. Each system has been deployed

in the cloud with different resource and architecture specifications. In
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particular, MongoDB has been deployed in GCP in a standalone host

while on the contrary, HBase has been deployed in a cluster mode. Both

systems have been monitored and analyzed to detect abnormal through-

put patterns that lead to application performance degradation. The ex-

perimental design includes different abnormal scenarios including net-

work delays and CPU intensive tasks.

(b) The ADA-RP benchmark and performance analysis show the effective-

ness of PACE framework to automatically adjust cloud resources based

on monitored data. The experimental evaluation shows that ADA-RP

analyzes memory and CPU usage percentage metrics in order to trig-

ger scaling actions. The ADA-RP service uses both reactive and proac-

tive auto-scaling techniques, thus different experimental scenarios are

presented to evaluate the proposed methods. Both SQL and NoSQL

databases have been deployed in the cloud including MySQL and Re-

dis respectively. To that extend TPC-C and YCSB workloads have been

used to stress the deployed systems. It has to be mentioned that ADM2

service has been evaluated to both single-tenant and multi-tenant cloud

environments.

(c) The SONA service evaluation and experimental analysis demonstrate the

validity of the proposed methodology to optimize application perfor-

mance based on user requirements. The experimental design consists

of three scenarios for resource optimization, database application tuning

and resource and application optimization. Resource optimization en-

ables the user to automatically adjust system resources based on applica-

tion and user requirements. Additionally, application tuning optimizes

database configurations to maximize application performance including

the executed transactions per minute. The third experiment presents a

combination of resource and application optimization. To support the

proposed experimental design, MySQL and TPC-C benchmark deployed

in GCP as a real-world cloud application to be monitored, tuned and

optimized.

Figure 6.1 demonstrates the experimental map of ADM2, ADA-RP and
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Figure 6.1: The experimental map of PACE services.

SONA services respectively. Different experimental scenarios conducted to

demonstrate the effectiveness of ADM2 service. In particular, a) CPU stress in-

tensive tasks and b) network delays have been injected to the running system

that lead to abnormal throughput patterns. The experimental results show

that ADM2 automatically detects system abnormal behavior and alerts the sys-

tem administrator.

ADA-RP service enables both reactive and proactive auto-scaling tech-

niques. This study presents experiments to demonstrate that ADA-RP auto-

matically scales cloud resources using a) threshold-based rules and b) time

series analysis. SONA service uses a neuro-genetic technique to support con-

straint resource optimization and application tuning. As shown in Figure 6.1,

the experimental design consists of three main scenarios to demonstrate the

effectiveness of SONA to a) optimize resources, b) tune database application

and c) enable both resource and application optimization.

The following sections present experimental results and discussions for the

aforementioned scenarios.
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6.2 ADM2 Experimental Evaluation

In this section, experimental scenarios are being discussed and visualized

to demonstrate the effectiveness of ADM2 service. The performance of the

proposed method is being verified based on YCSB and TPCx-IoT real world

workload benchmarks that execute in MongoDB and HBase system respec-

tively. It includes the experimental setup and the benchmark analysis of two

scenarios: (a) LSTM Autoencoder for anomaly detection of MongoDB system

and (b) LSTM Autoencoder for anomaly detection of HBase system.

The experimental setup and the benchmark analysis of ADM2 service con-

sists of two infrastructure settings to support MongoDB and HBase cloud de-

ployment. The first environment consists of a single Virtual Machine (VM)

that is running a Linux operating system with 2 CPU cores, 8 GB RAM and 512

GB Hard Disk Drive (HDD). The VM hosts MongoDB as a real-world NoSQL

application system to be monitored by Prometheus. While YCSB workload ex-

ecutes a mix of 50/50 reads and writes, Prometheus collects and stores appli-

cations metrics with equally spaced points in time. The second environment

includes a cluster deployment with 2 nodes each configured with 2 CPU cores,

8 GB RAM and 256 GB HDD. Each node consists of an HBase server that runs

on top of Hadoop Distributed File System (HDFS). The TPCx-IoT workload

used as representative of activities typical in IoT gateway systems. Similarly,

Prometheus collects and stores application metrics in real-time. It has to be

mentioned that both infrastructures have been deployed on GCP public cloud

vendor.

6.2.1 Detecting performance degradation of MongoDB

This subsection evaluates the ability of ADM2 service to detect abnormal

throughput patterns in MongoDB system based on application throughput.

Figure 6.2 illustrates application throughput under YCSB workload execution.

In total, 5 load and 5 run stages have been executed alternately to create 10

representative runs. The first run, executed between 12:37 and 12:42, illus-
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Figure 6.2: Throughput of MongoDB on YCSB workload.

trates the load phase of YCSB workload where 200,000 records loaded in the

database. The second run, executed between 12:42 and 12:46, shows the run

stage where YCSB uses a mix of 50% read and 50% write operations. Figure

6.2 shows that executing YCSB workload with the same configurations gen-

erate a repeatable application throughput pattern. The throughput sequence

consists of 2157 data points that have been normalized by removing the mean

and scaling to the standard deviation. Then, the sequence is reconstructed

into 2152 subsequences based on a 5 time-step sliding time-window parame-

ter sw = 5 that defines the length of each subsequence. Each subsequence con-

sists a training sample for the LSTM Autoencoder that learns to reconstruct

normal throughput representations by minimizing the MAE.

During the training process the LSTM Autoencoder learns to reconstruct

the training sequence samples while the reconstruction error has been used

as a score to detect future throughput abnormalities. Figure 6.3 illustrates

the histogram of the training MAE with the bin size set to 50. As shown in

Figure 6.3, the x axis display MAE values of the training set while y axis show

the frequency that is the number of cases in each bin. In this experiment,

the error threshold set to 1.19 (Et = 1.19) meaning that future sequences that

produce a reconstruction error higher than Et, will be classified as abnormal.

The threshold parameter is calculated by multiplying the median value of the

train MAE loss by r, that is a parameter that adjust the error threshold value
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Figure 6.3: The distribution of train MAE loss on YCSB normal runs

based on application requirements. In this experiment the r value has been set

to 2.

To demonstrate the effectiveness of the proposed method, Stress Linux

package is being used to introduce additional intensive tasks that negatively

impact application performance. Figure 6.4 shows a continuity of Figure 6.2

with two additional wavelets that represent the load and the run stage of YCSB

workload. While YCSB executed the load stage under normal conditions (11th

wavelet), in the run stage (12th wavelet) Stress package is being executed in

parallel to introduce additional CPU intensive tasks to the running system.

Figure 6.4: Throughput of MongoDB on YCSB workload with Stress.
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The latter, impacts the application throughput as it creates abnormal patterns

shown in Figure 6.4. In more detail, the application throughput decreased

significantly between 13:17 and 13:23 where CPU intensive tasks execute in

parallel with YCSB. Figure 6.4 shows that ADM2 effectively detects aberrant

behavior illustrated with red points.

As mentioned earlier, ADM2 service is capable of detecting anomalies

based on the reconstruction error produced by the LSTM Autoencoder algo-

rithm and a predefined error threshold parameter. Since the LSTM Autoen-

coder trained to reconstruct normal throughput patterns, it produces high re-

construction error on throughput values that deviate from the normal data

distribution. As a result, ADM2 classifies throughput observations as normal

or abnormal based on the threshold parameter Et. Figure 6.5 illustrates the

histogram of the test MAE and the error threshold value. As shown in Figure

6.5, if the reconstructed error of a given observation surpasses the application

error threshold, then the observation is tagged as abnormal. It has to be men-

tioned that the error threshold parameter consists a tuning parameter based on

application functionality. If the application is resilient in throughput fluctua-

tions, a high threshold value is suggested to detect only extreme outliers. On

the other hand, if the application is sensitive on throughput changes, a lower

threshold will be less forgiving and more values will be classified as abnormal.

Figure 6.5: The distribution of test MAE loss on YCSB abnormal runs
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6.2.2 Detecting performance degradation of HBase

This subsection demonstrates the ability of the ADM2 service to detect per-

formance degradation of NoSQL systems. To emulate a real-world scenario, an

HBase cluster with 2 nodes deployed in GCP while TPCx-IoT benchmark used

to model sensor data generated by power substations. Figure 6.6 shows the

throughput of the HBase cluster under TPCx-IoT workload execution.

Figure 6.6: Throughput of HBase on TPCx-IoT workload.

In total the TPCx-IoT workload generated 8 wavelets that used as a rep-

resentative normal input sequence for the LSTM Autoencoder. The input se-

quence consists of 1697 data points that have been normalized. Then, the se-

quence is reconstructed into 1692 subsequences based on a 5 time-step sliding

time-window parameter sw = 5. Ergo, the LSTM Autoencoder learns to recon-

struct the input sequence with the lowest possible error rate. Figure 6.7 shows

the histogram of the train MAE loss with the bin size set to 50. As shown in

Figure 6.7, the x axis display the MAE loss values after the training process of

normal TPCx-IoT runs while the y axis display the frequency. In this experi-

ment the error threshold set to 1.04 (Et = 1.04) with the r parameter set to 1.5

(r = 1.5) respectively.

Figure 6.8 is a continuity of Figure 6.6 that shows the execution of the

TPCx-IoT workload while at the same time network delays introduced in the

system. In particular, two network delays of 200ms have been injected into the
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Figure 6.7: The distribution of train MAE loss on TPCx-IoT normal runs

network system. The first delay injected between 14:58 and 15:00 while the

second delay injected between 15:07 and 15:09. As a result, the application

throughput plummets to zero during that period of time. Figure 6.8 illustrates

the ability of ADM2 service to effectively detect throughput abnormal values

marked with red points.

As discussed earlier, ADM2 classifies throughput observations as normal

or abnormal based on LSTM Autoencoder reconstruction error and a prede-

fined error threshold parameter Et. Thus, observations with a reconstruction

Figure 6.8: Throughput of HBase on TPCx-IoT workload with network delay.
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error higher than the error threshold are tagged as abnormal. On the other

hand, observations with a reconstruction error lower than the error thresh-

old parameter are classified as normal. It has to be mentioned that, the error

threshold parameter has been tuned according to application functionality in

order to detect values that significantly vary from the normal distribution. Fig-

ure 6.9 presents the distribution of the test MAE loss produced by the LSTM

Autoencoder. As shown in Figure 6.9 the reconstruction error threshold set to

1.02 in order to classify future throughput observations as normal or abnormal

based on their test MAE loss value.

Figure 6.9: The distribution of test MAE loss on TPCx-IoT abnormal runs

This section presented the experimental setup and evaluation of the ADM2

service. It showed that ADM2 effectively detects throughput abnormalities us-

ing LSTM Autoencoder algorithm. In particular, ADM2 uses a predefined er-

ror threshold parameter and LSTM Autoencoder reconstruction error to enable

automatic anomaly detection in cloud applications. The experimental design

included different infrastructure settings and database systems. Furthermore,

various types of anomalies presented including CPU intensive workload tasks

and network delays to emulate realistic scenarios. The next section includes

the experimental evaluation of ADA-RP service, that enables adaptive vertical

elasticity of containerized applications.
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6.3 ADA-RP Experimental Evaluation

This section presents the performance evaluation of ADA-RP service. ADA-

RP enables a combination of reactive and proactive auto-scaling techniques to

automatically allocate resources based on application and user requirements.

It uses a threshold-based rule technique to trigger scaling decisions based on

monitored resource usage metrics such as memory usage. Additionally, it en-

ables proactive auto-scaling using a hybrid machine learning technique that

includes time series forecasting and clustering. The performance evaluation

of the proposed method is based on real-world database systems including

SQL and NoSQL as well as state-of-the-art workloads and benchmarks such

as YCSB and TPC-C. It includes the experimental evaluation and benchmark

analysis of a) reactive auto-scaling and b) proactive auto-scaling.

6.3.1 Reactive auto-scaling mechanism evaluation

ADA-RP service uses a reactive auto-scaling technique to automatically ad-

just virtual resources that ensure QoS requirements. The proposed technique

is based on application monitored data and a threshold based rule. Firstly,

ADA-RP monitors the running system to collect various resource usage met-

rics including CPU and memory usage percentage as well as application met-

rics such as throughput. Then, it uses threshold-based scaling rules to increase

or decrease the allocated resources on-the-fly based on metric value. In partic-

ular, ADA-RP increases the amount of allocated resources when a metric (e.g.,

memory usage percentage) exceeds a predefined upper threshold parameter.

Similarly, ADA-RP decreases the allocates resources if the selected metrics is

lower than a lower threshold parameter. The following subsections include the

experimental setup and benchmark analysis of ADA-RP reactive mechanism.

Experimental setup and benchmark analysis

To evaluate and demonstrate ADA-RP effectiveness, a medium sized Vir-

tual Machine has been deployed in GCP with 16 vCPU cores, 64 GB mem-
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ory and 350GB HDD. Then, Redis NoSQL database has been deployed in a

docker container. At first, 2 vCPU cores (0 and 1) and 32 GB memory are be-

ing allocated to the container. Additionally, YCSB Redis workload-a is being

used as an application example for a session store recording recent actions

in a user session (Cooper et al., 2010). YCSB record and operation counts

set to 5,000,000 with 50% read and 50% update operations respectively. In

this experiment, the threshold-based rule set to 80% and the scaling factor to

2, meaning that each time the memory usage percentage exceeds 80%, then

ADA-RP service automatically allocates two additional GB of memory to the

container.

Reactive auto-scaling of Redis containers

ADA-RP enables vertical elasticity to automatically scale Redis container-

ized applications. As a result, it scales up or down Redis containers in order

to ensure high application performance under intensive workload tasks. As

mentioned earlier a YCSB Redis workload-a is being used to inject 5,000,000

records with 50% read and 50% update operations. The latter, stress the run-

ning system that needs to load YCSB records without system failures. Conse-

quently, ADA-RP monitors the running system to collect various resource us-

age metrics. In this experiment, the memory usage percentage is being used to

trigger scaling decisions based on a threshold-based rule. Memory usage met-

ric is vital to ensure system sustainability and to avoid system failures when

the application reaches a saturation level.

Figure 6.10 illustrates the memory usage percentage on the left axis and the

allocated memory (in GB) on the rights axis while YCSB workload-a executes

in Redis. As shown in Figure 6.10, at the beginning of the loading phase, mem-

ory usage starts to increase until it reaches 80% threshold at 151 second. In

that moment, ADA-RP automatically allocates two additional GB of memory

to Redis container. As a result, the memory usage drops significantly to 40%

while Redis has access to 4 GB of memory. Figure 6.10 shows a continuation

of the same process where each time memory usage exceeds 80% threshold,

ADA-RP allocates two additional GB of memory to the container. In total,
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Figure 6.10: Memory usage percentage and memory allocation of Redis con-
tainer over YCSB workload execution.

ADA-RP have enabled six scaling decisions to allocate 14 GB of memory to

Redis which successfully loaded 5,000,000 records.

As mentioned earlier, ADA-RP monitors and collects application metrics

including the executed operations per second. As a result, ADA-RP ensures

that application performance remains on the desired level during YCSB work-

load execution. Figure 6.11 illustrates the operations per second executed

in Redis at the same time interval as Figure 6.10. As shown in Figure 6.11

operations per second fluctuated between 8,428 and 13,477 during the load

phase. Figure 6.11 illustrates that application performance has not been af-

fected during scaling decisions while the executed operations remained above

8,000 throughout the whole experiment.
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Figure 6.11: Operations per second in Redis over YCSB workload execution of
5 million read and update records.

In this experiment, ADA-RP service automatically scales Redis container-

ized application based on a threshold-based scaling rule and memory usage

metric. ADA-RP effectively uses a reactive approach to prevent Redis applica-

tion from reaching saturation levels that may lead to system failures and QoS

violations. The next section presents the performance evaluation of ADA-RP

proactive auto-scaling technique.

6.3.2 Proactive auto-scaling mechanism evaluation

Various experiments conducted in order to demonstrate the effectiveness of

ADA-RP service to auto-scale containerized cloud applications using a hybrid

proactive mechanism. These include a) auto-scaling SQL databases and b)

auto-scaling NoSQL databases in cloud environments.

Auto-scaling SQL databases in cloud environments

ADA-RP service is capable of auto-scaling containerized applications de-

ployed in either single-tenant or multi-tenant cloud environments. ADA-RP
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uses a hybrid machine learning approach for time series clustering and fore-

casting to enable automatic resource allocation. During the clustering phase,

the K-means algorithm is being trained on historical data in order to cluster

time series into High, Medium and Low demand clusters. To support the pro-

posed methodology, a historical dataset for workload characterization has been

generated based on different MySQL and TPC-C configurations (see Chapter

5). The latter, used to train the K-means algorithm with a predefined value of

k = 3, that is the number of clusters.

As shown in Figure 6.12, the K-means algorithm clusters time series data

into High, Medium and Low demand clusters based on their CPU utilization

levels. Each time series consists of 60 timesteps over a 60 seconds period of

time. The DBA averaging method has been used during the K-means learning

algorithm that produced an intraclass inertia of 0.197. Figure 6.12 shows the

average cluster sequences in red color that used as representative sequences

for High, Medium and Low demand clusters respectively. In particular, the

representative sequence for High demand cluster fluctuates between 81% and

98% suggesting over-utilized CPU resources. On the other hand, the repre-

sentative sequence for the Medium demand cluster consists neither under-

utilized nor over-utilized resources with values between 47% and 66% respec-

tively. Finally, the representative sequence for the Low demand cluster takes

values between 26% and 38% suggesting that the running system is under-

utilized. ADA-RP enables an auto-scaling method for cloud resource pro-

visioning. In this domain, K-means automatically characterize future work-

load demand based on CPU utilization levels without user intervention (e.g.,

threshold-based scaling rules).
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Figure 6.12: K-means algorithm for clustering time series data into High,
Medium and Low demand clusters over a 60 seconds period of time. The av-
erage sequence for each cluster is shown in red color.

The representative average sequences for High, Medium and Low demand

clusters are being used to support two main application deployment scenarios
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including MySQL deployment in a a) single-tenant environment and b) multi-

tenant environment.

To demonstrate the effectiveness of ADA-RP service in a single-tenant

cloud environment, an experimental infrastructure is being set up consisting

of a VM with 16 vCPU cores and 64GB of Memory deployed in GCP. A MySQL

Linux container is deployed using Linux cgroups to limit and isolate CPU re-

sources based on workload demands. Figure 6.13 shows the CPU usage of

MySQL container and the vCPU cores allocation during TPC-C workload ex-

ecution. As shown in Figure 6.13 the MySQL container has no limitation to

CPU resources while accessing 16 vCPU cores (VM total) between the first six

TPC-C runs. This results to under-utilized CPU resources of MySQL container

since the CPU usage percentage fluctuates between 26% and 32% respectively.

To adapt to workload demands and reduce under-utilized resources, ADA-RP

uses the historical data as an input to train the CNN model and produces CPU

usage predictions of 300 seconds (green dotted line). Figure 6.13 shows 6 (out

of 10) training wavelets used to extract the predicted wavelet while the CNN

model achieves an RMSE score of 0.0162 in the training data and 0.0181 in

the testing data respectively. Consequently, the predicted sequence is being

Figure 6.13: CPU usage percentage, CPU usage predictions and virtual CPU
allocation based on adaptive auto-scaling strategy for single tenant architec-
ture.
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segmented into 60 seconds intervals (Wl = 60) and used as an input for the

K-means algorithm that clusters each segment into a High, Medium or Low

demand cluster. As a result, ADA-RP creates a scaling future plan for the next

300 seconds that contains all scaling decisions for each 60 second segment.

As shown in Figure 6.13, ADA-RP reduces the allocated vCPU cores to avoid

under-utilized resources in the next TPC-C workload run. In more detail, each

segment has been characterised as Low demand, thus, ADA-RP scales down in

advance the MySQL container for the next 300 seconds (segments 1-5) from

16 to 8 vCPU cores respectively. The latter results to an increase in CPU usage

percentage of MySQL container (light blue line) that fluctuates between 46%

and 52% respectively (Medium demand).

Furthermore, ADA-RP extracts application performance metrics and cal-

culates cloud costs to ensure high performance without unreasonable costs.

Figure 6.14 shows the QPS and the cloud costs of MySQL container at the

same time interval as Figure 6.13. In the first 6 TPC-C runs, the MySQL con-

tainer has access to 16 vCPU cores with a cost of 411.35$ per month while the

executed QPS fluctuated between 21,000 and 24,500 respectively. However, in

the last TPC-C run, ADA-RP reduces vCPU cores from 16 to 8 that resulted to

a significant cloud cost drop to 215.67$ per month. The reduce of vCPU cores

Figure 6.14: QPS of MySQL container and total estimated costs based on adap-
tive auto-scaling strategy for single-tenant architecture.

132



is based on the scale factor parameter Sv = 8 set by the user. Thus, ADA-RP

reduces cloud costs by 48% with a decrease of 6.9% in executed QPS that fluc-

tuated between 20,600 and 22,800. It has to be mentioned that an acceptable

reduction threshold is set to 10%, meaning that if the QPS drops below this

threshold for 60 seconds, ADA-RP returns to the initial resource configura-

tion. As a result, the user has the ability to adjust the trade-off between cost

and performance. This experiment demonstrated the ability of ADA-RP ser-

vice to reduce under-utilized resources in a single-tenant cloud environment,

by reducing the executed QPS. ADA-RP improves the efficiency of the con-

tainerized cloud application by decreasing both the CPU idle resources and

the cloud costs within service level agreement.

Additionally, this study presents the ability of ADA-RP service to take auto-

matic scaling decisions in a multi-tenant cloud environment. In such environ-

ments, tenants may share resources of a single instance to achieve economies.

As a result, the system is often over-utilized and the containerized application

may experience performance degradation. To demonstrate such a scenario, a

VM with 16 vCPU cores and 64GB of Memory deployed in GCP. Furthermore,

three MySQL Linux containers deployed in the VM where cgroups have been

used to limit the resources of each container to 8 vCPU cores. It has to be

mentioned that all three containers have been isolated to use the same num-

ber of vCPU cores (1-8) while (9-16) vCPU cores remain unallocated. Figure

6.15 illustrates the CPU usage and the vCPU cores allocation of container1

while the TPC-C workload is executed to create repeatable workload patterns.

In more detail, each TPC-C run consists of 300 seconds execution time for

container1 and 180 seconds execution time for container2 and container3. As

shown in Figure 6.15, the CPU usage of container1 fluctuates between 54%

and 62% for the first and last 60 seconds of each TPC-C run. In that pe-

riod of time, container2 and container3 remain idle. Then, to demonstrate

a multi-tenant environment where tenants require resources concurrently, for

each TPC-C workload execution in container1, the TPC-C workload executed

inside container2 and container3 between 61-240 seconds of each 300 second

execution. The latter results to a sharp increase in the CPU usage percentage

of container1 that fluctuates between 93% and 97% respectively.
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Figure 6.15: CPU usage percentage, CPU usage predictions and virtual CPU
allocation based on adaptive auto-scaling strategy for multi-tenant architec-
ture.

Figure 6.15 demonstrates the ability of ADA-RP to adapt to workload de-

mand and avoid over-utilized resources. As shown in figure 6.15, the CNN

model generates future CPU usage predictions of 300 seconds (green dotted

line) while achieving an RMSE score of 0.0352 in the training data and 0.0627

in the testing data. Figure 6.15 shows 6 (out of 10) training wavelets used

to extract the predicted wavelet. The latter has been segmented into five 60

seconds intervals (Wl = 60) that used as an input for the K-means clustering

algorithm. Ergo, ADA-RP takes decisions about container vCPU cores alloca-

tion every minute. Then, ADA-RP creates a scaling plan that includes scaling

decisions for each segment to adjust the allocated resources in the container

based on workload demand and system availability.

As shown in Figure 6.15, in the 7th TPC-C execution, ADA-RP does not

scale container1 between 1886-1945 and 2126-2185 seconds (segments 1 and

5) since the K-means clusters both segments as Medium demand. However,

between 1946 and 2125 seconds (segments 2, 3 and 4), the K-means identi-

fies the over-utilized CPU resources and clusters all three segments as High

demand. Therefore, ADA-RP increases the allocated vCPU cores from 8 to 16

between 1946-2125 seconds (segments 2, 3 and 4) based on a scale factor pa-

rameter Sv = 8 set by the user. As a result, the state of container1 in that time
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period changed from High to Medium demand as the CPU usage decreased

significantly and fluctuated between 58% and 66% respectively.

Additionally, Figure 6.16 shows the QPS and the cloud costs of container1

at the same time interval with Figure 6.15. On the one hand, the executed

QPS in container1 fluctuates between 22,800 and 26,200 while container2 and

container3 remain idle. On the other hand, the executed QPS in container1

sharply declined between 9,800 and 12,200, since container2 and container3

executed the TPC-C workload in parallel. However, the decision of ADA-RP

service to increase the allocated CPU resources from 8 to 16 vCPU cores re-

sulted to application performance recovery. As shown in Figure 6.16 the exe-

cuted QPS in container1 significantly increased and fluctuated between 20,400

and 23,500 (light blue line) during the parallel workload execution of the last

run.

Figure 6.16: QPS of MySQL container and total estimated cost based on adap-
tive auto-scaling strategy for multi-tenant architecture.

Figure 6.16 shows that during the last TPC-C run, ADA-RP service man-

ages to scale up the CPU resources of MySQL container1 in order to avoid

over-utilized resources and ensure high application performance. However, as

illustrated in Figure 6.16, additional CPU resources resulted to an increase in

cloud costs from 215.67$ to 411.35$ respectively. To comply with user require-

ments, ADA-RP considers a budget limit parameter before decision making. In
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this experiment, the ADA-RP calculates the costs of the recommended config-

urations based on Google Cloud Pricing calculator (Google, 2022e) and scales

up container1 without exceeding the budget limit which is set by the user to

500$ per month.

Auto-scaling NoSQL databases in cloud environments

This experiment demonstrates the effectiveness of ADA-RP service follow-

ing a proactive auto-scaling technique. As mentioned earlier, ADA-RP uses K-

means to cluster time series into High, Medium and Low demand categories.

A historical dataset for workload characterization has been generated based

on different system and workload configurations. The latter, used to train the

K-means algorithm with a predefined value of k = 3, that is, the number of

clusters. As shown in Figure 6.17, the K-means algorithm clusters time series

data into High, Medium and Low demand clusters based on their CPU utiliza-

tion levels. Each time series consists of 15 timesteps over a 15 seconds period

of time.

The DBA averaging method has been used for the K-means learning al-

gorithm that produced an intraclass inertia of 0.053. Figure 6.17 shows the

average cluster sequences in red color that used as representative sequences

for High, Medium and Low demand clusters respectively. The representa-

tive sequence for High demand cluster fluctuates between 88% and 98% sug-

gesting over-utilized CPU resources. On the other hand, the representative

sequence for the Medium demand cluster consists neither under-utilized nor

over-utilized resources with values between 45% and 53% respectively. Fi-

nally, the representative sequence for the Low demand cluster takes values be-

tween 18% and 31% suggesting that the running system is under-utilized. In

that context, ADA-RP service uses K-means to automatically characterize fu-

ture workload demand based on average CPU utilization levels without user

intervention.

To further support the experimental evaluation, a medium sized VM has

been deployed in GCP with 16 vCPU cores, 64 GB memory and 350GB HDD.

Then, Redis has been deployed to a docker container as the main application
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Figure 6.17: K-means algorithm for clustering time series data into High,
Medium and Low demand clusters over a 15 seconds period of time. The av-
erage sequence for each cluster is shown in red color.

named as Redis −main with access to two vCPU cores (0 and 1) and 16 GB of

memory. Additionally, to further stress the main application, a multi-tenant

cloud environment introduced where applications execute workloads in paral-

lel and request the same amount of resources at the same period of time. Ergo,

three additional Redis containers deployed named as Redis − 2, Redis − 3 and

Redis − 4. Then, YCSB workload-c used as a real-world application example

for user profile cache, where profiles are constructed elsewhere as discussed
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in (Cooper et al., 2010). The record and operation counts set to 3,000,000 with

100% read operations and executed to Redis −main. Similarly, YCSB Redis

workload-c with 500,000 records executed to Redis−2, Redis−3 and Redis−4

respectively.

In order to demonstrate an over-utilized multi-tenant environment, YCSB

workload executed to Redis −main and after 15 seconds YCSB workload exe-

cuted in parallel to Redis − 2, Redis − 3 and Redis − 4. Figure 6.18 illustrates

the CPU usage percentage of Redis−main during 9 YCSB workload executions.

The CPU usage percentage fluctuates between 40% and 60% while Redis − 2,

Redis−3 and Redis−4 remain idle. On the contrary, once YCSB workload exe-

cuted to Redis−2, Redis−3 and Redis−4, the CPU usage percentage reaches a

saturation level of 100%. This pattern is being repeated throughout the whole

experiment.

Figure 6.18: CPU usage percentage training set (blue line) and CPU usage
predictions (green dotted line).

To support a proactive method, ADA-RP service uses the historical data as

an input to train the CNN model that produces CPU usage predictions (green

dotted line). Figure 6.18 shows 9 (out of 10) training wavelets used to extract

the predicted wavelet while CNN model achieved an RMSE score of 0.0554 in

the training data and 0.0651 in the testing data respectively.
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Furthermore, Figure 6.19 illustrates the CNN CPU usage prediction (green

dotted line), the allocated vCPU cores (red line) and the scaled CPU usage

percentage (blue line) during ADA-RP scaling decisions. On the bottom, the

green and red bars illustrate ADA-RP scaling decisions. In this experiment, the

decision time window has been set to 15 seconds and the scaling parameter Sv

to 4. As a result, ADA-RP service segments the predicted sequence and makes

scaling decisions every 15 seconds.

Figure 6.19: CPU usage prediction (green dotted line), CPU usage after scaling
actions (blue line) and vCPU cores allocation (red line) using ADA-RP service

In more detail, the green bar shows that during the given time window,

ADA-RP service has clustered the predicted CPU usage percentage as Medium

demand, thus ADA-RP allocates 2 vCPU cores to Redis −main container. On

the other hand, the red bar indicates that ADA-RP service has clustered the

predicted CPU usage percentage as High demand, thus ADA-RP allocates 4

additional vCPU cores to Redis−main container leading to 6 vCPU cores dur-

ing that period of time. As shown in Figure 6.19, ADA-RP service manages to

reduce CPU usage percentage utilization between 946 and 976 seconds where

the predicted CPU usage percentage would have reached the maximum uti-

lization. It has to be mentioned that the CPU usage percentage consists the

average CPU usage of the allocated cores to the container.
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Furthermore, to ensure application performance, ADA-RP monitors and

collects the operations per second executed in Redis − main container dur-

ing YCSB workload execution. Figure 6.20 illustrates the operations per sec-

ond of Redis − main container during the same period of time with Figure

6.18. In more detail, Figure 6.20 red shaded area shows that the performance

of Redis −main container significantly drops when Redis − 2, Redis − 3 and

Redis − 4 containers execute YCSB workload in parallel. However, ADA-RP

proactive approach ensures that 4 additional vCPU cores have been allocated

to Redis −main container to incorporate future workload demand. As a re-

sult, the average operations per second executed in Redis −main during the

overload period increased from 9,173 to 14,850.

Figure 6.20: Operations per second in Redis −main in multi-tenant environ-
ment. Red shaded area indicates system overload period of time and green
shaded area shows system recovery.

ADA-RP service enables both reactive and proactive scaling techniques

to ensure high application performance under different scenarios. These ex-

periments introduced a threshold-based scaling rule to guarantee application

performance and avoid system failures. Moreover, a hybrid technique that

is based on time series forecasting and clustering enabled automatic scaling

under concurrent workload executions in a multi-tenant cloud environment.
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ADA-RP maintained application performance in both experiments and guar-

anteed QoS requirements.

6.4 SONA Experimental Evaluation

SONA supports constrained performance optimization of cloud applica-

tions using a hybrid approach of artificial neural networks and genetic al-

gorithms. The proposed service monitors the source system to identify the

optimal configurations that maximize application performance based on gen-

uine workload executions. To demonstrate the effectiveness of the proposed

method, a novel dataset collected from various TPC-C runs in a MySQL server

(see Chapter 5). Furthermore, SONA uses a cloned containerized environment

that replicates the main application to avoid system overhead. This section

presents the experimental evaluation of SONA service. It includes a) SONA

performance analysis and b) SONA experimental results.

6.4.1 SONA performance analysis

The SONA service enables database constrained optimization and tuning

based on user requirements. The service is being evaluated based on func-

tionality, efficiency and performance aspects. Ergo, four parameters are being

introduced as follows: (a) cost, (b) cost-performance ratio, (c) baseline perfor-

mance and (d) average idle CPU resources metrics. Additionally, both ANN

and GA evaluated in order to ensure a low error rate and algorithmic conver-

gence.

Cost, cost-performance ratio and TpmC

This subsection introduces the cost attribute as a significant factor that im-

pacts SONA service ability to manage system resources. The cost attribute is a

key factor for different applications in cloud environments (Chiang, Ouyang,

and Hsu, 2014). However, allocating computing resources which adapt to

workload variations and produce user desired performance with minimum
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cost, is not a trivial task (M. Mao, J. Li, and Humphrey, 2010). Here, the

TpmC performance metric in relation to GCP pricing policy is being intro-

duced to describe the relationship between system performance and system

expenditures. The cost-performance ($/TpmC) ratio attribute is defined as the

monthly GCP cost (in US dollars) divided by the TpmC metric. Introducing

a resource management service that that well-balances both is challenging.

Figure 6.21 underline the relationship between TpmC and cost during TPC-C

workload executions in MySQL systems with different resource and applica-

tion configurations. Table 6.1 shows the system sizes where each system has

500 GB of magnetic disk and 1024 MB InnoDB buffer pool size.

Table 6.1: System configurations

System Type A B C D E F
CPU Cores 1 2 4 8 12 16

Memory in GB 3.75 7 15 30 45 60

Figure 6.21 illustrates the TpmC score of the TPC-C workload execution on

various systems named as A, B, C, D, E and F as in Table 6.1. The TpmC lin-

ear performance growth follows a linear growth in relation to system resources

while TPC-C workload executed with the same configurations (e.g., number of

Figure 6.21: Cost-performance ratio and TpmC performance
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warehouses). The latter, indicates that if the resources double in size, this will

lead to a double number of TpmC. On the contrary, the experimental TpmC

defines the TpmC of various systems based on genuine executions of TPC-C

workload. Figure 6.21 shows that the experimental TpmC score does not fol-

low a linear performance growth as the TpmC score converges to 30,000 units

when executed in system F. Although, an increase to the allocated computing

resources maximizes TpmC score, this does not necessarily lead to an efficient

solution. A system with low cost-performance ratio, indicates a higher system

efficiency since it delivers performance with lower cost. Figure 6.21 shows

that the cost-performance ratio has the minimum value for system C with 116

units (the cost-performance ratio has been multiplied by 104 for visualization

purposes). Thus, cost-performance ratio suggests that system F is not the most

efficient solution even if it produces the maximum TpmC score. This example

demonstrates that an optimized cost-performance ratio is required to identify

the best configurations in terms of both performance and efficiency. SONA ser-

vice also validates the recommended configurations based on the user’s budget

and the baseline performance. Thus, a system that exceeds a predefined Bud-

get or a system that produces a TpmC lower than the baseline performance is

being penalized.

It has to be mentioned that Rj are tunable penalty coefficients for con-

straints Cj . High penalty coefficient values indicate a solution that strictly

satisfies user requirements while on the contrary low penalty coefficient val-

ues cannot guarantee that. SONA consists a flexible framework that enables

the user to tune the penalty coefficients. As will be discussed later in this sec-

tion, SONA could allow a relatively low violation in one requirement in order

to gain significant improvement in the overall system efficiency.

CPU idle

This subsection introduces the CPU idle as a performance evaluation met-

ric of SONA service. The impact of the CPU idle has been addressed in var-

ious cloud applications (Mei et al., 2010). In this thesis, SONA service mea-

sures the CPU idle percentage to allocate a reasonable amount of resources to
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the running system. SONA extracts the CPU idle metric every second during

workload execution. Then, the average CPU idle percentage of each system is

calculated for the load and run TPC-C stages respectively.

Figure 6.22 illustrates the CPU idle percentage in the load and run TPC-C

stages for systems A, B, C, D, E and F. In the load stage, the CPU idle aver-

ages 9.8% for System A with 1 CPU core. The CPU idle rises sharply to 42.9%

for system B with 2 CPU cores and reaches 71.2% for system C with 4 CPU

cores. The CPU idle continues to increase until it reaches the maximum value

of 92.8% for system F with 16 CPU cores. On the other hand, CPU idle is sig-

nificantly low for systems A, B and C in the run stage. However, the CPU idle

rises to 22.4% for system D while reaches a peak of 57.5% for system F. Fig-

ure 6.22 shows that running the same TPC-C workload while at the same time

increasing the allocated computing resources, leads to high CPU idle levels in

both load and run stages.

Figure 6.22: CPU idle percentage over Load and Run stage.

Table 6.2 illustrates (a) the CPU utilization percentage (load/run), (b) the

CPU idle percentage (load/run) and (c) the TpmC performance of each system

during the same TPC-C workload execution. The CPUIdle is being calculated

using the overall CPUUtilization Linux metric as shown in equation 6.1:
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CPUIdle = 1−CPUUtilization (6.1)

Table 6.2 shows that the CPUutilization for system A remains above 90% on

average for both load and run stages with a 5,058 TpmC. However, in load

stage the CPUutilization is in decline for each system while reaches the mini-

mum value of 7.2% for system F. In the run stage, the CPU is highly utilized

for systems A, B and C. On the contrary, CPUutilization started to plummet

until reaches a minimum CPU utilization of 42.5% for system F. Although,

TpmC performance increases in relation to system size, system F achieves

30,266 TpmC score with only 7.2% of CPUutilization in the load stage and

42.5% CPUutilization in the run stage. As a result, SONA service penalizes

underutilized systems with high levels of idle CPU resources as discussed in

constraint C4.

Table 6.2: Average system utilization and system idle.

Load Stage Run Stage Performance

System Utilisation Idle Utilisation Idle T pmC

A 90.2% 9.8% 97.4% 2.6% 5,058

B 57.1% 42.9% 97.3% 2.7% 8,645

C 28.8% 71.2 % 96.8% 3.2% 15,695

D 14.5% 85.5% 77.6% 22.4% 23,689

E 9.2% 90.3% 59.1% 40.9% 28,319

F 7.2% 92.8% 42.5% 57.5% 30,266

SONA service introduces a threshold to manage idle CPU resources based

on user requirements. On the one hand, a low threshold value will show high

tolerance in underutilized systems that may harm overall system efficiency.

On the other hand, a high threshold will be less forgiving to idle CPU re-

sources which may affect the TpmC performance. To balance this trade off
the recommended CPU idle threshold set to 50%. It should be noted that the

threshold can be tuned based on user requirements.
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Artificial Neural Network evaluation

ANN model evaluation demonstrates the effectiveness of the model to pro-

duce accurate predictions so as to avoid propagating a high error rate to the

GA optimization process. The ANN model uses the back propagation algo-

rithm to find the optimal weights that minimize the mean squared error (MSE)

loss function as shown in equation 6.2:

MSE =
1
n

n∑
i=1

(yi − ŷi)2 (6.2)

where ŷi is the prediction that ANN model produces for the ith observation

and yi is the true response variable.

The dataset has been separated into three parts, the training data, the val-

idation data and the test data based on the following proportions: 70%, 15%

and 15% respectively. The model is said to be optimized when the validation

score is not further improving over a particular number of epochs according to

early stopping technique. Thus, in the training process, the MSE of the ANN

model in the training samples was 2.6479e−4 while the MSE in the validation

samples reached 8.8062e − 4 at the epoch of 313. The MSE of the ANN model

in the test samples was 4.65032e − 3.

Furthermore, the significance of ANN model is evaluated by utilizing the

coefficient of determination (R2) that clarifies the relation between the exper-

imental and predicted values. Figure 6.23 illustrates the predictions of ANN

model over the training and testing observations versus the experimental val-

ues of the TpmC performance. Figure 6.23 shows that ANN produces accurate

predictions for both training and test set of observations. The blue symbols in-

dicate the predicted TpmC in the training set and the red symbols indicate the

predicted TpmC in the test set. The R2 takes the value of 0.986 which shows

the high accuracy of the model. The diagonal green line signifies perfect pre-

diction where R2 = 1.00.
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Figure 6.23: Artificial Neural Network TpmC predictions over the training
and test set vs the Experimental TpmC.

Genetic algorithm evaluation

In this work, the population size is set to 20 and the number of iterations

is set to 250. The crossover probability is set to 0.7 while mutation used with

probability equal to 0.001. The fitness function based on the ANN model used

to calculate the fitness for each individual in the population. Figure 6.24 illus-

trates the evolution of generations. The optimized features, produced by the

GA, are as following: 16 CPU cores, 60GB Memory, 500GB Solid State Drive,

1024MB InnoDB buffer pool size while TPC-C executes in 5 Warehouses. The

aforementioned configurations produced 31,326 TpmC score.
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Figure 6.24: Evolution of generations for TpmC optimization.

Figure 6.24 illustrates the convergence of the GA algorithm. It can be ob-

served that the GA optimization result is satisfactory as the population gets

better fitness score and reach algorithmic convergence at the end of the evolu-

tion.

6.4.2 SONA experimental results

During the experimental evaluation of SONA service, MySQL relational

database management system used as the running cloud application deployed

in GCP. In addition, TPC-C used as an on-line transaction processing bench-

mark to evaluate the performance of MySQL based on the TpmC metric. All

the experiments executed in a clone system that does not affect the perfor-

mance of the main application. Three experimental scenarios conducted to

show the effectiveness of the proposed service. This includes (a) resource op-

timization, (b) MySQL application tuning, and (c) resource and application

optimization. All the aforementioned scenarios demonstrate the effectiveness

of SONA to optimize the target system based on user requirements.
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Resource optimization

In this experiment, SONA service enables the neuro-genetic optimization

process to identify the requirements of the workload and scale down sys-

tem resources for improving efficiency in terms of (a) lower cost, (b) lower

cost performance ratio and (c) lower idle CPU resources. Figure 6.25 shows

the TpmC performance metric (in thousands) of the source system F and the

recommended system E while TPC-C workload executed in 5 Warehouses.

System F includes 16 CPU cores, 60GB Memory, 500GB Magnetic Disk and

1024MB InnoDB buffer pool size and scores 27,768 TpmC units (27.7 thou-

sands TpmC). On the other hand, System E includes 12 CPU cores, 45GB

Memory, 500GB Magnetic Disk and 1024MB InnoDB buffer pool size and

scores 27,408 TpmC respectively.

Figure 6.25 shows that decreasing the CPU and Memory resources by 25%

leads to 1.3% reduction in the TpmC from 27,768 to 27,408. However, SONA

recommends system E since it gains a reduced cost of 20.3% from 408$ to

325$, a lower cost performance-ratio of 19% from 0.0147 to 0.0119 and a lower

CPU idle of 15.6% from 57.5% to 41.9%. In this experiment, the user sets the

Figure 6.25: Scale down for improving efficiency.
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monthly budget to 350$, so SONA does not penalize system E according to C1

constraint since it does not exceed the budget limit. System E has lower cost-

performance ratio, so it has a lower penalty term according to C2 constraint.

Since the recommended configurations lead to a decrease in the baseline per-

formance, SONA adds a small penalty term to System E according to C3 con-

straint. As the CPU idle threshold is set to 50%, SONA does not penalize

System E according to C4.

Database application tuning

MySQL tuning is a process that adjusts application configurations to max-

imize the performance. SONA service is able to automatically identify both

the system and application configurations that produce the highest TpmC. In

this experiment, the user has set a predefined budget limit that does not ex-

ceed source system costs. Thus, SONA heavily penalizes all recommended

systems that exceed current monthly costs according to C1 constraint, while

at the same time explores the optimal application configurations to produce

the highest TpmC.

Figure 6.26 shows the TpmC performance of the source system D and the

recommended System D*. System D includes 8 CPU cores, 30GB Memory,

500GB Magnetic Disk and 128MB InnoDB buffer pool size (default size). Sys-

tem D* has the same amount of resources with the same monthly costs, how-

ever the InnoDB buffer pool size is set to 1024MB. System D and System D*

produce 10,500 and 22,234 TpmC while TPC-C workload executed in 5 Ware-

houses. During the optimization process, System D* is being recommended

since outperforms System D in terms of performance and efficiency. Increas-

ing the InnoDB buffer pool size from 128MB to 1024MB results to (a) an in-

crease of 111.7% in TpmC from 10,500 to 22,234, (b) a decrease of 52.9% in

cost-performance ratio from 0.0204 to 0.0096 and (c) a decrease of 27% in CPU

idle from 53% to 26%.
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Figure 6.26: Application tuning for TpmC optimization.

In this experiment, System D* allocates the same amount of resources so it

is not being penalized according to C1. System D* has lower cost-performance

ratio so it has a lower penalty term according to C2. Since the recommended

configurations outperform the baseline performance SONA does not penalize

the recommended system according to C3 constraint. As the CPU idle thresh-

old is set to 50%, SONA does not penalizes System D* according to C4.

Resource and application optimization

This experiment demonstrates a combination of resource and application

optimization. Figure 6.27 shows the TpmC performance metric, the number

of CPU cores and Memory size of systems B, E and F respectively. System B is

the source system that includes 2 CPU cores, 7.5GB Memory, 500GB magnetic

disk and 128MB InnoDB buffer pool size with 6,236 TpmC. System E and Sys-

tem F are two candidates for improving the baseline performance. System E

includes 12 CPU cores, 45GB Memory, 500GB Solid State Drive and 1024MB

InnoDB buffer pool size. On the other hand, System F includes 16 CPU cores,

60GB Memory, 500GB Solid State Drive and 1024MB InnoDB buffer pool size.
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Figure 6.27: Scale up for improving TpmC performance.

System E and System F produce 28,319 and 30,266 TpmC respectively.

System E results to (a) an increase of 354.1% in the baseline TpmC from

6,236 to 28,319, (b) an increase of 473.5% in the cost from 68$ to 390$, (c)

an increase of 25.4% in the cost-performance ratio from 0.0110 to 0.0138 and

(d) an increase of of 27.6% in the CPU idle from 13.3% to 40.9%. System F

results to (a) an increase of 385.3% in the original TpmC score from 6,236 to

30,266, (b) an increase of 595.5% in the cost from 68$ to 473$, (c) an increase of

41.8% in the cost-performance ratio from 0.0110 to 0.0156 and (d) an increase

of 44.2% in the CPU idle from 13.3% to 57.5%.

In this experiment, the user sets the monthly budget to 400$, thus, accord-

ing to C1 budget constraint, SONA does not penalize System E (390$) in con-

trast to System F (473$). Both E and F systems receive a penalty term according

to C2 cost-performance ratio constraint. However, System F has the highest

cost-performance ratio so it has the highest penalty term. Since the recom-

mended configurations outperform the baseline performance, SONA does not

penalize System E and System F according to C3 constraint. As the CPU idle

threshold is set to 50%, SONA penalizes System F (57.5%), while it does not
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penalize System E (40.9%) according to C4 constraint. As a result, although

System F produces higher TpmC, SONA recommends system E with the op-

timal system and application configurations. Figure 6.28 shows the TpmC

performance, the Disk size, the Disk type and the InnoDB buffer pool size of

system B and system E respectively.

Figure 6.28: System configuration and application tuning for TpmC
optimization.

As shown in Figure 6.28 SONA changes the disk type from Magnetic to SSD

and increases the InnoDB buffer pool size to achieve higher TpmC. Although,

System E increases the TpmC performance within user’s budget, is being pe-

nalized due to the increase of the cost-performance ratio. This demonstrates

the trade off between performance and efficiency, and the need for a balanced

solution. SONA consists a flexible framework that enables the user to adjust

Rj penalty coefficients based on application demands. In this experiment, the

R2 coefficient adjusted so as to not heavily penalize systems with high cost-

performance ratio. Thus, SONA suggests System E configurations that sharply

increase TpmC performance within user’s budget and with acceptable idle

CPU resources.
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6.5 Summary

This chapter presents the performance evaluation of PACE framework and

its services namely as ADM2, ADA-RP and SONA. It presented experiments

conducted in different system and application settings in order to demonstrate

the effectiveness of each service. In particular, it includes the experimental

evaluation of ADM2 service that enables automatic performance degradation

of cloud applications. Furthermore, ADA-RP service evaluated based on its

ability to scale up or down containerized cloud applications. Both reactive

and proactive techniques have been suggested and evaluated based on differ-

ent experimental scenarios. Finally, SONA experimental evaluation showed

that the proposed technique effectively optimizes cloud resources and tunes

application parameter in order to maximize performance based on user re-

quirements.

The experimental achievements showed that PACE framework designed to

act in different cloud environments using real-world systems and state-of-the-

art benchmarks. The next chapter discusses the conclusion and the limitations

of the proposed methodology that further enables a discussion around the fu-

ture directions of this work.
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7 Conclusions and Future
Directions

This chapter provides a summary of the research reported in this thesis. In

more detail, section 7.1 outlines the major contributions of the thesis. Section

7.2 presents the limitations of this thesis and provides future directions to

extend this work. Finally, section 7.3 offers some concluding remarks.

7.1 Major Contributions of the Thesis

The main contribution of this thesis is the development of PACE frame-

work and its services to support reliable and adaptive resource provisioning

in cloud computing environments. The following list concludes the major con-

tributions of this thesis:

1. Anomaly detection in cloud systems using LSTM Autoencoder. The pro-

posed methodology effectively monitors and detects aberrant patterns in

cloud serving systems. As a result, PACE framework alerts system ad-

ministrators on-the-fly and ensures that PACE decisions are not affected

by abnormal system behavior.

2. Reactive auto-scaling using threshold-based rules. PACE automatically
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adjusts cloud resources to avoid application failures and to ensure QoS

requirements during intensive workload tasks. Proactive auto-scaling

using hybrid machine learning techniques. PACE analyzes monitored

data to create scaling policies that incorporate future workload demands.

As a result, PACE improves cost efficiency of under-utilized systems and

increases application performance during intensive workloads tasks.

3. Constrained optimization of cloud applications based on historical

events. PACE explores the optimum configurations that maximize appli-

cation performance based on user requirements. The decisions are based

on historical records from previous workload executions in the running

system.

4. An experimental evaluation of PACE framework using state-of-the-

art benchmarks for cloud applications. PACE enables a lightweight

container-based solution to support fast application deployment and dy-

namic resource reconfiguration. This also supports the proposed cloning

strategy that validates PACE recommendations with zero overhead to the

main application.

Having said that, this thesis proposed a framework for reliable and adap-

tive resource provisioning in cloud computing environments. The proposed

methodology effectively adjusts system resources based on workload demand

while optimizes system performance to satisfy user requirements. In exten-

sion to this, it proposes an anomaly detection technique to ensure that decision

making is not prone to errors due to abnormal system behavior.

7.2 Limitations and Future Directions

Although, the research of this thesis addressed the proposed aims and ob-

jectives, there are still areas for further development and improvement. This

section discusses the limitations of this work and includes recommendations

to extent its functionality.
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The proposed framework enables constrained optimization of cloud appli-

cations to satisfy a variety of user requirements including idle CPU resources

which are related to the CPU energy consumption. In that context, a future

direction includes the consideration of energy consumption measurements.

This requires additional functionalities that calculate the energy consumption

of each recommended system configuration. Ergo, the user will be able to

set energy consumption constraints that will be included in the optimization

process. As a result, the energy consumption measurements will extend the

current functionalities that enable efficient utilization and cost reduction.

The proposed methodology is mainly based on historical data to enable

reliable resource provisioning and optimization of cloud applications. Hav-

ing said that, learning-based techniques need a grace period for monitoring,

collecting and analyzing data events before triggering scaling decisions. Ad-

ditionally, this thesis proposes a technique to provision resources based on

periodic workloads patterns. As a result, the proposed solution is focused on

periodic workload patterns where the system experiences foreseeable utiliza-

tion patterns over time.

PACE framework proposed an LSTM Autoencoder model to detect perfor-

mance degradation of cloud systems. The LSTM Autoencoder learns to re-

construct normal throughput patterns while it produces high reconstruction

error on new unseen abnormal sequences. As a result, the proposed mech-

anism classifies throughput observations as normal or abnormal based on a

threshold parameters. However, parameter tuning is not a trivial task and of-

ten requires domain-expert users. This work could be extended to use machine

learning classification algorithms such as Random Forests and Support Vector

Machines to classify the encoded sequences as normal or abnormal. As a re-

sult, a hybrid approach will enable both LSTM Autoencoder and classification

algorithms to detect abnormal system behavior while meeting requirements of

less skilled users.

Future directions also include the exploration of different workloads and

database systems that will realize different applications scenarios. These sys-

tems can be deployed on different cloud platforms including AWS, Azure and

IBM Cloud. New application scenarios will enable the collection of additional
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records to enrich PACE datasets and create new datasets to support the pro-

posed methodologies.

7.3 Concluding Remarks

This thesis proposed PACE, a framework for reliable and adaptive resource

provisioning in cloud computing environments. PACE monitors the running

system to collect a variety of metrics. These are being analyzed to enable

anomaly detection to alert system administrators for abnormal events and to

ensure that the resource provisioning process is not prone to incorrect deci-

sions due to abnormal system behavior. Consequently, PACE automatically

adjusts system resources to improve application performance and ensure effi-

cient utilization levels. Additionally, PACE collects information about histori-

cal runs to identify the configurations that maximize application performance

while at the same time satisfy user requirements. The results of this research

can be extended with the collection of additional datasets and the use of alter-

native database systems such as Apache Cassandra and Neo4j.
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