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Branching processes are discrete-time stochastic processes which have been largely employed 
to model and simulate information diffusion processes over large online social networks such 
as Twitter and Reddit. Here we show that a variant of the branching process model enables 
the prediction of the popularity of user-generated content and thus can serve as a method for 
ranking search results or suggestions displayed to users. The proposed branching-process variant 
is able to evaluate the importance of an agent in a social network and, thus we propose a novel 
centrality index, called the Stochastic Potential Gain (SPG). The SPG is the first centrality index 
which combines the knowledge of the network topology with a dynamic process taking place 
on it which we call a graph-driven branching process. SPG generalises a range of popular network 
centrality metrics such as Katz’ and Subgraph. We formulate a Monte Carlo algorithm (called 
MCPG) to compute the SPG and prove that it is convergent and correct. Experiments on two real 
datasets drawn from Facebook and GitHub demonstrate that MCPG traverses only a small fraction 
of nodes to produce its result, thus making the Stochastic Potential Gain an appealing option to 
compute node centrality measure for Online social networks.

1. Introduction

Branching processes are discrete-time stochastic processes used to describe how a population evolves over time [22] and, more 
recently, they have gained wide popularity as a tool to study how information spreads in large online social networks such as Twitter 
[3,44,50,29,18] or Reddit [40]. Understanding the factors triggering an information cascade has important implications both at 
the scientific level and the commercial one. From a scientific standpoint the viral re-sharing of content on platforms like Twitter 
is the visible byproduct of complex collective behaviour of uncoordinated and vast masses. An in-depth analysis of the spread of 
information helps us discriminate between the information that catches user attention and information that leaves them indifferent. 
From a practical standpoint, members of a Web platform are often overwhelmed by (mostly unwanted) contents while relevant and 
timely information could be lost. Thus, the ability of correctly estimating which content will be popular is crucial to provide better 
ranking (and personalisation) of the contents.

In the literature many generative models have been proposed, their common purpose is to simulate diffusion processes and 
make predictions. They mostly derive either from the standard branching process, often called the Galton-Watson process, or from its 
extensions, e.g., the so-called Hawkes process [23,50,29]. We believe that the potential of branching processes as a tool to investigate 
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the structure of large networks has not yet been fully realised: most previous research focuses on (user-produced) content but the 
agent who created the content is hardly taken into account. In our opinion, branching processes can serve as a tool to identify 
influential users (agents) in online social networks: intuitively, we may classify as influential (or ‘important’) those users who create 
contents which are at the root of an information cascade.

The importance of a user in a social network has been extensively studied recently and centrality metrics have been proposed 
[37,10,47,19] but, to the best of our knowledge, branching processes have not yet been applied to formulate and compute centrality 
in networks. Here we propose a novel centrality index called the Stochastic Potential Gain (SPG in short), which combines structural 
information regarding the network/graph topology with the theory of branching processes.

Some standard notation to be used throughout the article follows. Let 𝐺 = ⟨𝑁, 𝐸⟩ denote an undirected and connected graph 
where 𝑁 is its set of nodes and 𝐸 its set of edges; 𝑑𝑖 will be the degree of node 𝑖. We will assume that a strictly monotonically 
decreasing function (called discount function) 𝑓 ∶ ℕ → [0, 1] is available. The discount function 𝑓 (𝑘) returns the probability that a 
node in 𝐺 will have one of its neighbours as a child at the 𝑘-th generation in a branching process. Thus 𝑓 (⋅) quantifies how the 
‘fertility’ of a node varies across generations.

The computation of the SPG associated with an arbitrary node 𝑖 ∈𝑁 proceeds as follows: we start from 𝑖 and set the SPG of 𝑖 equal 
to 1. For each neighbour, say 𝑗 of 𝑖, a coin is tossed with success probability equal to 𝑓 (1). If the coin toss comes up with a success 
then we pick (i.e., retain) 𝑗, otherwise we discard it. This process is repeated for each of the neighbours of 𝑖 that has been picked 
and, thus, it is equivalent to drawing a sample of the neighbours of 𝑖 whose size follows a binomial distribution (𝑑𝑖, 𝑓 (1)). Here, the 
number of trials is equal to the degree 𝑑𝑖 of 𝑖 and the probability of success is 𝑓 (1). The process now restarts from the picked nodes: 
if 𝑗 has been selected then with (decreased) probability 𝑓 (2) < 𝑓 (1) we will continue the exploration towards j’s neighbourhood. We 
will show that with a proper choice of 𝑓 (𝑘) the process describe above converges.

The SPG of 𝑖 is thus defined as the sum of all coefficients 𝑓 (𝑘) associated with nodes in 𝐺 which have been selected in the 
network traversal process outlined above. We call the stochastic processes outlined above a graph-driven branching process. The main 
contributions of this research are now summarised.

The graph-driven branching process is a novel stochastic process In standard branching processes the probability of extinction, that is 
the probability that no individuals exist after a particular generation, depends only on the expected number of children an individual can 
have. In our case, the extinction of the exploration process jointly depends on the function 𝑓 (𝑘), as well as on the graph topology. 
At generation 𝑘, a node 𝑗 has an expected number of children equal to 𝑑𝑗 ⋅ 𝑓 (𝑘). Thus, nodes with large degree can compensate 
small levels of fertility and, analogously, a high level of fertility can overcome issues with making derivations from nodes with small 
degrees, thus avoiding an early extinction of the process. As a further difference, observe that classical branching processes assume 
that the probability an individual has a particular number of children is constant across generations; in our model, in contrast, the 
fertility ratio 𝑓 (𝑘) decreases with the generation counter 𝑘.

We re-interpret well-known centrality metrics The mainstream Degree centrality, eigenvector centrality, PageRank, betweenness and 
closeness centrality [43] can be regarded as single-parameter functions 𝜙 that take as input the adjacency matrix 𝐀 of a network and 
generates a vector of centrality scores.1 In some cases (e.g., Katz’s Centrality [28] and Subgraph centrality [16]), the adjacency matrix 
𝐀 is coupled with some additional parameter. Our approach, instead, jointly requires the specification of the adjacency matrix 𝐀 and 
a discount function 𝑓 (⋅) which quantifies the speed at which our process becomes extinct. As a consequence, the most innovative 
feature of our study is the combination of topological information with a dynamic process, that is the reproduction of individuals 
constrained by graph topology in order to calculate the importance of nodes.

We provide an efficient Monte Carlo algorithm (called Monte Carlo Potential Gain - MCPG) to efficiently calculate the SPG Unlike other 
centrality metrics, the computation of the SPG does not require to take the whole graph 𝐺 as input but only to look up the portion 
of nodes (and edges) which the MCPG algorithm traverses before our graph-driven branching process becomes extinct. The number 
of nodes being traversed depends on the form of the function 𝑓 (⋅) and, thus, with a proper choice of 𝑓 (⋅) we can significantly reduce 
this number, resulting in computational efficiency.

We have experimentally tested2 the performance of the MCPG algorithm on two large datasets, namely FB-FRIENDS, a dataset 
about friendship data of Facebook users [48] and GITHUB, a dataset describing a social network of GitHub developers [45]. In both 
datasets we found that it was necessary to traverse only one thousandth of the nodes to complete computation.

This article is organised as follows: in Section 2 we describe related approaches, while in Section 3 we introduce basic terminology 
used throughout the article. We introduce branching processes on networks in Section 4 and the MCPG algorithm in the following 
section. Section 6 describes our experimental results while in Section 8 we report our conclusions and illustrate potential future 
work. The proofs of our formal results are given in Appendix A.

2. Related work

In this section we briefly review applications of branching processes to the analysis of large real-world networks. Many online 
social networks expose large volumes of data, often endowed with temporal labels [36,32]; available datasets make possible the 

1 Recall that the adjacency matrix 𝐀 is an |𝑁| × |𝑁| matrix such that 𝐀𝑖𝑗 = 1 if and only if nodes 𝑖 and 𝑗 are connected by an edge, 0 otherwise.
2 Please find the datasets and the Python code for the experiments at https://github .com /ale66 /Montecarlo -Potential -Gain.

https://github.com/ale66/Montecarlo-Potential-Gain
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investigation of how information flows in human societies. Moreover, branching processes have emerged as an appealing option to 
describe information cascades [3,17,39].

In our literature review we found that most existing studies focus on Twitter and two types of information cascade are usually 
considered, namely retweet diffusion (user forwards/re-shares, e.g., a tweet to her/his followers) and reply diffusion (user replies to a 
tweet). Other researchers focused on online discussion platforms such as Digg or Reddit; in these platforms, users submit their content 
(e.g., posts, videos and links) and interact with each other mostly by commenting posts. User interactions lead to the creation of 
reply cascades known as discussion trees [31].

One of the early studies of the reply diffusion is due to Nishi et al. [44], who classified reply trees in Twitter into three categories: 
a) long path-like, b) large star-like and c) large irregular reply trees. The Galton-Watson process [22] was applied to predict the 
frequency of trees in each of the categories above. Nishi et al. [44] also investigated the distributions of the size and the depth of reply 
trees. The matching between empirical data and predictions made with the Galton-Watson process turned out to be unsatisfactory; 
hence several extensions of the Galton-Watson process were considered. One of the main findings of Nishi et al. [44] is that the 
in-degree of the “root tweet” (that is the tweet from which the cascade started) has a key role in determining the shape of the reply 
tree.

Zhao et al. [50] applied Hawkes processes [23] to predict the total number 𝑅𝑡 of re-tweets received by a tweet at the time step 𝑡. 
Hawkes processes extend the Galton Watson branching process by incorporating a further parameter, called a memory kernel, which 
measures the time between a cause (in our case, a tweet) and its effect (a retweet). The estimation of 𝑅𝑡 depends on the memory 
kernel and the infectiousness, that is the probability that a given user will retweet a given tweet.

Kobayashi and Lambiotte [29] extended the approach of Zhao et al. [50] by considering time-dependent Hawkes processes (that 
is, they assume that the parameters defining the process can vary daily). In this way, Kobayashi-Lambiotte can predict not only the 
cascade size but also how the popularity of a tweet (defined as the number of retweets per day) evolve over time.

The approaches cited so far mostly aim at predicting the cascade size. An important extension is due to Gleeson et al. [18], 
who investigated how the design features of a given web platform affect the offspring distribution; they found that a model which 
considers users’ limited attention (see [34]) was more appropriate to describe the process of cascade propagation than those like, 
e.g., the well-known Independent Cascade Model, which did not.

More recently, [14] applied deep learning methods to integrate tweet features (derived from the tweet’s content), network features 
(that is, the followers of the user who posted it first) and external signals (e.g., the popularity and novelty of the news corresponding 
to the tweet), in order to predict the cascade size.

Medvedev et al. [40] studied the shape and the temporal evolution of discussion trees in a Reddit dataset. The analysis of 
reply/retweet trees totally differs from the corresponding discussion trees; in case of reply/retweet trees (e.g., again, Twitter) the 
online social network mapping the follower-followed relationships has a strong influence on the size and depth of the reply/retweet 
tree, as shown by Nishi et al. [44]. In contrast, platforms such as Reddit make content available to all visitors (and, often, posts are 
only discriminated on the basis of their recency). Another contribution of Medvedev et al. [40] is to apply Hawkes processes to model 
the growth of discussion trees with the goal of predicting which posts are more likely to be commented in the near future. Predictions 
were validated on a public Reddit dataset with posts collected between 2008 and 2015. Medvedev et al. proved that discussion trees 
in Reddit are properly described by a variant of branching trees in which the root offspring follows a specific distribution.

3. Background

In this section we introduce some basic definitions about graphs.

Definition 1 (Network). A network 𝐺 (also called graph) is a pair 𝐺 = ⟨𝑁, 𝐸⟩ where 𝑁 is the node set and 𝐸 is the edge set. A graph 
is undirected if ⟨𝑖, 𝑗⟩ ∈𝐸 implies ⟨𝑗, 𝑖⟩ ∈𝐸, that is, for any edge from a node 𝑖 to a node 𝑗 there is also an edge from 𝑗 to 𝑖. Otherwise, 
the graph is directed. We set 𝑛 = |𝑁| and 𝑚 = |𝐸| as the number of nodes and edges of 𝐺, respectively.

Here we will focus on undirected networks and leave the extension to directed ones as future work. Given a node 𝑖 ∈𝑁 , the 
neighbourhood 𝑁(𝑖) of 𝑖 is the set of nodes connected with 𝑖, that is 𝑁(𝑖) = {𝑗 ∈𝑁 ∶ ⟨𝑖, 𝑗⟩ ∈ 𝐸}. The degree 𝑑𝑖 of 𝑖 is the size of the 
neighbourhood of 𝑖: 𝑑𝑖 = |𝑁(𝑖)| = |{𝑗 ∈𝑁 ∶ ⟨𝑖, 𝑗⟩ ∈𝐸}|. A network 𝐺 can be represented through its adjacency matrix 𝐀, that is a 𝑛 × 𝑛

matrix such that the entry 𝐚𝑖𝑗 is equal to one if and only if there is an edge from 𝑖 to 𝑗, zero otherwise. In the following, we will also 
find useful the definition of walks and paths in a graph.

Definition 2 (Paths and walks in a Network). Let 𝐺 = ⟨𝑁, 𝐸⟩ be a network. A sequence of nodes 𝑤 = {𝑖0, … , 𝑖𝑙} is called a walk of 
length 𝓁 if pairs of consecutive nodes in 𝑤 are connected by an edge, that is ⟨𝑖𝑡, 𝑖𝑡+1⟩ ∈ 𝐸 for any 𝑡 such that 0 ≤ 𝑡 ≤ 𝓁 − 1. A path

{𝑖0, … , 𝑖𝓁} of length 𝓁 is a walk which does not contain repeated nodes. A network 𝐺 is connected if, for any pair of nodes 𝑖 and 𝑗, 
there is at least one path connecting them.

Paths in networks/graphs can be easily discovered by a graph traversal algorithms such as the classical Depth First Search (DFS) 
and Breadth First Search (BFS) [7]. Practically, if we square the adjacency matrix 𝐀 of a graph 𝐺 we obtain a matrix 𝐀2 with entries 
𝑎
(2)
𝑖𝑗

=
∑𝑛

𝑟=1 𝑎𝑖𝑟𝑎𝑟𝑗 . It is easy to see how each value 𝑎(2)
𝑖𝑗

will count the number of walks of length two going from 𝑖 to 𝑗 [8] in 𝐺. This 
notation easily extends to arbitrary integers 𝓁: consider the matrix 𝐀𝓁 obtained by multiplying 𝐀 by itself 𝓁 times; we have that the 
generic entry 𝑎(𝓁)

𝑖𝑗
of 𝐀𝓁 is equal to the number of walks of length 𝓁 between nodes 𝑖 and 𝑗 [8].
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For the undirected networks we consider here the adjacency matrix 𝐀 will be symmetric so that all its eigenvalues 𝜆1 ≥ 𝜆2 ≥… ≥ 𝜆𝑛
will be real. The largest eigenvalue 𝜆1 of 𝐀 is also called its principal eigenvalue or spectral radius of 𝐺.

3.1. The potential gain

The potential gain (PG) was originally introduced by Levene and Wheeldon [35] with the purpose of discovering “good” starting 
pages (nodes) for navigating a network of Web pages and their hyperlinks. Potential gain was originally defined for directed networks, 
however for the purpose of this article, there is no loss of generality in assuming that the graph is undirected, that is, hyperlinks are 
bidirectional.

Web pages displaying “high” PG scores should satisfy the following criteria: i) they should be relevant, that is they should match 
user’s goals; ii) they should be central, that is the distance of a Web page to all other pages should be as small as possible: the distance 
between two pages 𝑝1 and 𝑝2 is the length of the shortest chain of hyperlinks from 𝑝1 to 𝑝2; iii) they should be well connected, that is, 
they are able to reach the largest number of Web pages. Algorithm 1 reports the pseudo-code for computing the PG of the network 
represented by matrix 𝐀. It begins by initialising the PG of all nodes to one.

Algorithm 1 Computation of the Potential Gain (see [35]).

1: 𝐜𝐮𝐫 ← 𝟏𝑛
2: 𝐏𝐆← 𝟏𝑛
3: for 𝑑 ∈ {1, … , MAX} do

4: 𝐜𝐮𝐫 ←𝐀 × 𝐜𝐮𝐫
5: PG← PG+ 𝛿(𝑑) ⋅ 𝐜𝐮𝐫
6: end for

7: return PG

Next, PG values are iteratively updated; at most MAX iterations will run, MAX one of the inputs of the algorithm. In this way, 
for each node 𝑖 we explore 𝐺 in a breadth-first fashion and count the number of nodes at distance 𝑑 from 𝑖, where 𝑑 ranges from 1 to 
MAX. To such value we apply a penalty coefficient 𝛿(𝑑)—the discount function described earlier–then add it to the current PG value 
for 𝑖. Here, 𝛿(⋅) is a monotonically-decreasing function; in other words we normalise the PG value so that its growth is bounded.

Levene and Wheeldon [35] suggested two possible variants for 𝛿(𝑑) (the analog to our 𝑓 (𝑑)) namely the reciprocal function 𝛿(𝑑) = 1
𝑑

and the discount function 𝛿(𝑑) = 𝛾𝑑−1 where 0 < 𝛾 < 1. Both variants encode the assumption that the utility of a page decreases with 
its distance from the ‘start’ page; this hypothesis was supported by experiments carried out over Web data sets [25].

Recently, De Meo et al. [13,12] generalised the concept of the Potential Gain to account for node centrality in generic networks. 
They proved that the PG is able to capture the notion of graph navigability, understood as the ease at which it is possible to reach a 
target node 𝑖 in 𝐺 regardless of the node from where the navigation is started.

Intuitively, the higher the PG of a node 𝑖, the easier it will be to reach all other nodes from there. More specifically, [12]

proved that the PG of node 𝑖 depends on the number of walks of any length between it and all other nodes. As discussed above, 
the contribution of each walk to the computation of the PG should decrease with its length. Hence a weighting function 𝜙(𝓁) was 
introduced to penalise longer walks. The following two possible definitions for 𝜙(⋅) were introduced.

1. The geometric potential gain, GPG: 𝜙(𝑙) = 𝛿𝑙 where 𝛿 is a parameter ranging between 0 and 𝜆−11 , i.e., the inverse of the spectral 
radius 𝜆1 of the network. In this case, the PG of a node 𝑖 is equal to the product its degree, 𝑑𝑖, times its Katz centrality score

[28,33].

2. The exponential potential gain, EPG where 𝜙(𝑘) = 1
(𝑘−1)! . Here the PG of a node 𝑖 is equal to the product of its degree 𝑑𝑖 times its 

Communicability score, which is also known as Subgraph centrality [15,4].

3.2. Branching processes

The simplest formalism of a branching process is the Galton-Watson process, a simple but powerful time-discrete model to describe 
the growth of a population [22,21] in mathematical terms. Consider a population of reproducing individuals; each one reproduce 
independently and with identically distributed probability. The number of offspring 𝑖 will be represented by a random variable 𝑌𝑖. 
In fact, every individual 𝑖 in the population lives one unit of time, generate 𝑌𝑖 offspring then dies at the end of the time unit. We 
denote the family size of each individual as 𝑌1, 𝑌2, … , 𝑌𝑚, … and 𝑌𝑖 ∼ 𝑌 where 𝑌 is a random variable called the number of young. The 
probability for an individual to generate 𝑟 offspring is equal to 𝑝𝑟, that is 𝑃 (𝑌 = 𝑟) = 𝑝𝑟.

Now suppose that at time instant 𝑥 = 0 there is only one individual. The lone individual lives one unit of time, generates one or 
more Offspring then dies. As we repeat the process for the following time units, we introduce 𝑍𝑡 as the size of the population at time 
𝑡. By definition 𝑍0 is always equal to 1 and the branching process is thus defined by the sequence {𝑍0, 𝑍1, … , 𝑍𝑡, …}.

A key question regarding the computation of the probability of ultimate extinction, that is the probability 𝜃 that no individual 
exists after a finite (and fixed) number of generations. We have that 𝜃 = lim𝑥→+∞ 𝑃

(
𝑍𝑥 = 0

)
. If we denote 𝜇 the expected number of 

children of an individual, we have that the expected number of individuals at the 𝑥-th generation is 𝜇𝑥; if 𝜇 < 1, then 𝑍𝑥 → 0 and, 
thus, 𝜃 converges to one. On the other hand, if 𝜇 > 1 (that is, an individual has, on average, more than one child) then 𝜃 is strictly 
less than one. An interesting situation occurs when 𝜇 = 1: here, 𝜃 is equal to one, unless each individual has exactly one child.
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3.3. The binomial distribution

A binomial random variable 𝑍 with parameters 𝑛 and 𝑝 is a discrete random variable, whose probability distribution (𝑛, 𝑝)
represents the number of successes in a sequence of 𝑛 independent experiments (also called trials), assuming that each experiment 
succeeds with probability 𝑝 (and thus fails with probability 𝑞 = 1 − 𝑝).

The outcome of each trial can be equivalently described by random variable 𝑋 ∼ Ber(𝑝) where Ber(𝑝) is Bernoulli random variable 
of 𝑝; this implies that any binomial random variable with parameters 𝑛 and 𝑝 can be thought as the sum of 𝑛 independent random 
variables 𝑋𝑖 ∼ Ber(𝑝). Since the random variables 𝑋𝑖 are independent and identically distributed, we have that the expectation 𝔼[𝑍]
of 𝑍 is equal to 𝑛𝑝 while the variance Var[𝑍] is equal to 𝑛𝑝 (1 − 𝑝). We will use the following classic result, which is elegantly proved, 
e.g., in [30].

Theorem 1. Let 𝑋 ∼ (𝑛, 𝑝) and 𝑌 ∼ (𝑚, 𝑝) be two independent binomial variables with the same probability distribution 𝑝. The random 
variable 𝑍 =𝑋 + 𝑌 is a binomial variable with distribution 𝑍 =𝑋 + 𝑌 ∼𝐵(𝑛 +𝑚, 𝑝).

The result above can be easily extended to the sum of three or more binomial random variables.

4. Graph-driven branching processes and the potential gain

In this section we introduce the notion of a network-driven branching process (see Section 4.1). We then use it in Section 4.2 to 
derive the definition of the Stochastic Potential Gain (SPG).

4.1. Graph-driven branching processes

Consider a network 𝐺 = ⟨𝑁, 𝐸⟩ and let 𝑖 ∈𝑁 be the starting node, i.e. the first individual of a population, at time step 𝑥 = 0. As 
described above, 𝑖 can reproduce and its offspring will coincide with its neighbouring nodes (or a subset of them). The process above 
repeats generation after generation and it may eventually terminate after a certain number of generations.

We can apply the process above by choosing any node in 𝑁 as the starting node and, for each node, we can compute the expected 
size of the population that is being generated. Hence nodes can be classified (or ranked) on the basis of the expected size of the 
population they generate. We assume that the most prolific nodes shall also be the most central ones.

To make our discussion more precise we need to specify the mechanism that regulates node reproduction. To this purpose, the 
simplest option it to apply the Galton-Watson (hereafter GW) process described in Section 3.2. Unfortunately, the GW process is not 
effective in ranking nodes: it assumes that the number of offspring is modelled as a random variable 𝑌 which is the same for all 
nodes and for all generations. Thus, the expected number of offspring is the same for all nodes and we cannot search for “prolific” 
nodes. To discriminate nodes on the bases of their descendants we need to alter the traditional GW branching process; this is done 
in two ways:

1. A node can have as children a subset of its neighbours and, possibly, it can have all its neighbours as children.

2. The “fecundity” of a node decreases from one generation to the next one. We suppose that there exists a non-increasing function 
𝑓 (𝑘) that specifies the probability that a node will have an offspring at the 𝑘-th generation.

We show that modifications (1) and (2) will enable the modified branching process to discriminate between nodes, and thus rank 
them. Also, a proper choice of 𝑓 (𝑘) will yield the stochastic formulation of the potential gain described in Section 3.1. Start with 
modification (1) and assume, as a first approximation, that the function 𝑓 (𝑘) is constant across generations and fixed to 1. Now our 
process starts from node 𝑖 at time 𝑘 = 1, where 𝑖 has 𝑑𝑖 children (since f(k) = 1). Next, each neighbour 𝑗 of 𝑖 will, in turn, reproduce 
and generate 𝑑𝑗 children. The process described here, which could continue indefinitely, is called the unfolding of 𝐺 at node 𝑖; it 
produces a branching tree rooted at 𝑖 and called Ψ(𝐺, 𝑖). The unfolding Ψ(𝐺, 𝑖) will contain the same node multiple times. To visualise 
this it suffices to observe that if 𝑖 generates 𝑗 then 𝑗 will also generate back 𝑖 as on offspring at the next level of the unfolding. This 
observation is generalised to the fact that nodes positioned at depth 𝓁 in the unfolding are certainly connected to 𝑖 via a walk of 
length 𝓁. In real networks the node degree is often distributed unevenly: consequently, unlike the GW process our modified process 
enables some nodes to have more children than others.

We can now relax the assumption that 𝑓 (𝑘) = 1 for any 𝑘, we will study the case when it decreases over time, i.e., when 𝑘 grows. 
Recall that 𝑓 (𝑘) = 𝛼𝑘 with 0 < 𝛼 < 1 and consider the first 𝑘 levels of the unfolding. In this case the number of leaves in Ψ(𝐺, 𝑖) at level 
𝓁 is equal to the number of walks of length 𝓁 coming out of 𝑖. Each of those leaves will be assigned weight equal to 𝑓 (𝓁). Finally, we 
can define the stochastic potential gain (SPG) as the random variable given by the sum of the weights of all the walks, of any length, 
which start from the origin node. In the next subsection we will show that the SPG random variable is in fact closely related to the 
Potential Gain of [35].

4.2. The stochastic potential gain

In this section we provide a formal definition of the stochastic potential gain. Again, assume a connected and undirected network 
𝐺 = ⟨𝑁, 𝐸⟩ as input. The next three definitions are needed to properly define the SPG in Definition 6. We begin by defining the 
unfolding of a network.
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Definition 3 (Unfolding). Let 𝐺 = ⟨𝑁, 𝐸⟩ be a graph and let 𝑖 ∈𝑁 be a node of 𝐺. The unfolding Ψ(𝐺, 𝑖) is a, possibly infinite, tree 
rooted in 𝑖 ∈𝑁 which results from traversing 𝐺 starting from 𝑖. Each time a node is revisited during the traversal a duplicate of it 
is added to the node set of Ψ(𝐺, 𝑖). For any non-negative integer 𝓁 ∈ ℕ+ we denote by (𝐺, 𝑖, 𝓁) the set of nodes in the 𝓁-th level of 
Ψ(𝐺, 𝑖).

From Definition 3 we see that nodes in (𝐺, 𝑖, 𝓁) are connected to the root 𝑖 by means of walks of length 𝓁. Since multiple walks 
(of different length) could join any arbitrary pair of nodes, we have that a node can appear more than once in Ψ(𝐺, 𝑖) and on different 
levels. We are now ready to introduce discount functions to our model.

Definition 4 (Discount Function). Let 𝑓 ∶ ℕ → (0, 1] be a strictly monotonically decreasing function. We say that 𝑓 (⋅) is a discount 
function if it satisfies the following two properties:

1. 𝑓 (0) = 1, and

2. 0 < 𝑓 (𝑘) < 1 for any 𝑘 > 0.

For instance, function 𝑓 (𝑘) =
(
1
2

)𝑘
is a discount function for 𝑘 = 0, 1, 2, …. A graph-driven branching process on 𝐺 and starting at 

𝑖 ∈𝑁 is defined next.

Definition 5 (Graph-Driven Branching Process). Let 𝐺 = ⟨𝑁, 𝐸⟩ be an undirected and connected network and let 𝑖 ∈𝑁 be one of its 
nodes. Let also Ψ(𝐺, 𝑖) be the unfolding tree associated with 𝐺 and rooted at 𝑖.

We define the graph-driven branching process associated with 𝐺 and 𝑖 as the branching process corresponding to the unfolding 
Ψ(𝐺, 𝑖) as follows: if a node 𝑗 appears in the (𝓁)-th level of Ψ(𝐺, 𝑖), then 𝑗 is allowed to visit only a subset of its neighbours. 
Specifically, each neighbour of 𝑗 is visited with probability equal to 𝑓 (𝓁) (or, equivalently, it is discarded with probability equal to 
1 − 𝑓 (𝓁)). As a consequence, the number of offsprings of 𝑗 is a binomial random variable (𝑑𝑗 , 𝑓 (𝓁)) with 𝑑𝑗 trials and probability of 
success equal to 𝑓 (𝓁).

We are now ready to define the Stochastic Potential Gain (SPG), our new centrality index, which is derived from Definition 5 and 
generalises the PG [35].

Definition 6 (Stochastic Potential Gain). Let 𝐺 = ⟨𝑁, 𝐸⟩ be an undirected connected graph and let 𝑓 (⋅) be a discount function. For an 
arbitrary node 𝑖 ∈𝑁 for its corresponding unfolding Ψ(𝐺, 𝑖), the SPG of 𝑖 is defined as

SPG(𝑖) = 1 +
+∞∑
𝑘=1

∑
𝑗∈(𝐺,𝑖,𝑘)

𝐴𝑗𝑘 (1)

Here 𝐴𝑗𝑘 ∼ Ber(𝑓 (𝑘)) with 1 ≤ 𝑗 ≤ 𝑛 and 𝑘 ∈ ℕ+ are Bernoulli random variables defined as follows: 𝐴𝑗𝑘 = 1 if and only if the node 
𝑗 ∈𝑁 is successfully selected in the 𝑘-th level of the unfolding, and 0 otherwise.

Thus we can set the probabilities 𝑃 (𝐴𝑗𝑘 = 1) = 𝑓 (𝑘) and 𝑃 (𝐴𝑗𝑘 = 0) = 1 − 𝑓 (𝑘).

We are now ready to discuss the computation of SPG and its computational cost. Computing the SPG as in Equation (1) is clearly 
unfeasible, we have developed a Monte Carlo algorithm to efficiently and accurately approximate the SPG of nodes.

5. A Monte Carlo algorithm to compute the stochastic potential gain

5.1. Algorithm description

In this subsection we describe our a Monte Carlo algorithm to compute the SPG. We do so by defining a function, called MCPG, 
which operates on an undirected and connected graph 𝐺 and makes use of a discount function 𝑓 (𝑘) (see Algorithm 2). Function 
MCPG takes as input a node (say cur_node) and an integer (say cur_level); to compute the SPG node 𝑖 we call MCPG with cur_node=i

and cur_level=0.

Algorithm 2 The MCPG algorithm.

1: MCPG(cur_node, cur_level)

2: 𝑐𝑢𝑟_𝑝𝑔← 0
3: for all children ch_node of cur_node do ⊳ (𝑑𝑐𝑢𝑟_𝑛𝑜𝑑𝑒, 𝑓 (𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙 + 1))
4: toss a coin with success probability 𝑓 (𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙 + 1) ⊳ (1, 𝑓 (𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙 + 1))
5: if success then

6: 𝑐𝑢𝑟_𝑝𝑔← 𝑐𝑢𝑟_𝑝𝑔 +MCPG(𝑐ℎ_𝑛𝑜𝑑𝑒, 𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙 + 1)
7: end if

8: end for

9: return 1 +𝑐𝑢𝑟_𝑝𝑔
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MCPG initialises a variable cur_pg to zero then it updates cur_pg and returns 1+cur_pg as an estimation of the SPG. We say that the 
node ch_node is a child of cur_node if ch_node belongs to the neighbourhood of cur_node.

Next, MCPG tosses a coin with success probability 𝑓 (𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙+1) for each child of cur_node: success leads to a recursive call with; 
with failure MCPG stops exploring the sub-tree of the unfolding rooted at ch_node. This coin toss procedure is equivalent to drawing 
a sample of the neighbours of cur_node whose size is distributed as (𝑑𝑐𝑢𝑟_𝑛𝑜𝑑𝑒, 𝑓 (𝑐𝑢𝑟_𝑙𝑒𝑣𝑒𝑙 + 1)).

The main component of function MCPG is the for loop in lines 3-8; it never executes if: i) cur_node has no children or ii) the 
coin toss always comes up with a failure. Condition i) would be satisfied only by isolated nodes but here 𝐺 is always assumed to be 
connected so it will never hold. For condition ii) we prove (see Theorem 2) that a suitable choice of the discount function 𝑓 (𝑘) leads 
to the number of children of cur_node tending to zero as cur_level increases. In other words, with probability approaching one there 
exists some level in the unfolding of 𝐺 beyond which the recursive calls will terminate.

We refer to condition ii) above as the extinction condition; we also say that the MCPG becomes extinct at node 𝑗 and level 𝑘 if 𝑗
belongs to the 𝑘-th level of the unfolding and the coin tosses associated with 𝑗 all end up with a failure.

Consider now the case of calling MCPG(i, 0) for, say, T times and let 𝑃𝓁(𝑖, 0) be the output MCPG(i, 0) at the 𝓁-th iteration, with 
1 ≤ 𝓁 ≤ 𝑇 . We define the Empirical stochastic potential gain (ESPG) 𝑃 (𝑖) as follows:

𝑃 (𝑖) = 1
𝑇

𝑇∑
𝑡=1

𝑃𝑡(𝑖,0). (2)

To better understand how function MCPG computes 𝑃𝑡(𝑖, 0), consider the execution of a generic call 𝑃𝑡(𝑖, 𝑘). If the extinction 
condition holds true, then MCPG terminates and returns 1 +𝑃𝑡(𝑖, 𝑘). Vice versa, if the extinction condition is not satisfied, then MCPG 
will update 𝑃𝑡(𝑖, 𝑘) as follows:

𝑃𝑡(𝑖, 𝑘) = 𝑃𝑡(𝑖, 𝑘+ 1) +
∑

𝑗∈(𝐺,𝑖,𝑘)
𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)

𝑗𝑘
= 1 +

∑
𝑗∈(𝐺,𝑖,𝑘)

𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)
𝑗𝑘
. (3)

Here 𝑎(𝑡)
𝑗𝑘

is a binary variable which equals 1 if MCPG does not become extinct at node 𝑗 and level 𝑘, and 0 otherwise. Coefficients 
𝑃𝑡(𝑖, 𝑘) can be interpreted as samples drawn from a random variable 𝑃 (𝑖, 𝑘) which represents the output of the MCPG(i, k) call. With 
the notation above, we have that the SPG(i) is equal to 𝑃 (𝑖, 0). Analogously, the 𝑎(𝑡)

𝑗𝑘
coefficient is the realisation of the random 

variable 𝐴𝑗𝑘 introduced in Definition 6. In the next subsections we investigate the convergence and correctness of Algorithm 2.

5.2. Convergence analysis

In this sub section we provide our results on the convergence of the Algorithm 2. Consider the function call MCPG(i, 0) and let 
𝑍𝑘 be random variable representing the number of nodes visited during the ‘exploration’ of level 𝑘 of Ψ(𝐺, 𝑖). We prove that if the 
discount function 𝑓 (𝑘) satisfies some criteria (see Theorem 2) then the sequence of random variables 𝑍𝑘 will converge in probability

to 0. Recall, e.g., from [21], that a sequence of random variables 𝑍1… 𝑍𝑘 converges in probability to 𝜇 ∈ ℝ if, for any arbitrarily 
small 𝜀 > 0, we have that lim𝑘→+∞ 𝑃𝑟(|𝑋𝑘 − 𝜇| ≥ 𝜀) = 0.

We have the following convergence result.

Theorem 2. Consider the execution of MCPG on a network 𝐺 = ⟨𝑁, 𝐸⟩ with 𝑑𝑀 = maxℎ∈𝑁 𝑑ℎ as the largest degree. Also, let 𝑓 (𝑘) be the 
discount function such that 𝑓 (𝑘) ⋅ 𝑑𝑘

𝑀
→ 0 as 𝑘 → +∞.

For any node 𝑖 ∈𝑁 , let 𝑍𝑘 be the number of nodes explored by the MCPG function at level 𝑘 of the unfolding Ψ(𝐺, 𝑖).
For any (arbitrarily small) 𝜀 > 0 the random variable 𝑍𝑘 will converge to zero in probability:

lim
𝑘→+∞

𝑃𝑟(|𝑍𝑘| ≥ 𝜀) = 0.

Proof. See Appendix A.1 □

5.3. Correctness analysis

In this section we prove that our Algorithm 2 is correct, that is, if we run it a sufficiently large number of times (parameter 𝑇 in 
Equation (2)), then 𝑃 (𝑖) will converge to the expected value of SPG(i). This intuition is formalised by the following theorem.

Theorem 3. Consider (as we did above) the execution of MCPG on a network 𝐺 = ⟨𝑁, 𝐸⟩ with 𝑑𝑀 =maxℎ∈𝑁 𝑑ℎ as the largest degree. Also, 
let 𝑓 (𝑘) be the discount function s. t. 𝑓 (𝑘) ⋅ 𝑑𝑘

𝑀
→ 0 if 𝑘 → +∞. For any node 𝑖, suppose we call function MCPG(i, 0) for 𝑇 times and let 

𝑃 (𝑖) be the empirical stochastic potential gain (see Equation (2)) obtained. Under these assumptions, as 𝑇 → +∞ we that 𝑃 (𝑖) converges in 
probability to the SPG of 𝑖.

Proof. See Appendix A.2. □



Information Sciences 644 (2023) 119201

8

P. De Meo, M. Levene and A. Provetti

1

2

34

5

6

7

8 9

10

Fig. 1. A ring with 𝑛 = 10 nodes.

5.4. Network topology impacts the convergence rate of MCPG

In the previous subsections we have provided some conditions regarding the discount function in the SPG which guarantee 
the convergence and correctness of Algorithm 2. Intuitively, the topology of the input graph will affect the rate of convergence of 
Algorithm 2 and, in many cases, we can choose a discount function that converges to zero slower than what is required by Theorem 2

to obtain convergence. To illustrate the point, consider a simple ring, sometimes denoted 𝐶10, as in Fig. 1: 𝑛 nodes, all of degree two. 
In this case, Theorem 2 suggests a function 𝑓 (𝑘) = 𝛼𝑘 with 𝛼 <

1
𝑑𝑀

. We found that Algorithm 2 converges quite quickly even for 𝛼
values above 0.33.

This observation can be explained as follows: suppose Algorithm 2 is at the 𝑘-th generation and it is currently visiting the node 𝑖, 
with 1 ≤ 𝑖 ≤ 10. It can generate at most two children, which we know3will be 𝑖 − 1 and 𝑖 + 1. At each step, we will ‘see’ Algorithm 2

tossing a coin twice; the process will end when it gets tails (failure) both times. By the independence assumption, the probability of 
obtaining two consecutive failures is equal to (1 − 𝑓 (𝑘)) ⋅ (1 − 𝑓 (𝑘)) = (1 − 𝑓 (𝑘))2. Vice versa, the probability that the process continues 
is 1 − (1 − 𝑓 (𝑘))2 = 2𝑓 (𝑘) − 𝑓 (𝑘)2. If we set 𝑓 (𝑘) = 𝛼𝑘, then we can rewrite the probability of survival as

2𝑓 (𝑘) − 𝑓 (𝑘)2 = 2𝛼𝑘 − 𝛼2𝑘 = 𝛼𝑘 ⋅
(
2 − 𝛼𝑘

)
≥ 𝛼𝑘

since 𝛼𝑘 is at most 1 when 𝑘 = 0. By this mechanism, the branching process will reach generation 𝜈 only if it survives for the first 
𝜈 − 1 generations and then fails/becomes extinct at the 𝜈-th generation. Therefore, the probability 𝑃𝜈 of becoming extinct at the 𝜈-th 
generation is:

𝑃𝜈 =
(
2𝑓 (0) − 𝑓 2(0)

)
⋅
(
2𝑓 (1) − 𝑓 2(1)

)
⋅… ⋅

(
2𝑓 (𝜈 − 1) − 𝑓 2(𝜈 − 1)

)
⋅ (1 − 𝑓 (𝜈))2 =

= (2 − 𝛼) ⋅
(
2𝑓 (1) − 𝑓 2(2)

)
⋅… ⋅

(
2𝑓 (𝜈 − 2) − 𝑓 2(𝜈 − 1)

)
⋅ (1 − 𝑓 (𝜈))2 ≥

≥ 𝛼𝜈−2 ⋅ (1 − 𝛼𝜈)2 ≃ 𝛼
𝜈(𝜈−1)

2 ≃ 𝛼𝜈−2.

(4)

In the last step we assume that (1 − 𝛼𝜈)2 ≃ 1 if 𝜈 is large enough. We have that 𝑃𝜈 converges to zero at least as fast as 𝑎𝜈−2 and, 
thus, the constraint that each node has degree equal to two implies the quick extinction of our process even if we choose values of 𝛼
larger than those prescribed by Theorem 2. At the opposite end of the spectrum, for very dense networks, i.e. those that resemble a 
complete graph, the number of potential children at generation 𝑘 grows as fast as 𝑛𝑘. Thus, for function 𝑓 (𝑘) = 𝑎𝑘 we need to ensure 
𝛼 <

1
𝑑𝑀

.

Real-world networks often display a highly skewed distribution with few nodes displaying a very large degree and the remaining 
ones having very few connections. It is also reasonable to expect that in these type of graphs we can relax the requirement 𝛼 < 1

𝑑𝑀
to 

obtain convergence.

Finally, observe that by setting 𝛼 <
1
𝑑𝑀

the SPG will converge to the PG; it is also true that it converges to the GPG we introduced 
in Section 3.1. We further note the well-known fact (see, e.g., [42]) that the maximum degree 𝑑𝑀 of a network is also an upper 
bound to its spectral radius 𝜆1: 𝜆1 ≤ 𝑑𝑀 , which concludes our analysis.

6. Experimental results

In this section we describe several experiments we carried out to validate our MCPG algorithm. We will begin by fixing some 
general research questions and then design experiments that will answer them.

6.1. Research questions and evaluation metrics

The first research question is about the amount of computation needed for MCPG to complete.

3 Of course if 𝑖 = 10 (resp. 𝑖 = 1) we consider nodes 1 and 9 (resp. 10 and 2) as potential children.
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Table 1

The main measures and features of the graphs used in our experimental evaluation.

Dataset No. of nodes No. of edges Clustering Coeff. Diameter

FB-FRIENDS 63,731 817,035 0.148 15

GITHUB 37,700 289,003 0.013 7

𝐑𝐐𝟏 How many nodes does the MCPG algorithm traverse before it terminates?

This question is important vis-a-vis centrality indices such as, e.g., the Katz coefficient [43] or the subgraph centrality [16]) that 
need to process the entire input network to obtain the centrality of a specific node. In contrast, MCPG is invoked on a specific node 
and will traverse only a fraction of the nodes to complete its execution. For the sake of ensuring scalability, it is of practical interest 
to quantify the (average) number of nodes that MCPG will need to visit before termination.

Suppose we invoke it node 𝑖 and monitor its execution. Let 𝑣(𝑖) be the number of nodes it actually explores before terminating. 
Since a node can be visited several times, each one could contribute multiple times to the calculation of 𝑣(𝑖). So 𝑣(𝑖) is not bounded 
by 𝑛 = |𝑁| in general. To better visualise the efficiency of MCPG and make it comparable to alternative centrality algorithms we 
normalise 𝑣(𝑖) by 𝑛, i.e., 𝑠(𝑖) = 𝑣(𝑖)

𝑛
, so that the computational cost will be independent of graph size. In the light of the observations 

above, we have that, for our choice of discount functions, 𝑠(𝑖) ranges between 0 and 1; the smaller 𝑠(𝑖), the better because MCPG will 
have to visit a fraction of nodes before terminating. To obtain a robust estimation of 𝑠(𝑖) for each input we ran MCPG 𝑇 times then 
took the average over 𝑇 runs. Equation (5) defines the Average Saving (or sparsity) (AS) measure, denoted 𝑠(𝑖):

𝑠(𝑖) = 1
𝑇

𝑇∑
𝓁=1

𝑣(𝑖)
𝑛

(5)

Clearly 𝑠(𝑖) ranges between 0 and 1 and the smaller it is the larger the space/time saving wrt. Katz and other centralities. We can 
now formulate our next research question.

𝐑𝐐𝟐 How good is the approximation of potential gain obtained by MCPG?

Theorem 3 guarantees that, as 𝑘 →+∞, the product 𝑑𝑘
𝑀
⋅𝑓 (𝑘) converges to 0, hence the Empirical Stochastic Potential Gain (ESPG) 

converges to the SPG. We would like to check how network topology affects the convergence of MCPG (see Section 5.4). To this end, 
we wish to determine if the SPG scores returned by MCPG are “close enough” to the exact PG even if we relax the hypotheses of 
Theorem 3 and, specifically, if we consider a discount function of the type 𝑓 (𝑘) = 𝛼𝑘 with 𝛼 > 1

𝑑𝑀
.

We have already observed (see Section 3.1) how the spectral radius 𝜆1 (or more precisely 1
𝜆1

) of the relative adjacency matrix has 
a fundamental role in the calculation of the PG and the GPG. In fact, if we choose 𝛼 less than 𝜆−11 then the PG and GPG of each node 
will be equivalent (remember also that the Potential gain of a node was proved to be equivalent to the node degree multiplied by its 
Katz centrality).

We are interested in studying what happens when 𝛼 takes on values smaller/larger than 𝜆−11 and, for specific values of 𝛼, we wish 
to determine how much the ESPG deviates from the potential gain. So, let 𝐏𝐆 be the output of Algorithm 1 and let �̂�𝑇 be the ESPG 
scores vector, obtained from Equation (2) after 𝑇 repetitions. We will use the standard cosine similarity measure to determine how 
close the two output vectors are:

cos (𝐏𝐆, �̂�𝑇 ) =
𝐏𝐆 ⋅ �̂�𝑇||𝐏𝐆|| ⋅ ||�̂�𝑇 || . (6)

Of course, the higher the cosine similarity the more similar the two measures are.

6.2. Dataset description

Our experimental phase focused on two large and publicly-available networks: Facebook Friendship and GitHub. Their main 
features are summarised in Table 1.

FB-FRIENDS. This classic dataset contains data on Facebook friendship collected by Viswanah et al. [48]. A node represents a 
user and an edge represents a friendship between two users.

GITHUB. This dataset was collected from the public GitHub API in June 2019 by [45] and it describes a social network of GitHub 
developers. Nodes represent GitHub users who have starred at least 10 repositories; edges identify mutual ‘follow’ relationships 
between users.

We observe that node degree distribution is right-skewed for all datasets considered in our experimental trials. In fact, differences 
in observed distributions are likely to derive from the mechanisms regulating the formation and growth of each social network. 
For instance, GITHUB collects mutual likes between members who are quite actively contributing. So the average node degree is 
higher than in other social networks. We inspected the dataset and found that only about one thousand nodes have a degree ranging 
between 50 and 110. On the other hand, node degree distribution in FB-FRIENDS is even more skewed with a large number of nodes 
displaying a degree less than ten while only a tiny fraction of nodes have degree of 120 or more.
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Fig. 2. Distribution of the Average Space Saving for the FB- FRIENDS dataset with 𝐶 = 0.9 (top left), 𝐶 = 1.0 (top right), 𝐶 = 1.5 (bottom left) and 𝐶 = 2.0 (bottom 
right).

6.3. How many nodes does MCPG traverse before it terminates?

In our experimental trials we focused on a discount function of the type 𝑓 (𝑘) =
(

𝐶

𝜆1

)𝑘
, where 𝜆−11 is again the spectral radius 

and 𝐶 is a constant. We considered values of 𝐶 less than one (namely 𝐶 = 0.9) as well as bigger than or equal to one (namely 
𝐶 = 1.0, 1.5, 2.0). The distribution of the Average Saving value 𝑠(𝑖) is reported in Figs. 2 and 3 with log-scale histograms.

From these figures the following observations can be made.

1. The constant parameter 𝐶 affects the average savings, as we detail below. For instance, in the FB-FRIENDS dataset with 𝐶 = 0.9, 
the percentage of nodes with an AS ≤ 10−4 is 50.75% while the percentage of nodes with an AS ≤ 10−5 decreases to 17.51%. For 
𝐶 = 2.0, then 26.85% of nodes has an AS less than or equal to 10−4 is while the percentage of nodes with an AS less than 10−5
decreased to 11.13%.

In the GITHUB dataset with 𝐶 = 0.9 we have that 62% of all nodes has an AS less than 10−4 while 25.28% of all nodes displays 
an AS less than 10−5; if we set 𝐶 = 2.0, then around 29.59% of nodes has an AS less than 10−4 but there are no nodes having an 
AS less than 10−5. These results are explained as follows: the smaller 𝐶 is, the smaller 𝛼 = 𝐶

𝜆1
and, thus, the faster the discount 

function converges to zero as 𝑘 increases. Vce versa for a smaller 𝛼 the exploration of the unfolding of 𝐺 terminates earlier and 
then a smaller number of node visits are needed.

2. Independently of the input dataset as well as the value of 𝐶 , we report very small values of the AS. For instance if we set 𝐶 = 2.0, 
then 11.13% (resp., 2.05%) of nodes in the FB-FRIENDS (resp., GITHUB) dataset display an AS larger than 10−3. We can thus 
provide a positive answer to 𝐑𝐐𝟏: the MCPG algorithms explore only a tiny portion of the input network, much smaller than other 
centrality indices (e.g. Katz’) which need to visit multiple times all nodes of the input graph.

3. The distribution of AS scores in the FB-FRIENDS dataset is more skewed than in the GITHUB one. It follows that, in the FB-

FRIENDS dataset we generally obtain better AS scores than that observed for GITHUB; however, the percentage of nodes in the

FB-FRIENDS dataset with AS bigger than 10−3 is roughly five times more than in the GITHUB dataset. Such a behaviour is likely 
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Fig. 3. Distribution of the Average Space Saving for the GITHUB dataset with 𝐶 = 0.9 (top left), 𝐶 = 1.0 (top right), 𝐶 = 1.5 (bottom left) and 𝐶 = 2.0 (bottom right).

Table 2

Cosine Similarity in the FB-FRIENDS dataset as function of the number of trials.

𝑇 𝐶 = 0.9 𝐶 = 1.0 𝐶 = 1.5 𝐶 = 2.0

2 0.9349 0.9275 0.9009 0.8735

6 0.9817 0.9780 0.9572 0.9343

11 0.9869 0.9835 0.9636 0.9414

16 0.9884 0.9849 0.9655 0.9435

to depend on the node degree distribution in each dataset. Specifically, in the FB-FRIENDS dataset, most of the nodes has degree 
less than ten; a low-degree node can generate only few children, thus causing a quick extinction of the exploration process. In 
contrast, high degree nodes can generate a large number of children even if the discount function goes to zero rapidly. Thus, the 
exploration process in high degree nodes become extinct more slowly.

6.4. How good is the MCPG approximation of the potential gain?

We compute the cosine similarity between the ESPG and the PG using Equation (6). We ran a preliminary test in which we choose 
the discount function 𝑓 (𝑘) = 𝑓⋆(𝑘) =

(
1

𝑑𝑀+1

)𝑘
with 𝑑𝑀 the largest degree in the input graph. We obtained a cosine similarity close 

to 0.99 after five trials, in line with our theoretical results.

Next, let us considered the—perhaps more interesting—case where the discount function decreases slower than 𝑓⋆(𝑘) while, as 
in the previous test, we assumed 𝑓 (𝑘) =

(
𝐶

𝜆1

)𝑘
with 𝐶 ∈ {0.9, 1.0, 1.5, 2.0}. Recall that Theorem 3 cannot be applied and thus we lack 

any theoretical guarantee on the convergence of Algorithm 2. Tables 2 and 3 report our experimental results.

For this set of tests, our main findings are as follows.
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Table 3

Cosine Similarity in the GITHUB dataset as function of the number of trials.

𝑇 𝐶 = 0.9 𝐶 = 1.0 𝐶 = 1.5 𝐶 = 2.0

2 0.8955 0.8730 0.7876 0.7237

6 0.9210 0.9024 0.8170 0.7550

11 0.9182 0.9045 0.8223 0.7575

16 0.9193 0.9049 0.8223 0.7562

1. If 𝑇 is increased, we observe an increase in the cosine similarity. Our experiment leads us to hypothesise that the MCPG converges 
to the potential gain even if we opt for a discount function which converges to zero slower than function 1

𝑑𝑘
𝑀

does; this opens 
the door to a possible generalisation of Theorem 3. Our results above derive from the fact that our branching process is guided 
by the topology of the input graph. This in fact is the reason why we called it graph-driven branching process: if 𝑓 (𝑘) ≃ 0 but a 
node has many children then our process might still survive extinction. Indeed, one of those children could have a large number 
of neighbours, and this would give rise a strengthening of the process rather than a weakening of it.

2. We obtain the highest similarity results at 𝐶 = 0.9 and, in general, an increase in 𝐶 causes a decrease in cosine similarity. 
Moreover, cosine similarity scores over FB-FRIENDS dataset are higher than those recorded in the GITHUB dataset. Such results 
depend on the speed with which the exploration process becomes extinguished.

In fact, both the exact and approximate algorithms initialise all nodes to PG (resp. SPG) of one. If the branching process 
terminates almost immediately, then the PG and ESPG scores returned by Algorithms 1 and 2 will be very close to one for all 
nodes and, thus, the cosine similarity will also be close to 1. Such outcomes are somewhat unwelcome as having lots of nodes 
with score (exact or approximate) around 1 invalidate our power to effectively discriminate nodes.

7. Comparison with other centrality metrics

This section completes the presentation of the SPG centrality by an experimental comparative analysis of how the SPG apportion 
centrality (and the subsequent node ranking) vis-a-vis the centralities assigned by Degree and Eigenvector centrality, two of the main 
measures in literature. Betweenness centrality was not included in the current comparison due to its high computational complexity 
and is left from future work.

In general, there is no standard way to compare two centrality measures nor to assess their similarity/difference. After careful 
evaluation we adopted the method which was developed by Grando et al. [20] to evaluate centralities and the output of search 
engines; its description now follows. For each given network of size 𝑛 we computed the Degree (d), Eigenvector (e) and SPG (s) 
centrality of its nodes. Thus we obtain three vectors, called 𝐝, 𝐞 and 𝐬 of size 𝑛 with the respective centrality values. Next, we sort 
each array by value to create a node ranking for each method. Finally, the difference between centralities will be assessed in terms 
of the correlation between the obtained rankings. In principle, centrality calculation provides a complete ranking for all the nodes. 
In practice, however, the main attention is on the top-ranked nodes, i.e., on whether centrality measures characterise the same few 
nodes as the most important in the network. The final step of Grando et al.’s method is to compare the top-𝑘 nodes according to the 
centrality produced by each of the three methods, which we carried out for values of 𝑘 = 10, 20, 50 and 100.

Unfortunately, the standard measures of ranking correlation, especially Kendall’s tau (𝜏) coefficient [1] are not adequate for this 
type of comparison. An intuitive definition of Kendall’s 𝜏 is as follows: given two rankings and an arbitrary pair of objects which 
co-occur in them, the 𝜏 will measure the probability that they appear in the same order in both rankings. Moreover, the aggregated 𝜏
of two rankings will always range between 0 (misalignment) and 1 (perfect alignment). The use of 𝜏 to compare centrality rankings 
is not fully convincing since we would like a larger penalisation (i.e., less correlation) for ranking disagreement on the top item than 
for disagreement on, say, the 10-th or 20-th element of the ranking. To capture this important aspect we adopted a recent measure 
of ranking correlation called Rank-Biased Overlap (RBO) [49].

The RBO coefficient is widely used to compare rankings generated by search engines. It is based on a simple user-centred model 
where an individual compares two rankings starting from the top elements to the lower-ranked ones. As with Web search engines, 
the ranking vectors might be very long but sooner or later the user will become distracted and, with high probability, truncate the 
comparison at some 𝑘 relative to the top ranked element. Thus, the RBO is defined as the expected average overlap that the user has 
observed in the two lists. As with tau, RBO ranges between 0 and 1 (perfect alignment of the top elements).

We have pairwise compared the rankings induced by the centrality measures by computing their RBO for the top-k ordered 
vectors, for 𝑘 = 10, 20, 50 and 100. The results obtained are shown in Tables 4 and 5. The main findings of our experimental analysis 
can be summarised and itemised as follows.

1. The correlation between the three centrality measures under consideration is generally high and often perfect (RBO=1). The 
topology of the input graph affects the obtained results, in particular for the FB-Friends dataset we get significantly lower RBO 
scores than for the GitHub dataset. That is likely to emanate from the underlying mechanisms that governs the formation and 
growth of these graphs. In fact, the GitHub dataset maps connections between developers working on related software projects. 
Hence, the most influential nodes in GitHub will coincide, by construction, with users with the highest reputation (or popularity) 
in the community. For the GitHub dataset we observe almost-perfect RBO scores, in particular, centrality measures agree on 
which the most important nodes are. On the other hand, in the FB-Friends dataset edges simply identify friendship; so a very 
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Table 4

Pairwise RBO correlation between centrality metrics on the FB-Friends dataset.

Comparing k=10 k=20 k=50 k=100

Deg-Eig 0.493 0.546 0.637 0.688

Deg-SPG 0.382 0.467 0.545 0.588

Eig-SPG 0.808 0.829 0.843 0.829

Table 5

Pairwise RBO correlation between centrality metrics on the GitHub dataset.

Comparing k=10 k=20 k=50 k=100

Deg-Eig 1.000 1.000 1.000 1.000

Deg-SPG 0.946 0.926 0.928 0.919

Eig-SPG 0.946 0.926 0.928 0.919

active user who accumulates a large number of connections does not necessarily achieve a leadership role. Perhaps as a result 
of that, on the FB-Friends dataset we found lower levels of RBO correlation.

2. As 𝑘 increases, the RBO scores increase too; this observation has a straightforward explanation. For small values of 𝑘 two ranks 
might in fact contain different elements, i.e., some nodes will be in one ranking but not in the other. Such nodes do not contribute 
to the RBO calculation, which remains low. On the other hand, for higher values of 𝑘 we expect the make-up of the rankings 
to be largely the same, that is, nodes might ‘fall down,’ i.e., have a smaller ranking but not entirely off it. So almost all nodes 
contribute to the RBO which explains why for higher values of 𝑘 we find higher RBO scores.

7.1. Centrality as an approximation for the k-nodes deletion problem

To complete our comparison of the SPG to other commonly used centrality metrics, we have designed and executed a new 
experiment that goes beyond the correlation analysis described in the previous section. We consider the following computational 
problem, which is known to be NP-hard [46].

Problem: 𝑘-node deletion

Instance: an undirected graph 𝐺 = ⟨𝑁, 𝐸⟩ and an integer 𝑘.

Solution: a set of 𝑘 nodes to be removed from 𝐺.

Measure: decrease of the spectral radius 𝜆1.
The state-of-the-art solution for k-node Deletion is the NetShield algorithm [5]. It provides and approximate, yet accurate, solution 

with a worst-case time complexity in 𝑂(|𝑁|𝑘2 + |𝐸|). Intuitively, NetShield will remove nodes which are well-connected.

We have explored the question of whether centrality measures are good predictors of which nodes will be removed by NetShield.

This can be formulated as asking whether the 𝑘 removed nodes coincide, or at least overlap, with the top-k nodes ranked by 
centrality? The practical implication is that centrality measures could be used as a pre-processing step for NetShield, i.e., they would 
select the nodes whose removal is most likely to cause a decrease of the spectral radius of the resulting graph after the removal of 
the selected nodes.

We ran an experimental comparison of the three centralities on the basis of their ability to predict which nodes NetShield would 
remove. For the same two datasets we have used above, and for all values of 𝑘 between 1 and 20, we computed the top-𝑘 ranks 
for SPG, Degree and Eigenvalue centrality. Next, we compared each ranking with the output of NetShield for the same input graph, 
called 𝑁𝑆(𝑘). Finally, for each top-𝑘 centrality, here denoted  (𝑘), we computed their Jaccard similarity index:

𝐽 (𝑘) = |𝑁𝑆(𝑘) ∩  (𝑘)||𝑁𝑆(𝑘) ∪  (𝑘)| (7)

The 𝐽 (𝑘) similarity index will range between 0 (no similarity) and 1 (identity). The results of the comparison are plotted in Fig. 4.

We make several observations. First and foremost, and perhaps counter-intuitively, Degree centrality always gives the worst 
results. Next, we see that the parameter 𝑘 greatly affects the values of 𝐽 (𝑘). Indeed, as 𝑘 increases, the complexity of the underlying 
problem increases and a heuristics prediction based on centrality becomes imprecise. Second, on the GitHub dataset the SPG achieves 
significantly better performances than Degree and Eigenvector centralities. On the other hand, on FB-Friends and for lower values 
of 𝑘 Eigenvector centrality performs far better than SPG; for higher values (𝑘 > 7) the difference vanishes and both become dissimilar 
from NetShield.

7.2. A qualitative assessment of SPG

In this section we discuss and compare the SPG to what we see today as the state of the art in centrality metrics. We identify three 
major advantages and two potential disadvantages that are associated with the SPG.
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Fig. 4. Jaccard Coefficient between the 𝐾 nodes returned by NetShield and the output of Degree, Eigenvector and SPG Centrality on the FB-Friends dataset (left) and 
the GitHub dataset (right).

+ From a conceptual standpoint, the SPG is an entirely novel centrality measure as it combines structural information (i.e., network 
topology) with dynamic processes (encoded through the discount function 𝑓 (𝑘)). Unlike traditional centrality metrics such as De-

gree or Eigenvector, the SPG simulates a random exploration process; yet unlike dynamic processes (such as standard branching 
processes), the SPG imposes additional constraints arising from the topology of the network. As observed earlier, if a node has 
a branching process stemming from it is likely to extinguish itself. On the other hand, a process stemming from a large-degree 
node has good chances to survive even for relatively high values of 𝑘.

+ SPG centralities are computed through randomised simulations; consequently, they are best interpreted as probability distribu-

tions (via the frequencies for each observed SPG value) rather than a scalar, which is the case with standard centrality measures. 
This might be seen as indirectness but in fact is nuance with good potential for application.

+ As seen in the previous section, often questions about centrality are restricted to a subset of “candidate” nodes and not to whole 
node set N. SPG is perfectly suited to accommodate these queries: we only need to call the MCPG algorithm on the required 
nodes. Unless specific algorithms are developed to, e.g., leverage the sparsity of the adjacency matrix, computing traditional 
centralities (except the hyper-local Degree centrality) relies on matrix operations which need to compute all centralities at once, 
even when only a small minority of nodes are of interest.

Let us now discuss the potential limitations of SPG.

- The branching process model we used here lacks a memory mechanism so successive runs (to compute the centrality for two 
or more nodes) will require re-exploring regions of the network. This inefficiency can be addressed with further algorithmic 
solutions, e.g. harnessing parallelism or dynamic programming solutions.

- The discriminating power of SPG centrality (and its efficient computation) relies on the choice of the discount function 𝑓 (𝑘). 
In fact, by determining the number of nodes that can be explored at level 𝑘, 𝑓 (𝑘) has a strong impact on the computational 
costs. Moreover, the choice of 𝑓 (𝑘) is context-dependent: only for some network topologies a rapidly-declining 𝑓 (𝑘) is adequate; 
sometimes a slower-decreasing function will be a better choice.

7.3. Replacing random walks with random paths?

Let us now discuss an algorithmic method that could provide an alternative to the random walks seen so far. We have seen 
how the MCPG begins the computation of the SPG of node 𝑖 by launching a random walk from 𝑖; next, the discount function 
𝑓 (⋅) penalises long walks and we the process will stop after some a few more steps away from 𝑖. This simple schema makes SPG 
computation scalable. However, direct neighbours of 𝑖 are likely to be repeatedly visited thus increasing, somehow artificially, their 
SPG centrality. This side-effect to the repeated exploration of a node is known as the localisation effect and, e.g., Martin et al. [38]

examined this issue in depth. Consider for instance Eigenvector centrality: its computation, essentially, involves finding the dominant 
eigenvector of the given adjacency matrix. Martin et al. observed how, depending on the underlying topology, most of the mass of 
the leading eigenvector tends to concentrate around a handful of nodes. Then, as an undesirable side effect, most of the remaining 
nodes would have a centrality very close or equal to zero. When this happens, Eigenvector centrality looses its discriminating power 
and cannot help in selecting the most relevant nodes. The localisation effect is a direct consequence of the mathematical formulation 
of Eigenvector centrality since centrality of a node is defined as the sum of its neighbours, hub nodes ‘give’ centrality, and ‘receive it 
back’ from their neighbours.

We analysed the distribution of the SPG (and Eigenvector) centrality in our benchmark networks and found evidence of the 
localisation effect. A possible counter-measure to localisation could be to prevent random walks to “return” to previously-visited 
nodes. This strategy is realised by self-avoiding random walks (SAWs) by, e.g., [41,24]. A simple (but not very efficient) implementation 
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of SAWs consists in generating random walks and then stopping the process every time the walker “returns” to an already-visited 
node. Alternative definitions of SAWs have been considered in the literature. For instance, [41] defines SAWs as walkers who choose 
the next node to visit uniformly at random among the unvisited neighbours of the current node. If no unvisited neighbour remains, 
there is a restart, i.e., the next node is chosen uniformly at random among all neighbours. In the physics literature [2] myopic SAWs

have been introduced, that is random processes which select among all neighbours but with probability proportional to a negative 
exponential of the number of times the neighbour has been visited already.

In our previous research work [11] we deployed SAWs to Community detection in large networks: we ran SAW walkers to re-

weight and rank “local” edges, then we used those edge weights to detect communities. SAWs have also been extensively used to 
search for resources in peer-to-peer networks [6,9]. Hence a potential research avenue for improving the performance of MCPG 
is to base it on SAWs instead of purely-random walks or, equivalently, by replacing random walks with randomly-generated paths. 
Unfortunately, SAWs are not Markovian random processes, since their choice of next node intrinsically depends on past choices/visits. 
So even though SAWs are only slightly less randomised than fully-random walkers their conceptualisation and the analysis of their 
properties is much harder, see, e.g., [41] for a discussion.

8. Conclusions and future work

With the Stochastic Potential Gain we have introduced a new type of network centrality that is essentially different from tradi-

tional methods based on Linear Algebra. Our approach differs from the current literature on centrality indices in that we combine 
structural information describing the topology of the network with a novel branching process (called graph-driven branching process) 
exploration of the network.

Further, we defined a Monte Carlo approximation algorithm for SPG, called MCPG, for which we give formal proof of its proper-

ties: convergence, space-efficiency and a bound on the error. The expected value of the SPG of a node is equal to its Potential Gain 
centrality value, an index which we had previously introduced to generalise centrality indices such as Katz’s and Subgraph.

Experiments on two real-world and large graphs indicate that the MCPG algorithm only requires the transversal of a small fraction 
of the nodes in a graph to accurately approximate the PG of a node. These results led us to claim that SPG is a centrality measure apt 
to scale up to Web and Online social network analysis.

One natural way to extend this research is to consider distributions other than the binomial distribution for defining the graph-

driven branching process. For example, we may consider the Poisson distribution [26] or the negative binomial distribution [27].

A further research avenue consists of investigating how topological parameters of the input network (e.g., its edge density) affect 
the expected length of the random walks exploring it. So, an ambitious research goal would be to consider discount functions of the 
type 𝑓 (𝑘) = 𝛼𝑘 with 𝛼 ∈ (0, 1) and determine, for a specific value of edge density, the largest value of 𝛼 which guarantees that the 
process will become extinct.
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Appendix A. Proofs

A.1. Proof of Theorem 2

To prove Theorem 2, we will need a well-known result in probability theory known as Chebycheff’s Inequality [21]. It holds for 
any random variable 𝑋 (with finite mean 𝜇 and variance 𝜎2) and for any 𝜀 > 0 that the probability that 𝑋 deviates from 𝜇 more than 
𝜀 is bounded above by 𝜎

2

𝜀2
, i.e., 𝑃𝑟 (|𝑋 − 𝜇| ≥ 𝜀) ≤

𝜎2

𝜀2
.

Another background result which will be needed to prove Theorem 2 is the Lemma below.

Lemma 1. Let 𝑋𝑘 be a sequence of random variables with mean 𝜇𝑘 and variance 𝜎2
𝑘

such that the limits lim𝑘→+∞ 𝔼[𝑋𝑘] = 𝜇 and 
lim𝑘→+∞ Var[𝑋𝑘] = 0 hold.

Then the sequence 𝑋𝑘 will converge in probability to 𝜇: 𝑋𝑘

𝑃
⟶ 𝜇.
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Proof. We start with the Chebyshev’s inequality on 𝑋𝑘 and we will show that, for an arbitrary error threshold 𝜀 > 0:

𝑃𝑟(|𝑋𝑘 − 𝜇| ≥ 𝜀) ≤
𝔼[
(
𝑋𝑘 − 𝜇

)2]
𝜀2

. (A.1)

In general, 𝔼[𝑋𝑘] = 𝜇𝑘 ≠ 𝜇 and, thus, 𝔼[
(
𝑋𝑘 − 𝜇

)2] is not necessarily equal to the variance of 𝑋𝑘.

Now we exploit the linearity of expectation (i.e., 𝔼[𝑋 + 𝑌 ] = 𝔼[𝑋] + 𝔼[𝑌 ]) to expand the term 𝔼[
(
𝑋𝑘 − 𝜇

)2] as follows:

𝔼[
(
𝑋𝑘 − 𝜇

)2] = 𝔼[
(
𝑋𝑘 − 𝜇𝑘 + 𝜇𝑘 − 𝜇

)2] =

= 𝔼[
((
𝑋𝑘 − 𝜇𝑘

)
+
(
𝜇𝑘 − 𝜇

))2] =

= 𝔼[
(
𝑋𝑘 − 𝜇𝑘

)2 + 2
(
𝑋𝑘 − 𝜇𝑘

)(
𝜇𝑘 − 𝜇

)
+
(
𝜇𝑘 − 𝜇

)2] =
= 𝔼[

(
𝑋𝑘 − 𝜇𝑘

)2] + 2𝔼[
(
𝑋𝑘 − 𝜇𝑘

)(
𝜇𝑘 − 𝜇

)
] + 𝔼[

(
𝜇𝑘 − 𝜇

)2] =
= 𝔼[

(
𝑋𝑘 − 𝜇𝑘

)2] + 2
(
𝜇𝑘 − 𝜇

)
𝔼[𝑋𝑘 − 𝜇𝑘] +

(
𝜇𝑘 − 𝜇

)2
.

(A.2)

Observe that, by definition Var[𝑋𝑘] = 𝜎2
𝑘
= 𝔼[

(
𝑋𝑘 − 𝜇𝑘

)2].
Also, we apply linearity again to obtain 𝔼[𝑋𝑘 − 𝜇𝑘] = 𝔼[𝑋𝑘] − 𝔼[𝜇𝑘] = 𝔼[𝑋𝑘] − 𝜇𝑘 = 𝜇𝑘 − 𝜇𝑘 = 0.

So the middle term in Equation (A.2) vanishes and we can rewrite Equation (A.1) as follows:

𝑃 (|𝑋𝑘 − 𝜇| ≥ 𝜀) ≤
𝔼[
(
𝑋𝑘 − 𝜇

)2]
𝜀2

= 1
𝜀2

[
𝔼[
(
𝑋𝑘 − 𝜇𝑘

)2] +
(
𝜇𝑘 − 𝜇

)2] =
𝜎2
𝑘

𝜀2
+ 1

𝜀2

(
𝜇𝑘 − 𝜇

)2
. (A.3)

We take the limit, as 𝑘 → +∞ of the left and right hand side of Equation (A.3).

Recall that we assumed that lim𝑘→+∞ 𝜎2
𝑘
= lim𝑘→+∞ Var(𝑋𝑘) = 0 so the first term also goes to 0.

We also assumed that 𝜇𝑘 → 𝜇 as 𝑘 goes to infinity and, thus, by the continuity property of the expectation, we get lim𝑘→+∞ 𝔼[(𝜇𝑘 −
𝜇)2] = 0.

Which proves that lim𝑘→+∞ 𝑃 (|𝑋𝑘 − 𝜇| ≥ 𝜀) = 0, i.e., 𝑋𝑘 converges in probability to 𝜇. □

We are now ready to prove Theorem 2 (the termination of MCPG); for convenience we restate it below.

Theorem. Consider a graph 𝐺 = ⟨𝑁, 𝐸⟩ with 𝑑𝑀 =maxℎ∈𝑁 𝑑ℎ as the largest degree and let 𝑓 (⋅) be the discount function such that 𝑓 (𝑘) ⋅𝑑𝑘
𝑀

→

0 for 𝑘 → +∞.

For an arbitrary node 𝑖 ∈𝑁 , we define two sequences of random variables.

First, let 𝑋0 = {𝑖} and 𝑋𝑘 ⊆ (𝐺, 𝑖, 𝑘) be the multiset of nodes visited by the MCPG function (see Algorithm 2) at the 𝑘-th level of the 
unfolding Ψ(𝐺, 𝑖).
Second, let 𝑍0 = |𝑋0| = 1 and 𝑍𝑘 = |𝑋𝑘| at all levels 𝑘 of Ψ(𝐺, 𝑖).
For any (arbitrarily small) 𝜀 > 0 we have that 𝑍𝑘 converges to zero in probability: lim𝑘→+∞ 𝑃𝑟(|𝑍𝑘| ≥ 𝜀) = 0.

Proof. Consider 𝑋1, that is the multi-set of nodes reached by the MCPG function at the first level of the unfolding. From Algorithm 2, 
line 3, we have that 𝑍1 ∼(𝑑𝑖, 𝑓 (1)).
We introduce an auxiliary Binomial random variable, called 𝑊1 ∼(𝑑𝑀, 𝑓 (1)), where 𝑑𝑀 again is the largest degree in 𝐺.

Clearly, 𝔼[𝑊1] ≥ 𝔼[𝑍1].
That is, the expected number of successes we can obtain with 𝑑𝑀 trials (i.e., starting from a maximum-degree node) will be greater 
or equal to the number of successes we would obtain in 𝑑𝑖 trials (𝑖 is chosen arbitrarily): the success probability is 𝑓 (1) in all cases.

We now construct a sequence of Binomial random variables 𝑊𝑘 such that each 𝔼[𝑊𝑘] ≥ 𝔼[𝑍𝑘] at any level 𝑘 of the unfolding.

To see how this can be done, consider the multiset 𝑋2 and let 𝑍2 = |𝑋2|.
Also, let 𝑗 be an arbitrary node in 𝑋1; its degree 𝑑𝑗 and we observe that the number of nodes 𝐻(𝑗, 2) that 𝑗 can explore is distributed 
as 𝐻(𝑗, 2) ∼(𝑑𝑗 , 𝑓 (2)).
Since 𝑑𝑗 ≤ 𝑑𝑀 , we have 𝔼[𝐻(𝑗, 2)] ≤ 𝔼[𝑊2], with 𝑊2 ∼(𝑑𝑀, 𝑓 (2)).
As a result of this observation, we can get a bound on 𝔼[𝑍2] as follows:

𝔼[𝑍2] = 𝔼[|𝑋2|] = 𝔼

[ ∑
𝑗∈(𝐺,𝑖,1)

𝐻(𝑗, 2)

]
=

∑
𝑗∈(𝐺,𝑖,1)

𝔼[𝐻(𝑗, 2)] ≤
∑

𝑗∈(𝐺,𝑖,1)
𝔼[𝑊2] = 𝑑𝑖 ⋅ 𝔼[𝑊2] ≤ 𝑑𝑀 ⋅ 𝔼[𝑊2].

Let us define 𝑊2 = 𝑑𝑀 ⋅𝑊2 and observe that 𝑊2 is the sum of 𝑑𝑀 Binomial random variables, each of them with parameters 𝑛 = 𝑑𝑀
and 𝑃 = 𝑓 (2).
From Theorem 1 we have that 𝑊2 is a Binomial random variable with parameters 𝑛 = 𝑑𝑀 ⋅ 𝑑𝑀 = 𝑑2

𝑀
and 𝑃 = 𝑓 (2).

We can generalise the procedure above for an arbitrary integer 𝑘 > 2 for which we will study 𝑍𝑘 along with a binomial random 
variable 𝑊𝑘 ∼(𝑑𝑘

𝑀
, 𝑓 (𝑘)).

The expected value 𝔼[𝑊𝑘] and the variance Var[𝑊𝑘] of 𝑊𝑘 are known: 𝔼[𝑊𝑘] = 𝑛 ⋅ 𝑝 = 𝑑𝑘
𝑀

⋅ 𝑓 (𝑘) and Var[𝑊𝑘] = 𝑛 ⋅ 𝑝 ⋅ (1 − 𝑝) =
𝑑𝑘
𝑀

⋅ 𝑓 (𝑘) ⋅ (1 − 𝑓 (𝑘)).
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If we assume that 𝑑𝑘
𝑀

⋅ 𝑓 (𝑘) → 0 as 𝑘 → +∞, then both 𝔼[𝑊𝑘] and Var[𝑊𝑘] will converge to zero.

But since for any (arbitrarily small) 𝜀 > 0 we have that 0 ≤ |𝑍𝑘| ≤ |𝑊𝑘|. Thus:

𝑃 (𝑍𝑘 > 𝜀) = 𝑃 (|𝑍𝑘| > 𝜀) ≤ 𝑃 (|𝑊𝑘| > 𝜀).

At this point 𝔼[𝑊𝑘] and Var[𝑊𝑘] converge to zero as 𝑘 → +∞ so we can apply Lemma 1 to obtain that 𝑍𝑘 converges in probability to 
0. □

A.2. Proof of Theorem 3

We begin with the following preliminary result.

Lemma 2. Let 𝐺 = ⟨𝑁, 𝐸⟩ be a graph and let 𝑗 ∈𝑁 be any of its nodes.

For any integer 𝑘 > 0 let 𝑃 (𝑗, 𝑘) be the random variable modelling the output of the MCPG function called on parameters 𝑗 and 𝑘.

Let 𝐴𝑗𝑘 be the Bernoulli random variable of parameter 𝑓 (𝑘) from Definition 6.

The expected value of 𝑃 (𝑗, 𝑘) is given by:

𝔼[𝑃 (𝑗, 𝑘)] = 𝔼[𝑃 (𝑗, 𝑘) | 𝐴𝑗𝑘 = 1] ⋅ 𝑓 (𝑘).

Proof. From Definition 6 we have that 𝐴𝑗𝑘 equals 1 if and only if the extinction condition is false. We apply the well-known (see, 
e.g., [21]) Law of Total Expectations to obtain:

𝔼[𝑃 (𝑗, 𝑘+ 1)] = 𝔼[𝑃 (𝑗, 𝑘+ 1) | 𝐴𝑗𝑘 = 1] ⋅ 𝑃 (𝐴𝑗𝑘 = 1) + 𝔼[𝑃 (𝑗, 𝑘+ 1) | 𝐴𝑗𝑘 = 0] ⋅ 𝑃 (𝐴𝑗𝑘 = 0).

Observe how whenever MCPG() extinguishes at node 𝑗 and level 𝑘, then 𝑗 won’t contribute to the SPG, hence 𝔼[𝑃 (𝑗, 𝑘 + 1) | 𝐴𝑗𝑘 =
0] = 0.

Now, by the hypothesis, 𝑃 (𝐴𝑗𝑘 = 1) = 𝑓 (𝑘), which enables us to conclude that

𝔼[𝑃 (𝑗, 𝑘+ 1)] = 𝔼[𝑃 (𝑗, 𝑘+ 1) | 𝐴𝑗𝑘 = 1] ⋅ 𝑓 (𝑘). □

Now we restate Theorem 3 then prove it.

Theorem. Let 𝐺 = ⟨𝑁, 𝐸⟩ be an undirected and connected graph with |𝑁| = 𝑛 nodes and |𝐸| =𝑚 edges.

Let 𝑑𝑀 be the largest degree of all nodes in 𝐺 and let 𝑓 (𝑘) be a discount function such that 𝑑𝑘
𝑀

⋅𝑓 (𝑘) → 0 as 𝑘 → +∞. For any node 𝑖, suppose 
to call the function MCPG(𝑖, 0) for 𝑇 times, being 𝑇 a positive integer and let 𝑃 (𝑖) be the empirical stochastic potential gain (see Equation 
(2)).

Then 𝑃 (𝑖) converges to the SPG of 𝑖 when 𝑇 → +∞.

Proof. We prove for any integer 𝑘 we have that 𝑃 (𝑖, 𝑘) = 1
𝑇

∑𝑇
𝓁=1 𝑃𝓁(𝑖, 𝑘) converges to 𝔼[𝑃 (𝑖, 𝑘)]; as a consequence, because the SPG 

of a node i is equal to 𝔼[𝑃 (𝑖, 0)] the thesis follows if we take 𝑘 = 0.

Our proof is by induction, we start from the observation that if 𝑘 is large enough, then the extinction condition is satisfied because 
of Theorem 2.

Thus, for any 𝓁, we have that 𝑃𝓁(𝑖, 𝑘) is always equal to one and 𝑃 (𝑖, 𝑘) = 1. Our theorem is then trivially true because if none of the 
children of 𝑖 is explored then the SPG of 𝑖 is one, by Equation (1).

We need to prove the statement only for “small” values of 𝑘 which guarantees that the extinction condition is not satisfied and the

MCPG function continues building up and exploring Ψ(𝐺, 𝑖).
Suppose that the statement is true at the level 𝑘 + 1 that is 𝑃 (𝑖, 𝑘 + 1) → 𝔼[𝑃 (𝑖, 𝑘 + 1)] if 𝑇 is large enough.

We now prove that our assertion is true also at the level 𝑘.

Let 𝑃𝑡(𝑗, 𝑘) be the output of the function MCPG(𝑖, 𝑘) at iteration 𝑡. We have that

𝑃𝑡(𝑖, 𝑘) = 1 +
∑

𝑗∈(𝐺,𝑖,𝑘+1)
𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)

𝑗,𝑘+1.

Consider 𝑃 (𝑖, 𝑘), i.e., the average of all 𝑝𝑡(𝑖, 𝑘) coefficients; we can rewrite it as follows:

𝑃 (𝑖, 𝑘) = 1
𝑇

𝑇∑
𝑡=1

𝑃𝑡(𝑖, 𝑘) =
1
𝑇

𝑇∑
𝑡=1

(
𝑃𝑡(𝑖, 𝑘+ 1) +

∑
𝑗∈(𝐺,𝑗,𝑘+1)

𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)
𝑗𝑘

)

= 1
𝑇

𝑇∑
𝑡=1

𝑃𝑡(𝑖, 𝑘+ 1) + 1
𝑇

𝑇∑
𝑡=1

∑
𝑗∈(𝐺,𝑗,𝑘+1)

𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)
𝑗𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Δ

.
(A.4)

By the inductive hypothesis we have
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1
𝑇

𝑇∑
𝑡=1

𝑃𝑡(𝑖, 𝑘+ 1)
𝑇→+∞
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝔼[𝑃 (𝑖, 𝑘+ 1)].

Thus, we can swap the summations in Δ as follows:

Δ= 1
𝑇

𝑇∑
𝑡=1

∑
𝑗∈(𝐺,𝑗,𝑘+1)

𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)
𝑗𝑘

=
∑

𝑗∈(𝐺,𝑗,𝑘+1)

(
1
𝑇

𝑇∑
𝑡=1

𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)
𝑗𝑘

)
. (A.5)

Let us define Γ𝑗𝑘 =
∑𝑇

𝑡=1 𝑎
(𝑡)
𝑗𝑘

and observe that Γ𝑗𝑘 is the number of times the MCPG function does not extinct at node 𝑗 and level 𝑘. 
We can, in other words, consider the subset 𝑇 ′ ⊆ [1, 𝑇 ] of tests where node 𝑗 provides a contribution equal to 𝑃𝑡(𝑗, 𝑘 + 1), while in 
the remaining tests (𝑡 ∉ 𝑇 ′) 𝑗 does not give any contribution. So, thanks to the notation introduced above, we rewrite Δ as follows:

1
𝑇

𝑇∑
𝑡=1

𝑃𝑡(𝑗, 𝑘+ 1) ⋅ 𝑎(𝑡)
𝑗𝑘

= 1
𝑇

∑
𝑡∈𝑇 ′

𝑃𝑡(𝑗, 𝑘+ 1) =
Γ𝑗𝑘
𝑇

(
1
Γ𝑗𝑘

∑
𝑡∈𝑇 ′

𝑃𝑡(𝑗, 𝑘+ 1)

)
.

Thus, if 𝑇 is large enough, then Γ𝑙𝑘
𝑇

converges to the probability of success, which is in fact 𝑓 (𝑘). By the Law of Large Numbers (see, 
e.g., [21]), 1

Γ𝑗𝑘

∑
𝑡∈𝑇 ′ 𝑃𝑡(𝑗, 𝑘 + 1) will converge to its expected value 𝑃 (𝑗, 𝑘 + 1) conditioned on 𝐴𝑗𝑘 = 1, that is 𝔼[𝑃 (𝑗, 𝑘 + 1) | 𝐴𝑗𝑘 = 1].

From Lemma 2 we have that 𝔼[𝑃 (𝑗, 𝑘 + 1)] = 𝔼[𝑃 (𝑗, 𝑘 + 1) | 𝐴𝑗𝑘 = 1] ⋅ 𝑓 (𝑘), and, thus, if 𝑇 is large enough, we have that Δ converges 
to ∑𝑗∈(𝐺,𝑗,𝑘+1) 𝔼[𝑃 (𝑗, 𝑘 + 1)].
At this point, by merging results above and by the linearity of the expectation we have that 𝑃 (𝑖, 𝑘) converges to

𝑃 (𝑖, 𝑘)→ 𝔼[𝑃 (𝑖, 𝑘+ 1)] +
∑

𝑗∈(𝐺,𝑖,𝑘)
𝔼[𝑃 (𝑗, 𝑘+ 1)] = 𝔼

[
𝑃 (𝑖, 𝑘+ 1) +

∑
𝑗∈(𝐺,𝑖,𝑘)

𝑃 (𝑗, 𝑘+ 1)

]
= 𝔼[𝑃 (𝑖, 𝑘)], (A.6)

which ends the proof. □
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