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A holistic and proactive approach 
to forecasting cyber threats
Zaid Almahmoud 1, Paul D. Yoo 1*, Omar Alhussein 2, Ilyas Farhat 3 & Ernesto Damiani 4,5

Traditionally, cyber-attack detection relies on reactive, assistive techniques, where pattern-matching 
algorithms help human experts to scan system logs and network traffic for known virus or malware 
signatures. Recent research has introduced effective Machine Learning (ML) models for cyber-attack 
detection, promising to automate the task of detecting, tracking and blocking malware and intruders. 
Much less effort has been devoted to cyber-attack prediction, especially beyond the short-term time 
scale of hours and days. Approaches that can forecast attacks likely to happen in the longer term 
are desirable, as this gives defenders more time to develop and share defensive actions and tools. 
Today, long-term predictions of attack waves are mostly based on the subjective perceptiveness of 
experienced human experts, which can be impaired by the scarcity of cyber-security expertise. This 
paper introduces a novel ML-based approach that leverages unstructured big data and logs to forecast 
the trend of cyber-attacks at a large scale, years in advance. To this end, we put forward a framework 
that utilises a monthly dataset of major cyber incidents in 36 countries over the past 11 years, 
with new features extracted from three major categories of big data sources, namely the scientific 
research literature, news, blogs, and tweets. Our framework not only identifies future attack trends 
in an automated fashion, but also generates a threat cycle that drills down into five key phases that 
constitute the life cycle of all 42 known cyber threats.

Running a global technology infrastructure in an increasingly de-globalised world raises unprecedented secu-
rity issues. In the past decade, we have witnessed waves of cyber-attacks that caused major damage to gov-
ernments, organisations and enterprises, affecting their bottom  lines1. Nevertheless, cyber-defences remained 
reactive in nature, involving significant overhead in terms of execution time. This latency is due to the complex 
pattern-matching operations required to identify the signatures of polymorphic  malware2, which shows different 
behaviour each time it is run. More recently, ML-based models were introduced relying on anomaly detection 
algorithms. Although these models have shown a good capability to detect unknown attacks, they may classify 
benign behaviour as  abnormal3, giving rise to a false alarm.

We argue that data availability can enable a proactive defense, acting before a potential threat escalates into an 
actual incident. Concerning non-cyber threats, including terrorism and military attacks, proactive approaches 
alleviate, delay, and even prevent incidents from arising in the first place. Massive software programs are avail-
able to assess the intention, potential damages, attack methods, and alternative options for a terrorist  attack4. 
We claim that cyber-attacks should be no exception, and that nowadays we have the capabilities to carry out 
proactive, low latency cyber-defenses based on  ML5.

Indeed, ML models can provide accurate and reliable forecasts. For example, ML models such as  AlphaFold26 
and  RoseTTAFold7 can predict a protein’s three-dimensional structure from its linear sequence. Cyber-security 
data, however, poses its unique challenges. Cyber-incidents are highly sensitive events and are usually kept 
confidential since they affect the involved organisations’ reputation. It is often difficult to keep track of these 
incidents, because they can go unnoticed even by the victim. It is also worth mentioning that pre-processing 
cyber-security data is challenging, due to characteristics such as lack of structure, diversity in format, and high 
rates of missing values which distort the findings.

When devising a ML-based method, one can rely on manual feature identification and engineering, or try 
and learn the features from raw data. In the context of cyber-incidents, there are many factors (i.e., potential 
features) that could lead to the occurrence of an attack. Wars and political conflicts between countries often 
lead to cyber-warfare8,9. The number of mentions of a certain attack appearing in scientific articles may corre-
late well with the actual incident rate. Also, cyber-attacks often take place on holidays, anniversaries and other 
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politically significant  dates5. Finding the right features out of unstructured big data is one of the key strands of 
our proposed framework.

The remainder of the paper is structured as follows. The “Literature review” section presents an overview of 
the related work and highlights the research gaps and our contributions. The “Methods” section describes the 
framework design, including the construction of the dataset and the building of the model. The “Results” section 
presents the validation results of our model, the trend analysis and forecast, and a detailed description of the 
developed threat cycle. Lastly, the “Discussion” section offers a critical evaluation of our work, highlighting its 
strengths and limitations, and provides recommendations for future research.

Literature review
In recent years, the literature has extensively covered different cyber threats across various application domains, 
and researchers have proposed several solutions to mitigate these threats. In the Social Internet of Vehicles (SIoV), 
one of the primary concerns is the interception and tampering of sensitive information by  attackers10. To address 
this, a secure authentication protocol has been proposed that utilises confidential computing environments to 
ensure the privacy of vehicle-generated data. Another application domain that has been studied is the privacy of 
image data, specifically lane images in rural  areas11. The proposed methodology uses Error Level Analysis (ELA) 
and artificial neural network (ANN) algorithms to classify lane images as genuine or fake, with the U-Net model 
for lane detection in bona fide images. The final images are secured using the proxy re-encryption technique with 
RSA and ECC algorithms, and maintained using fog computing to protect against forgery.

Another application domain that has been studied is the security of Wireless Mesh Networks (WMNs) in 
the context of the Internet of Things (IoT)12. WMNs rely on cooperative forwarding, making them vulnerable 
to various attacks, including packet drop/modification, badmouthing, on-off, and collusion attacks. To address 
this, a novel trust mechanism framework has been proposed that differentiates between legitimate and malicious 
nodes using direct and indirect trust computation. The framework utilises a two-hop mechanism to observe the 
packet forwarding behaviour of neighbours, and a weighted D-S theory to aggregate recommendations from 
different nodes. While these solutions have shown promising results in addressing cyber threats, it is important to 
anticipate the type of threat that may arise to ensure that the solutions can be effectively deployed. By proactively 
identifying and anticipating cyber threats, organisations can better prepare themselves to protect their systems 
and data from potential attacks.

While we are relatively successful in detecting and classifying cyber-attacks when they  occur13–15, there has 
been a much more limited success in predicting them. Some studies exist on short-term predictive  capability16–26, 
such as predicting the number or source of attacks to be expected in the next hours or days. The majority of this 
work performs the prediction in restricted settings (e.g., against a specific entity or organisation) where historical 
data are  available18,19,25. Forecasting attack occurrences has been attempted by using statistical methods, especially 
when parametric data distributions could be  assumed16,17, as well as by using ML  models20. Other methods adopt 
a Bayesian setting and build event graphs suitable for estimating the conditional probability of an attack follow-
ing a given chain of  events21. Such techniques rely on libraries of predefined attack graphs: they can identify the 
known attack most likely to happen, but are helpless against never-experienced-before, zero-day attacks.

Other approaches try to identify potential attackers by using network entity reputation and  scoring26. A small 
but growing body of research explores the fusion of heterogeneous features (warning signals) to forecast cyber-
threats using ML. Warning signs may include the number of mentions of a victim organisation on  Twitter18, 
mentions in news articles about the victim  entity19, and digital traces from dark web hacker  forums20. Our 
literature review is summarised in Table 1.

Forecasting the cyber-threats that will most likely turn into attacks in the medium and long term is of 
significant importance. It not only gives to cyber-security agencies the time to evaluate the existing defence 
measures, but also assists them in identifying areas where to develop preventive solutions. Long-term predic-
tion of cyber-threats, however, still relies on the subjective perceptions of human security  experts27,28. Unlike a 
fully automated procedure based on quantitative metrics, the human-based approach is prone to bias based on 
scientific or technical  interests29. Also, quantitative predictions are crucial to scientific  objectivity30. In summary, 
we highlight the following research gaps:

• Current research primarily focuses on detecting (i.e., reactive) rather than predicting cyber-attacks (i.e., 
proactive).

• Available predictive methods for cyber-attacks are mostly limited to short-term predictions.
• Current predictive methods for cyber-attacks are limited to restricted settings (e.g., a particular network or 

system).
• Long-term prediction of cyber-attacks is currently performed by human experts, whose judgement is subjec-

tive and prone to bias and disagreement.

Research contributions. Our objective is to fill these research gaps by a proactive, long-term, and holistic 
approach to attack prediction. The proposed framework gives cyber-security agencies sufficient time to evaluate 
existing defence measures while also providing objective and accurate representation of the forecast. Our study 
is aimed at predicting the trend of cyber-attacks up to three years in advance, utilising big data sources and ML 
techniques. Our ML models are learned from heterogeneous features extracted from massive, unstructured data 
sources, namely,  Hackmageddon9,  Elsevier31,  Twitter32, and Python  APIs33. Hackmageddon provides more than 
15, 000 records of global cyber-incidents since the year 2011, while Elsevier API offers access to the Scopus data-
base, the largest abstract and citation database of peer-reviewed literature with over 27,000,000  documents34. The 
number of relevant tweets we collected is around 9 million. Our study covers 36 countries and 42 major attack 



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8049  | https://doi.org/10.1038/s41598-023-35198-1

www.nature.com/scientificreports/

types. The proposed framework not only provides the forecast and categorisation of the threats, but also gener-
ates a threat life-cycle model, whose the five key phases underlie the life cycle of all 42 known cyber-threats. The 
key contribution of this study consists of the following:

• A novel dataset is constructed using big unstructured data (i.e., Hackmageddon) including news and govern-
ment advisories, in addition to Elsevier, Twitter, and Python API. The dataset comprises monthly counts of 
cyber-attacks and other unique features, covering 42 attack types across 36 countries.

• Our proactive approach offers long-term forecasting by predicting threats up to 3 years in advance.
• Our approach is holistic in nature, as it does not limit itself to specific entities or regions. Instead, it provides 

projections of attacks across 36 countries situated in diverse parts of the world.
• Our approach is completely automated and quantitative, effectively addressing the issue of bias in human 

predictions and providing a precise forecast.
• By analysing past and predicted future data, we have classified threats into four main groups and provided a 

forecast of 42 attacks until 2025.
• The first threat cycle is proposed, which delineates the distinct phases in the life cycle of 42 cyber-attack types.

Methods
The framework of forecasting cyber threats. The architecture of our framework for forecasting cyber 
threats is illustrated in Fig. 1. As seen in the Data Sources component (l.h.s), to harness all the relevant data 
and extract meaningful insights, our framework utilises various sources of unstructured data. One of our main 
sources is Hackmageddon, which includes massive textual data on major cyber-attacks (approx. 15,334 inci-
dents) dating back to July 2011. We refer to the monthly number of attacks in the list as the Number of Incidents 
(NoI). Also, Elsevier’s Application Programming Interface (API) gives access to a very large corpus of scientific 
articles and data sets from thousands of sources. Utilising this API, we obtained the Number of Mentions (NoM) 
(e.g., monthly) of each attack that appeared in the scientific publications. This NoM data is of particular impor-
tance as it can be used as the ground truth for attack types that do not appear in Hackmageddon. During the 
preliminary research phase, we examined all the potentially relevant features and noticed that wars/political 
conflicts are highly correlated to the number of cyber-events. These data were then extracted via Twitter API as 
Armed Conflict Areas/Wars (ACA). Lastly, as attacks often take place around holidays, Python’s holidays pack-
age was used to obtain the number of public holidays per month for each country, which is referred to as Public 
Holidays (PH).

To ensure the accuracy and quality of Hackmageddon data, we validated it using the statistics from offi-
cial sources across government, academia, research institutes and technology organisations. For a ransomware 
example, the Cybersecurity & Infrastructure Security Agency stated in their 2021 trend report that cybersecurity 
authorities in the United States, Australia, and the United Kingdom observed an increase in sophisticated, high-
impact ransomware incidents against critical infrastructure organisations  globally35. The WannaCry attack in 
the dataset was also validated with Ghafur et al’s1 statement in their article: “WannaCry ransomware attack was 
a global epidemic that took place in May 2017”.

An example of an entry in the Hackmageddon dataset is shown in Table 2. Each entry includes the incident 
date, the description of the attack, the attack type, and the target country. Data pre-processing (Fig. 1) focused 
on noise reduction through imputing missing values (e.g., countries), which were often observed in the earlier 
years. We were able to impute these values from the description column or occasionally, by looking up the entity 
location using Google.

The textual data were quantified via our Word Frequency Counter (WFC), which counted the number of 
each attack type per month as in Table 3. Cumulative Aggregation (CA) obtained the number of attacks for all 
countries combined and an example of a data entry after transformation includes the month, and the number of 
attacks against each country (and all countries combined) for each attack type. By adding features such as NoM, 
ACA, and PH, we ended up having additional features that we appended to the dataset as shown in Table 4. Our 
final dataset covers 42 common types of attacks in 36 countries. The full list of attacks is provided in Table 5. The 
list of the countries is given in Supplementary Table S1.

To analyse and investigate the main characteristics of our data, an exploratory analysis was conducted focusing 
on the visualisation and identification of key patterns such as trend and seasonality, correlated features, missing 
data and outliers. For seasonal data, we smoothed out the seasonality so that we could identify the trend while 
removing the noise in the time  series36. The smoothing type and constants were optimised along with the ML 
model (see Optimisation for details). We applied Stochastic selection of Features (SoF) to find the subset of 
features that minimises the prediction error, and compared the univariate against the multivariate approach.

For the modelling, we built a Bayesian encoder-decoder Long Short-Term Memory (B-LSTM) network. 
B-LSTM models have been proposed to predict “perfect wave” events like the onset of stock market “bear” periods 
on the basis of multiple warning signs, each having different time  dynamics37. Encoder-decoder architectures can 
manage inputs and outputs that both consist of variable-length sequences. The encoder stage encodes a sequence 
into a fixed-length vector representation (known as the latent representation). The decoder prompts the latent 
representation to predict a sequence. By applying an efficient latent representation, we train the model to consider 
all the useful warning information from the input sequence - regardless of its position - and disregard the noise.

Our Bayesian variation of the encoder-decoder LSTM network considers the weights of the model as random 
variables. This way, we extract epistemic uncertainty via (approximate) Bayesian inference, which quantifies 
the prediction error due to insufficient  information38. This is an important parameter, as epistemic uncertainty 
can be reduced by better intelligence, i.e., by acquiring more samples and new informative features. Details are 
provided in “Bayesianlong short-term memory” section.
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Our overall analytical platform learns an operational model for each attack type. Here, we evaluated the 
model’s performance in predicting the threat trend 36 months in advance. A newly modified symmetric Mean 
Absolute Percentage Error (M-SMAPE) was devised as the evaluation metric, where we added a penalty term 
that accounts for the trend direction. More details are provided in the “Evaluation metrics” section.

Feature extraction. Below, we provide the details of the process that transforms raw data into numerical 
features, obtaining the ground truth NoI and the additional features NoM, ACA and PH.
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Figure 1.  The workflow and architecture of forecasting cyber threats. The ground truth of Number of 
Incidents (NoI) was extracted from Hackmageddon which has over 15,000 daily records of cyber incidents 
worldwide over the past 11 years. Additional features were obtained including the Number of Mentions (NoM) 
of each attack in the scientific literature using Elsevier API which gives access to over 27 million documents. 
The number of tweets about Armed Conflict Areas/Wars (ACA) was also obtained using Twitter API for 
each country, with a total of approximately 9 million tweets. Finally, the number of Public Holidays (PH) in 
each country was obtained using the holidays library in Python. The data preparation phase includes data 
re-formatting, imputation and quantification using Word Frequency Counter (WFC) to obtain the monthly 
occurrence of attacks per country and Cumulative Aggregation (CA) to obtain the sum for all countries. 
The monthly NoM, ACA and PHs were quantified and aggregated using CA. The numerical features were 
then combined and stored in the refined database. The percentages in the refined database are based on the 
contribution of each data source. In the exploratory analysis phase, the analytic platform analyses the trend and 
performs data smoothing using Exponential Smoothing (ES), Double Exponential Smoothing (DES) and No 
Smoothing (NS). The smoothing methods and Smoothing Constants (SCs) were chosen for each attack followed 
by the Stochastic Selection of Features (SoF). In the model development phase, the meta data was partitioned 
into approximately 67% for training and 33% for testing. The models were learned using the encoder-decoder 
architecture of the Bayesian Long Short-Term Memory (B-LSTM). The optimisation component finds the set 
of hyper-parameters that minimises the error (i.e., M-SMAPE), which is then used for learning the operational 
models. In the forecasting phase, we used the operational models to predict the next three years’ NoIs. Analysing 
the predicted data, trend types were identified and attacks were categorised into four different trends. The slope 
of each attack was then measured and the Magnitude of Slope (MoS) was analysed. The final output is The 
Threat Cycle (TTC) illustrating the attacks trend, status, and direction in the next 3 years.
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• NoI: The number of daily incidents in Hackmageddon was transformed from the purely unstructured daily 
description of attacks along with the attack and country columns, to the monthly count of incidents for each 
attack in each country. Within the description, multiple related attacks may appear, which are not necessarily 
in the attack column. Let Exi denote the set of entries during the month xi in Hackmageddon dataset. Let aj 
and ck denote the jth attack and kth country. Then NoI can be expressed as follows: 

 where Z(aj , ck , e) is a function that evaluates to 1 if aj appears either in the description or in the attack 
columns of entry e and ck appears in the country column of e. Otherwise, the function evaluates to 0. Next, 
we performed CA to obtain the monthly count of attacks in all countries combined for each attack type as 
follows: 

• NoM: We wrote a Python script to query Elsevier API for the number of mentions of each attack during each 
 month31. The search covers the title, abstract and keywords of published research papers that are stored in 
Scopus  database39. Let Pxi denote the set of research papers in Scopus published during the month xi . Also, 
let Wp denote the set of words in the title, abstract and keywords of research paper p. Then NoM can be 
expressed as follows: 

 where U(w, aj) evaluates to 1 if w = aj , and to 0 otherwise.
• ACA: Using Twitter API in  Python32, we wrote a query to obtain the number of tweets with keywords related 

to political conflicts or military attacks associated with each country during each month. The keywords used 
for each country are summarised in Supplementary Table S2, representing our query. Formally, let Txi denote 
the set of all tweets during the month xi . Then ACA can be expressed as follows: 

 where Q(t, ck) evaluates to 1 if the query in Supplementary Table S2 evaluates to 1 given t and ck . Otherwise, 
it evaluates to 0.

• PH: We used the Python holidays  library33 to count the number of days that are considered public holidays 
in each country during each month. More formally, this can be expressed as follows: 

 where H(d, ck) evaluates to 1 if the day d in the country ck is a public holiday, and to 0 otherwise. In (4) and 
(5), CA was used to obtain the count for all countries combined as in (2).

Data integration. Based on Eqs. (1)–(5), we obtain the following columns for each month:

• NoI_C: The number of incidents for each attack type in each country ( 42× 36 columns) [Hackmageddon].
• NoI: The total number of incidents for each attack type (42 columns) [Hackmageddon].
• NoM: The number of mentions of each attack type in research articles (42 columns) [Elsevier].
• ACA_C: The number of tweets about wars and conflicts related to each country (36 columns) [Twitter].
• ACA: The total number of tweets about wars and conflicts (1 column) [Twitter].
• PH_C: The number of public holidays in each country (36 columns) [Python].
• PH: The total number of public holidays (1 column) [Python].

In the aforementioned list of columns, the name enclosed within square brackets denotes the source of data. By 
matching and combining these columns, we derive our monthly dataset, wherein each row represents a distinct 
month. A concrete example can be found in Tables 3 and 4, which, taken together, constitute a single observation 
in our dataset. The dataset can be expanded through the inclusion of other monthly features as supplementary 
columns. Additionally, the dataset may be augmented with further samples as additional monthly records become 
available. Some suggestions for extending the dataset are provided in the “Discussion” section.

Data smoothing. We tested multiple smoothing methods and selected the one that resulted in the model 
with the lowest M-SMAPE during the hyper-parameter optimisation process. The methods we tested include 
exponential smoothing (ES), double exponential smoothing (DES) and no smoothing (NS). Let α be the smooth-
ing constant. Then the ES formula is:

(1)NoI(xi , aj , ck) =
∑

e∈Exi

Z(aj , ck , e)

(2)NoI(xi , aj) =

K
∑

k=0

NoI(xi , aj , ck)

(3)NoM(xi , aj) =
∑

p∈Pxi

∑

w∈Wp

U(w, aj)

(4)ACA(xi , ck) =
∑

t∈Txi

Q(t, ck)

(5)PH(xi , ck) =
∑

d∈xi

H(d, ck)
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where D(xi) denotes the original data at month xi . For the DES formula, let α and β be the smoothing constants. 
We first define the level l(xi) and the trend τ(xi) as follows:

then, DES is expressed as follows:

The smoothing constants ( α and β ) in the aforementioned methods are chosen as the predictive results of the 
ML model that gives the lowest M-SMAPE during the hyper-parameter optimisation process. Supplementary 
Fig. S5 depicts an example for the DES result.

Bayesian long short-term memory. LSTM is a type of recurrent neural network (RNN) that uses lagged 
observations to forecast the future time  steps30. It was introduced as a solution to the so-called vanishing/explod-
ing gradient problem of traditional  RNNs40, where the partial derivative of the loss function may suddenly 
approach zero at some point of the training. In LSTM, the input is passed to the network cell, which combines it 
with the hidden state and cell state values from previous time steps to produce the next states. The hidden state 
can be thought of as a short-term memory since it stores information from recent periods in a weighted manner. 
On the other hand, the cell state is meant to remember all the past information from previous intervals and store 
them in the LSTM cell. The cell state thus represents the long-term memory.

LSTM networks are well-suited for time-series forecasting, due to their proficiency in retaining both long-
term and short-term temporal  dependencies41,42. By leveraging their ability to capture these dependencies within 
cyber-attack data, LSTM networks can effectively recognise recurring patterns in the attack time-series. Moreover, 
the LSTM model is capable of learning intricate temporal patterns in the data and can uncover inter-correlations 
between various variables, making it a compelling option for multivariate time-series  analysis43.

Given a sequence of LSTM cells, each processing a single time-step from the past, the final hidden state is 
encoded into a fixed-length vector. Then, a decoder uses this vector to forecast future values. Using such archi-
tecture, we can map a sequence of time steps to another sequence of time steps, where the number of steps in 
each sequence can be set as needed. This technique is referred to as encoder-decoder architecture.

Because we have relatively short sequences within our refined data (e.g., 129 monthly data points over the 
period from July 2011 to March 2022), it is crucial to extract the source of uncertainty, known as epistemic 
 uncertainty44, which is caused by lack of knowledge. In principle, epistemic uncertainty can be reduced with more 
knowledge either in the form of new features or more samples. Deterministic (non-stochastic) neural network 
models are not adequate to this task as they provide point estimates of model parameters. Rather, we utilise 
a Bayesian framework to capture epistemic uncertainty. Namely, we adopt the Monte Carlo dropout method 
proposed by Gal et al.45, who showed that the use of non-random dropout neurons during ML training (and 
inference) provides a Bayesian approximation of the deep Gaussian processes. Specifically, during the training of 
our LSTM encoder-decoder network, we applied the same dropout mask at every time-step (rather than applying 
a dropout mask randomly from time-step to time-step). This technique, known as recurrent dropout  is readily 
available in  Keras46. During the inference phase, we run trained model multiple times with recurrent dropout 
to produce a distribution of predictive results. Such prediction is shown in Fig. 4.

Figure 2 shows our encoder-decoder B-LSTM architecture. The hidden state and cell state are denoted respec-
tively by hi and Ci , while the input is denoted by Xi . Here, the length of the input sequence (lag) is a hyper-
parameter tuned to produce the optimal model, where the output is a single time-step. The number of cells (i.e., 
the depth of each layer) is tuned as a hyper-parameter in the range between 25 and 200 cells. Moreover, we used 
one or two layers, tuning the number of layers to each attack type. For the univariate model we used a standard 
Rectified Linear Unit (ReLU) activation function, while for the multivariate model we used a Leaky ReLU. Stand-
ard ReLU computes the function f (x) = max(0, x) , thresholding the activation at zero. In the multivariate case, 
zero-thresholding may generate the same ReLU output for many input vectors, making the model convergence 
 slower47. With Leaky ReLU, instead of defining ReLU as zero when x < 0 , we introduce a negative slope α = 0.2 . 
Additionally, we used recurrent dropout (i.e., arrows in red as shown in Fig. 2), where the probability of dropping 
out is another hyper-parameter that we tune as described above, following Gal’s  method48. The tuned dropout 
value is maintained during the testing and prediction as previously mentioned. Once the final hidden vector h0 
is produced by the encoder, the Repeat Vector layer is used as an adapter to reshape it from the bi-dimensional 
output of the encoder (e.g., h0 ) to the three-dimensional input expected by the decoder. The decoder processes 
the input and produces the hidden state, which is then passed to a dense layer to produce the final output.

Each time-step corresponds to a month in our model. Since the model is learnt to predict a single time-step 
(single month), we use a sliding window during the prediction phase to forecast 36 (monthly) data points. In 
other words, we predict a single month at each step, and the predicted value is fed back for the prediction of the 

(6)S(xi) =

{

αD(xi)+ (1− α)S(xi−1), if i ≥ 1

D(x0), otherwise

(7)l(xi) =

{

αD(xi)+ (1− α)(l(xi−1)+ τ(xi−1)), if i ≥ 1

D(x0), otherwise

(8)τ(xi) =

{

β(l(xi)− l(xi−1))+ (1− β)τ(xi−1), if i ≥ 1

D(x1)− D(x0), otherwise

(9)DS(xi) =

{

l(xi)+ τ(xi), if i ≥ 1

D(x0), otherwise
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following month. This concept is illustrated in the table shown in Fig. 2. Utilising a single time-step in the model’s 
output minimises the size of the sliding window, which in turn allows for training with as many observations as 
possible with such limited data.

The difference between the univariate and multivariate B-LSTMs is that the latter carries additional features in 
each time-step. Thus, instead of passing a scalar input value to the network, we pass a vector of features including 
the ground truth at each time-step. The model predicts a vector of features as an output, from which we retrieve 
the ground truth, and use it along with the other predicted features as an input to predict the next time-step.

Evaluation metrics. The evaluation metric SMAPE is a percentage (or relative) error based accuracy meas-
ure that judges the prediction performance purely on how far the predicted value is from the actual  value49. It is 
expressed by the following formula:

where Ft and At denote the predicted and actual values at time t. This metric returns a value between 0% and 
100%. Given that our data has zero values in some months (e.g., emerging threats), the issue of division by zero 
may arise, a problem that often emerges when using standard MAPE (Mean Absolute Percentage Error). We 
find SMAPE to be resilient to this problem, since it has both the actual and predicted values in the denominator.

Recall that our model aims to predict a curve (corresponding to multiple time steps). Using plain SMAPE 
as the evaluation metric, the “best” model may turn out to be simply a straight line passing through the same 
points of the fluctuating actual curve. However, this is undesired in our case since our priority is to predict the 
trend direction (or slope) over its intensity or value at a certain point. We hence add a penalty term to SMAPE 

(10)SMAPE =
100%

n

n
∑

t=1

|Ft − At |

|Ft | + |At |

Figure 2.  The encoder-decoder architecture of Bayesian Long Short-Term Memory (B-LSTM). Xi stands for the 
input at time-step i. hi stands for the hidden state, which stores information from the recent time steps (short-
term). Ci stands for the cell state, which stores all processed information from the past (long-term). The number 
of input time steps in the encoder is a variable tuned as a hyper-parameter, while the output in the decoder is a 
single time-step. The depth and number of layers are another set of hyper-parameters tuned during the model 
optimisation. The red arrows indicate a recurrent dropout maintained during the testing and prediction. The 
figure shows an example for an input with time lag=6 and a single layer. The final hidden state h0 produced by 
the encoder is passed to the Repeat Vector layer to convert it from 2 dimensional output to 3 dimensional input 
as expected by the decoder. The decoder processes the input and produces the final hidden state h1 . This hidden 
state is finally passed to a dense layer to produce the output. The table illustrates the concept of sliding window 
method used to forecast multiple time steps during the testing and prediction (i.e., using the output at a time-
step as an input to forecast the next time-step). Using this concept, we can predict as many time steps as needed. 
In the table, an output vector of 6 time steps was predicted.
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that we apply when the height of the predicted curve is relatively smaller than that of the actual curve. This yields 
the modified SMAPE (M-SMAPE). More formally, let I(V) be the height of the curve V, calculated as follows:

where n is the curve width or the number of data points. Let A and F denote the actual and predicted curves. 
We define M-SMAPE as follows:

where γ is a penalty constant between 0 and 1, and d is another constant ≥ 1. In our experiment, we set γ to 0.3, 
and d to 3, as we found these to be reasonable values by trial and error. We note that the range of possible values 
of M-SMAPE is between 0% and (100 + 100 γ )% after this modification. By running multiple experiments we 
found out that the modified evaluation metric is more suitable for our scenario, and therefore was adopted for 
the model’s evaluation.

Optimisation. On average, our model was trained on around 67% of the refined data, which is equivalent 
to approximately 7.2 years. We kept the rest, approximately 33% (3 years + lag period), for validation. These per-
centages may slightly differ for different attack types depending on the optimal lag period selected.

For hyper-parameter optimisation, we performed a random search with 60 iterations, to obtain the set of 
features, smoothing methods and constants, and model’s hyper-parameters that results in the model with the 
lowest M-SMAPE. Random search is a simple and efficient technique for hyper-parameter optimisation, with 
advantages including efficiency, flexibility, robustness, and scalability. The technique has been studied extensively 
in the literature and was found to be superior to grid search in many  cases50. For each set of hyper-parameters, 
the model was trained using the mean squared error (MSE) as the loss function, and while using ADAM as the 
optimisation  algorithm51. Then, the model was validated by forecasting 3 years while using M-SMAPE as the 
evaluation metric, and the average performance was recorded over 3 different seeds. Once the set of hyper-
parameters with the minimum M-SMAPE was obtained, we used it to train the model on the full data, after 
which we predicted the trend for the next 3 years (until March, 2025).

The first group of hyper-parameters is the subset of features in the case of the multivariate model. Here, we 
experimented with each of the 3 features separately (NoM, ACA or PH) along with the ground truth (NoI), in 
addition to the combination of all features. The second group is the smoothing methods and constants. The set 
of methods includes ES, DES and NS, as previously discussed. The set of values for the smoothing constant α 
ranges from 0.05 to 0.7 while the set of values for the smoothing constant β (for DES) ranges from 0.3 to 0.7. 
Next is the optimisation of the lag period with values that range from 1 to 12 months. This is followed by the 
model’s hyper-parameters which include the learning rate with values that range from 6× 10−4 to 1× 10−2 , 
the number of epochs with values between 30 and 200, the number of layers in the range 1 to 2, the number of 
units in the range 25 to 200, and the recurrent dropout value between 0.2 and 0.5. The range of these values was 
obtained from the literature and the online code  repositories52.

Results
Validation and comparative analysis. The results of our model’s validation are provided in Fig. 3 and 
Table 5. As shown in Fig. 3, the predicted data points are well aligned with the ground truth. Our models suc-
cessfully predicted the next 36 months of all the attacks’ trends with an average M-SMAPE of 0.25. Table 5 sum-
marises the validation results of univariate and multivariate approaches using B-LSTM. The results show that 
with approximately 69% of all the attack types, the multivariate approach outperformed the univariate approach. 
As seen in Fig. 3, the threats that have a consistent increasing or emerging trend seemed to be more suitable for 
the univariate approach, while threats that have a fluctuating or decreasing trend showed less validation error 
when using the multivariate approach. The feature of ACA resulted in the best model for 33% of all the attack 
types, which makes it among the three most informative features that can boost the prediction performance. The 
PH accounts for 17% of all the attacks followed by NoM that accounts for 12%.

We additionally compared the performance of the proposed model B-LSTM with other models namely LSTM 
and ARIMA. The comparison covers the univariate and multivariate approaches of LSTM and B-LSTM, with 
two features in the case of multivariate approach namely NoI and NoM. The comparison is in terms of the Mean 
Absolute Percentage Error (MAPE) when predicting four common attack types, namely DDoS, Password Attack, 
Malware, and Ransomware. A comparison table is provided in Supplementary Table S3. The results illustrate the 
superiority of the B-LSTM model for most of the attack types.

Trends analysis. The forecast of each attack trend until the end of the first quarter of 2025 is given in Sup-
plementary Figs. S1–S4. By visualising the historical data of each attack as well as the prediction for the next 
three years, we were able to analyse the overall trend of each attack. The attacks generally follow 4 types of trends: 
(1) rapidly increasing, (2) overall increasing, (3) emerging and (4) decreasing. The names of attacks for each 
category are provided in Fig. 4.

The first trend category is the rapidly increasing trend (Fig. 4a—approximately 40% of the attacks belong to 
this trend. We can see that the attacks belonging to this category have increased dramatically over the past 11 
years. Based on the model’s prediction, some of these attacks will exhibit a steep growth until 2025. Examples 
include session hijacking, supply chain, account hijacking, zero-day and botnet. Some of the attacks under this 
category have reached their peak, have recently started stabilising, and will probably remain steady over the next 

(11)I(V) = maxt∈[n]Vt −mint∈[n]Vt

(12)MSMAPE =

{

SMAPE + 100%γ , if I(F) < I(A)/d
SMAPE, otherwise
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3 years. Examples include malware, targeted attack, dropper and brute force attack. Some attacks in this category, 
after a recent increase, are likely to level off in the next coming years. These are password attack, DNS spoofing 
and vulnerability-related attacks.

The second trend category is the overall increasing trend as seen in Fig. 4b. Approximately 31% of the attacks 
seem to follow this trend. The attacks under this category have a slower rate of increase over the years compared 
to the attacks in the first category, with occasional fluctuations as can be observed in the figure. Although some 
of the attacks show a slight recent decline (e.g., malvertising, keylogger and URL manipulation), malvertising 
and keylogger are likely to recover and return to a steady state while URL manipulation is projected to continue 
a smooth decline. Other attacks typical of “cold” cyber-warfare like Advanced Persistent Threats (APT) and 
rootkits are already recovering from a small drop and will likely to rise to a steady state by 2025. Spyware and 
data breach have already reached their peak and are predicted to decline in the near future.

Next is the emerging trend as shown in Fig. 4c. These are the attacks that started to grow significantly after 
the year 2016, although many of them existed much earlier. In our study, around 17% of the attacks follow this 
trend. Some attacks have been growing steeply and are predicted to continue this trend until 2025. These are 
Internet of Things (IoT) device attack and deepfake. Other attacks have also been increasing rapidly since 2016, 
however, are likely to slow down after 2022. These include ransomware and adversarial attacks. Interestingly, 
some attacks that emerged after 2016 have already reached the peak and recently started a slight decline (e.g., 
cryptojacking and WannaCry ransomware attack). It is likely that WannaCry will become relatively steady in the 
coming years, however, cryptojacking will probably continue to decline until 2025 thanks to the rise of proof-
of-stake consensus  mechanisms53.

a b

c d

Figure 3.  The B-LSTM validation results of predicting the number of attacks from April, 2019 to March, 
2022. (U) indicates an univariate model while (M) indicates a multivariate model. (a) Botnet attack with 
M-SMAPE=0.03. (b) Brute force attack with M-SMAPE=0.13. (c) SQL injection attack with M-SMAPE=0.04 
using the feature of NoM. (d) Targeted attack with M-SMAPE=0.06 using the feature of NoM. Y axis is 
normalised in the case of multivariate models to account for the different ranges of feature values.
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The fourth and last trend category is the decreasing trend (Fig. 4d—only 12% of the attacks follow this trend. 
Some attacks in this category peaked around 2012, and have been slowly decreasing since then (e.g., SQL Injection 
and defacement). The drive-by attack also peaked in 2012, however, had other local peaks in 2016 and 2018, after 
which it declined noticeably. Cross-site scripting (XSS) and pharming had their peak more recently compared to 
the other attacks, however, have been smoothly declining since then. All the attacks under this category are pre-
dicted to become relatively stable from 2023 onward, however, they are unlikely to disappear in the next 3 years.

The threat cycle. This large-scale analysis involving the historical data and the predictions for the next 
three years enables us to come up with a generalisable model that traces the evolution and adoption of the 
threats as they pass through successive stages. These stages are named by the launch, growth, maturity, trough 
and stability/decline. We refer to this model as The Threat Cycle (or TTC), which is depicted in Fig. 5. In the 
launch phase, few incidents start appearing for a short period. This is followed by a sharp increase in terms of 
the number of incidents, growth and visibility as more and more cyber actors learn and adopt this new attack. 
Usually, the attacks in the launch phase are likely to have many variants as observed in the case of the WannaCry 
attack in 2017. At some point, the number of incidents reaches a peak where the attack enters the maturity phase, 
and the curve becomes steady for a while. Via the trough (when the attack experiences a slight decline as new 
security measures seem to be very effective), some attacks recover and adapt to the security defences, entering 
the slope of plateau, while others continue to smoothly decline although they do not completely disappear (i.e., 
slope of decline). It is worth noting that the speed of transition between the different phases may vary signifi-
cantly between the attacks.

As seen in Fig. 5, the attacks are placed on the cycle based on the slope of their current trend, while consid-
ering their historical trend and prediction. In the trough phase, we can see that the attacks will either follow 
the slope of plateau or the slope of decline. Based on the predicted trend in the blue zone in Fig. 4, we were 
able to indicate the future direction for some of the attacks close to the split point of the trough using different 
colours (blue or red). Brute force, malvertising, the Distributed Denial-of-Service attack (DDoS), insider threat, 

a b

c d

Figure 4.  A bird’s eye view of threat trend categories. The period of the trend plots is between July, 2011 and 
March, 2025, with the period between April, 2022 and March, 2025 forecasted using B-LSTM. (a) Among 
rapidly increasing threats, as observed in the forecast period, some threats are predicted to continue a sharp 
increase until 2025 while others will probably level off. (b) Threats under this category have overall been 
increasing while fluctuating over the past 11 years. Recently, some of the overall increasing threats slightly 
declined however many of those are likely to recover and level off by 2025. (c) Emerging threats that began to 
appear and grow sharply after the year 2016, and are expected to continue growing at this increasing rate, while 
others are likely to slow down or stabilise by 2025. (d) Decreasing threats that peaked in the earlier years and 
have slowly been declining since then. This decreasing group are likely to level off however probably will not 
disappear in the coming 3 years. The Y axis is normalised to account for the different ranges of values across 
different attacks. The 95% confidence interval is shown for each threat prediction.
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WannaCry and phishing are denoted in blue meaning that these are likely on their way to the slope of plateau. 
In the first three phases, it is usually unclear and difficult to predict whether a particular attack will reach the 
plateau or decline, thus, denoted in grey.

There are some similarities and differences between TTC and the well-known Gartner hype cycle (GHC)54. A 
standard GHC is shown in a vanishing green colour in Fig. 5. As TTC is specific to cyber threats, it has a much 

Figure 5.  The threat cycle (TTC). The attacks go through 5 stages, namely, launch, growth, maturity trough, 
and stability/decline. A standard Gartner hype cycle (GHC) is shown with a vanishing green colour for a 
comparison to TTC. Both GHC and TTC have a peak, however, TTC’s peak is much wider with a slightly less 
steep curve during the growth stage. Some attacks in TTC do not recover after the trough and slide into the 
slope of decline. TTC captures the state of each attack in 2022, where the colour of each attack indicates which 
slope it would follow (e.g., plateau or decreasing) based on the predictive results until 2025. Within the trough 
stage, the attacks (in blue dot) are likely to arrive at the slope of plateau by 2025. The attacks (in red dot) will 
probably be on the slope of decline by 2025. The attacks with unknown final destination are coloured in grey.

Table 1.  Literature review summary.

References Problem domain Detection/prediction Forecast period Forecast coverage Methods
14 Detect different types of attacks Detection N/A N/A Feature extraction, deep reinforcement learning
15 Malicious traffic detection Detection N/A N/A Deep neural network with attention mechanism
16,17 Forecast attack count Prediction 1–7 days Multiple targets ARIMA model

18 Forecast attack count Prediction Months Organisation Unconventional signals, lagged feature selection, 
concept drift training

19 Forecast attack motivation and opportunity Prediction 1 week 1 target Social media analysis, SVM, CNN
20 Forecast attack count Prediction 1 week or month Organisation Digital traces, ARIMA, ARIMAX, LSTM
21 Predict next attack in the chain Prediction N/A 1 target Bayesian network
22 Predict intrusion detection alerts Prediction Minutes or hours Organisation Stream processing, sequential rule mining
23 Forecast if a data breach will occur Prediction Months Organisation Externally measurable features, Random Forest
24 Reconnaissance detection Detection N/A N/A LSTM, CNN
25 Forecast if a machine will be infected Prediction Months Machine Binary file analysis, semi-supervised learning
26 Forecast if an IP address will attack Prediction 24 hours N/A Entity reputation and scoring, decision trees

Table 2.  Hackmageddon data - entry example.

Date Description Attack Target country

31/07/2019 Gadsden independent school district is hit by a ransomware attack. Malware US

Table 3.  Transformed data - entry example with dummy values. “All” refers to all countries involved in the 
study. Columns are repeated for each pair of attack and country, with a total of 42 attacks in 36 countries.

Month Malware US Malware UK . Malware all DDoS US DDoS UK . DDoS all

July 2019 50 40 . 1000 20 15 . 100
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Table 4.  Additional data features with dummy values. NoM stands for the number of attack mentions in the 
scientific literature. ACA stands for the number of tweets related to armed conflict areas/wars. PH stands for 
the number of public holidays. “All” refers to all countries involved in the study. Some features are not shown 
to keep the table at reasonable width. More specifically, the number of mentions in the actual data is recorded 
for 42 attacks, and the number of conflicts and holidays are recorded for 36 countries in the actual table.

Month NoM malware NoM ransomware ACA US ACA All PH UK PH All

July 2019 500 400 12,000 100,000 8 400

Table 5.  The validation results of univariate and multivariate approach using B-LSTM to forecast 42 attacks 
next 36 months. For each attack, the best feature(s) when using the multivariate model are displayed in the last 
column. NoM stands for the number of attack mentions in the scientific literature. ACA stands for the number 
of tweets related to armed conflict areas/wars. PH stands for the number of public holidays.

Attack M-SMAPE (univariate) M-SMAPE (multivariate) Best features (multivariate)

Adware 0.35 0.29 ACA 

Backdoor 0.10 0.03 ACA 

Cryptojacking 0.40 0.34 ACA 

Data Poisoning 0.47 0.46 ACA 

Defacement 0.36 0.06 ACA 

DNS Tunneling 0.48 0.42 ACA 

Keylogger 0.17 0.14 ACA 

Pharming 0.59 0.27 ACA 

Trojan 0.31 0.30 ACA 

Vulnerability 0.33 0.25 ACA 

WannaCry 0.58 0.57 ACA 

Wiper 0.43 0.14 ACA 

Worms 0.50 0.37 ACA 

XSS 0.47 0.17 ACA 

Advanced Persistent 0.84 0.32 PH

DNS Spoofing 0.48 0.36 PH

Drive-by 0.46 0.27 PH

Insider Threat 0.17 0.07 PH

Malvertising 0.38 0.25 PH

Session Hijacking 0.39 0.34 PH

URL manipulation 0.47 0.36 PH

Data Breach 0.27 0.24 NoM

Disinformation 0.45 0.36 NoM

Phishing 0.22 0.21 NoM

SQL Injection 0.53 0.06 NoM

Targeted Attack 0.25 0.22 NoM

Password Attack 0.59 0.52 NoM, ACA, PH

Rootkit 0.19 0.15 NoM, ACA, PH

Spyware 0.63 0.48 NoM, ACA, PH

Account Hijacking 0.09 0.49 ACA 

Adversarial Attack 0.37 0.63 NoM, ACA, PH

Botnet 0.03 0.17 PH

Brute Force Attack 0.13 0.28 ACA 

DDoS 0.22 0.23 PH

Deepfake 0.17 0.52 PH

Dropper 0.12 0.37 PH

IoT device attack 0.16 0.21 PH

Malware 0.12 0.27 PH

MITM 0.14 0.32 PH

Ransomware 0.26 0.53 NoM

Supply chain 0.15 0.33 PH

Zero-day 0.30 0.63 NoM
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wider peak compared to GHC. Although both GHC and TTC have a trough phase, the threats decline slightly 
(while significant drop in GHC) as they exit their maturity phase, after which they recover and move to stability 
(slope of plateau) or decline.

Many of the attacks in the emerging category are observed in the growth phase. These include IoT device 
attack, deepfake and data poisoning. While ransomwares (except WannaCry) are in the growth phase, WannaCry 
already reached the trough, and is predicted to follow the slope of plateau. Adversarial attack has just entered the 
maturity stage, and cryptojacking is about to enter the trough. Although adversarial attack is generally regarded 
as a growing threat, interestingly, this machine-based prediction and introspection shows that it is maturing. 
The majority of the rapidly increasing threats are either in the growth or in the maturity phase. The attacks in 
the growth phase include session hijacking, supply chain, account hijacking, zero-day and botnet. The attacks 
in the maturity phase include malware, targeted attack, vulnerability-related attacks and Man-In-The-Middle 
attack (MITM). Some rapidly increasing attacks such as phishing, brute force, and DDoS are in the trough and 
are predicted to enter the stability. We also observe that most of the attacks in the category of overall increasing 
threats have passed the growth phase and are mostly branching to the slope of plateau or the slope of decline, 
while few are still in the maturity phase (e.g., spyware). All of the decreasing threats are on the slope of decline. 
These include XSS, pharming, drive-by, defacement and SQL injection.

Discussion
Highlights and limitations. This study presents the development of a ML-based proactive approach for 
long-term prediction of cyber-attacks offering the ability to communicate effectively with the potential attacks 
and the relevant security measures in an early stage to plan for the future. This approach can contribute to the 
prevention of an incident by allowing more time to develop optimal defensive actions/tools in a contested cyber-
space. Proactive approaches can also effectively reduce uncertainty when prioritising existing security measures 
or initiating new security solutions. We argue that cyber-security agencies should prioritise their resources to 
provide the best possible support in preventing fastest-growing attacks that appear in the launch phase of TTC or 
the attacks in the categories of the rapidly increasing or emerging trend as in Fig. 4a and c based on the predic-
tions in the coming years.

In addition, our fully automated approach is promising to overcome the well-known issues of human-based 
analysis, above all expertise scarcity. Given the absence of the possibility of analysing with human’s subjective bias 
while following a purely quantitative procedure and data, the resulting predictions are expected to have lower 
degree of subjectivity, leading to consistencies within the subject. By fully automating this analytic process, the 
results are reproducible and can potentially be explainable with help of the recent advancements in Explainable 
Artificial Intelligence.

Thanks to the massive data volume and wide geographic coverage of the data sources we utilised, this study 
covers every facet of today’s cyber-attack scenario. Our holistic approach performs the long-term prediction on 
the scale of 36 countries, and is not confined to a specific region. Indeed, cyberspace is limitless, and a cyber-
attack on critical infrastructure in one country can affect the continent as a whole or even globally. We argue that 
our Threat Cycle (TTC) provides a sound basis to awareness of and investment in new security measures that 
could prevent attacks from taking place. We believe that our tool can enable a collective defence effort by sharing 
the long-term predictions and trend analysis generated via quantitative processes and data and furthering the 
analysis of its regional and global impacts.

Zero-day attacks exploit a previously unknown vulnerability before the developer has had a chance to release 
a patch or fix for the  problem55. Zero-day attacks are particularly dangerous because they can be used to target 
even the most secure systems and go undetected for extended periods of time. As a result, these attacks can 
cause significant damage to an organisation’s reputation, financial well-being, and customer trust. Our approach 
takes the existing research on using ML in the field of zero-day attacks to another level, offering a more proac-
tive solution. By leveraging the power of deep neural networks to analyse complex, high-dimensional data, our 
approach can help agencies to prepare ahead of time, in-order to prevent the zero-day attack from happening at 
the first place, a problem that there is no existing fix for it despite our ability to detect it. Our results in Fig. 4a 
suggest that zero-day attack is likely to continue a steep growth until 2025. If we know this information, we can 
proactively invest on solutions to prevent it or slow down its rise in the future, since after all, the ML detection 
approaches may not be alone sufficient to reduce its effect.

A limitation of our approach is its reliance on a restricted dataset that encompasses data since 2011 only. 
This is due to the challenges we encountered in accessing confidential and sensitive information. Extending the 
prediction phase requires the model to make predictions further into the future, where there may be more vari-
ability and uncertainty. This could lead to a decrease in prediction accuracy, especially if the underlying data 
patterns change over time or if there are unforeseen external factors that affect the data. While not always the 
case, this uncertainty is highlighted by the results of the Bayesian model itself as it expresses this uncertainty 
through the increase of the confidence interval over time (Fig. 3a and b). Despite incorporating the Bayesian 
model to tackle the epistemic uncertainty, our model could benefit substantially from additional data to acquire 
a comprehensive understanding of past patterns, ultimately improving its capacity to forecast long-term trends. 
Moreover, an augmented dataset would allow ample opportunity for testing, providing greater confidence in the 
model’s resilience and capability to generalise.

Further enhancements can be made to the dataset by including pivotal dates (such as anniversaries of political 
events and war declarations) as a feature, specifically those that experience a high frequency of cyber-attacks. 
Additionally, augmenting the dataset with digital traces that reflect the attackers’ intentions and motivations 
obtained from the dark web would be valuable. Other informative features could facilitate short-term prediction, 
specifically to forecast the on-set of each attack.
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Future work. Moving forward, future research can focus on augmenting the dataset with additional samples 
and informative features to enhance the model’s performance and its ability to forecast the trend in the longer-
term. Also, the work opens a new area of research that focuses on prognosticating the disparity between the 
trend of cyber-attacks and the associated technological solutions and other variables, with the aim of guiding 
research investment decisions. Subsequently, TTC could be improved by adopting another curve model that can 
visualise the current development of relevant security measures. The threat trend categories (Fig. 4) and TTC 
(Fig. 5) show how attacks will be visible in the next three years and more, however, we do not know where the 
relevant security measures will be. For example, data poisoning is an AI-targeted adversarial attack that attempts 
to manipulate the training dataset to control the prediction behaviour of a machine-learned model. From the 
scientific literature data (e.g., Scopus), we could analyse the published articles studying the data poisoning prob-
lem and identify the relevant keywords of these articles (e.g., Reject on Negative Impact (RONI) and Probability 
of Sufficiency (PS)). RONI and PS are typical methods used for detecting poisonous data by evaluating the effect 
of individual data points on the performance of the trained model. Likewise, the features that are informative, 
discriminating or uncertainty-reducing for knowing how the relevant security measures evolve exist within such 
online sources in the form of author’s keywords, number of citations, research funding, number of publications, 
etc.

Data availability
As requested by the journal, the data used in this paper is available to editors and reviewers upon request. The 
data will be made publicly available and can be accessed at the following link after the paper is published. https:// 
github. com/ zaida lmahm oud/ Cyber- threat- forec ast.
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