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Abstract
In reverse engineering of database queries, we aim
to construct a query from a given set of answers
and non-answers; it can then be used to explore
the data further or as an explanation of the answers
and non-answers. We investigate this query-by-
example problem for queries formulated in positive
fragments of linear temporal logic LTL over times-
tamped data, focusing on the design of suitable
query languages and the combined and data com-
plexity of deciding whether there exists a query in
the given language that separates the given answers
from non-answers. We consider both plain LTL
queries and those mediated by LTL -ontologies.

1 Introduction
Supporting users of databases by constructing a query from
examples of answers and non-answers to the query has been
a major research area since the 2000s [Martins, 2019]. In
the database community, research has focussed on stan-
dard query languages such as SQL, graph query languages,
and SPARQL [Zhang et al., 2013; Weiss and Cohen, 2017;
Kalashnikov et al., 2018; Deutch and Gilad, 2019; Sta-
worko and Wieczorek, 2012; Barceló and Romero, 2017;
Cohen and Weiss, 2016; Arenas et al., 2016]. The KR com-
munity has been concerned with constructing queries from
examples under the open world semantics and with back-
ground knowledge given by an ontology [Gutiérrez-Basulto
et al., 2018; Ortiz, 2019; Cima et al., 2021; Jung et al., 2021;
Jung et al., 2022]. A fundamental problem that has been in-
vestigated by both communities is known as separability or
query-by-example (QBE), a term coined by Zloof [1977]:

Given: sets E+ and E− of pairs (D,d) with a database in-
stance D and a tuple d in D, a (possibly empty) ontology
O, and a query language Q.

Problem: decide whether there exists a query q ∈ Q sepa-
rating (E+, E−) in the sense that O,D |= q(d) for all
(D,d) ∈ E+ and O,D ̸|= q(d) for all (D,d) ∈ E−.

If such a q exists, then (E+, E−) is often called satisfiable
w.r.t. Q under O, and the construction of q is called learning.

In many applications, the input data is timestamped and
queries are naturally formulated in languages with tempo-
ral operators. In this paper, we investigate temporal query-
by-example by focusing on the basic but very useful case
where data D is a set of timestamped atomic propositions.
Our query languages are positive fragments of linear tem-
poral logic LTL with the temporal operators 3 (eventually),
⃝ (next), and U (until) interpreted under the strict seman-
tics [Demri et al., 2016]. To enforce generalisation, we do
not admit ∨. Our most expressive query language Q[U] is
thus defined as the set of formulas constructed from atoms
using ∧ and U (via which ⃝ and 3 are expressible); the frag-
ments Q[3] and Q[⃝,3] are defined analogously. Ontolo-
gies can be given in full LTL or its fragments LTL23 (known
as the Prior logic [Prior, 1956]), which only uses the opera-
tors 2 (always in the future) and 3, and the Horn fragment
LTL2⃝

horn containing axioms of the formC1∧· · ·∧Ck → Ck+1,
where the Ci are atoms possibly prefixed by 2 and ⃝ for
i ≤ k + 1, and also by 3 for i ≤ k. Ontology axioms
are supposed to hold at all times. In fact, already this ba-
sic ‘one-dimensional’ temporal ontology-mediated querying
formalism provides enough expressive power in those real-
world situations where the interaction among individuals in
the object domain is not important and can be disregarded in
data modelling; see [Artale et al., 2021] and also Example 1
and the references before it.

Withinthis temporal setting, we take a broad view of the
potential applications of the QBE problem. On the one hand,
there are non-expert users who would like to explore data via
queries but are not familiar with temporal logic. They usually
are, however, capable of providing data examples illustrating
the queries they are after. QBE supports such users in the
construction of those queries. On the other hand, the posi-
tive and negative data examples might come from an appli-
cation, and the user is interested in possible explanations of
the examples. Such an explanation is then provided by a tem-
poral query separating the positive examples from the nega-
tive ones. In this case, our goal is similar to recent work on
learning LTL formulas in explainable planning and program
synthesis [Lemieux et al., 2015; Neider and Gavran, 2018;
Camacho and McIlraith, 2019; Fijalkow and Lagarde, 2021;
Raha et al., 2022; Fortin et al., 2022].



Example 1. Imagine an engineer whose task is to explain the
behaviour of the monitored equipment (say, why an engine
stops) in terms of qualitative sensor data such as ‘low tem-
perature’ (T ), ‘strong vibration’ (V ), etc. Suppose the engine
stopped after the runs D+

1 and D+
2 below but did not stop af-

ter the runs D−
1 , D−

2 , D−
3 , where we assume the runs to start

at 0 and measurements to be recorded at moments 0, 1, 2, . . . :

D+
1 = {T (2), V (4)},D+

2 = {T (1), V (4)},
D−

1 = {T (1)},D−
2 = {V (4)},D−

3 = {V (1), T (2)}.

The 3-query q = 3(T∧33V ) is true at 0 in the D+
i , false in

D−
i , and so gives a possible explanation of what could cause

the engine failure. The example set ({D+
3 ,D

+
4 }, {D

−
4 }) with

D+
3 = {T (1), V (2)}, D+

4 = {T (1), T (2), V (3)},
D−

4 = {T (1), V (3)}

is explained by the U-query T UV . Using background knowl-
edge, we can compensate for sensor failures resulting in in-
complete data. To illustrate, suppose E+

1 = {H(3), V (4)},
where H means ‘heater is on’. If an ontology O has the ax-
iom ⃝H → T saying that a heater can only be triggered by
the low temperature at the previous moment, then the same q
separates {E+

1 ,D
+
2 } from {D−

1 ,D
−
2 ,D

−
3 } under O. ⊣

Query q in Example 1 is of a particular ‘linear’ form, in
which the order of atoms is fixed and not left open as, for
instance, in the ‘branching’ 3T ∧3V . More precisely, path
⃝3-queries in the class Qp[⃝,3] take the form

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ onρn)), (1)

where oi ∈ {⃝,3} and ρi is a conjunction of atoms; Qp[3]
restricts oi to {3}; and path U-queries Qp[U] look like

q = ρ0 ∧ (λ1 U (ρ1 ∧ (λ2 U (. . . (λn U ρn) . . . )))), (2)

where λi is a conjunction of atoms or ⊥. Path queries are
motivated by two observations. First, if a query language
admits conjunctions of queries—unlike our classes of path
queries—then, dually to overfitting for ∨, multiple negative
examples become redundant: if qD separates (E+, {D}), for
each D ∈ E−, then

∧
D∈E− qD separates (E+, E−). Sec-

ond, numerous natural query types known from applications
can be captured by path queries. For example, the existence
of a common subsequence of the positive examples (regarded
as words) that is not a subsequence of any negative one cor-
responds to the existence of a separating Qp[3]-query with
ρ0 = ⊤ and ρi ̸= ⊤ for i > 0, and the existence of a common
subword of the positive examples that is not a subword of
any negative one corresponds to the existence of a separating
query of the form 3(ρ1∧⃝(ρ2∧· · ·∧⃝ρn)). These and sim-
ilar queries are the basis of data comparison programs with
numerous applications in computational linguistics, bioinfor-
matics, and revision control systems [Bergroth et al., 2000;
Chowdhury et al., 2010; Blum et al., 2021].

While path queries express the intended separating pattern
of events in many applications, branching queries are needed
if the order of events is irrelevant for separation.

Example 2. In the setting of Example 1, the positive exam-
ples {T (2), V (4)} and {V (1), T (4)} are separated from the
negative {T (1)} and {V (4)} by the branching Q[3]-query
3T ∧3V while no path query is capable of doing this. ⊣

Branching Q[⃝,3]-queries express transparent existential
conditions and can be regarded as LTL CQs. However,
branching Q[U]-queries with nestings of U on the left-hand
side correspond to complex first-order formulas with multiple
alternations of quantifiers ∃ and ∀, which are hard to compre-
hend. So we also consider the language Q[Us] ⊇ Qp[U] of
‘simple’ Q[U]-queries without such nestings.

In this paper, we take the first steps towards understand-
ing the complexity and especially feasibility of the query-
by-example problems QBE(L,Q) with L an ontology and Q
a query language. We are particularly interested in whether
there is a difference in complexity between path and branch-
ing queries and whether it can be reduced by bounding the
number of positive or negative examples. Our results in
the ontology-free case are summarised in Table 1, where

QBE for b+, b− b+ b− or unbounded
Qp[3]/Qp[⃝,3] ≤P =NP =NP
Q[3]/Q[⃝,3] ≤P ≤P =NP

Qp[U] =NP
Q[Us] ≤P ≤P ≥NP, ≤PSPACE
Q[U] ≤PSPACE

Table 1: Complexity in the ontology-free case.

b+ / b− indicate that the number of positive / negative exam-
ples is bounded1. Note that path queries are indeed harder
than branching ones when the number of positive examples
is bounded but not in the unbounded case. Our proof tech-
niques range from reductions to common subsequence exis-
tence problems [Maier, 1978; Fraser, 1996] and dynamic pro-
gramming to mimicking separability by path and branching
U-queries in terms of containment and simulation of transi-
tion systems [Kupferman and Vardi, 1996]. The key to NP
upper bounds is the polynomial separation property (PSP) of
the respective languages: any separable example set is sepa-
rated by a polynomial-size query. The complexity for Qp[3],
Q[3] can also be obtained from [Fijalkow and Lagarde, 2021]
who studied separability by Q[3]-queries of bounded size.

In the presence of ontologies, we distinguish between the
combined complexity of QBE(L,Q), when both data and on-
tology are regarded as input, and the data complexity, when
the ontology is deemed fixed or negligibly small compared
with the data. We obtain encouraging results: Qp[3]- and
Q[3]-queries mediated by LTL23-ontologies and all of our
queries mediated by LTL2⃝

horn-ontologies enjoy the same data
complexity as in Table 1. The combined complexity results
for queries with LTL2⃝

horn-ontologies we have obtained so far
are given in Table 2. Interestingly, QBE for query classes with
3 and ⃝ only is PSPACE-complete— not harder than satisfi-
ability. The upper bound is proved by establishing the expo-
nential separation property for all of these classes of queries
and using the canonical (aka minimal) model property of

1We do not consider queries with ⃝ only as separability is triv-
ially in P and does not detect any useful patterns.



Q[3] /Qp[3] = PSPACEQ[⃝,3] /Qp[⃝,3]
Q[Us] ≥ PSPACE, ≤ EXPTIME
Qp[U] ≥ NEXPTIME,≤ EXPSPACE
Q[U] ≥ PSPACE, ≤ 2EXPTIME

Table 2: Combined complexity of QBE(LTL2⃝
horn ,Q) in both

bounded and unbounded cases.

Horn LTL. The upper bounds for U-queries are by reduction
to the simulation and containment problems for exponential-
size transition systems. For arbitrary LTL -ontologies, this
technique only gives a 2EXPTIME upper bound for Q[Us]
and a 2EXPSPACE one for Qp[U]. Separability by (path) 3-
queries under LTL23 ontologies turns out to be Σp

2-complete,
where the upper bound is shown by establishing the PSP.

Compared with non-temporal QBE, our results are very en-
couraging: QBE is CONEXPTIME-complete for conjunctive
queries (CQs) over standard relational databases [Willard,
2010; ten Cate and Dalmau, 2015] and even undecidable
for CQs under ELI or ALC ontologies [Funk et al., 2019;
Jung et al., 2020].

2 Further Related Work
We now briefly comment on a few other related research ar-
eas. One of them is concept learning in description logic
(DL), as proposed by [Badea and Nienhuys-Cheng, 2000]
who, inspired by inductive logic programming, used refine-
ment operators to construct a concept separating positive and
negative examples in a DL ABox. There has been signif-
icant interest in this approach [Lehmann and Haase, 2009;
Lehmann and Hitzler, 2010; Lisi and Straccia, 2015; Sarker
and Hitzler, 2019; Lisi, 2012; Rizzo et al., 2020]. Promi-
nent systems include the DL LEARNER [Bühmann et al.,
2016], DL-FOIL [Fanizzi et al., 2018] and its extension DL-
FOCL [Rizzo et al., 2018], SPaCEL [Tran et al., 2017],
YINYANG [Iannone et al., 2007], PFOIL-DL [Straccia and
Mucci, 2015], and EVOLEARNER [Heindorf et al., 2022].
However, this work has not considered the complexity of sep-
arability. Also closely related is the work on the separabil-
ity of two formal (e.g., regular) languages using a weaker
(e.g., FO-definable) language [Place and Zeitoun, 2016;
Hofman and Martens, 2015; Place and Zeitoun, 2022]. When
translated into a logical separability problem, the main differ-
ence to our results is that one demands O,D |= ¬q(d)—and
not just O,D ̸|= q(d)—for all (D,d) ∈ E−.

3 Preliminaries
LTL -formulas are built from atoms Ai, i < ω, using the
Booleans and (future-time) temporal operators ⃝, 3, 2, U,
which we interpret under the strict semantics [Gabbay et al.,
2003; Demri et al., 2016]. An LTL -interpretation I identi-
fies those atoms Ai that are true at each time instant n ∈ N,
written I, n |= Ai. The truth-relation for atoms is extended
inductively to LTL -formulas by taking I, n |= φ U ψ iff
I,m |= ψ, for somem > n, and I, k |= φ for all k ∈ (n,m),
and using the standard clauses for the Booleans and equiva-

lences ⃝φ ≡ ⊥ U φ, 3φ ≡ ⊤ U φ and 2φ ≡ ¬3¬φ with
Boolean constants ⊥ and ⊤ for ‘false’ and ‘true’.

An LTL-ontology, O, is any finite set of LTL -formulas,
called the axioms of O. An interpretation I is a model of O if
all axioms of O are true at all times in I. As mentioned in the
introduction, apart from full LTL we consider its Prior 23-
fragment LTL23 and LTL2⃝

horn whose axioms take the form

C1 ∧ · · · ∧ Ck → Ck+1 (3)

with Ci given by C ::= Ai | ⊥ | 2C | ⃝C. In fact, we
could allow 3 on the left-hand side of (3) as 3C → C ′ can
be replaced by ⃝C → A, ⃝A→ A, A→ C ′ with fresh A.

A data instance is a finite set D of atoms Ai(ℓ) with a
timestamp ℓ ∈ N; maxD is the maximal timestamp in D.
We access data by means of LTL analogues of conjunctive
queries: our queries, κ, are constructed from atoms, ⊥ and
⊤ using ∧, ⃝, 3 and U. The class of queries that only use
operators from Φ ⊆ {⃝,3,U} is denoted by Q[Φ]; Qp[Φ] is
its subclass of path-queries, which take the form (1) or (2);
and Q[Us] comprises simple queries in Q[U] that do not con-
tain subqueries κ1 U κ2 with an occurrence of U in κ1. Note
that Qp[U] ⊆ Q[Us]. The temporal depth tdp(κ) of κ is the
maximum number of nested temporal operators in κ.

An interpretation I is a model of a data instance D if
I, ℓ |= Ai for all Ai(ℓ) ∈ D. O and D are consistent if
they have a model. We call k ≤ maxD a (certain) an-
swer to the ontology-mediated query (O,κ) over D and write
O,D |= κ(k) if I, k |= κ in all models I of O and D.

Let L and Q be an ontology and query language defined
above. The query-by-example problem QBE(L,Q) we are
concerned with in this paper is formulated as follows:
given an L-ontology O and an example set E = (E+, E−)

with finite sets E+ and E− of positive and, respectively,
negative data instances,

decide whether E is Q-separable under O in the sense that
there is a Q-query κ with O,D |= κ(0) for all D ∈ E+

and O,D ̸|= κ(0) for all D ∈ E−.
If L = ∅, we shorten QBE(∅,Q) to QBE(Q). We also con-
sider the QBE problems with the input example sets having
a bounded number of positive and/or negative examples, de-
noted QBEb+(L,Q), QBEb–(L,Q), or QBEb+

b- (L,Q). Nota-
tions like QBE2+

1–(L,Q) should be self-explanatory. The size
of O, E, κ, denoted |O, |E|, |κ|, respectively, is the number
of symbols in it with the timestamps given in unary.

The next example illustrates the definitions and relative ex-
pressive power of queries with different temporal operators.
Example 3. (a) Let E = ({D1}, {D2}) with D1 = {A(1)},
D2 = {A(2)}. Then ⃝A separates E but no Q[3]-query
does. E is not separable under O = {⃝A → A} by any
query κ as O,D1 |= κ(0) implies O,D2 |= κ(0).

(b) Let E = ({D1,D2}, {D3}) with D1 = {A(1), B(2)},
D2 = {A(2), B(3)}, D3 = {A(3), B(5)}. Then the query
3(A ∧ ⃝B) separates E but no query in Q[3] does.

(c) AUB separates ({{B(1)}, {A(1), B(2)}}, {{B(2)}})
but no Q[⃝,3]-query does. ⊣

We now establish a few important polynomial-time reduc-
tions, ≤p, among the QBE-problems for various query



classes, including Q◦
p[3]-queries of the form

κ = ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρn)), (4)
where each ρi is a Qp[⃝]-query (i.e., 3-free Qp[⃝,3]-query).
Theorem 4. The following polynomial-time reductions hold:
(i.1) QBE(L,Q) ≤p QBE1–(L,Q), for any Q closed un-

der ∧, and any L (including L = ∅),

(i.2) QBE(L,Q) ≤p QBE2+(L,Q), for L ∈ {LTL,LTL23},
(i.3) QBE(L,Q[⃝,3]) ≤p QBE(L,Q◦

p[3])) and
QBE(L,Q[3]) ≤p QBE(L,Qp[3]), for any L,

(ii.1) QBE(Qp[3]) ≤p QBE(Qp[⃝,3]) and
QBE(Qp[3]) ≤p QBE(Qp[U]) ≤p QBE1–(Qp[U]),

(ii.2) QBE(Q[⃝,3]) =p QBE(Q[3]) ≤p QBE(Q[Us]).
Reductions (i.1)–(i.3) work for combined complexity; (i.1),
(i.3) also work for data complexity. The reductions preserve
boundedness of the number of positive/negative examples.

Proof. In (i.1), (E+, E−) with E− = {D1, . . . ,Dn} is Q-
separable under O iff each (E+, {Di}) is because if κi sepa-
rates (E+, {Di}), then κ1 ∧ · · · ∧ κn separates (E+, E−).

In (i.2), (E+, E−) with E+ = {D1, . . . ,Dn}, n > 1, is
Q-separable under O iff (E′+, E−) is Q-separable under O′

that extends O with the following axioms simulating E+:
S1 → A1 ∨ · · · ∨An, S2 → A1 ∨ · · · ∨An,

Ci ∧3Aj → X, Di ∧3Aj → X, for X(i) ∈ Dj ,
where S1, S2, Ak, Cl, Dl, for l ≤ n′ = maxi maxDi, are
fresh and E′+ consists of {C0(0), . . . , Ck(n

′), S1(n
′ + 1)}

and {D0(0), . . . , Dk(n
′), S2(n

′ + 1)}.
(i.3) Using [ρ0∧3(ρ1∧

∧
i 3κi)] ≡ [ρ0∧

∧
i 3(ρ1∧3κi)],

⃝3κ ≡ 3⃝κ and ⃝(κ ∧ κ′) ≡ (⃝κ ∧ ⃝κ′) we convert,
in polytime, each Q[⃝,3]-query to an equivalent conjunc-
tion of Q◦

p[3]-queries. Thus, there is q ∈ Q[⃝,3] separat-
ing (E+, E−) iff there are polysize qD ∈ Q◦

p[3] separating
(E+, {D}), for each D ∈ E−.

(ii.1) The first two reductions are shown by adding toE+ ∋
D, for some D, the data instance D′ = {A(mn) | A(n) ∈ D}
with m = maxD + 2. Now, if D |= κ(0) and D′ |= κ(0),
for κ ∈ Qp[U], then κ is equivalent to a Qp[3]-query. The
third reduction, illustrated below for E+ = {D+

1 ,D
+
2 } and

E− = {D−
1 ,D

−
2 }, transforms E into two positive and one

negative example using ‘pads’ of fresh atomsB, C. We show

D′′+
1

D+
1

0

B

1

C

2

. . . C

D′+
2

D+
2

0 1

B

m

C . . . C

D′−

D−
1 D−

2

0 1

B

m

C C

2m

B

3m

C C

4m

that E is Qp[U]-separable iff ({D′′+
1 ,D′+

2 }, {D′−}) is.
(ii.2) The first reduction is established by modifying ev-

ery D in the given E as illustrated below using fresh
atoms Ai and Bj that encode ⃝iA and ⃝jB, respectively:

D
0

A

1 2

B

3

A1,B3

0

A,B2

1

B1

2

B

3
D′

Then E is Q[⃝,3]-separable iff E′ is Q[3]-separable. The
converse and the second reduction are similar to (ii.1). ⊣

4 QBE without Ontologies
We start investigating the complexity of the QBE problems
for LTL by considering queries without mediating ontologies.

Theorem 5. The QBE-problems for the classes of queries
defined above (with the empty ontology) belong to the com-
plexity classes shown in Table 1.

We comment on the proof in the remainder of this section.
⃝3-queries. NP-hardness is established by reduction of
the consistent subsequence existence problems [Fraser, 1996,
Theorems 2.1, 2.2] in tandem with Theorem 4; membership
in NP follows from the fact that separating queries, if any, can
always be taken of polynomial size.

Tractability is shown using dynamic programming. We
explain the idea for QBEb+

b- (Qp[⃝,3]), E+ = {D+
1 ,D

+
2 }

and E− = {D−
1 ,D

−
2 }. Suppose κ takes the form (1) with

ρn ̸= ⊤. Then D |= κ(0) iff there is a strictly monotone map
f : [0, n] → [0,maxD] with f(0) = 0, f(i+1) = f(i)+1 if
oi = ⃝, and ρi ⊆ tD(f(i)) = {A | A(f(i)) ∈ D}. We call
such an f a satisfying assignment for κ in D. Let Si,j be the
set of tuples (k, ℓ1, ℓ2, n1, n2) such that ℓ1 ≤ i ≤ maxD+

1 ,
ℓ2 ≤ j ≤ maxD+

2 , and there is κ = ρ0∧o1(ρ1∧· · ·∧okρk)
for which (i) there are satisfying assignments f1, f2 in D+

1

and D+
2 with f1(k) = ℓ1 and f2(k) = ℓ2, respectively, and

(ii) n1 is minimal with a satisfying assignment f for κ in D−
1

having f(k) = n1, and n1 = ∞ if there is no such f ; and
similarly for n2, D−

2 . It suffices to compute SmaxD+
1 ,maxD+

2

in polytime. This can be done incrementally by initially ob-
serving that S0,j can only contain (0, 0, 0, 0, 0), which is the
case if there is ρ0 ⊆ tD+

1
(0), ρ0 ⊆ tD+

2
(0) and ρ0 ̸⊆ tD−

1
(0),

ρ0 ̸⊆ tD−
2
(0) (and similarly for Si,0).

U-queries. NP-hardness for Qp[U], Q[Us] follows from The-
orem 4 (ii.1), (ii.2) and NP-hardness for ⃝3-queries.

The upper bounds are shown by reduction of Qp[U]- and
Q[Us]-separability to the simulation and containment prob-
lems for transition systems [Kupferman and Vardi, 1996]. A
transition system, S, is a digraph each of whose nodes and
edges is labelled by some set of symbols from a node or, re-
spectively, edge alphabet; S also has a designated set S0 of
start nodes. A run of S is a path in digraph S, starting in S0,
together with all of its labels. The computation tree of S is
the tree unravelling TS of S. For systems S and S′ over the
same alphabets, we say that S is contained in S′ if, for every
run r of S, there is a run r′ of S′ such that r and r′ have the
same length and the labels on the states and edges in r are
subsumed by the corresponding labels in r′. S is simulated
by S′ if TS is finitely embeddable into TS′ in the sense that
every finite subtree2 of TS can be homomorphically mapped
into TS′ preserving (subsumption of) node and edge labels.

Now, let E = (E+, E−) with Eσ = {Di | i ∈ Iσ}, for
σ ∈ {+,−} and disjoint I+ and I−, and let Σ be the signa-
ture of E. For each i ∈ I+ ∪ I−, we take a transition system
Si with states 0i, . . . , (maxDi + 1)i, where (maxDi + 1)i

is labelled with ∅ and the remaining ji by {A | A(j) ∈ Di}.
Transitions are ji → ki, for 0 ≤ j < k ≤ maxDi + 1, that

2A subtree is a convex subset of TS’s nodes with some start node.



are labelled by {A ∈ Σ ∪ {⊥} | A(n) ∈ Di, n ∈ (j, k)} and
(maxDi + 1)i → (maxDi + 1)i with label Σ⊥ = Σ∪ {⊥}.
Thus, Di shown on the left below gives rise to Si on the right:

0

A,B

1

B,C

2

∅ {A,B}
Σ⊥

{B,C}
Σ⊥

{A,B}

∅
Σ⊥

{B,C}

{B}

Σ⊥

We form the direct product (synchronous composition) P of
{Si | i ∈ I+}, for I+ = {1, . . . , l}, whose states are vec-
tors (s1, . . . , sl) of states si ∈ Si, which are labelled by
the intersection of the labels of si in Si, with transitions
(s1, . . . , sl) → (p1, . . . , pl), if si → pi in Si for all i, also la-
belled by the intersection of the component transition labels.
On the other hand, we take the disjoint union N of Si, for
i ∈ I−, and establish the following separability criterion:
Theorem 6. (i) E is not Q[Us]-separable iff P is simulated
by N. (ii) E is not Qp[U]-separable iff P is contained in N.
Example 7. For the example set depicted below, in which the
only negative instance is on the right-hand side,

0 1 2 3

A2,B1

4

B2

5 0 1

A1,B2

2

B1

3 0 1

B1

2 3

B2

4

TP contains the subtree

(01, 02) (31, 12)
∅

(41, 32) B1

A1, B2

(51, 21) B2

A2, B1

where only the last P-node of a TP-node (a sequence) is
indicated together with the atoms that are true at nodes and
on edges. Intuitively, TP ‘represents’ all possible Q[Us]-
queries and its paths represent Qp[U]-queries κ such that
O,D |= κ(0) for all D ∈ E+. The Q[Us]-query given by the
subtree above is κ = 3

(
((A1∧B2)UB1)∧((A2∧B1)UB2)

)
.

The subtree is not embeddable into TN (obtained for the neg-
ative instance), so κ separates E. Observe that every path in
TP (and in the subtree above) is embeddable into TN.

By inspecting the structure of P and N we observe that if
P has a run that is not embeddable into any run of N, then we
can find such a run of length ≤M = min{maxDi | i ∈ I+}
(any longer run has ∅-labels on its states after the M th one).
Thus, we can guess the required run and check in P if it is
correct, establishing the NP upper bound for Qp[U]. To show
the PSPACE upper bound for Q[Us], we notice that if there is
a finite subtree of TP that is not embeddable into TN, then
the full subtree TM

P of depth M is not embeddable into TN,
which can be checked by constructing TM

P branch-by-branch
while checking all possible embeddings of these branches
into TN. Finally, we have the P upper bound for Q[Us] with
a bounded number of positive examples because P is con-
structible in polytime and checking simulation between tran-
sition systems is P-complete [Kupferman and Vardi, 1996].
Interestingly, the smallest separating query we can construct
in this case is of the same size as TM

P , i.e., exponential in
|E+|; however, we can check its existence in polytime.

The PSPACE upper bound for Q[U] requires a more sophis-
ticated notion of simulation between transition systems.
Example 8. The example set below, where only the rightmost
instance is negative, is separated by the Q[U]-query

0 1

B,C

2 0 1

A

2

B

3

B,C

4 0 1

A

2

B

3 4

B,C

5

(A UB) U C but is not Q[Us]-separable by Theorem 6. ⊣
We prove a Q[U]-inseparability criterion using transition

systems whose non-initial/sink states are pairs of sets of
numbers, and transitions are of two types. The picture be-
low shows a data instance and the induced transition system
(where z has incoming arrows labelled by Σ⊥ from all states

0

A

1

B

2

B,C

3

0

∅{1}

A

{1}{2}

B

∅{2}

B

{2}{3}

B,C

∅{3}

B,C

{1, 2}{3}

B,C

∅{2, 3}

B

u

Σ⊥

z

∅

A

∅

B

B

but u, which are all omitted). Each arrow from 0 leads to a
state {1, . . . , n − 1}{n}; it represents a formula φ U ψ that
is true at 0, with the arrow label indicating the non-nested
atoms of φ and the state label indicating the atoms of ψ.
Each black (resp., red) arrow from s1s2 to s′1s

′
2 represents

a U-formula αs2→s′
1s

′
2

(resp., αs1→s′
1s

′
2
) that is true at all

points in s2 (resp., s1). The black and red transitions are ar-
ranged in such a way that a transition from s′′1s

′′
2 to s1s2 with

an arrow label λ and s1s2-label µ represents the U-formula
(λ ∧

∧
αs1→s′

1s
′
2
) U (µ ∧

∧
αs2→s′

1s
′
2
) and similarly for the

transitions from 0. A version of Theorem 6 for Q[U] and a
PSPACE-algorithm are given in the full paper.

5 QBE with LTL2⃝
horn-Ontologies

Recall from [Artale et al., 2021] that, for any LTL2⃝
horn-

ontology O and data instance D consistent with O, there is
a canonical model CO,D of O and D such that, for any query
κ and any k ∈ N, we have O,D |= κ(k) iff CO,D |= κ(k).

Let subO be the set of subformulas of the Ci in the ax-
ioms (3) of O and their negations. A type for O is any max-
imal subset tp ⊆ subO consistent with O. Let T be the set
of all types for O. Given an interpretation I, we denote by
tpI(n) the type for O that holds at n ∈ N in I. For O con-
sistent with D, we abbreviate tpCO,D

to tpO,D. The canonical
models have a periodic structure in the following sense:

Proposition 9. For any LTL2⃝
horn ontology O and any data

instance D consistent with O, there are sO,D ≤ 2|O| and
pO,D ≤ 22|O| such that tpO,D(n) = tpO,D(n + pO,D), for
all n ≥ maxD + sO,D. Deciding CO,D |= ξ(ℓ), for a bi-
nary ℓ and a conjunction of atoms ξ, is in PSPACE / P for
combined / data complexity.

We now show that the combined complexity of QBE with
3- and ⃝,3-queries is PSPACE-complete in both bounded
and unbounded cases, i.e., as complex as LTL2⃝

horn reasoning.

Theorem 10. Let Q ∈ {Q[⃝,3],Q[3],Qp[⃝,3],Qp[3]}.
Then QBE(LTL2⃝

horn,Q) and QBEb+
b- (LTL2⃝

horn,Q) are both
PSPACE-complete for combined complexity.



Proof. PSPACE-hardness is inherited from that of LTL2⃝
horn.

We briefly sketch the proof of the matching upper bound for
Q[⃝,3] using the reduction of Theorem 4 (i.3). We can as-
sume that O and D are consistent for any D ∈ E+∪E−. For
if O and D ∈ E− are inconsistent, then E is not Q-separable
under O as O,D |= κ(0) for all κ ∈ Q; if O and D ∈ E+

are inconsistent, then E is separable iff (E+ \ {D}, E−) is.
Checking consistency is known to be PSPACE-complete.

Given an LTL2⃝
horn-ontology O and an example set E, let

k = max
D∈E+∪E−

(maxD + sO,D), m =
∏

D∈E+∪E− pO,D,

where sO,D and pO,D in CO,D are from Proposition 9. We
show that if E is Q[⃝,3]-separable under O, then it is sepa-
rated by a conjunction of |E−|-many κ ∈ Q◦

p[3] of 3-depth
≤ k + 1 and ⃝-depth ≤ k + m in (4). Indeed, in this case
any (E+, {D}), for D ∈ E−, is separated under O by some
κ of the form (4) with the ρl of ⃝-depth ≤ k + m because
ρl =

∧ℓ
i=0

⃝iλi with ℓ > k +m can be replaced by∧k
i=0

⃝iλi ∧
∧m

j=1
⃝k+j

∧
i≤ℓ,j=(i−k) mod m λi.

In addition, if n > k in (4), then (E+, {D−}) is separated by

ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρk)) ∧
∧n

i=k+1 3
k+1ρi,

and so by some ρ0 ∧ 3(ρ1 ∧ · · · ∧ 3(ρk ∧ 3ρj)) with
k < j ≤ n. Our nondeterministic PSPACE-algorithm incre-
mentally guesses the ρl and checks if they are satisfiable in
the relevant part of the relevant CO,D bounded by k+m. ⊣

The situation is quite different for queries with U:

Theorem 11. QBE(LTL2⃝
horn,Q[Us]) is in EXPTIME for com-

bined complexity, QBE(LTL2⃝
horn,Qp[U]) is in EXPSPACE,

and QBEb+
b- (LTL2⃝

horn,Qp[U]) is NEXPTIME-hard.

Proof. For the upper bounds, we again assume that O and D
are consistent for all D ∈ E+∪E−. Observe that Theorem 6
continues to hold in the presence of LTL2⃝

horn ontologies O
but we need a different construction of transition systems Si

that represent all Q[Us]-queries mediated by O over Di. We
illustrate it for O = {A→ C ∧⃝B, B → ⃝2B, B → ⃝C}
and Di = {A(0)} below, where the picture on the left shows
the canonical model of O,Di (see Proposition 9) and next to
it is Si (the omitted labels on transitions are Σ⊥).

A, C

0

B

1

C

2

B

3

0

A,C

1

B

2

C
3

B

B

∅

B B

C∅

B,C

∅

In general, the size of Si is |Di|+O(2|O|) and the product
of Si, Di ∈ E+ is of size O(2|O|+|E+|). The upper bounds
now follow from P and PSPACE completeness of checking
simulation and containment for transition systems.

Now we sketch the proof of the lower bound. Let M
be a non-deterministic Turing machine that accepts Σ-words
x = x1 . . . xn inN = 2poly(|x|) steps and erases the tape after
a successful computation. We represent configurations c of a

computation of M on x by an N − 1-long word (with suffi-
ciently many blanks at the end), in which y in the active cell
is replaced by (q, y) with the current state q ∈ Q. An accept-
ing computation of M on x is encoded by the N2-long word
w = ♯c1 ♯ c2 ♯ . . . ♯ cN−1 ♯ cN over Ξ = Σ ∪ (Q× Σ) ∪ {♯}.
Thus, a word w of length N2 encodes an accepting compu-
tation iff it starts with the initial configuration c1 preceded
by ♯, ends with the accepting configuration cacc , and every
two length 3 subwords at distance N apart form a legal tu-
ple [Sipser, 1997, Theorem 7.37].

We define O and E = ({D+
1 ,D

+
2 }, {D−}) so that their

canonical models look as follows, for Ξ = {a1, . . . , ak}:

CO,D+
1

c1 cacc

0

♯

1 N

Ξ

N + 1

Ξ

N2 − N + 1 N2

CO,D+
2

0 1

a1,C

N2 + 1

C a2,C C ak,C C

N2 + 2|Σ′|

a1,C C ak,C C

N2 + 2|Σ′|N2

CO,D−
Dti

0 1

Ξ

2

Ξ

N2

ΞC

N2 + 2

C ΞC C

3N2 (2i + 1)N2

where Dti=
0

ΞC

1

ΞC a b c Ξ

N2 − N

Ξ d e f

N2

Ξ Ξ

2N2 − N − 3

and ti = (a, b, c, d, e, f) is the lexicographically i-th illegal
tuple. The parts of the canonical models shown above are of
exponential size; however, due to their repetitive nature, they
can be described by a polynomial-size LTL2⃝

horn ontology O as
in [Ryzhikov et al., 2021]. We show that the Qp[U]-query

κ = 3(ρ1 ∧C U (ρ2 ∧C U (. . . (ρN2−1 ∧ (C UρN2)) . . . ))),

where ρ1 . . . ρN2 encodes an accepting computation of M on
x, is the only type of query that can separate E under O. ⊣

As for data complexity, we show that LTL2⃝
horn-ontologies

come essentially for free:

Theorem 12. The results of Theorem 5 continue to hold for
queries mediated by a fixed LTL2⃝

horn-ontology.

Intuitively, the reason is that, given a fixed LTL2⃝
horn-

ontology O, we can compute the types of the canonical model
CO,D, for consistent O and D, in polynomial time in D by
Proposition 9, with the length M from Section 4 being poly-
nomial in E. Checking consistency of D and fixed O is
known to be in P [Artale et al., 2021].

6 QBE with LTL23-Ontologies
In this section, we investigate separability by 3-queries un-
der LTL23-ontologies. Remarkably, we show that, for data
complexity, LTL23-ontologies also come for free despite ad-
mitting arbitrary Boolean operators; cf., [Schaerf, 1993].

Theorem 13. Let Q ∈ {Qp[3],Q[3]}. If E is Q-separable
under an LTL23-ontology O, then E can be separated under
O by a Q-query of polysize inE and O. QBE(LTL23,Q) and
QBEb+

b- (LTL23,Q) are Σp
2-complete for combined complex-

ity. The presence of LTL23-ontologies has no effect on the
data complexity, which remains the same as in Theorem 5.



We comment on the proof of this theorem for Qp[3]. Tak-
ing into account NP-completeness of checking if O is consis-
tent with D and tractability of this problem for a fixed O [Ar-
tale et al., 2021], we can assume, as in Theorem 10, that O
and D are consistent for each D ∈ E+ ∪ E−. Observe first
that if E is separated by κ ∈ Qp[3] of the form (1) under
an LTL23-ontology O, then, as follows from [Ono and Naka-
mura, 1980], for any D ∈ E−, there is a model JD ̸|= κ(0)
of O and D whose types form a sequence

tp0, . . . , tpk, tpk+1, . . . , tpk+l, . . . , tpk+1, . . . , tpk+l, . . . (5)

with maxD ≤ k ≤ maxD + |O| and l ≤ |O|. This allows
us to find a separating κ of polysize in E, O. Indeed, let
K be the maximal k in (5) over all D ∈ E−. If the depth
n of κ is ≤ K, we are done. If n > K, we shorten κ as
follows. Consider the prefix κ′ of κ formed by ρ0, . . . , ρK .
If JD ̸|= κ′(0) for all D ∈ E−, we are done. Otherwise, for
each D ∈ E−, we pick a ρi, i > K, with ρi ̸⊆ tpk+j for any
j ≤ l; it must exist as JD ̸|= κ(0). Then we construct κ′′ by
omitting from κ all ρl that are different from those in κ′ and
the chosen ρi with i > K. Clearly, κ′′ is as required.

A Σp
2-algorithm guesses κ and JD, for D ∈ E−, and

checks in polytime that JD |= O,D and JD ̸|= κ(0) and in
CONP [Ono and Nakamura, 1980] that O,D |= κ(0) for all
D ∈ E+. The lower bound is shown by reduction of the va-
lidity problem for fully quantified Boolean formulas ∃p∀q ψ,
where p = p1, . . . , pk and q = q1, . . . , qm are all proposi-
tional variables in ψ. We can assume that ψ is not a tautology
and ¬ψ ̸|= x for x ∈ {pi,¬pi, qj ,¬qj | i ≤ k, j ≤ m}. Let
E = (E+, E−) with E+ = {D1,D2}, E− = {D3}, where

D1 = {B1(0)}, D2 = {B2(0)}, D3 = {q1(0), . . . , qm(0)},
and let O contain the following axioms with fresh atoms
B1, B2, Ai, Āi, for i = 1, . . . , k:

B1 ∨B2 → ¬ψ, pi → 3
(
Āi ∧

∧
j ̸=i(Aj ∧ Āj)

)
,

¬pi → 3
(
Ai ∧

∧
j ̸=i(Aj ∧ Āj)

)
.

Then ∃p∀q ψ is valid iff E is Qp[3]-separable under O.
We obtain the NP upper bounds in data complexity using

the same argument as for the Σp
2-upper bound and observ-

ing that checking O,D |= κ(0) is in P in data complex-
ity. The NP lower bounds are inherited from the ontology-
free case. The proof of the P upper bounds is more in-
volved. We illustrate the idea for O with arbitrary Boolean
but without temporal operators. In this case, one can show
(which is non-trivial) that O,D |= κ(0) iff IO,D |= κ(0),
where IO,D is the completion of D: it contains A(ℓ) iff
O∪{B | B(ℓ) ∈ D} |= A. For example, if O = {A∨B} and
D = {A(1), B(1), A(3), B(3)}, the completion IO,D is just
D regarded as an interpretation (so IO,D does not have to be a
model of O). It can be constructed in polytime in D and, due
to the equivalence above, used to prove the P upper bounds
using dynamic programming. That equivalence does not hold
for LTL23, but the technique can be extended by applying it
to data sets enriched by certain types.

Note that the completion technique does not work for ⃝,3-
queries. For example, O,D |= 3(A ∧ ⃝B) for D and O
defined above, and so the equivalence does not hold. In fact,
the complexity of separability by ⃝3-queries remains open.

7 QBE with LTL -Ontologies
For ontologies with arbitrary LTL -axioms, we obtain:

Theorem 14. (i) QBE(LTL,Q) is in 2EXPTIME, for any
Q ∈ {Q[3],Q[⃝,3],Q[Us] }. (ii) QBE(LTL,Q) is in
2EXPSPACE, for any Q ∈ {Qp[3],Qp[⃝,3],Qp[U] }.

The proof requires a further modification of the transition
systems Si in Theorem 6. We illustrate it by an example. Let
O = {A → 3B, ⊤ → A ∨B, A ∧B → ⊥} with the set of
O-types TO = {tp1, tp2, tp3}, where tp1 = {A,¬B,3B},
tp2 = {¬A,B,¬3B}, tp3 = {A,¬B,¬3B}, and tp4 =
{¬A,B,3B}, from which we omitted subformulas such as
A ∨ B that are true or false in all types. For non-empty sets
T 1,T 2 ⊆ TO and Γ ⊆ Σ⊥, we take the relation T 1 →Γ T 2,
which, intuitively, says that if there are instants nI in all mod-
els I of O,D such that {tpI(nI) | I |= O,D} = T 1, then
there exist mI > nI with {tpI(mI) | I |= O,D} = T 2 and
Γ = {A ∈ Σ⊥ | I,m |= A for all I and nI < m < mI}.
In our example, we have {tp1, tp3} →Σ⊥ {tp1, tp2, tp3, tp4}
and {tp1, tp3} →{B} {tp1, tp3, tp4} (among others). Then
we construct the following transition system Si for, say,
Di = {A(0)}, which reflects all Q[Us]-queries over O,Di

using T ′ ⊆ TO as states (the initial state is {tp1, tp3} since
A(0) ∈ Di):

{t1, t3}

A

{t1, t3, t4}

∅

{t1, t2, t3, t4}

∅B

B

The Si can be constructed in 2EXPTIME in |Di| + |O|
(checking T 1 →Γ T 2, for given T 1, T 2 and Γ, can be done
in EXPSPACE). Also, the product of the Si, for Di ∈ E+,
can be constructed in 2EXPTIME in |Di|+ |E+|.

8 Conclusions
We have started an investigation of the computational com-
plexity of query-by-example for principal classes of LTL -
queries, both with and without mediating ontologies. Our re-
sults are encouraging as we exhibit important cases that are
tractable for data complexity and not harder than satisfiability
for combined complexity. Many interesting and technically
challenging problems remain open. Especially intriguing are
queries with U. For example, we still need to pinpoint the
size of minimal separating Q[Us]- and Qp[U]-queries under a
Horn ontology. The tight complexity of QBE for unrestricted
U-queries is also open. In general, such queries could be too
perplexing for applications; however, they can express useful
disjunctive patterns such as ‘in at most n moments of time’.
Note also that sparse data instances with large gaps between
timestamps may require binary representations thereof, for
which the proofs of some of our results do not go through.

Our results and techniques provide a good starting point for
studying QBE with (ontology-mediated) queries over tempo-
ral databases with a full relational component [Chomicki et
al., 2001; Chomicki and Toman, 2018; Artale et al., 2022]
and also for the construction of separating queries satisfying
additional conditions such as being a longest/shortest separa-
tor [Blum et al., 2021; Fijalkow and Lagarde, 2021] or a most
specific/general one [ten Cate et al., 2022].
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Düsterhus, T. Werner, V. N. Golani, C. Demir, and
A.-C. Ngonga Ngomo. Evolearner: Learning description
logics with evolutionary algorithms. In Proc. of WWW,
pages 818–828. ACM, 2022.

[Hofman and Martens, 2015] P. Hofman and W. Martens.
Separability by short subsequences and subwords. In Proc.
of ICDT, volume 31 of LIPIcs, pages 230–246, 2015.

[Iannone et al., 2007] L. Iannone, I. Palmisano, and N.
Fanizzi. An algorithm based on counterfactuals for
concept learning in the Semantic Web. Appl. Intell.,
26(2):139–159, 2007.

[Jung et al., 2020] J. Ch. Jung, C. Lutz, and F. Wolter. Least
General Generalizations in Description Logic: Verification
and Existence. In Proc. of AAAI, 2020.

[Jung et al., 2021] J. Ch. Jung, C. Lutz, H. Pulcini, and F.
Wolter. Separating data examples by description logic con-
cepts with restricted signatures. In Proc. of KR, 2021.



[Jung et al., 2022] J. Ch. Jung, C. Lutz, H. Pulcini, and F.
Wolter. Logical separability of labeled data examples un-
der ontologies. Artif. Intell., 313 (2022).

[Kalashnikov et al., 2018] D. Kalashnikov, L. Lakshmanan,
and D. Srivastava. Fastqre: Fast query reverse engineering.
In Proc. of SIGMOD, pages 337–350, 2018.

[Kupferman and Vardi, 1996] O. Kupferman and M. Vardi.
Verification of fair transisiton systems. In Proc. of CAV,
volume 1102 of LNCS, pages 372–382. Springer, 1996.

[Kurtonina and de Rijke, 1997] N. Kurtonina and M. de Ri-
jke. Bisimulations for temporal logic. J. Log. Lang. Inf.,
6(4):403–425, 1997.

[Lehmann and Haase, 2009] J. Lehmann and Ch. Haase.
Ideal downward refinement in the EL description logic.
In Proc. of ILP, pages 73–87, 2009.

[Lehmann and Hitzler, 2010] J. Lehmann and P. Hitzler.
Concept learning in description logics using refinement
operators. Machine Learning, 78:203–250, 2010.

[Lemieux et al., 2015] C. Lemieux, D. Park, and I. Beschast-
nikh. General LTL specification mining (T). In Proc. of
ASE, pages 81–92. IEEE, 2015.

[Lisi and Straccia, 2015] F. Lisi and U. Straccia. Learning in
description logics with fuzzy concrete domains. Funda-
menta Informaticae, 140(3-4):373–391, 2015.

[Lisi, 2012] F. Lisi. A formal characterization of concept
learning in description logics. In Proc. of DL, 2012.

[Maier, 1978] D. Maier. The complexity of some problems
on subsequences and supersequences. J. ACM, 25(2):322–
336, 1978.

[Martins, 2019] D. Martins. Reverse engineering database
queries from examples: State-of-the-art, challenges, and
research opportunities. Inf. Syst., 83:89–100, 2019.

[Neider and Gavran, 2018] D. Neider and I. Gavran. Learn-
ing linear temporal properties. In Proc. of FMCAD, pages
1–10. IEEE, 2018.

[Ono and Nakamura, 1980] H. Ono and A. Nakamura. On
the size of refutation Kripke models for some linear modal
and tense logics. Studia Logica, pages 325–333, 1980.

[Ortiz, 2019] M. Ortiz. Ontology-mediated queries from ex-
amples: a glimpse at the DL-Lite case. In Proc. of GCAI,
pages 1–14, 2019.

[Place and Zeitoun, 2016] T. Place and M. Zeitoun. Separat-
ing regular languages with first-order logic. Log. Methods
Comput. Sci., 12(1), 2016.

[Place and Zeitoun, 2022] T. Place and M. Zeitoun. A
generic polynomial time approach to separation by first-
order logic without quantifier alternation. In Proc. of
FSTTCS, volume 250 of LIPIcs, pages 43:1–43:22, 2022.

[Prior, 1956] A. Prior. Time and Modality. OUP, 1956.
[Raha et al., 2022] R. Raha, R. Roy, N. Fijalkow, and D. Nei-

der. Scalable anytime algorithms for learning fragments of
linear temporal logic. In Proc. of TACAS, volume 13243
of LNCS, pages 263–280. Springer, 2022.

[Rizzo et al., 2018] G. Rizzo, N. Fanizzi, C. d’Amato, and
F. Esposito. A framework for tackling myopia in concept
learning on the web of data. In Proc. of EKAW, pages 338–
354. Springer, 2018.

[Rizzo et al., 2020] G. Rizzo, N. Fanizzi, and C. d’Amato.
Class expression induction as concept space exploration:
From DL-FOIL to DL-FOCL. Future Gener. Comput.
Syst., 108:256–272, 2020.

[Ryzhikov et al., 2021] V. Ryzhikov, Y. Savateev, and M.
Zakharyaschev. Deciding FO-rewritability of ontology-
mediated queries in linear temporal logic. In Proc. of
TIME, volume 206 of LIPIcs, pages 10:1–10:15, 2021.

[Sarker and Hitzler, 2019] Md. K. Sarker and P. Hitzler. Ef-
ficient concept induction for description logics. In Proc. of
AAAI, pages 3036–3043, 2019.

[Schaerf, 1993] A. Schaerf. On the complexity of the in-
stance checking problem in concept languages with exis-
tential quantification. J. Intel. Inf. Sys., 2:265–278, 1993.

[Sipser, 1997] M. Sipser. Introduction to the theory of com-
putation. PWS Publishing Company, 1997.

[Staworko and Wieczorek, 2012] S. Staworko and P. Wiec-
zorek. Learning twig and path queries. In Proc. of ICDT,
pages 140–154, 2012.

[Straccia and Mucci, 2015] U. Straccia and M. Mucci.
pFOIL-DL: Learning (fuzzy) EL concept descriptions
from crisp OWL data using a probabilistic ensemble es-
timation. In Proc. of SAC, pages 345–352, 2015.

[ten Cate and Dalmau, 2015] B. ten Cate and V. Dalmau.
The product homomorphism problem and applications. In
Proc. of ICDT, pages 161–176, 2015.

[ten Cate et al., 2022] B. ten Cate, V. Dalmau, M. Funk, and
C. Lutz. Extremal fitting problems for conjunctive queries.
CoRR, abs/2206.05080, 2022.

[Tran et al., 2017] An C. Tran, J. Dietrich, H. W. Guesgen,
and S. Marsland. Parallel symmetric class expression
learning. J. Mach. Learn. Res., 18:64:1–64:34, 2017.

[Vardi, 2007] M. Vardi. Automata-theoretic techniques for
temporal reasoning. In Handbook of Modal Logic, pages
971–989. North-Holland, 2007.

[Weiss and Cohen, 2017] Y. Weiss and S. Cohen. Reverse
engineering SPJ-queries from examples. In Proc. of
PODS, pages 151–166, 2017.

[Willard, 2010] R. Willard. Testing expressibility is hard. In
Proc. of CP, vol. 6308 of LNCS, pp. 9–23. Springer, 2010.

[Zhang et al., 2013] M. Zhang, H. Elmeleegy, C. Procopiuc,
and D. Srivastava. Reverse engineering complex join
queries. In Proc. of SIGMOD, pages 809–820, 2013.

[Zloof, 1977] M. Zloof. Query-by-example: A data base lan-
guage. IBM Syst. J., 16(4):324–343, 1977.



Appendix: Proofs

A Proofs for Section 3

Theorem 4. The following polynomial-time reductions hold:

(i.1) QBE(L,Q) ≤p QBE1–(L,Q), for any Q closed under ∧, and any L (including L = ∅),

(i.2) QBE(L,Q) ≤p QBE2+(L,Q), for L ∈ {LTL,LTL23},

(i.3) QBE(L,Q[⃝,3]) ≤p QBE(L,Q◦
p[3])) and QBE(L,Q[3]) ≤p QBE(L,Qp[3]), for any L,

(ii.1) QBE(Qp[3]) ≤p QBE(Qp[⃝,3]) and QBE(Qp[3]) ≤p QBE(Qp[U]) ≤p QBE1–(Qp[U])

(ii.2) QBE(Q[⃝,3]) =p QBE(Q[3]) ≤p QBE(Q[Us]).

Reductions (i.1)–(i.3) work for combined complexity and (i.1) and (i.3) also work for data complexity. The reductions preserve
boundedness of the number of positive/negative example.

Proof. (i.1) Observe that if Q is closed under ∧, E = (E+, E−) and E− = {D−
1 , . . . ,D−

n }, then E is Q-separable under O
iff each (E+, {D−

i }), 1 ≤ i ≤ n, is. Indeed, if κi separates (E+, {D−
i }), then κ1 ∧ · · · ∧ κn separates E. For such Q, we can

thus assume that E− consists of a single data instance. Note that Qp[⃝,3] and Qp[U] are not closed under ∧.
(i.2) LetE+ = {D1, . . . ,Dn} and let k = maxi maxDi. We construct an ontology O′ by taking the fresh atomsA1, . . . , An,

C0, . . . , Ck, D0, . . . , Dk, S1, S2 and adding the following axioms to the given ontology O:

S1 → A1 ∨ · · · ∨An, S2 → A1 ∨ · · · ∨An,

Ci ∧3Aj → X, Di ∧3Aj → X, for X(i) ∈ Dj .

Let E′+ consist of D′
1 = {C0(0), . . . , Ck(n

′), S1(n
′ + 1)} and D′

2 = {D0(0), . . . , Dk(n
′), S2(n

′ + 1)}. Then every model
of O′,D′

1 or O′,D′
2 contains a model of at least one of the O,Di and, conversely, every model of any O,Di can be converted

into a model of O′,D′
1 or O′,D′

2 by adding only the newly introduced symbols. So, if there is a separating query for (E+, E−)
under the ontology O, then the same query separates (E′+, E−) under the ontology O′. And if there is a separating query for
(E′+, E−) under the ontology O′, then it cannot contain any symbols from sig(O′) \ sig(O), and so it separates (E+, E−)
under the ontology O.

(i.3) Recall from the main part of the paper that [ρ0 ∧ 3(ρ1 ∧
∧

i 3κi)] ≡ [ρ0 ∧
∧

i 3(ρ1 ∧ 3κi)], ⃝3κ ≡ 3⃝κ and
⃝(κ ∧ κ′) ≡ (⃝κ ∧⃝κ′), and so each Q[⃝,3]-query can be equivalently transformed in polynomial time into a conjunction
of Q◦

p[3]-queries. If E− is a singleton, then a conjunction of queries in Q◦
p[3] separates (E+, E−) under an ontology O iff a

single conjunct separates (E+, E−) under O. Thus, there is q ∈ Q[⃝,3] separating an arbitrary (E+, E−) under O iff there
are polysize qD ∈ Q◦

p[3] separating (E+, {D}) under O, for each D ∈ E−. The second reduction is obtained by dropping ⃝

from the argument above.
In (ii.1), the first two reductions are proved by adding to E+ ∋ D, for some D, the data instance D′ = {A(mn) | A(n) ∈ D}

with m = maxD + 2. Now, if D |= κ(0) and D′ |= κ(0), for κ ∈ Qp[U], then κ is equivalent to a Qp[3]-query.
For the third reduction, we observe first that without loss of generality one can assume that the positive examples do not

contain atoms of the form X(0). Indeed, suppose E = (E+, E−), E+ = {D+
1 , . . . ,D+

n }, and E− = {D−
1 , . . . ,D

−
k }. Let

ρ =
⋂n

i=1{X | X(0) ∈ D+
i }, E′− = {D ∈ E− | D ̸|= ρ}, and let D = (D+, D−), where D+ = {D\{X(0) | X ∈ sig(E)} |

D ∈ E+} and D− = {D \ {X(0) | X ∈ sig(E)} | D ∈ E′−}. If φ = ρ0 ∧ λ1 U (ρ1 ∧ λ2 U (. . . (ρl−1 ∧ (λl U ρl)) . . . ))
separates E then φ′, which is φ with ρ0 replaced by ∅, separates D. If ψ = ρ0 ∧ λ1 U (ρ1 ∧ λ2 U (. . . (ρl−1 ∧ (λl U ρl)) . . . ))
separates D, then ρ0 = ∅ and ψ′, which is ψ with ρ0 replaced by ρ, separates E.

Now, suppose E = (E+, E−), E+ = {D+
1 , . . . ,D+

n }, n > 1, and E− = {D−
1 , . . . ,D

−
k }, and X(0) /∈ D+

i , for any X and
i. Let B,C be fresh atoms and m = maxD∈E+∪E−(max(D)) + 2. We set E′+ = {D′′+

1 ,D′+
2 , . . . ,D′+

n }, where

D′+
i = {X(j +m) | X(j) ∈ D+

i } ∪ {B(m)} ∪ {C(j) | m < j < m+max(D+
i )},

D′′+
1 = {X(j + 1) | X(j) ∈ D+

1 } ∪ {B(1)} ∪ {C(j) | 1 < j < 1 + max(D+
1 )}.

We also set E′− = {D′−} with

D′− = {X((2i−1)m+j) | X(j) ∈ D−
i , i ∈ [1, k]}∪{B((2i−1)m) | i ∈ [1, k]}∪{C(i) | (2i−1)m < i < 2im, i ∈ [1, k]}.

See the picture below for an illustration.
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Let E = (E′+, E′−). We prove equiseparability of E and E′.
(⇒) Suppose φ = ρ0∧λ1U(ρ1∧λ2U(. . . (ρl−1∧(λlUρl)) . . . )) with l < m separatesE. Then ρ0 = ⊤ (sinceX(0) /∈ D+

i ,
for any X). Consider the query 3φ′, where φ′ is φ in which ρ0 is replaced by B and λi ̸= ⊥ are replaced with λi ∧ C. Since
D+

j |= φ we have D |= φ′ for all D ∈ E′+. If D′− |= 3φ′, then D′− |= φ′((2j − 1)m) for some j. Since all λ′s contain C
and l < m, we have D−

j |= φ, which is impossible. Therefore, 3φ′ separates E′.
(⇐) Suppose that ψ = ρ0 ∧ λ1 U (ρ1 ∧ λ2 U (. . . (ρl−1 ∧ (λl U ρl)) . . . )) with ρl ̸= ⊤ separates E′. Since D′′+

1 |= ψ, we
have l < m. Find the smallest i such that ρi ̸= ⊤. As D′+

2 |= ψ, there is i′ ≤ i with λi′ = ⊤.
If B ∈ ρi then, since D′′+

1 |= ψ, we have i = 1 and λ1 = ⊤. Let ψ′ = λ′2 U (ρ′2 ∧ λ′3 U (. . . (ρ′l−1 ∧ (λl U ρl)) . . . )) where
ρ′j = ρj \ {C} and λ′j = λj \ {C}. We see that in this case D′+

j |= ψ′(m), and so D+
j |= ψ′ for all j. Also since D′− ̸|= ψ, we

have D−
j ̸|= ψ′, and so ψ′ separates E.

If B /∈ ρi, let ψ′ = 3(ρi ∧ λi+1 U (ρi+1 ∧ λi+2 U (. . . (ρl−1 ∧ (λl U ρl)) . . . ))). Then D+ |= ψ′ for all D+ ∈ E′+. If
D′− |= ψ′, then we have D′− |= ψ as λi′ = ⊤, and so ψ′ also separates E′. Consider the instance D′−

l (corresponding to some
D−

l ) shown below:

D′−
l = {X((2l − 1)m+ j) | X(j) ∈ D−

l } ∪ {B((2l − 1)m)} ∪ {C(j) | (2l − 1)m < j < 2lm}.

D′−
k

D−
l

0 1

B

(2l − 1)m

C C

2lm

Since D′−
l ⊆ D′−, we have D′−

l ̸|= ψ′, and so D−
l ̸|= ψ′′, where ψ′′ is ψ′ with the ρj replaced by ρj \ {C} and λj replaced by

λj \ {B,C}, for λj ̸= ∅. Clearly, D+ |= ψ′′ for all D+ ∈ E+, and so ψ′′ separates E.

(ii.2) To show QBE(Q[⃝,3]) ≤p QBE(Q[3]), suppose that E = (E+, E−) is given. Let m be the maximum over all
maxD with D ∈ E+. Introduce, for every A such that A(ℓ) ∈ D for some D ∈ E+, a fresh atom Ak, 0 < k ≤ m, and
extend any D ∈ E+ ∪ E− to a data instance D′ by adding Ak(ℓ) to D if A(k + ℓ) ∈ D. Let F+ = {D′ | D ∈ E+} and
F− = {D′ | D ∈ E−}. Then clearly E is Q[3⃝]-separable iff F is Q[3]-separable.

The converse reduction and QBE(Q[3]) ≤p QBE(Q[Us]) are proved similarly to (ii.1). ⊣

B Proofs for Section 4
We show the complexity results in Table 1. To this end, we first introduce some notation for sequence problems. Let Σ be an
alphabet of symbols. A word over Σ is a finite sequence of symbols from Σ. A word α is a subsequence of a word β if α
can be obtained from β by removing zero or more symbols anywhere in β. For a set S of words, we call a word α a common
subsequence of S if it is a subsequence of every word in S. The consistent subsequence problem (CSSP) is formulated as
follows:
Given: sets S+ and S− of words over an alphabet Σ.
Problem: decide whether there exists a common subsequence of S+ that is a not subsequence of any word in S−.

The following is shown in [Fraser, 1996]:
Theorem 15. (i) CSSP is NP-hard even if both the alphabet and S+ have cardinality two.

(ii) CSSP is NP-hard even if S− is a singleton.
Another problem of interest for us is the following common subsequence problem (KsubS):

Given: a set S of words over an alphabet Σ and a number k.
Problem: decide whether there exists a common subsequence of S of length at least k.

The following is shown in [Maier, 1978]:
Theorem 16. KsubS is NP-hard even if the alphabet has cardinality 2.

We are now in a position to prove the results for ⃝3-queries in Table 1. We start by proving the NP-lower bounds for Qp[3].
We actually show a slightly stronger result than in the table.
Lemma 17. QBE(Qp[3]) with two positive examples or a single negative example is NP-hard.

Proof. The proof by polynomial-time reduction of CSSP (as formulated in Theorem 15) is trivial. It is also of interest to
give a proof of the second claim (a single negative example) via a polynomial-time reduction of KsubS. The proof also works
directly for Q◦

p[3]-queries. Suppose that an instance S, k of KsubS over alphabet {A,B} is given. We define E of the form
(E+, {D−}) such that the following conditions are equivalent:



• there exists a common subsequence of S of length k;

• there exists q ∈ Qp[3] that separates (E+, {D−});
• there exists q ∈ Q◦

p[3] that separates (E+, {D−}).
We represent each word w ∈ S as a data instance Dw starting at time point 1 (for example, the word w = ABBA is represented
as Dw = {A(1), B(2), B(3), A(4)}). Now let

D+ = {A(i(k + 2)), B(i(k + 2)) | 1 ≤ i ≤ k}

and
D− = D+ \ {A(k(k + 2)), B(k(k + 2))}

and let E+ = {Dw | w ∈ S} ∪ {D+}. Assume first that there exists a common subsequence C1 · · ·Ck of S of length k. Then
3(C1 ∧3(C2 ∧ · · · ∧3Ck)) separates (E+, {D−}). Now assume that a query

κ = ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρn)),

where every ρi is a Q[⃝]-query, separates (E+, {D−}). As Dw |= κ(0) for some w ∈ S, we have that n ≤ k and all ρi have
depth bounded by k. Then ρ0 = ⊤ and also, as there are ‘gaps’ of length k + 1 between any two entries in D+ and since
D+ |= κ(0) we may assume that each ρi, i > 0, is of the form ⃝miρ′i with 0 ≤ mi ≤ k and ρ′i a conjunction of atoms.
Observe that we can satisfy, in D+,

• ρ1 in the interval {1, . . . , k + 2};

• ρ2 in the interval {(k + 1) + 1, . . . , 2(k + 2)};

• and so on, with ρn satisfied in the interval {(n− 1)(k + 2) + 1, . . . , n(k + 2)}.

In particular, if ρi is a conjunction of atoms, then it can be satisfied in i(k+2). If n < k, then it follows directly that D− |= κ(0),
and we have derived a contradiction. Hence n = k. Then, as the depth of κ is bounded by k, ρk is a conjunction of atoms. In
fact, one can now show by induction starting with ρk−1 that all ρi, i > 0, are nonempty conjunctions of atoms. Otherwise a
shift to the left shows that D− |= κ(0) and we have derived a contradiction. Thus κ takes the form 3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρk))
with all ρi non-empty. It follows from Dw |= κ(0) for all w ∈ S that κ defines a common subsequence of S of length k, as
required. ⊣

The NP-lower bound for QBE(Qp[⃝,3]) with a bounded number of positive examples or a single negative example follows
from Lemma 17 and Theorem 4 (ii.1).

We next obtain the NP-lower bound for QBE(Q[3]) with a single negative example from Lemma 17 by observing that it
follows from the proof of the first part of Theorem 4 (i.3) that any (E+, E−) with E− a singleton is Qp[3]-separable if,
and only if, it is Q[3]-separable. The NP-lower bound for QBE(Q[⃝,3]) with a single negative example follows from the
NP-lower bound for QBE(Q[3]) with a single negative example using Theorem 4 (ii.2).

We come to the NP-upper bounds. Recall that a query language Q has the polynomial separation property (PSP) under an
ontology language L if any Q-separable example is separated by a query in Q of polynomial size. The NP-upper bounds for
query languages using 3 (and ⃝) in Table 1 follow trivially from the following result.

Lemma 18. Let Q ∈ {Qp[3],Qp[⃝,3],Q[3],Q[⃝,3]}. Then Q has the PSP under the empty ontology.

Proof. The proof for Q ∈ {Qp[3],Qp[⃝,3]} is trivial: if D |= κ(0) for some κ ∈ Q, then κ is clearly equivalent to a query
in Q whose temporal depth does not exceed the maximal timestamp in D, and so is of linear size in D.

For Q ∈ {Q[3],Q[⃝,3]}, the argument is as follows. Assume that κ separates (E+, E−). We may assume that κ is a
conjunction of at most |E−|-many queries in Q◦

p[3] of the form

κ = ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρn)),

where every ρi is a query in Qp[⃝]. Then the conjuncts of κ are equivalent to queries in which n does not exceed the maximal
timestamps in data instances in E+ and each ρi is a query in Qp[⃝] whose temporal depth also does not exceed the maximal
timestamps in data instances in E+. ⊣

We next complete the description of the polynomial-time algorithm solving QBEb+
b- (Qp[⃝,3]) for E+ = {D+

1 ,D
+
2 } and

E− = {D−
1 ,D

−
2 }. The extension to arbitrary E+, E− is straightforward. Recall that we assume that κ takes the form (1) with

ρn ̸= ⊤. Also recall that Si,j is the set of tuples (k, ℓ1, ℓ2, n1, n2) such that

1. ℓ1 ≤ i ≤ maxD+
1 ,

2. ℓ2 ≤ j ≤ maxD+
2 ,

and there is κ = ρ0 ∧ o1(ρ1 ∧ · · · ∧ okρk) for which



1. there are satisfying assignments f1, f2 in D+
1 and D+

2 with f1(k) = ℓ1 and f2(k) = ℓ2, respectively, and

2. n1 is minimal with a satisfying assignment f for κ in D−
1 such that f(k) = n1, and n1 = ∞ if there is no such f ; n2 is

minimal with a satisfying assignment f for κ in D−
2 such that f(k) = n2, and n2 = ∞ if there is no such f .

Then clearly there is a κ ∈ Qp[⃝,3] separating (E+, E−) if there are k, ℓ1, ℓ2 such that (k, ℓ1, ℓ2,∞,∞) ∈ SmaxD+
1 ,maxD+

2
.

So it suffices to compute SmaxD+
1 ,maxD+

2
in polytime incrementally, starting with S0,0. We have computed S0,j and Si,0

already. Recall that tD(i) = {A | A(i) ∈ D}. To obtain Si+1,j+1, we add to Si+1,j ∪ Si,j+1 any tuple (k, ℓ1, ℓ2, n1, n2) for
which there is (k′, ℓ′1, ℓ

′
2, n

′
1, n

′
2) ∈ Si+1,j ∪ Si,j+1 with k′ < k, ℓ′1 < ℓ1 ≤ i + 1, ℓ′2 < ℓ2 ≤ j + 1 such that ℓ1 = i + 1 or

ℓ2 = j + 1 and, for m = k − k′ + 1 ≥ 0, we have ℓ1 −m > ℓ′1, ℓ2 −m > ℓ′2 and some sets of atoms ρ1, . . . , ρm with

ρ1 ⊆ tD+
1
(ℓ1 −m) ∩ tD+

2
(ℓ2 −m), . . . , ρm ⊆ tD+

1
(ℓ1) ∩ tD+

2
(ℓ2)

such that
• either n1 is minimal with n1 − n′1 > m and

ρ1 ⊆ tD−
1
(n1 −m), . . . , ρm ⊆ tD−

1
(n1)

or, if no such n1 exists, n1 = ∞, and
• either n2 is minimal with n2 − n′2 > m and

ρ1 ⊆ tD−
2
(n2 −m), . . . , ρm ⊆ tD−

2
(n2)

or, if no such n2 exists, n2 = ∞.
Thus, we obtain Si+1,j+1 from Si+1,j ∪ Si,j+1 by adding any tuple that describes a query obtained from a query κ described
by a tuple in Si+1,j ∪ Si,j+1 by attaching the query 3(ρ1 ∧ ⃝(ρ2 ∧ · · · ∧ ⃝ρm)) with m ≥ 0 to it. Clearly Si+1,j+1 can be
computed in polynomial time from Si+1,j and Si,j+1. This finishes the proof for QBEb+

b- (Qp[⃝,3]).
The proof for QBEb+

b- (Qp[3]) is obtained by dropping ⃝ from the proof above. The P-upper bound for QBE(Q[3]) with a
bounded number of positive examples can be proved in two steps: (1) by Theorem 4 (i.1) it suffices to prove the P-upper bound
for QBEb+

b- (Q[3]); (2) by Theorem 4 (i.3), QBEb+
b- (Q[3]) ≤p QBEb+

b- (Qp[3]). Finally, the P-upper bound for QBE(Q[⃝,3])
with a bounded number of positive examples follows from the P-upper bound for QBE(Q[3]) with a bounded number of
positive examples by Theorem 4 (ii.2)).

We now prove the results for query languages with U in Table 1. We start with the NP-lower bounds. The NP-lower bound
for QBE(Qp[U]) with a bounded number of positive and negative examples follows from the NP-lower bound for QBE(Qp[3])
with a bounded number of positive examples (shown above) and the second part of Theorem 4 (ii.1) which reduces the number
of negative examples from unbounded to a singleton. The NP-lower bound for QBE(Q[Us]) with a bounded number of negative
examples follows from the NP-lower bound for QBE(Q[3]) with a bounded number of negative examples (shown above) and
Theorem 4 (ii.2). This completes the proof of the NP-lower bounds.

The NP-upper bound for QBE(Qp[U]) follows from its PSP under the empty ontology which is proved in the same way as
Lemma 18:
Lemma 19. Qp[U] has the PSP under the empty ontology.

Proof. If D |= κ(0) for some κ ∈ Qp[U], then κ is clearly equivalent to a Qp[U]-query whose temporal depth does not exceed
the maximal timestamp in D, and so is of linear size in D. ⊣

To obtain the P and PSPACE upper bounds for queries with U, we require the machinery and separability criterion that will
be developed in the next section.

C Separability Criteria for Qp[U], Q[Us], and Q[U]
A transition system is a tuple S = (Σ1,Σ2,W,L,R,W0), where Σ1 (respectively, Σ2) is a state (respectively, transition) label
alphabet, W is a set of states and W0 ⊆ W is a set of initial states. A state labelling, L, is a map W → Σ1; a transition
labelling, R, is a partial map W ×W → Σ2. We write s→b s

′, for s, s′ ∈W , if R(s, s′) = b and we write s→ s′ if R(s, s′)
is defined. A run or computation on S is a finite sequence s = s0 → s1 → · · · → sn, for n ≥ 0, such that si−1 → si for all i
and s0 ∈ W0. A computation tree TS of S is (an infinite) tree—forest, to be more precise—in which the vertices are runs s on
S and the successor relation is s → s′ for all s = s0 → · · · → sn and s′ = s0 → · · · → sn → sn+1. The vertices s of the tree
are labelled with L(sn), while the edges s → s′ are labelled with b such that sn →b sn+1. A tree T is a subtree of TS if the set
of vertices of T is a convex subset of the set of vertices of TS containing a root (from W0).

Let S be a transition system such that Σ1 = 2Σ and Σ2 = 2Σ∪{⊥} for some signature Σ. We then say that S is a transition
system over the signature Σ. For a pair S, T of transition systems over Σ, we say that S is simulated by T if every finite subtree



T′ of TS is homomorphically embeddable into TT , i.e., there is a map h from the set of vertices of T′ to the set of vertices of
TT such that (i) s is labelled by a implies h(s) is labelled by a′ ⊇ a, (ii) s → s′ in T′ labelled by b implies h(s) → h(s′) is
in TT and labelled by b′ ⊇ b. We say that S is contained in T if every finite path in TS , (i.e., a run in S) is homomorphically
embeddable into TT .

Let T = (Σ1,Σ2,W
′, L′, R′,W ′

0). We define the direct product (aka synchronous composition) of S and T as a transition
system S × T = (Σ1,Σ2,W

′′, L′′, R′′,W ′′
0 ) with W ′′ = W ×W ′, W ′′

0 = W0 ×W ′
0, L′′((s, s′)) = L(s) ∩ L′(s′) for all

(s, s′) ∈ W ′′. Then R′′((s, s′), (t, t′)) is defined iff both R(s, t) and R′(s′, t′) are defined, in which case R′′((s, s′), (t, t′)) =
R(s, t)∩R′(s′, t′). The disjoint union of S and T is a transition system S⊎T = (Σ1,Σ2,W

′′, L′′, R′′,W ′′
0 ) that is obtained by

renaming states in T if necessary to makeW andW ′ disjoint, and then takingW ′′ =W ∪W ′, L′′ = L∪L′, R′′ = R∪R′, and
W ′′

0 = W ∪W ′. The definitions of the product and disjoint union are straightforwardly extended to a collection of transition
systems S1, . . . , Sn.

C.1 Representations for Q[Us]

Let κ be a Q[Us]-query over a signature Σ. We can naturally associate κ with a tree Tκ as follows. Let κ = ϱ′0 ∧
∧

i(ϱi Uψi),
where ϱ′0, ϱi is a conjunction of Σ-atoms, ψi = ϱ′i ∧

∧
j(ϱj U ψj), and ϱ′i is a conjunction of Σ-atoms. We do not distinguish

between a conjunction and a set of atoms. The root of the tree is r and the tree has r → (ϱi U ψi) for each i, i.e., there are
vertices ϱi U ψi. The root r is labelled with ϱ′0 and each ϱi U ψi is labelled with ϱ′i. Each edge r → (ϱi U ψi) is labelled with
ϱi. The tree then contains (ϱi Uψi) → (ϱj Uψj) for each j, where each such edge is labelled with ϱj and (ϱj Uψj) is labelled
with the set of atoms of ψj , and so on. Thus, we will treat any κ ∈ Q[Us] as a tree. The other way round, every finite tree T
with vertices labelled with subsets of Σ and edges labelled with subsets of Σ ∪ {⊥} corresponds to a Q[Us]-query. Indeed, let
x be any leaf of T. Then we define a Q[Us]-query κx =

∧
ϱ, where ϱ is a label of x. Suppose now we have x → yi, for i ∈ I

in T, and the label of x is ϱ while the label of x→ yi is ϱi. We define κx = (
∧
ϱ)∧

∧
i∈I((

∧
ϱi)Uκyi

). The query κr, where
r is the root of T, is the required query representing T. We denote it by κT.

Let D be a data instance and O an LTL-ontology over a signature Σ. Let S be a transition system over Σ. We say that S
represents O,D if the following conditions hold: (i)O,D |= κT′ for every finite subtree T′ of TS ; (ii) Tκ is homomorphically
embeddable into TS for each κ with O,D |= κ.

Lemma 20. Let E = (E+, E−), E+ = {Di | i ∈ I+}, E− = {Di | i ∈ I−}, and let O be an LTL ontology. Let Si represent
O,Di, for i ∈ I+ ∪ I−. Then (i) E is not Q[Us]-separable under O iff

∏
i∈I+ Si is simulated by ⊎i∈I−Si; (ii) E is not

Qp[U]-separable under O iff
∏

i∈I+ Si is contained in ⊎i∈I−Si.

Proof. We show (i). For (⇒), suppose S+ =
∏

i∈I+ Si is not simulated by S− = ⊎i∈I−Si. It follows that there exists a
finite subtree T of TS+ that is not homomorphically embeddable into TS− . We claim that κT separates E under O. First, we
show that O,Di |= κT for each i ∈ I+. Indeed, for any such i, let Ti be a projection of T to the runs of Si. Clearly, Ti is
a finite subtree of TSi and κTi |= κT (T is homomorphically embeddable into Ti). Because Si represents O,Di, we obtain
O,Di |= κT. Second, we show that O,Di ̸|= κT for each i ∈ I−. For the sake of contradiction, suppose O,Di |= κT for some
such i. Because Si represents O,Di, it follows that T is homomorphically embeddable into TSi , and so T is homomorphically
embeddable into TS− , which is a contradiction. The proofs of (⇒) and (ii) are similar. ⊣

Constructing representations for queries without an ontology. Given D, we construct a transition system S with the states
0, . . . , (maxD+1), where (maxD+1) is labelled with ∅ and the remaining j by {A | A(j) ∈ D}. Transitions are j → k, for
0 ≤ j < k ≤ maxD + 1, that are labelled by {A ∈ Σ ∪ {⊥} | A(n) ∈ D, n ∈ (j, k)} and (maxD + 1) → (maxD + 1) with
label Σ⊥ = Σ ∪ {⊥}.

Lemma 21. S represents ∅,D.

Proof. First, we show that D |= κT′ for every finite subtree T′ of TS . Let ID be an LTL interpretation such that ID, n |= A
iff A(n) ∈ D, for any atom A. We observe that any LTL interpretation I can be viewed as a transition system with the
states n ∈ N that are labelled with (sets of) atoms A holding at n. The transitions hold between any pair of states n < m
and each such transition is labelled with atoms A or ⊥ that hold at each i ∈ (n,m). It is clear that D |= κT′ iff T′ is
homomorphically embeddable into TID . We define an embedding h of T′ into ID as follows. We set h(0) = 0. Suppose
h(s) for s = 0 → s1 → · · · → sn has been defined and let s′ = 0 → s1 → · · · → sn+1. If sn+1 < maxD + 1, then we
set h(s′) = sn+1. If sn+1 = maxD + 1, then we set h(s′) = h(s′) + 1. Clearly, h is a homomorphism. Therefore, T′ is
homomorphically embeddable into TID and D |= κT′ .

Second, we show that Tκ is homomorphically embeddable into TS for each κ such that D |= κ. Take any κ such that
D |= κ. It follows that Tκ is homomorphically embeddable into TID . It remains to observe that TID is homomorphically
embeddable into TS (the definition of h is left to the reader). ⊣

The criterion of Theorem 6 now follows immediately from the two previous lemmas. The remaining P and PSPACE upper
bounds from Table 1 are explained in the main part of the paper.



Constructing representations for queries with an LTL2⃝
horn-ontology. Let D be a data instance and O an LTL2⃝

horn-ontology.
Let CO,D be the canonical model of O,D and sO,D, pO,D the numbers from Proposition 9. We define S with the states
{0, . . . ,maxD + sO,D + pO,D − 1}. The label of each state n is {A ∈ Σ | CO,D, n |= A}. There are transitions from n
to m, for each pair of states n < m labelled with {A ∈ Σ ∪ {⊥} | CO,D, k |= A for all k ∈ (n,m)}. Moreover, there are
transitions from n to m, for n,m ∈ [maxD + sO,D,maxD + sO,D + pO,D) such that n ≥ m. A label for such a transition is
{A ∈ Σ ∪ {⊥} | CO,D, k |= A for all k ∈ (n,maxD + sO,D + pO,D) ∪ [maxD + sO,D,m)}.

Lemma 22. S represents O,D.

Proof. First, we show that D |= κT′ for every finite subtree T′ of TS . It is clear from the properties of CO,D (see Section 5)
that D |= κT′ iff T′ is homomorphically embeddable into TCO,D . We define an embedding h of T′ into CO,D as follows. We
set h(0) = 0. Suppose h(s) for s = 0 → s1 → · · · → sn has been defined and let s′ = 0 → s1 → · · · → sn+1. If sn+1 > sn,
we set h(s′) = h(s) + (sn+1 − sn). Otherwise, we set h(s′) = h(s) + pO,D − (sn − sn+1). It is readily verified that h is a
homomorphism. Therefore, T′ is homomorphically embeddable into TCO,D and O,D |= κT′ .

Second, we show that Tκ is homomorphically embeddable into TS for each κ such that O,D |= κ. Take any κ such that
O,D |= κ. It follows that Tκ is homomorphically embeddable into TCO,D . It remains to show that TCO,D is homomorphically
embeddable into S. To this end, we define a map r : N → [0,maxD + sO,D + pO,D) by setting r(n) = n if n ∈ [0,maxD +
sO,D + pO,D) and r(n) = ((n−maxD − sO,D) mod pO,D) + maxD + sO,D, otherwise. Now, we define h(s) for s = 0 →
s1 → · · · → sn (note that si ∈ N and si+1 > si) to be equal to r(sn). It is readily verified that h is a homomorphism from
TCO,D into S. ⊣

Now we can explain the data complexity upper bounds from Theorem 12 (the upper bounds from Theorem 11 are ex-
plained in the main paper) for QBE(LTL2⃝

horn,Q) with Q ∈ {Q[Us],Qp[U]}. The result for QBEb+(LTL2⃝
horn,Q[Us]) (and

so for QBEb+
b- (LTL2⃝

horn,Q[Us])) follows from the fact that P =
∏

i∈I+ Si and U = ⊎i∈I−Si are constructible in P in the
size of E. This is not the case for QBE(LTL2⃝

horn,Q[Us]); here, we use the observation that if there exists a finite sub-
tree T of TP that is not homomorphically embeddable into U, then there exists such T satisfying the property that every
s from P occurs on each path of T at most |U|-many times. Let N+ =

∏
i∈I+ pO,Di . We claim that T is a subtree of

TM
P for M = maxi∈I+{maxDi + sO,Di} + N+|U|. Indeed, in the required T, if there is a path that is longer than M ,

the property above would be violated. By our construction of Si, any n-th element, for n ≥ maxi∈I+{maxDi + sO,Di},
of any path of TP is of the form (t1, . . . , t|I+|), where ti ∈ [maxDi + sO,Di ,maxDi + sO,Di + pO,Di). Observe that
(t1, . . . , t|I+|) → (s1, . . . , s|I+|) in P, for (t1, . . . , t|I+|) as above, implies si ∈ [maxDi + sO,Di

,maxDi + sO,Di
+ pO,Di

)

and any sequence (t1, . . . , t|I+|) → · · · → (s1, . . . , s|I+|) as above in P longer than N+|U| will have some (t1, . . . , t|I+|)

repeated more than |U| times. Thus, in order to decide QBE(LTL2⃝
horn,Q[Us]), we need to check if TM

P is homomorphically
embeddable into U. The latter can be checked by constructing TM

P branch-by-branch while checking all possible embeddings
of these branches into U. Since M is polynomial in E, this algorithm works in PSPACE in the size of E.

It remains to explain the NP upper bound for QBE(LTL2⃝
horn,Qp[U]). From Lemma 20 and the argument above, it follows

that E is separable under O iff there exists a path in TM
P that is not embeddable into U. Such a path (if exists) is of the size

polynomial in E. Embeddability of such a path into U can be checked in P from E− and the size of the path.

Constructing representations for queries with an LTL-ontology. Let D be a data instance and O an LTL-ontology. We
can assume that maxD = 0. Indeed, for a given O and E, we can construct in polytime an LTL-ontology O′ and E′ such
that maxD′ = 0 for each D′ in E′ and E is Q[Us]-separable under O iff E′ is Q[Us]-separable under O′. Let TO be the
set of O-types. For T ⊆ TO, we say that T is realisable in O,D if there are instants nI in all models I of O,D such that
{tpI(nI) | I |= O,D} = T . For T 1,T 2 ⊆ TO realisable in O,D and Γ ⊆ Σ ∪ {⊥}, we define T 1 →Γ T 2 if there are
instants nI < mI in all models I of O,D such that (i) {tpI(nI) | I |= O,D} = T 1, (ii) {tpI(mI) | I |= O,D} = T 2,
(iii) {tpI(k) | I |= O,D, nI < k < mI} ∩ T 2 = ∅, (iv) Γ = {A ∈ Σ⊥ | I, k |= A for all I |= O,D, nI < k < mI}. We
observe that condition (iii) ensures that there exists at most one Γ for given T 1,T 2 such that T 1 →Γ T 2. We define S with
the states T ⊆ TO realisable in O,D. A single initial state of S is T 0 = {tpI(0) | I |= O,D}. The states T are labelled with
{A ∈ Σ | A ∈ tp for all tp ∈ T }. There are transitions from T 1 to T 2 where T 1 →Γ T 2 holds for some Γ, labelled with Γ.

Lemma 23. S represents O,D.

Proof. Let I = {I | I |= O,D}. We treat every I ∈ I as a transition system as we did above. Take the product
∏

I∈I I and
denote it (slightly abusing notation) by I . Note that the states s of I are maps s : I → N.

First, we show that O,D |= κT′ for every finite subtree T′ of TS . It should be clear that O,D |= κT′ iff T′ is homo-
morphically embeddable into TI . We define an embedding h of T′ into I as follows. We set h(T 0) = s0, where s0 is the
initial state of I satisfying s0(I) = 0 for every I ∈ I . Suppose h(s) for s = T 0 → T 1 → · · · → T n has been defined
equal to s. Our induction hypothesis will be that T n = {tpI(s(I)) | I ∈ I}. It can be readily verified that it holds for
s = T 0. Let s′ = T 0 → T 1 → · · · → T n+1 and T n →Γ T n+1. For each I ∈ I , we select mI > s(I) such that



T n+1 = {tpI(mI)) | I ∈ I} and Γ = {A ∈ Σ⊥ | I, k |= A for all I ∈ I, s(I) < k < mI}. That this selection is always
possible follows from the IH. We then set h(s′) = s′ such that s′(I) = mI for I ∈ I .

Now, we show that Tκ is homomorphically embeddable into TS for each κ such that O,D |= κ. Take any κ such that
O,D |= κ. It follows that Tκ is homomorphically embeddable into TI . It remains to show that TI is homomorphically
embeddable into S. We define h so that h(s0) = T 0. Consider now s1 = s0 → s1. Instead of s1, we can always select s′1
such that s0 → s′1, {tpI(s

′
1(I)) | I ∈ I} ⊆ {tpI(s1(I)) | I ∈ I}, {tpI(k) | I ∈ I, s0(I) < k < s′1(I)} ∩ {tpI(s

′
1(I)) |

I ∈ I} = ∅ and, finally, {tpI(k) | I ∈ I, s0(I) < k < s′1(I)} ⊆ {tpI(k) | I ∈ I, s0(I) < k < s1(I)}. We define
h(s1) = {tpI(s

′
1(I)) | I ∈ I}. It can be readily verified, given the subsumptions above, that (subsumption of the) label of the

edge from s0 to s1 is preserved under h and (subsumption of) the node s1 is preserved under h.
Consider now s2 = s0 → s1 → s2. We can always select s′2 so that s′1 → s′2, {tpI(s

′
2(I)) | I ∈ I} ⊆ {tpI(s2(I)) | I ∈

I}, {tpI(k) | I ∈ I, s′1(I) < k < s′2(I)} ∩ {tpI(s
′
2(I)) | I ∈ I} = ∅ and, finally, {tpI(k) | I ∈ I, s′1(I) < k < s′2(I)} ⊆

{tpI(k) | I ∈ I, s1(I) < k < s2(I)}. We define h(s2) = {tpI(s
′
2(I)) | I ∈ I}.

Clearly, we can extend this argument to arbitrarily-many steps to define h for any s = s0 → · · · → sn. This completes the
proof of the lemma. ⊣

C.2 Representations for Q[U]

Let κ be a Q[U]-query over a signature Σ. Let all the subformulas of κ, which are either conjunctions (sets) of atoms γ, λ, or
φ U ψ, or conjunctions thereof, be enumerated. We assume that there are no subformulas of the form φ U φ (such formulas are
equivalent to ⊥ U φ). We can associate κ with a tree Tκ having edges of two types: black and red. Let κ = γ0 ∧

∧
i∈J0

κi

and let κi = (λi ∧
∧

j∈Ii
κj) U (γi ∧

∧
j∈Ji

κj)), where κj , for j ∈ Ii ∪ Ji, is of the form φ U ψ. Then the root r of the tree
is labelled with γ0 and there are black edges r → κi, for i ∈ J0. Each such edge is labelled with λi and node κi, i ∈ J0, is
labelled with γi. Now take any i ∈ J0. There is a black edge κi → κj , for each j ∈ Ji, and there is a red edge κi → κj , for
each j ∈ Ii. To define the label of each such black or red κi → κj edge and the label of the corresponding κj , we look at the
form of the κj . Suppose κj = (λj ∧

∧
k∈Ij

κk) U (γj ∧
∧

k∈Jj
κk)). Then the label of κi → κj is λj and the label of κj is

γj . The construction of the edges κj → κk, their labels, and the the construction of the subsequent tree is done analogously
(by treating j as i in the previous construction). Thus, we can and will treat any κ ∈ Q[Us] as the tree Tκ .

Let a black/red tree be a tree where each edge has either black or red colour, but not both. Every finite black/red tree T, where
vertices are labelled with subsets of Σ and edges are labelled with subsets of Σ ∪ {⊥}, corresponds to a Q[U]-query. Indeed,
let x → y be any edge such that y is a leaf of T. Then we define a Q[U]-query κx→y as λ U γ, where λ is the label of x → y
while γ is the label of y. Suppose now we have black (respectively, red) transitions x → yi, for i ∈ J (respectively, i ∈ I), for
an edge z → x in T labelled with λ for x labelled with γ. We define κz→x = (λ ∧

∧
i∈I κx→yi

) U (γ ∧
∧

i∈J κx→yi
). Let r

be the root of T labelled with γ. Then the required κT representing T is γ ∧
∧

r→y in T φr→y .
Further, we define a black/red transition system S by adding either black or red colour, but not both, to each transition s→ s′

of the transition system S defined above. The computation tree TS of S is defined as before, however, every edge s → s′ in
TS has either red or black (but not both) colour that is equal to the colour of sn → sn+1. In the definition of the direct product
S × T , we now require that R′′((s, s′), (t, t′)) is red (respectively, black) iff both R(s, t) and R′(s′, t′) are red (respectively,
black) (the labels are defined as before). Finally, in the definition of a homomorphic embedding of a black/red (labelled) tree
T′ to another such tree T′′ we require, additionally, that h(s) → h(s′) is black (respectively, red) in T′′ if s → s′ is black
(respectively, red) in T′. For a data instance D, an LTL ontology O, a signature Σ, and a black/red transition system S, the
definition of S representing O,D continues to hold (with Q[Us] changed to Q[U] in (ii)). Moreover, the same proof as in
Lemma 24 (i) shows that we have:

Lemma 24. Let E = (E+, E−), E+ = {Di | i ∈ I+}, E− = {Di | i ∈ I−}, and let O be an LTL ontology. Let Si represent
O,Di, for i ∈ I+ ∪ I−. Then E is not Q[U]-separable under O iff

∏
i∈I+ Si is simulated by ⊎i∈I−Si.

Constructing representations for queries without an ontology. Let d, e ⊆ N be finite and nonempty. For any d ∈ d, let
µ(d) = min{e ∈ e | d < e}. If µ is a surjective d → e function, we write d⋖ e and set

∇(d, e) =
⋃
d∈d

{d′ ∈ N | d < d′ < µ(d)}.

Example 25. Let d = {1, 2, 3} and e = {3, 4}. Then d ⋖ e with ∇(d, e) = {2}. However, for d = {1, 2} and e = {3, 4},
we have neither d⋖ e (because µ is not a surjection) nor e⋖ d (because µ is not defined).

Given a data instance D, e ⊆ N and an atom A (possibly ⊥), we write D, e |= A if A(e) ∈ D for all e ∈ e. We construct a
black/red transition system S with a set of states {0, z, u} ∪ {de | d, e ⊆ {0, . . . ,maxD}}. The label of 0 is {A | A(0) ∈ D},
the label of z is ∅, the label of u is Σ⊥, and the label of de is {A | A(e) ∈ D for all e ∈ e}. The alphabet of the transition
labels is 2Σ∪{⊥}. From 0, we have

(i) a black transitions to every ed such that {0} ⋖ d (this implies that |d| = 1) and e = ∇({0},d), labelled with the set
{A ∈ Σ⊥ | D, e |= A}.



From each ed, we have

(ii) a black transition to every fg such that d⋖ g and f = ∇(d, g), labelled with {A ∈ Σ⊥ | D,f |= A},

(iii) a red transition to every fg such that e⋖ g and f = ∇(e, g), labelled with L = {A ∈ Σ⊥ | D,f |= A}.

The state z has a black and a red transition to itself labelled with Σ⊥ and the same holds for u. We have a black transition to z
from every ed labelled with {A ∈ Σ∪ {⊥} | D, {maxd, . . . ,maxD− 1} |= A}, and we have a red transition to z from every
ed labelled with {A ∈ Σ⊥ | D, {max e, . . . ,maxD − 1} |= A}. Finally, we have a red transition from every ∅d to u as well
as from z to u labelled with Σ⊥.

Lemma 26. S represents ∅,D.

Proof. First, we show that D |= κT′ , for every finite subtree T′ of TS . Let ID be an LTL interpretation such that ID, n |= A iff
A(n) ∈ D, for any atom A. We regard any LTL interpretation I as a black/red transition system with the states {0, u} ∪ {de |
d, e ⊆ N, e ̸= ∅}. The state 0 is labelled with {A ∈ Σ | D, 0 |= A}, u is labelled with Σ⊥, while each state de is labelled with
{A ∈ Σ | D, e |= A}. From 0, there are black transitions according to (i). From each ed, we have black and red transitions
according to (ii) and (iii), respectively. The state u has a black and a red transition to itself and a transition from each state
∅e all labelled with Σ⊥. It should be clear that D |= κT′ iff T′ is homomorphically embeddable into TID . We define an
embedding h of T′ into ID as follows. We set h(0) = 0. Suppose h(s) for s = 0 → s1 → · · · → sn has been defined
and let s′ = 0 → s1 → · · · → sn+1. Suppose, first, sn+1 = de for e ⊆ [0,maxD]. Then we set h(s′) = de. Suppose
sn+1 = z. Then h(sn) = de, for some d, e ⊆ N. If sn → sn+1 is black, we set h(s′) = ∅{e + 1 | e ∈ e} and if it is red,
we set h(s′) = ∅{d + 1 | d ∈ d}. Finally, if sn+1 = u, then we set h(s′) = u. It is straightforwardly verified that h is a
homomorphism. Therefore, T′ is homomorphically embeddable into TID and D |= κT′ .

Second, we show that Tκ is homomorphically embeddable into TS for each κ such that D |= κ. Take any κ such that
D |= κ. It follows that Tκ is homomorphically embeddable into TID . It remains to observe that TID is homomorphically
embeddable into S. Indeed, we define h(0) = 0. Let s = 0 → s1 → · · · → sn for n ≥ 1. If sn = de for e ⊆ [0,maxD],
then h(s) = sn. If max e > maxD, we set h(s) = z. Finally, if sn = u, we set h(s) = u. It is readily verified that h is a
homomorphism from TID into S. ⊣

Now we explain why QBE(Q[U]) is in PSPACE. To this end we observe that every run of S of length > maxD results in
either s = z or s = u. Moreover, if s = u then all the subsequent states of the run are also u. Thus, any run of P =

∏
i∈I+ Si of

length > maxi∈I+{maxD} is in a state s = (t1, . . . , t|I+|) where ti ∈ {u, z}. Then TM
P for M = maxi∈I+∪I−{maxD}+ 1

is mapped into U = ⊎i∈I−Si, if a map h exists, in such a way that h(s0 → · · · → sM ) is either z or u (in the corresponding
S representing Di, i ∈ I−). So, we obtain that if TM

P is homomorphically embeddable into U, then any finite subtree of TP is
homomorphically embeddable into U. To decide QBE(Q[U]), we can check the embeddability of TM

P in a branch-by-branch
fashion similarly to the case of Q[Us]. Note, however, that the existence of a polynomial algorithm for QBEb+(Q[U]) and
QBEb+

b- (Q[U]) remains open as bounding the number of positive examples does not result in P of polynomial size.

Constructing representations for queries with an LTL2⃝
horn-ontology. Let d, e be finite and nonempty subsets of the interval

[0, P ), for some P ∈ N, and M ∈ N. For any d ∈ d, let succs(d, e) = {e ∈ e | d < e} and let

µ(d) =

{
min succs(d, e), if either d ∈ [0,M) or both d ∈ [M,P ) and succs(d, e) ̸= ∅,
min(e), if d ∈ [M,P ) and succs(d, e) = ∅.

If µ is a surjective d → e function, we write d⋖M,P e and set ∇M,P (d, e) =
⋃

d∈d{d′ ∈ bwn(d, µ(d))}, where bwn(d, e) =
(d, e) if d < e and (e, P ) ∪ [M,d) if d ≥ e.

Example 27. Let M = 2, P = 8, d = {1, 4, 6, 7} and e = {3, 5}. Then d⋖M,P e with ∇M,P (d, e) = {2, 7}.

Let D be a data instance and O an LTL2⃝
horn-ontology. Let CO,D be the canonical model of O,D and sO,D, pO,D be the

numbers from Proposition 9. Let maxD + sO,D = M and maxD + sO,D + pO,D = P . We define S with the states
{0, u} ∪ {de | d, e ⊆ [0, P )}. The label of 0 is {A ∈ Σ | CO,D, 0 |= A}, the label of de is {A ∈ Σ | CO,D, e |= A} and
the label of u is Σ⊥. We define the (red and black) transitions between 0 and de as specified by (i)–(iii) above but using
⋖M,P instead of ⋖, ∇M,P instead of ∇, and CO,D, e instead of D, e (the same applies to f ). Finally, we define the transitions
between ∅e and u as defined above.

Lemma 28. S represents O,D.

Proof. First, we show that D |= κT′ for every finite subtree T′ of TS . It is clear from the properties of CO,D that O,D |= κT′

iff T′ is homomorphically embeddable into TCO,D . We define an embedding h of T′ into CO,D as follows. We set h(0) = 0.
Suppose h(s) for s = 0 → s1 → · · · → sn has been defined and s′ = 0 → s1 → · · · → sn+1. If sn = u, we set h(s′) = u.
Suppose sn = de and sn+1 = fg. We will have an IH that r(d′) = d and r(e′) = e for the map r from Lemma 22. First,



we assume sn → sn+1 is a black transition. Then e⋖M,P g and let µM,P : e → g be the corresponding (surjective) map. We
construct a map µ′ : e′ → N by taking

µ′(e) =

{
e+ µM,P (r(e))− r(e), if µM,P (r(e)) > r(e);

e+ pO,D − r(e) + µM,P (r(e)), otherwise,

for each e ∈ e′. We set h(s′) = f ′g′, where g′ = µ′(e′) and f ′ = ∇(e, g′). We note that r(f ′) = f and r(g′) = g, so IH
continues to hold. The case when sn → sn+1 is a red transition is similar and left to the reader. It can be readily verified that h
is a homomorphism from T′ to TCO,D .

Now, we show that Tκ is homomorphically embeddable into TS for each κ such that O,D |= κ. Take any κ such that
O,D |= κ. It follows that Tκ is homomorphically embeddable into TCO,D . It remains to show that TCO,D is homomorphically
embeddable into S. We define h so that h(0) = 0, h(s) = u for s = s0 → s1 → · · · → u. For s = s0 → s1 → · · · → de, we
set h(s) = r(d)r(e). It is readily verified that h is homomorphism. ⊣

To justify the 2EXPTIME upper bound for QBE(LTL2⃝
horn,Q[U]), we observe that S above representing O,D can be con-

structed in time O(22
|O|+|D|

) as S has such number of states. To justify the PSPACE upper bound, let Ni, for i ∈ I+ ∪ I−,
be the number of states in S representing O,Di of the form either u, z or de, for (d ∪ e) ∩ [0,maxDi + sO,Di

) = ∅. We set
N+ =

∏
i∈I+ Ni. Similarly to the argument after Lemma 22, we observe that if there exists a finite subtree T of TP that is

not homomorphically embeddable into U, then there exists such T satisfying the property that every s from P occurs on each
path of T at most K− = maxi∈I−{maxDi + sO,Di

+ Ni}-many times. It follows that the required T, if exists, is a subtree
of TM

P for M = maxi∈I+{maxDi + sO,Di} + N+K−. Indeed, in the required T, if there is a path that is longer than M ,
the property above would be violated. By our construction of Si, any n-th element, for n ≥ maxi∈I+{maxDi + sO,Di},
of any path of TP is of the form (t1, . . . , t|I+|), where ti is either u, z or de satisfying (d ∪ e) ∩ [0,maxDi + sO,Di) = ∅.
Observe that (t1, . . . , t|I+|) → (s1, . . . , s|I+|) in P, for (t1, . . . , t|I+|) as above, implies si is either u, z or de satisfying
(d ∪ e) ∩ [0,maxDi + sO,Di

) = ∅. Any sequence (t1, . . . , t|I+|) → · · · → (s1, . . . , s|I+|) as above in P longer than N+K−

will have some (t1, . . . , t|I+|) repeated more than K− times.

D Proofs for Section 5
Let E+ = {D+

1 , . . . ,D+
n } and E− = {D−

1 , . . . ,D
−
l } and let O be a LTL2⃝

horn ontology. For every CO,D with D ∈ E+ ∪ E−,
let sO,D ≤ 2|O| and pO,D ≤ 22|O| be the length of the ‘handle’ and the length of the ‘period’ in CO,D, respectively (provided
by Proposition 9). Set

k = max
D∈E+∪E−

(maxD + sO,D), m =
∏

D∈E+∪E−

pO,D.

Lemma 29. (i) If E is Q[⃝,3]-separable under O, then it is separated by a conjunction of at most l-many κ ∈ Q◦
p[3] of

3-depth ≤ k + 1 and ⃝-depth ≤ k +m.
(ii) If E is Q[3]-separable under O, then it is separated by a conjunction of at most l-many κ ∈ Qp[3] of 3-depth ≤ k+1.
(iii) If E is Qp[⃝,3]-separable under O, then it is separated by some κ ∈ Qp[⃝,3] of 3-depth ≤ k + l and ⃝-depth

≤ k +m.
(iv) If E is Qp[3]-separable under O, then it is separated by some κ ∈ Qp[3] of 3-depth ≤ k + l.

Proof. Recall that the types of any CO,D form a sequence

tp0, . . . , tpk, tpk+1, . . . , tpk+m, . . . , tpk+1, . . . , tpk+m, . . . .

(i) Recall from the proof of Theorem 4 (i.3) that we may assume that for any D− ∈ E− there is a query κ ∈ Q◦
p[3] that

separates (E+, {D−}). So let D− ∈ E− and assume that (E+, {D−}) is Q◦
p[3]-separable under O. Then there is a separator

κ = ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρn))

in which each ρr has ⃝-depth ≤ k+m. Indeed, in view of the form of the canonical models, if ρr =
∧ℓ

i=0
⃝iλi with ℓ > k+m,

then one can replace ρr with

ρ′r =

k∧
i=0

⃝iλi ∧
m∧
j=1

⃝k+j
∧

0≤i≤ℓ
j=(i−k) mod m

λi.

In addition, if n > k, then the query

ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρk)) ∧
n∧

i=k+1

3k+1ρi



still separates (E+, {D−}) under O, and so some ρ0∧3(ρ1∧3(ρ2∧· · ·∧3(ρk∧3ρj)) with k < j ≤ n separates (E+, {D−})
under O.

(ii) is proved by dropping the ⃝-queries from the proof of (i).

(iii) The proof of (i) shows that if E is Qp[⃝,3]-separable under O, then there is a separator

ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρk)) ∧
n∧

i=k+1

3k+1ρi

in which each ρr has ⃝-depth ≤ k +m. Now we can select, for each negative example D−, a j such that

ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3(ρk ∧3ρj))

separates (E+, {D−}) under O. Let j1, . . . , jl be thus selected. Then

ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3(ρk ∧3(ρj1 ∧ · · · ∧3ρjl)))

separates E under O.

(iv) is proved by dropping the ⃝-queries from the proof of (iii). ⊣

Theorem 10. Let Q ∈ {Q[⃝,3],Q[3],Qp[⃝,3],Qp[3]}. Then QBE(LTL2⃝
horn,Q) and QBEb+

b- (LTL2⃝
horn,Q) are both PSPACE-

complete for combined complexity.

Proof. The lower bound follows from [Chen and Lin, 1994]. We first give the upper bound proof for Qp[3].
Let E+ = {D+

1 , . . . ,D+
n } and E− = {D−

1 , . . . ,D
−
l }. We use Lemma 29 (iv). Let k and m be as in Lemma 29. The

nondeterministic algorithm starts by guessing a conjunction of atoms ρ0 and checking in PSPACE that O,D+
i |= ρ0(0) for all

i ∈ [1, n]. We use numbers d+i , d
−
j ≤ k +m, for i ∈ [1, n], j ∈ [1, l], and a set N ⊆ [1, l] that will keep track of the negative

examples yet to be separated. Initially, we set all d+i , d
−
j = 0 and N = {j ∈ [1, l] | O,D−

j |= ρ0(0)}. Then we repeat the
following steps until N = ∅, in which case the algorithm terminates accepting the input:

• Guess a conjunction ρ of atoms in the signature of O and E.
• For every i ∈ [1, n], check in PSPACE that O,D+

i |= 3ρ(d+i ) and reject if this is not so.

• Guess d+i
′

such that min(d+i , k) < d+i
′ ≤ k +m and O,D+

i |= ρ(d+i
′
).

• For each, j ∈ N check that O,D−
j |= 3ρ(d−i ). If no, remove j from N . Otherwise, find in PSPACE the smallest d−i

′
such

that min(d−i , k) < d−i
′ ≤ k +m and O,D−

i |= ρ(d−i
′
).

• Set d+i := d+i
′

and, for all j still in N , set d−j := d−i
′
.

Let φi = ρ0 ∧ 3(ρ1 ∧ 3(. . . (ρi−1 ∧ 3ρi) . . . ), where ρi is the conjunction of atoms guessed in the i-th iteration. Let Ni be
the set N after the i-th iteration. Then, for all j ∈ [1, n], we have O,D+

j |= φi(0), for all j ∈ Ni we have O,D−
j |= φi(0), and

for all j ∈ [1, l] \Ni we have O,D−
j ̸|= φi(0). So the algorithm accepts after the ℓ-th iteration iff φℓ separates (E+, E−).

By Lemma 29 (ii), this also gives a PSPACE algorithm for Q[3]. By Lemma 29 (i), for Q[⃝,3] it suffices to give a PSPACE
algorithm for Q◦

p[3], which can be obtained by modifying the algorithm above.
It starts by guessing a conjunction of atoms λ0 and checking that O,D+

i |= λ0(0) for all i ∈ [1, n], which can be done in
PSPACE. We use numbers d+i , d

−
i ≤ k +m (for 3-subformulas) and c ≤ k +m (for ⃝-formulas), and a set N ⊆ [1, l] that

will keep track of the negative examples yet to be separated. Initially, we set all d+i , d
−
j = 0, c = 0, and N = [1, l]. Then we

repeat (1) or (2) until N = ∅, in which case the algorithm terminates accepting the input:
(1) – Set c = 0.

– Guess a conjunction λ of atoms in the signature of O and E.
– For every i ∈ [1, n], check in PSPACE that O,D+

i |= 3λ(d+ i) and reject if this is not so.

– Guess d+
′

i such that min(d+, k) < d+
′ ≤ k +m and O,D+

i |= λ(d+
′
).

– For each j ∈ N , check that O,D−
j |= 3λ(d−i ). If no, remove j from N . Otherwise, find in PSPACE the smallest d−

′

such that min(d−i , k) < d−
′ ≤ k +m and O,D−

i |= λ(d−
′
).

– Set d+i = d+
′

i and, for all j still in N , set d−j = d−
′

i .

(2) – Increment c, provided c < m+ k.



– Guess a conjunction λ of atoms in the signature of O and E.
– For every i ∈ [1, n], check in PSPACE that O,D+

i |= λ(d+i + c) and reject if this is not so.
– For each j ∈ N , check that O,D−

j |= λ(d−i + c). If no, remove j from N .

A PSPACE algorithm for Qp[⃝,3] is similar to the one above: it uses Lemma 29 (iii) for guessing the next temporal operator
⃝ or 3 in the query. ⊣

Theorem 11. QBE(LTL2⃝
horn,Q[Us]) is in EXPTIME for combined complexity, QBE(LTL2⃝

horn,Qp[U]) is in EXPSPACE, and
QBEb+

b- (LTL2⃝
horn,Qp[U]) is NEXPTIME-hard.

Proof. The upper bound follows from Lemmas 20 and 22 above as explained in the main part of the paper.
Now we establish the NEXPTIME lower bound. Let M be a non-deterministic Turing machine that accepts words x over its

tape alphabet in at most N = 2p(|x|) steps, for some polynomial p. Given such an M and an input x, our aim is to define an
LTL2⃝

horn ontology O and an example set E = (E+ = {D+
1 ,D

+
2 }, E− = {D−}) of size polynomial in M and x such that E is

separated by a Qp[U]-query under O iff M accepts x.
Suppose M has a set Q of states, tape alphabet Σ with b for blank, initial state q0, and accepting state qacc. Without loss of

generality we assume that M erases the tape before accepting and its head is at the left-most cell in any accepting configuration.
Given an input word x = x1 . . . xn over Σ, we represent configurations c of a computation of M on x by the (N − 1)-long

word written on the tape (with sufficiently many blanks at the end), in which the symbol y in the active cell is replaced by the
pair (q, y) with the current state q. An accepting computation of M on x is encoded by the word w = ♯c1 ♯ c2 ♯ . . . ♯ cN−1 ♯ cN
over the alphabet Ξ = Σ ∪ (Q × Σ) ∪ {♯}, where c1, c2, . . . , cN are the subsequent configurations in the computation. In
particular, c1 is the initial configuration (q0, x1)x2 . . . xnb . . . b, and cN is the accepting configuration cacc = (qacc, b)b . . . b.
Thus, any accepting computation is encoded by a word of length N2 in the alphabet Ξ (we allow cacc to follow cacc).

A tuple t = (a, b, c, d, e, f) ∈ (Ξ)6 is called legal [Sipser, 1997, Theorem 7.37] if there exist two consecutive configurations
c1 and c2 of M and a number i such that

abcdef = c1[i]c1[i+ 1]c1[i+ 2]c2[i]c2[i+ 1]c2[i+ 2],

where cj [i] is the ith symbol in cj . Let L ⊆ (Ξ)6 be the set of all legal tuples (plus a few additional 6-tuples to take care of
♯) with the following property: a word w encodes an accepting computation iff it starts with the initial configuration preceded
by ♯, ends with the accepting configuration, and every two length 3 subwords at distance N apart form a legal tuple. Let
L̄ = (Ξ)6 \ L.

For any k > 0, by a k-counter we mean a set A = {Ai
j | i = 0, 1, j = 1, . . . , k} of atomic concepts that will be used to

store values between 0 and 2k − 1, which can be different at different time points. The counter A is well-defined at a time point
n ∈ N in an interpretation I if I, n |= A0

j ∧ A1
j → ⊥ and I, n |= A0

j ∨ A1
j , for any j = 1, . . . , k. In this case, the value of A

at n in I is given by the unique binary number bk . . . b1 for which I, n |= Ab1
1 ∧ · · · ∧Abk

k . We require the following formulas,
for c = bk . . . b1 (provided that A is well-defined):

• [A = c] = Ab1
1 ∧ · · · ∧Abk

k , for which I, n |= [A = c] iff the value of A is c;

• [A< c] =
∨

k≥i≥1
bi=1

(
A0

i ∧
∧k

j=i+1A
bj
j

)
with I, n |= [A < c] iff the value of A is < c;

• [A> c] =
∨

k≥i≥1
bi=0

(
A1

i ∧
∧k

j=i+1A
bj
j

)
with I, n |= [A > c] iff the value of A is > c.

We regard the set (⃝FA) = {⃝FA
i
j | i = 0, 1, j = 1, . . . , k} as another counter that stores at n in I the value stored by A at

n + 1 in I. Thus, we can use formulas like [A > c1] → [(⃝FA) = c2], which says that if the value of A at n in I is greater
than c1, then the value of A at n+ 1 in I is c2. Also, for l ≤ k, we can use formulas like [A = i (mod 2l)] with self-explaining
meaning. Another important formula we need is defined by:

[A = B+ 1] =

k∧
i=1

(
(B0

i ∧ B1
i−1 ∧ · · · ∧ B1

1 → A1
i ∧ A0

i−1 ∧ · · · ∧ A0
1) ∧

∧
j<i

((B0
i ∧ B0

j → A0
i ) ∧ (B1

i ∧ B0
j → A1

i ))
)
.

It says that the value of A is one greater than the value of B.
To define O and E = (E+, E−) for given M and x = x1 . . . xn, we assume that Ξ = {a1, . . . , a2m} and k = 6m +

2⌈logN⌉ + 1. We use the following atomic concepts in O and E: the symbols in Ξ, the atoms C, S, N , T , and those atoms
that are needed in k-counters S, N, T.

We set D+
1 = {T (0)}, D+

2 = {S(0)}, and D− = {N(0)}.
The following axioms initialise the corresponding m-counters:

T → [(⃝T) = 0] S → [(⃝S) = 0] N → [(⃝N) = 0].



These and all other axioms of O can be easily transformed to equivalent sets of polynomially-many LTL2⃝
horn axioms.

The behaviour of each counter is specified by the axioms below whose meaning is illustrated by the structure of the canonical
model of the corresponding example restricted to Ξ ∪ {C}.

The T -axioms

[T < N2] → [⃝T = T+ 1],

[T = 0] → ♯, [T = 1] → (q1, x1),

[T = 2] → x2, . . . , [T = n] → xn,

[T > n] ∧ [T < N ] → b,

[T > N ] ∧ [T < N2 −N ] → Ξ,

[T = N2 −N ] → ♯,

[T = N2 −N + 1] → (qacc, b),

[T > N2 −N + 1] → b

together with the data instance D+
1 give rise to the canonical model of the form

∅, ♯, (q1, x1), x2, . . . , xn, bN−n−1, ♯,ΞN2−2N−1, ♯, (qacc, b), b
N−2, . . .

The S-axioms

[S < (2|Ξ|+ 1)N2] → [⃝S = S+ 1],

[S > N2] → C,

[S > N2 ∧ S = 2i (mod 2m+1)] → ai+1, for all i ∈ [1, 2m]

and D+
2 generate the canonical model

∅, ∅N
2

, ∅, (a1C,C, . . . , a2kC,C)N
2

, ∅, ∅, . . .
Let L̄ = {t1 = (a1, b1, c1, d1, e1, f1), . . . , tl}. Let t = N2 −N − 3. The N -axioms comprise the following, for each i ∈ [1, l]:

[N < (2l + 3)N2] → [⃝N = N+ 1],

[0 < N < N2] → Ξ,

[N2 < N < 3N2] → C,

[N2 < N < 3N2] ∧N1
0 → Ξ,

[(2i+ 1)N2 < N < (2i+ 1)N2 + t+ 1] → Ξ,

[N = (2i+ 1)N2 + t+ 1] → ai,

[N = (2i+ 1)N2 + t+ 2] → bi,

[N = (2i+ 1)N2 + t+ 3] → ci,

[(2i+ 2)N2 −N < N < (2i+ 2)N2 − 2] → Ξ,

[N = (2i+ 2)N2 − 2] → di,

[N = (2i+ 2)N2 − 1] → ei,

[N = (2i+ 2)N2] → fi,

[(2i+ 2)N2 < N < (2i+ 2)N2 + t+ 1] → Ξ.

The data instance D− gives the canonical model

∅, ∅,ΞN2−1, ∅, (ΞC,C)N
2−2,ΞC, ∅,Dt1 , ∅N+2,Dt2 . . . ,Dtl , ∅, . . . .

where Dti = ∅,Ξt, ai, bi, ci,Ξ
N−3, di, ei, fi,Ξ

t.
We denote the set of the axioms above by O and show that E is separated by a Qp[U]-query κ under O iff M accepts x.
(⇐) Suppose ρ1 . . . ρN2 encodes an accepting computation of M on x. Consider the Qp[U]-query

κ = 3(ρ1 ∧ C U (ρ2 ∧ C U (. . . (ρN2−1 ∧ (C U ρN2)) . . . ))).

It is not hard to show by inspecting the respective canonical models described above that

O,D+
1 |= κ(0), O,D+

2 |= κ(0), O,D−
1 ̸|= κ(0).



To prove the last one, we first notice that ∅,ΞN2−1 ̸|= κ(0), and ∅, (ΞC,C)N2−2,ΞC ̸|= κ(0). We have Dt ̸|= C(j) for
all t and j. So, if Dt |= κ(0) for some t, then there is i < t such that ∅,Dt |= ρj(i + j) for all j ∈ [1, N2]. But then
ρt−iρt−i+1ρt−i+2ρt+N−iρt+N−i+1ρt+N−i+2 = t ∈ L̄, which is a contradiction. So we have Dt ̸|= κ(0) for all t ∈ L̄, and
therefore O,D− ̸|= κ(0).

(⇒) Suppose the query
κ = λ1 U (ρ1 ∧ λ2 U (ρ2 . . . (ρK−1 ∧ (λK U ρK)) . . . ))

with ρK ̸= ⊤ separates E under O. Since O,D+
1 |= κ(0), we have K ≤ N2 and ρi ⊆ Ξ for all i. Since ∅, ∅,ΞN2−1 ̸|= κ(0)

we have ρ1 ̸= ∅. Since O,D+
2 |= κ(0) we have λ1 = ⊤. Now if K < N2, then ∅, ∅,ΞN2−1 |= κ(0), so K = N2.

Since O,D+
2 |= κ(0), we have |ρi| ≤ 1 for all i. Let y1 < . . . < yN2 be such that O,D+

2 |= ρj(yj) and O,D+
2 |= λ(i)

for all j ∈ [1, N2] and i ∈ (yj , yj+1). We see that if yj is odd, then ρj = ∅ and if yj is even we can assume that ρj = a ∈ Ξ
where O,D+

2 |= a(yj). Let construct zj in the following way: z1 = N2 + 2 and if we already have zj , then zj+1 is the
smallest number bigger than zj with the same parity as yj+1. We can see that, for all j < N2, we have O,D− |= ρj(zj) with
O,D− |= λj(y) for all y ∈ (zj , zj+1) and if there is an odd yj , then zN2 < 3N2 − 1, O,D− |= ρN2(zN2), and therefore
O,D− |= κ(0) which cannot happen. So there are no odd yj’s and |ρi| = 1 for all i.

In view of O,D+
1 |= κ(0), the word ρ1 . . . ρN2 starts with the starting configuration preceded by ♯ and ends with the

accepting one. Suppose there is some i such that (ρi, ρi+1, ρi+2, ρN+i, ρN+i+1, ρN+i+2) = t ∈ L̄. Let yj = t − i + j for
j ∈ [1, N2]. We have Dt |= ρj(yj), and so Dt |= κ(0), and therefore O,D− |= κ(0). So every two length 3 subwords at
distance N apart form a legal tuple and ρ1 . . . ρN2 encodes a successful computation of M on x. ⊣

Theorem 12. For data complexity, the results of Theorem 5 continue to hold for queries mediated by an LTL2⃝
horn-ontology.

We first consider ⃝3-queries, and then come to U-queries.
⃝3-queries. The NP-lower bounds are inherited from the ontology-free case. For the NP-upper bounds observe that by
Lemma 29 and since O is fixed, we always have a separating query of polynomial size whenever a separating query exists.
The NP-upper bounds follow in the standard way. We now come to the P-upper bounds. We prove the P-upper bound for
QBEb+

b- (LTL2⃝
horn,Qp[⃝,3]) by modifying the dynamic programming algorithm we gave in the ontology-free case. The P-upper

bound for QBEb+
b- (LTL2⃝

horn,Qp[3]) is obtained by dropping ⃝ from the proof. The P-upper bound for QBE(LTL2⃝
horn,Q[3])

with a bounded number of positive examples can be again proved in two steps: (1) by Theorem 4 (i.1) it suffices to prove the P-
upper bound for QBEb+

b- (LTL2⃝
horn,Q[3]); (2) by Theorem 4 (i.3), QBEb+

b- (LTL2⃝
horn,Q[3]) ≤p QBEb+

b- (LTL2⃝
horn,Qp[3]). Finally,

the P-upper bound for QBE(LTL2⃝
horn,Q[⃝,3]) with a bounded number of positive examples follows from the P-upper bound

for QBE(LTL2⃝
horn,Q[3]) with a bounded number of positive examples using the same ‘trick’ as in the proof of Theorem 4 (ii.2)

in the ontology-free case: we modify the models CO,D by adding fresh atoms Ai encoding ⃝iA and interpreting them in CO,D
in the same way as as ⃝iA. By Lemma 29 it suffices to do this for i ≤ k +m (which is polynomial in E as |O| is fixed).

To prove the P-upper bound for Qp[⃝,3], we extend the notion of a satisfying assignment for a query κ in a data instance
to a satisfying assignment in the canonical model CO,D in the obvious way: suppose κ takes the form (1) with ρn ̸= ⊤. Then
CO,D, 0 |= κ iff there is a satisfying assignment f for κ in CO,D in the sense that f is a strictly monotone map f : [0, n] → N
with f(0) = 0, f(i+ 1) = f(i) + 1 if oi = ⃝, and ρi ⊆ tp(f(i)) = {A | CO,D, f(i) |= A}, for all i ≤ n. We first observe the
following lemma (using the notation and numbers k,m introduced for Lemma 29):
Lemma 30. (E+, E−) is Qp[⃝,3]-separable under O iff there exists κ of the form (1) with ρn ̸= ⊤, of 3-depth ≤ k + l and
⃝-depth ≤ k +m such that

1. for any D ∈ E+ there is a satisfying assignment for κ into CO,D with f(n) ≤ N := k + (k + l + 1)(k +m);
2. for any D ∈ E− there is no satisfying assignment for κ into CO,D with f(n) ≤ N .

Proof. First assume that (E+, E−) is Qp[⃝,3]-separable under O. By Lemma 29 there is a query κ of the form (1) with
ρn ̸= ⊤, of 3-depth ≤ k + l and ⃝-depth ≤ k +m that separates (E+, E−) under O. Take any satisfying assignment f for κ
in CO,D. Clearly then we can assume that f(i + 1) − f(i) ≤ k +m for any i with oi = 3. Point 1 follows directly. Point 2
follows from O,D− ̸|= κ(0) for D− ∈ E−.

Conversely, assume that there exists κ of the form (1) with ρn ̸= ⊤, of 3-depth ≤ k + l and ⃝-depth ≤ k +m such that
Points 1 and 2 hold. We show that κ separates (E+, E−) under O. But O,D+ |= κ(0) for D+ ∈ E+ follows from Point 1
and O,D− ̸|= κ(0) for D− ∈ E− follows from Point 2 using the same argument as in the proof of Point 1 in the converse
direction. ⊣

We explain the modifications of the dynamic programming algorithm for QBEb+
b- (Qp[⃝,3]) for E+ = {D+

1 ,D
+
2 } and

E− = {D−
1 ,D

−
2 }.

We modify the parameters stored in the tuples in the set Si,j slightly. Instead of the length of the query a tuple describes, we
store its 3-depth K and its ⃝-depth M . Thus, let Si,j be the set of tuples (K,M, ℓ1, ℓ2, n1, n2) such that



1. K ≤ k + l;

2. M ≤ k +m;

3. ℓ1 ≤ i ≤ N ,

4. ℓ2 ≤ j ≤ N ,

and there is κ = ρ0 ∧ o1(ρ1 ∧ · · · ∧ okρk) of 3-depth K and ⃝-depth M for which

1. there are satisfying assignments f1, f2 in CO,D+
1

and CO,D+
2

with f1(1 + K + M) = ℓ1 and f2(1 + K + M) = ℓ2,
respectively, and

2. n1 is minimal with a satisfying assignment f for κ in CO,D−
1

such that f(1 +K +M) = n1 ≤ N , and n1 = ∞ if there
is no such f ; and n2 is minimal with a satisfying assignment f for κ in CO,D−

2
such that f(k) = n2 ≤ N , and n2 = ∞ if

there is no such f .

It suffices to compute SN,N in polynomial time because there exists a query in Qp[⃝,3] separating (E+, E−) iff there are
K ≤ k + ℓ, M ≤ k +m, ℓ1 ≤ N , and ℓ2 ≤ N such that (K,M, ℓ1, ℓ2,∞,∞) ∈ SN,N . Si,j with i ≤ N and j ≤ N can be
computed in essentially the same way as in the ontology-free case incrementally starting with S0,0.

The bounds for U-queries were explained in Section C after Lemma 22.

E Proofs for Section 6

Theorem 13. Let Q ∈ {Qp[3],Q[3]}. If E is Q-separable under an LTL23-ontology O, then E can be separated under O
by a Q-query of polysize in E and O. QBE(LTL23,Q) and QBEb+

b- (LTL23,Q) are Σp
2-complete for combined complexity. The

presence of LTL23-ontologies has no effect on the data complexity, which remains the same as in Theorem 5.

Proof. We start by giving a few more details of the Σp
2-lower bound proof. Recall that we reduce the validity problem for fully

quantified Boolean formulas of the form
∃p∀q ψ,

where ψ is a propositional formula, and p = p1, . . . , pk and q = q1, . . . , qm are lists of propositional variables. We assume
w.l.o.g. that ψ is not a tautology. We also assume that ¬ψ ̸|= x for x ∈ {pi,¬pi, qj ,¬qj | 1 ≤ i ≤ k, 1 ≤ j ≤ m}. Indeed,
if ¬ψ |= x then ψ ≡ ¬x ∨ ψ′, for some ψ′, and when x ∈ {pi,¬pi} the QBF formula ∃p∀q ψ is vacuously valid whereas
when x ∈ {qj¬qj} the QBF formula ∃p∀q ψ is valid iff ∃p∀q′ ψ′ is, where q′ is obtained from q by removing qj . We regard
propositional variables as atoms and also use fresh atoms A1, . . . , Ak, Ā1, . . . , Āk and B.

Let E = (E+, E−) with E+ = {D1,D2}, E− = {D3}, where

D1 = {B1(0)}, D2 = {B2(0)}, D3 = {q1(0), q2(0), . . . , qm(0)},

and let O contain (the normal forms of) the following axioms, for all i = 1, . . . , k:

B1 → ¬ψ, B2 → ¬ψ, (6)

pi → 3
(
Āi ∧

∧
j ̸=i

(Aj ∧ Āj)
)
, ¬pi → 3

(
Ai ∧

∧
j ̸=i

(Aj ∧ Āj)
)
, (7)

We show that ∃p∀q ψ is valid iff E is Qp[3]-separable under O.
(⇒) Suppose ∃p ∀q ψ is valid. Take an assignment a for the variables p such that under all assignments b for the variables

q formula ψ is true. Let C be the conjunction of all Ai with a(pi) = 1 and all Āi with a(pi) = 0, and let κ = 3C. We show
that κ separates E. Define an interpretation J by taking

• J , 0 |= pi iff a(pi) = 1, for i = 1, . . . , k and J , 0 |= qj , for j = 1, . . . ,m;

• if J , 0 |= pi, then J , i |= Āi ∧
∧

j ̸=i(Aj ∧ Āj);

• if J , 0 ̸|= pi, then J , i |= Ai ∧
∧

j ̸=i(Aj ∧ Āj).

By the definition, J is a model of O and D3 with J , 0 ̸|= κ. On the other hand, let I be a model of O and some Dl, l = 1, 2.
By (6), I, 0 ̸|= ψ. Then the truth values of the pi in I at 0 cannot reflect the truth values of the pi under a (for otherwise
ψ would be true at 0 in I). Take some i0 for which these truth values of pi0 differ, say a(pi0) = 1 but I, 0 ̸|= pi0 . Then
I, 0 |= 3(Ai0 ∧

∧
j ̸=i0

(Aj ∧ Āj)), and so I, 0 |= κ.
(⇐) Suppose a Qp[3]-query κ separatesE but ∃p∀q ψ is not valid. From our conditions onψ, it is easy to see by considering

possible models of O and Dl, l = 1, 2, 3, that κ does not contain occurrences of B1, B2, pi, qj , 1 ≤ i ≤ k, 1 ≤ j ≤ m. Let J
be a model of O and D3 such that J , 0 ̸|= κ. Let a be the assignment for p given by J at 0. As ∃p ∀q ψ is not valid, there is



an assignment b for q such that ψ is false under a and b. Consider an interpretation I such that I, 0 |= B1, the truth values of p
and q at 0 are given by a and b, and all other atoms are interpreted as in J . Then I is a model of O and D1, and so I, 0 |= κ.
But then J |= κ, as κ can only contain atoms Ai and Āi, which is a contradiction showing that ∃p∀q ψ is valid.

We now prove the results for data complexity. The NP-lower bounds are inherited from the ontology-free case. We show
the NP-upper bound for QBE(LTL23,Qp[3]) and the P-upper bound for QBEb+

b- (LTL23,Qp[3]). The P-upper bound for
QBE(LTL23,Q[3]) with a bounded number of positive examples can be again proved in two steps: (1) by Theorem 4
(i.1) it suffices to prove the P-upper bound for QBEb+

b- (LTL23,Q[3]); (2) by Theorem 4 (i.3), QBEb+
b- (LTL23,Q[3]) ≤p

QBEb+
b- (LTL23,Qp[3]).

Assume an LTL23-ontology O is given. We show that one can construct in polynomial time for any data instance D a set
MO,D of models of D whose types form a sequence

tp0, . . . , tpk0
, tpk0+1, . . . , tpk0+l, . . . , tpk0+1, . . . , tpk0+l, . . . (8)

with maxD ≤ k0 ≤ maxD + |O| and l ≤ |O| such that for any κ ∈ Qp[3], D,O |= κ(0) iff I, 0 |= κ for all I ∈ MO,D.
Note that, in particular, every set MO,D is of polynomial size in D. Interestingly, the models in MO,D are not necessarily
models of O (unless O is a Horn ontology). Then, to show the NP-upper bound for QBE(LTL23,Qp[3]) and the P-upper
bound for QBEb+

b- (LTL23,Qp[3]) one constructs for any D ∈ E+ ∪ E− the set MO,D and then decides, using that polysize
separating queries exist if separating queries exist at all, whether there exists κ ∈ Qp[3] such that

• for all D ∈ E+: I, 0 |= κ, for all I ∈ MO,D;
• for all D ∈ E−: I, 0 ̸|= κ, for some I ∈ MO,D

in either NP (by guessing the polysize query and then verifying it in polynomial time) or P (by applying essentially the same
dynamic programming algorithm as for QBEb+

b- (Qp[3]).
We come to the construction of MO,D. Let D be a data instance. A type tp is consistent with D at k if A(k) ∈ D implies

¬A ̸∈ tp, for any atom A. We next define the notion of a decoration. Let I0, . . . , In be a partition of N into nonempty intervals
I0, . . . , In with In of the form [m,∞] for some m with maxD < m ≤ maxD + |O|+ 1 and max Ik + 1 = min Ik+1 for all
k < n. Let f be a function that associates with each interval k ≤ n a nonempty set f(k) of O-satisfiable types. Intuitively, the
types in f(k) are types that we aim to satisfy in the interval Ik. We then call D = (I0, . . . , In, f) a pre-decoration of D. We
say that a model I is consistent with D = (I0, . . . , In, f) if it is defined by a sequence

tp0, tp1, . . .

of types tpi such that
1. if i ∈ Ik, then tpi ∈ f(k) and tpi is consistent with D at i, for all i ≥ 0;
2. each tp ∈ f(n) occurs infinitely often as tpi in I for i ≥ m.

Then D = (I0, . . . , In, f) is a decoration of D for O if every model tp0, tp1, . . . that is consistent with D satisfies tpi at
timepoint i (and this ia, in particular, a model of O). Note that models that are consistent with D are trivially models of D.
Thus, anyD defines the set MD of models that are consistent withD and these are also always models of O ifD is a decoration
of D for O. D = (I0, . . . , In, f) also defines a canonical model ID as follows: fix any ordering tp0, . . . , tpj−1 of f(n) and
assume In = [mD,∞]. Then let ID be defined by setting

• for i ∈ Ik with k < n, i ∈ AID if A ∈ tp for all tp ∈ f(k) that are consistent with D at i;
• for i = mD + j0 + kj with j0 < j, i ∈ AID if A ∈ tpj0

.
Thus, for i < mD, ID is defined as the intersection of all models that are consistent with D and for i ≥ mD we repeat the
pattern tp0, . . . , tpj−1 again and again. Note that ID is of the form defined in (8). We show the following lemma connecting
MD and ID.

Lemma 31. For every κ ∈ Q[3] and every i < mD, we have J , i |= κ for all J ∈ MD iff ID, i |= κ.

Proof. Obtain M from MD by replacing for each J ∈ MD the final part of J based on the interval In by the final part of ID
based on In. Then clearly J , 0 |= κ for all J ∈ MD iff J , 0 |= κ for all J ∈ M. It is therefore sufficient to prove the claim
for M instead of MD.

The proof is by induction on ℓ for κ of the form ρ0 ∧ 3(ρ1 ∧ 3(ρ2 ∧ · · · ∧ 3ρℓ)). For ℓ = 0 the claim follows from the
definition.

Assume that the claim has been proved for ℓ ≥ 0, κ = ρ0 ∧3(ρ1 ∧3(ρ2 ∧ · · · ∧3ρℓ+1)), and J , i |= κ for some i < mD

and all J ∈ M. We have to show that ID, i |= κ.
If there exists i ≥ mD such that J , i |= ρ1 ∧3(ρ2 ∧ · · · ∧3ρℓ)), then we are done.
Otherwise, we show that there exists i′ with i < i′ < mD such that J , i′ |= ρ1 ∧3(ρ2 ∧ · · · ∧3ρℓ)) for all J ∈ M. Then

the claim follows by IH.



We first observe that there exists i′ with i < i′ < mD such that for i′ ∈ Ik we have ρ1 ⊆ tp for all tp ∈ f(k) that are
consistent with D at i′.

For assume that this is not the case. Then construct a model J ∈ M by choosing for every j with i < j < mD such that
j ∈ Ik a tp ∈ f(k) that is consistent with D at j such that ρ1 ̸⊆ tp. Define J using these tpj . Then J , i ̸|= κ, a contradiction.

Let i′ be minimal i < i′ < mD such that for i′ ∈ Ik we have ρ1 ⊆ tp for all tp ∈ f(k) that are consistent with D at i′.
We next show that J , i′ |= 3(ρ2 ∧ · · · ∧3ρℓ)) for all J ∈ M. Assume that this is not the case. Let J be a witness. Then

we construct a new model J ′ ∈ M by refuting ρ1 between i and i′ (possible by minimality of i′) and then adding J from i′.
Then J ′, i ̸|= κ, a contradiction.

It follows that J , i′ |= ρ1 ∧3(ρ2 ∧ · · · ∧3ρℓ)) for all J ∈ M, as required. ⊣

We next define the decorations we work with. Given any model I of D and O of the form (8), we obtain a decoration
DI = (I0, . . . , In, f) with n ≤ 2|O| + 2 as follows. Call a node i maximal in I for O if there exists C with 2C ∈ sub(O)
such that i |= 2C ∧ ¬C.

Assume I0, . . . , Iℓ and f(0), . . . , f(ℓ) have been defined already and Iℓ is not of the form [m,∞] (if Iℓ is of the form [m,∞]
we are done). We next define Iℓ+1 (and possibly Iℓ+2).

1. If max Iℓ < k0, then we proceed as follows: if max Iℓ + 1 is either maximal for O in I or max Iℓ + 1 = k0, then set
Iℓ+1 = {max Iℓ + 1} and f(ℓ+ 1) = {tpI(max Iℓ + 1)}.
Otherwise let

k := min{k > max Iℓ | k is maximal for O in I or k = k0}
and set Iℓ+1 = [max Iℓ, k − 1], Iℓ+2 = {k}, f(ℓ+ 1) = {tpI(k) | k ∈ Iℓ+1}, and f(ℓ+ 2) = {tpI(k)}.

2. Otherwise max Iℓ ≥ k0. Then let Iℓ+1 = [k0,∞] and f(ℓ+ 1) = {tpk0+1, . . . , tpk0+l}.

One can easily show that DI = (I1, . . . , In, f) is indeed a decoration of D for O and n ≤ 2|O| + 2. Note also that I itself is
consistent with DI . The following lemma summarises our findings.

Lemma 32. For any D one can construct in polynomial time a set FO,D of decorations D = (I0, . . . , In, f) of D for O such
that n ≤ 2|O|+ 2 and the following are equivalent for any κ ∈ Q[3]:

1. O,D |= κ(0);
2. I, 0 |= κ for every I ∈ MD and D ∈ FO,D;

3. ID, 0 |= κ for every D ∈ FO,D.

Proof. Models of the form (8) satisfying O and D are complete in the sense that the following conditions are equivalent for all
κ ∈ Qp[3]:

• O,D |= κ(0);
• I, 0 |= κ for all models I of O and D of the form (8).

Hence the class of models MDI with I a model of O and D of the form (8) is also complete. Hence the equivalence of Points 1.
to 2. holds if we define FO,D as the class of decorations D = (I0, . . . , In, f) of D for O with n ≤ 2|O|+ 2. The equivalence
of Points 2. and 3. follows from Lemma 31. It remains to show that FO,D can be constructed in polynomial time. The set of
pre-decorations (I0, . . . , In, f) of D with n ≤ 2|O| + 2 can clearly be constructed in polynomila time in |D|. It thus remains
to check in polynomial time whether a pre-decoration is a decoration. But such a check is straightforward as a pre-decoration
D = (I0, . . . , In, f) is a decoraton if, and only if, the following condition holds: for any subformula 2C of O, any i ≤ n, any
tp ∈ f(i), and any k ∈ f(i) with tp consistent with D at k: 2C ∈ tp iff no tp′ ∈ f(i) with C ̸∈ tp′ is consistent with D at any
k′ ∈ Ii ∩ [k + 1,∞] and no tp′ ∈ f(j) with C ̸∈ tp′ and j > i is consistent with D at any k′ ∈ Ij . ⊣

The set MO,D of models required for the construction of the algorithms is now defined by setting MO,D =
⋃

D∈FO,D
MD.

⊣

F Proofs for Section 7
Theorem 14. (i)QBE(LTL,Q) is in 2EXPTIME, for any Q ∈ {Q[3],Q[⃝,3],Q[Us] }. (ii)QBE(LTL,Q) is in 2EXPSPACE,
for any Q ∈ {Qp[3],Qp[⃝,3],Qp[U] }.

Proof. Let E be an example set and O an LTL ontology. To show the results for QBE(LTL,Q[Us]) and QBE(LTL,Qp[U]),
it is enough, by Lemma 20, to show that the construction of S in Lemma 23, representing D from E and O, can be done in
2EXPTIME. Consider an unlabelled transition system S (which can be defined as a transition system of the kind we have with
the unary alphabet Σ1 = Σ2 = {∅}) with the states tp, where tp is a type realisable in O,D. Given S and a set of realisable
types T , we set ST to be S restricted to tp that are reachable from some tp′ ∈ T and the initial states T . For given T 1, Γ and
T 2, we have T 1 →Γ T 2 iff, for each path s in TST1

, there is a position ps > 0 satisfying the following conditions: (i) the set of



types at all ps coincides with T 2; (ii) A ∈ tp for every tp at a position p ∈ (0, ps) for every s iff A ∈ Γ, for each A ∈ Σ⊥; (iii)
the set of all tp from (ii) does not intersect with T 2. Next, we observe that if the positions ps satisfying (i), (ii), (iii) exist,
then there exist such positions ps ≤ |S|. (Intuitively, this is because whenever ps > |S|, there exists a type in s that repeats
itself.) Thus, we need to check conditions (i)–(iii) in a tree of depth |S|. This can be done in a branch-by-branch fashion using
a (non-deterministic) algorithm working in PSPACE in |S|. It remains to observe that S itself can be constructed in EXPTIME

in |O| and that to construct S we need to check T 1 →Γ T 2 for O(22
|O|

)-many pairs (T 1,T 2).
To obtain the results of the theorem for Q[⃝,3], we construct S (cf. Lemma 23) as above but using the transition relation

T 1 →′
Γ T 2 for Γ ∈ {∅,Σ⊥} only (i.e., Σ2 = {∅,Σ⊥} in the definition of a transition system). We set T 1 →′

Σ⊥ T 2 if
T 1 →Σ⊥ T 2 and T 1 →′

∅ T 2 if T 1 →Γ T 2 for Γ ̸= Σ⊥. It is easy to verify that S represents O,D for the class of Q[⃝,3]
queries. The case Q[3] is left to the reader. ⊣
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