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1 | INTRODUCTION

A central issue in the literature on health insurance is how its impact on recipients varies across individuals. Causal estimates 
of this impact are obtained by comparing a randomly or quasi-randomly assigned treatment and control group, with one group 
receiving differential access to health insurance, and then examining heterogeneity in the estimated treatment effect. Identi-
fying how the effect of access varies by subgroup is difficult since membership of that subgroup might itself be affected by 
better access to medical services. For example, better access to testing improves the rate at which SARS-COV2 infections are 
detected. If we naively compared the death rate from these infections among insured individuals to that among uninsured indi-
viduals, we will be overestimating the effect of access to insurance. This will be because uninsured individuals will have fewer 
detected cases of SARS-COV2, artificially shrinking the denominator when dividing the number of deaths by the number of 
cases.

In this paper, I propose methods for bounding or point-identifying these subgroup-specific treatment effects, depending on 
the data available to the researcher. Bounds can be obtained via imposing monotonicity assumptions in the spirit of Manski and 
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Abstract
Expanded access to health care often leads to new diagnoses for previously unde-
tected conditions. New diagnoses make it difficult to identify the causal effect of 
expanding health insurance on individuals with particular diagnoses: the newly 
diagnosed in the treatment group are likely to differ in unobserved ways from the 
control group.  This paper provides two methods for dealing with this problem 
depending on the data available to the researcher and diagnosis-specific knowledge. 
If there is no panel dimension to the data, then the causal effect for the subgroup of 
interest can be bounded from either above or below depending on the condition in 
question. If panel data are available, then the newly diagnosed can be identified, and 
their treated outcomes subtracted from the overall effect of interest. I apply these 
methods to find that the difference-in-discontinuities estimator underestimates the 
effect of Medicare prescription drug coverage on the uptake of insulin by first-time 
users by 20%.
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KALISKI2

Pepper (2000). These amount to assuming that the sign of the unobserved selection bias is known, which is plausible in many 
contexts. For instance, prior research has found that enrollees in supplemental health insurance for Medicare are healthier than the 
overall Medicare-eligible population (Fang et al., 2008). Point identification can be obtained by exploiting repeated observations of 
the same individuals over time. The advantages of this second method are its simplicity and its relatively undemanding data require-
ments. Many publicly available data sets contain the repeated observations it requires for point identification, including the Medical 
Expenditures Panel Survey (MEPS) and Health and Retirement Study (HRS). Even when panel data are not available, monotonicity 
assumptions can produce a lower or upper bound on the treatment effect of interest, which may nonetheless be informative.

I apply the method proposed in this paper to study the effect of Medicare prescription drug coverage under Part D on insulin 
use. Using a standard difference-in-discontinuities estimator, and ignoring the effect of new diagnoses, I find a 3% point increase 
in initiation of insulin use among individuals with diabetes when they turn 65 in 2006–2009 relative to those who turn 65 in 
1998–2005. Accounting for the increase in diagnoses of diabetes that occurs at age 65 in 2006–2009 (Geruso & Layton, 2020), 
I find that the true effect among those who already had been diagnosed before age 65 is likely to be at least as large as the point 
estimate; exploiting panel data to identify the rate of initiation among the newly diagnosed at age 65, I find that the true effect is 
0.6% points larger, 20% larger in relative terms. Intuitively, this underestimation of the diagnosis-constant effect occurs because 
at the beginning of a diagnosis of Type II diabetes, it is rare for a physician to immediately recommend the use of insulin Nathan 
et al. (2009). Newly diagnosed individuals will therefore mostly add zeroes to the Medicare-eligible group, reducing the sample 
estimate of insulin use in that group, and leading the estimated treatment effect to be smaller than the diagnosis-constant effect of 
interest on those who had diabetes prior to qualifying for Medicare. The data are consistent with the theoretical arguments above 
regarding the lower rate of initiation of insulin use among the newly diagnosed at age 65: the proportion is 0.033, accounting for 
less than half of total new initiations of insulin use. Overall insulin use in this group at age 65 is also 3.3%, due to the non-use of 
insulin by undiagnosed individuals; this is around one-eighth the value of the overall average among individuals with diabetes.

This paper contributes to the following literature. First, it extends the literature on estimating Conditional Average Treat-
ment Effects (CATEs) (Abrevaya et al., 2015; Crump et al., 2008; MaCurdy et al., 2011) by considering conditioning on endog-
enous variables (rather than exogenous covariates and endogenous treatment assignment, as is considered explicitly in e.g., 
MaCurdy et al. (2011), Nguimkeu et al. (2019) and Liu et al. (2020)) and a treatment effect - the average diagnosis-constant 
effect - that is not, to my knowledge, explicitly considered in this literature. Second, it contributes to the literature on partial 
identification (Manski & Pepper, 2000; Molinari, 2020; Tamer, 2010) by using partial identification techniques to bound a 
treatment effect not typically considered in this literature. Third, it contributes to the literature on using panel data for either 
bounding or point-identifying causal effects of interest (Athey & Imbens, 2006; Callaway, 2021; Callaway & Li, 2019; Imbens 
& Wooldridge, 2009), since the second method proposed uses a differences-in-differences-style trend stability assumption: 
the treated outcomes of those who are observed joining the subgroup of interest between period t − 1 and t, given that they 
are treated in t and not in t − 1, is due to assignment to treatment and not an unobserved time trend that is particular to those 
joining the subgroup. The most similar papers to this one are Huber and Lafférs (2022), Anderson et al. (2012), Manski and 
Pepper  (2000), and Callaway  (2021). This paper is distinguished from these papers in the following ways: The first is its 
new empirical results on the sensitivity of insulin use to prescription drug coverage. Second, this paper is concerned with 
subgroup-specific treatment effects when membership in that subgroup is not randomly or quasi-randomly assigned, which is 
not explicitly discussed in Manski and Pepper (2000) or most of the Conditional Average Treatment Effect literature. An excep-
tion is Huber and Lafférs (2022), who develop bounds for the direct and indirect effects of an intervention in the presence of 
endogenous mediating variables. These are different objects of interest from the one studied in this paper, the diagnosis-specific 
average treatment effect, which is the average effect of treatment for a particular pair of values for a covariate of interest (the 
subgroup membership indicator). Moreover, Huber and Lafférs (2022) do not provide analytic bounds as is done in this paper, 
using instead the implied deviation of the propensity score from its value with exogenous treatment assignment and exogenous 
covariates to compute numerical bounds on the direct and indirect effects of treatment. Perhaps the closest paper to this one is 
Anderson et al. (2012); that paper is concerned with selection on their outcome variable, emergency department visits, due to 
the data being based on visits rather than individuals, and hence the outcome of interest not being observed for individuals who 
do not visit the emergency department. Similarly to this paper, Anderson et al. (2012) make use of a monotonicity assumption 
to achieve identification: they assume that all of any observed change in emergency department visits comes from loss of health 
insurance coverage. This paper differs from Anderson et al. (2012) in four ways: first, by examining selection on a covariate, 
rather than selection on the outcome variable as in their paper; second, the assumptions used for partial identification in this 
study differ from the monotonicity assumption in Anderson et al. (2012), which restricts the effect of exposure to treatment on 
the outcome of interest to have the same sign for every individual. By contrast, this paper's assumptions allow the effect of expo-
sure to treatment to differ in sign across individuals for the outcome but not for its effect on subgroup membership (Monotone 
Subgroup Selection), while the effect on the average outcome is restricted (Monotone Diagnosis Response); third, by the object 
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KALISKI 3

of interest considered - the diagnosis-constant treatment effect - which is different from theirs; and fourth, by its use of the 
panel dimension of data. Lastly, Callaway (2021), similarly to this paper, exploits the availability of panel data, but has a more 
ambitious goal: identifying the distribution of the unconditional treatment effect. Consequently, their method requires more 
demanding assumptions than the one used in this paper, which is focused on a particular conditional average treatment effect 
rather than the distribution of treatment effects. In addition, while Callaway (2021) combines panel data and partial identifica-
tion to create bounds on the object of interest, this paper uses each separately, and so its first method can be applied even when 
repeated observations on the same units might not be available.

2 | IDENTIFYING CAUSAL EFFECTS WITH NEW DIAGNOSES

Let Yi(1), Yi(0) be the potential outcomes for individual i in the treated and untreated states respectively. Let Di = 1 if individual 
i is assigned to the treated group and 0 otherwise. Let Xi = 1 if i belongs to a subgroup of interest and 0 otherwise. Let Xi(1) 
denote individual i's subgroup membership indicator in the treated state and Xi(0) the same in the untreated state. The object of 
interest, assuming the effect of treatment is homogeneous conditional on X, is

𝐸𝐸[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1] (1)

which is the average effect of treatment on the treated for the subgroup with X = 1, for members of the subgroup whose 
membership does not depend on treatment status. This cannot be directly identified from the data since we observe each indi-
vidual in at most one of the treated and untreated states.

The assumptions necessary for identifying this subgroup-specific treatment effect may be plausible or implausible depend-
ing on the subgroup. Consider the following assumption:

Assumption A1. (Exogenous Subgroup Selection). For every individual i, Xi(1) = Xi(0).

Under this assumption Xi(1) = 1 ⇒ Xi(0) = 1 and so E[Yi(1) − Yi(0)|Di = 1, Xi(1) = Xi(0) = 1] = E[Yi(1) − Yi(0)|Di = 
1, Xi(1) = 1] = E[Yi(1)|Di = 1, Xi(1) = 1] − E[Yi(0)|Di = 1, Xi(0) = 1], and so conditioning on subgroup membership poses 
no additional problems for identifying the effect of treatment on the treated if Di ⊥ Yi, since then the unobserved quantity 
E[Yi(0)|Di = 1, Xi(0) = 1] can be replaced with its sample analog E[Yi(0)|Di = 0, Xi(0) = 1].

For some subgroups, such as age brackets or race, this assumption is plausible. It seems unlikely that assignment to the 
treatment or control group affects racial self-identification. In other cases, this assumption is less plausible. In the motivat-
ing example for this paper, better access to health insurance can increase the frequency with which previously undiagnosed 
conditions are discovered by health care providers. If the treatment group is assigned to expanded health insurance coverage, 
and a subgroup with a particular diagnosis is of interest, then Exogenous Group Membership is unlikely to hold. In this paper, 
I consider instead a weaker assumption, analogous (but not identical) to the Monotone Treatment Selection assumption in 
Manski and Pepper (2000):

Assumption A2. (Monotone Subgroup Selection). For every individual i, Xi(1) ≥ Xi(0).

This assumption is relatively plausible in the motivating example of being assigned to receive health insurance in the treated 
state. In the case where Xi = 1 indicates diagnosis with some underlying latent condition such as diabetes, Monotone Subgroup 
Selection says that no one who received a diagnosis with worse coverage is undiagnosed when they have better coverage, and 
undiagnosed cases in the control group are weakly more likely to be diagnosed if assigned to treatment.

Monotone Subgroup Selection is useful for the following reason. If we abandoned Exogenous Subgroup Selection and left 
the sign of the selection effect unspecified, then we would have that

𝐸𝐸[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0, 𝑋𝑋𝑖𝑖(0) = 1] ≠ 𝐸𝐸[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1], 

which would necessitate having to disentangle the untreated outcomes of those whose diagnoses are rescinded when assigned to 
treatment from those whose diagnoses are made more likely by assignment to treatment. From this it is clear that this assump-
tion is most directly applicable to long-lasting chronic conditions that may go undiagnosed in their early stages, such as Type 
II diabetes. By contrast, conditions that are either chronic or transitory depending on the individual will violate Monotone 
Subgroup Selection. For example, iron deficiency may either be more likely to be detected and persist, or be treated and reversed, 
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KALISKI4

depending on the underlying cause. A chronic cause such as chronic kidney disease can lead to persistent iron deficiency (Nemeth 
& Ganz, 2023), whereas dietary insufficiency can be remedied with the appropriate lifestyle changes. Hence greater contact with 
healthcare professionals can either diagnose chronic iron deficiency with greater regularity or eliminate more cases of treatable 
iron deficiency. The differing signs of these two effects would violate the assumption of Monotone Subgroup Selection.

To assess whether the subgroup-specific treatment effect is a lower or upper bound for the true subgroup-specific effect, 
we need to make an additional assumption. This assumption says whether the expected outcome Y is larger or smaller for those 
individuals who are undiagnosed in the untreated state but diagnosed in the treated state.

Assumption A3. (Monotone Diagnosis Response). E[Yi(1)|Xi(1) = Xi(0) = 1] ≥ E[Yi(1)|Xi(1) = 1, Xi(0) = 0].

Monotone Diagnosis Response is likely to be more plausible when diagnosis occurs at a similar point in the progression of 
a chronic illness across individuals. For example, individuals with undiagnosed and uncontrolled diabetes suffer increasingly 
extreme health consequences the longer they have the disease, making undetected diabetes less likely with the passage of time. 
(I discuss this case in more detail in the empirical application section, which uses data on individuals with diabetes). Cancer, 
by contrast, is diagnosed at various stages, depending on the individual and the type of cancer, and so some individuals may be 
made less likely to undergo surgery as a result of their diagnosis (by detecting the cancer early enough to allow for less invasive 
procedures, such as radiotherapy or chemotherapy), while others will be more likely to undergo surgery. For an example of the 
latter case, pancreatic cancer, if detected early enough, will typically require surgery (Li et al., 2004). So if the subgroup of 
interest in the data is “individuals diagnosed with cancer”, Monotone Diagnosis Response will not typically hold if the outcome 
of interest is surgical intervention, as more frequent contact with healthcare practitioners may make surgery either more or less 
likely depending on the particular cancer in question and the stage at which it is diagnosed.

Monotone Diagnosis Response allows us to bound the subgroup-specific treatment effect in an analogous manner to the way 
the Monotone Treatment Selection and Monotone Treatment Response assumptions of Manski and Pepper (2000) allow for an 
upper or lower bound on the average treatment effect more generally. In particular, under Monotone Subgroup Selection and 
Monotone Diagnosis Response, we have

𝐸𝐸[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 1]

= 𝐸𝐸[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1]Pr(𝑋𝑋𝑖𝑖(0) = 1|𝑋𝑋𝑖𝑖(1) = 1)

+𝐸𝐸[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 1, 𝑋𝑋𝑖𝑖(0) = 0]Pr(𝑋𝑋𝑖𝑖(0) = 0|𝑋𝑋𝑖𝑖(1) = 1)

≤ 𝐸𝐸[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1]

 

where the first equality follows from the Law of Total Probability, and the second equality follows from Monotone Diagnosis 
Response. Combined with Monotone Subgroup Selection, so that E[Yi(0)|Di = 0, Xi(0) = 1] = E[Yi(0)|Di = 0, Xi(1) = Xi(0) = 1] 
(since Xi(1) ≥ Xi(0) and Xi(0) = 1 together imply Xi(1) = 1), the above inequality implies

𝐸𝐸[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1] ≥ 𝐸𝐸[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0, 𝑋𝑋𝑖𝑖(0) = 1] 

so that the “diagnosis-constant” subgroup-specific effect of treatment on the treated is at least as large as the sample estimate 
of the subgroup-specific treatment effect.

If we have a proxy in the data for the average outcome among those who are undiagnosed in the control group, but receive 
a diagnosis in the treated group, then we can point-identify the diagnosis-constant treatment effect. The following assumption 
is sufficient:

Assumption A4. Either (i) E[Yi|Di = 1, Xi(1) = Xi(0) = 1] = E[Yit|Dit = 1, Xit(1) = Xit−1(0) = 1] or (ii) E[Yi|Di = 1, Xi(1) = 1, 
Xi(0) = 0] = E[Yit|Dit = 1, Xit(1) = 1, Xit−1(0) = 0].

This assumption says that either (i) those who would be in the subgroup of interest regardless of exposure to treatment 
or (ii) the newly diagnosed, when exposed to the treatment that causes their new diagnosis, are not selected for idiosyncratic 
time trends. Suppose that the causal relationships in question are stable over time. Then A4 (ii) would be violated if, for exam-
ple, E[Yit|Dit = 1, Xit(1) = 1, Xit(0) = 0] ≠ E[Yit|Dit = 1, Xit(1) = 1, Xit−1(0) = 0]. This would be the case if there were other 
time-varying shocks particular to period t or t − 1 that would make the value of the outcome variable in the undiagnosed state 
(X = 0) different in the two periods. Assumption A4 (ii) is likely to hold for new diagnoses of individuals with diabetes, for 
instance, since undiagnosed individuals are not recommended to use insulin at all, regardless of age, cohort, or time period. A 
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KALISKI 5

potential threat to this assumption would be if the two time periods t − 1 and t were sufficiently far apart to make the outcomes 
of those who change diagnosis over that time period subject to unobserved age trends as well as the fact of new diagnosis. We 
would not expect this assumption to hold if the gap between t − 1 and t were 20 years, as the treated outcomes for those who 
switch status between ages 40 and 60 is likely to be driven partly by the aging process, and so would be a bad proxy for the 
treated outcomes for hypothetical individuals who are randomly assigned to the treatment group (and as a consequence are 
diagnosed when they would otherwise not have been at the same age).

For example, if we have repeated observations of the same individuals in different time periods, indexed by t, then we can 
in principle observe what happens to the same individual before and after receiving a diagnosis, and apply A4 (ii). Consider 
again the decomposition above, via the Law of Total Probability, of the observable quantity E[Yi(1)|Di = 1, Xi(1) = 1] into the 
unobserved quantity E[Yi(1)|Di = 1, Xi(1) = Xi(0) = 1] Pr(Xi(0) = 1|Xi(1) = 1) + E[Yi(1)|Di = 1, Xi(1) = 1, Xi(0) = 0] Pr(Xi(0)  
= 0|Xi(1) = 1). If we replace E[Yi(1)|Di = 1, Xi(1) = 1, Xi(0) = 0] with E[Yit(1)|Dit = 1, Xit(1) = 1, Xit−1(0) = 0], then we can 
rearrange the equality to obtain

𝐸𝐸[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1]

=
𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖(1)|𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖(1)|𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1, 𝑋𝑋𝑖𝑖𝑖𝑖−1(0) = 0]Pr(𝑋𝑋𝑖𝑖𝑖𝑖−1(0) = 0|𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1)

Pr(𝑋𝑋𝑖𝑖𝑖𝑖−1(0) = 1|𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1)
,

 

which expresses the single unobservable quantity E[Yi(1)|Di  =  1, Xi(1)  =  Xi(0)  =  1] in terms of sample quantities, which 
together with Monotone Subgroup Selection point-identifies the diagnosis-constant treatment effect, since then

𝐸𝐸[𝑌𝑌𝑖𝑖(1) − 𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1]

= 𝐸𝐸[𝑌𝑌𝑖𝑖(1)|𝐷𝐷𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖(1) = 𝑋𝑋𝑖𝑖(0) = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖(0)|𝐷𝐷𝑖𝑖 = 0, 𝑋𝑋𝑖𝑖(0) = 1]

=
𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖(1)|𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1] − 𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖(1)|𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1, 𝑋𝑋𝑖𝑖𝑖𝑖−1(0) = 0]Pr(𝑋𝑋𝑖𝑖𝑖𝑖−1(0) = 0|𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1)

Pr(𝑋𝑋𝑖𝑖𝑖𝑖−1(0) = 1|𝑋𝑋𝑖𝑖𝑖𝑖(1) = 1)

−𝐸𝐸[𝑌𝑌𝑖𝑖𝑖𝑖(0)|𝐷𝐷𝑖𝑖𝑖𝑖 = 0, 𝑋𝑋𝑖𝑖𝑖𝑖(0) = 1],

 

and everything on the right hand side of the second equality is identified from the data.
An alternative to the strategy for point identification above is to both use panel data and make weaker assumptions that 

produce bounds rather than a point estimate. I do not deal with this case in this paper - instead, the first method produces bounds 
regardless of whether the researcher has panel data, and the other yields point identification in case the researcher does have 
access to repeated observations of the same units over time. This increases the range of cases to which this paper's methods are 
applicable. Callaway (2021) discusses one method for combining the two (repeated observations and partial identification) to 
obtain bounds on a parameter of interest using panel data.

The following subsection applies the strategy above to identify the causal effect of prescription drug coverage on insulin  use.

3 | APPLICATION: THE IMPACT OF MEDICARE PRESCRIPTION DRUG COVERAGE 
ON INSULIN USE

3.1 | Background, empirical strategy and data

Diabetes is a disorder where the cells of the body do not respond to insulin (insulin resistance), and/or the pancreas produces 
insufficient insulin to reduce blood sugar levels in the body. Since insulin decreases blood sugar levels, inability to absorb 
insulin results in both higher levels of blood sugar and higher volatility of blood sugar levels, both of which are corrosive to the 
blood vessels within the human body.

Injecting insulin is not typically recommended in the early stages of a new diagnosis of Type II diabetes, which ordinarily 
occurs among older adults (Nathan et al., 2009). In these early stages, oral medication (usually Metformin, available as a generic 
medication since 1985 in the US) and elimination of refined sugar from the individual's diet are more likely to be recommended. 
This is because the pancreas may still secrete insulin, but either not enough is secreted and/or the cells of the body do not 
respond to it. By contrast, those with Type I diabetes (10% of the total population of individuals with diabetes), who develop 
the disease in childhood, cannot produce insulin at all. Accordingly, poor control of their blood sugar levels will quickly result 
in life-threatening complications for this group. Unlike Type Is, Type IIs are most likely to be recommended to use insulin only 
once their disease has progressed to the point where intermediate methods for controlling blood sugar levels such as dieting or 
oral medication have become relatively, though not completely, ineffective (Karter et al., 2010; Nathan et al., 2009).
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KALISKI6

The setting for this empirical application is the United States, since the data are drawn from the Health and Retirement 
Study (HRS) survey data, using waves from 1998 to 2009 (the pre-Affordable Care Act era). In the United States during this 
period, every resident (subject to the mild requirement that they or their spouse have worked for 40 quarters over their working 
life, which almost all U.S. residents meet) becomes eligible in the month that they turn 65 for health insurance via Medicare. 
Prior to 2006, Medicare Parts A and B covered the majority of out-of-pocket costs for enrollees for outpatient and inpatient 
services, but without purchasing supplemental insurance these default components of the program did not cover prescription 
drug costs. Individuals who lacked health insurance could face significant out-of-pocket costs when purchasing insulin, in part 
because there was (and still is as of the time of writing) no generic form of insulin. For example, Eli Lilly's insulin, Humalog, 
cost $34.81 per vial (which would typically contain a month's worth of insulin) in 2001. The yearly cost of insulin at this inten-
sity of usage amounts to $416.72. This is a modest estimate since many individuals with diabetes will require more than one 
vial's worth of insulin per month. Individuals who use a “basal-bolus” regime, so called because it combines a baseline daily 
dose of insulin (the “basal” part) with regular injections before mealtimes (the “bolus” part), will require 9 vials every 2 months 
on average. The yearly cost of insulin at this intensity of usage amounts to $1879.74 in 1998 dollars. In 1998 200% of the federal 
poverty line (which would exclude the possibility of qualifying for Medicaid) outside of Alaska and Hawaii for a two-person 
household was $21 700. Therefore an uninsured married couple with one member with diabetes could expect to spend 7% of 
total household income on insulin alone if they were at 200% of the federal poverty line in 1998.

The fact that individuals just above and just below the cutoff age of 65 are otherwise comparable apart from qualify-
ing for health insurance coverage has motivated regression-discontinuity design-based estimates of Medicare on a range of 
outcomes. After 2006, Medicare beneficiaries could enroll in a private prescription-drug benefit separately to Medigap or 
Medicare Advantage under Medicare Part D (though Part D plans were often bundled with Medicare Advantage plans (Geruso 
& Layton, 2020)). This motivates a difference-in-discontinuities estimator of the impact of prescription drug coverage on insu-
lin use, with 65 as the regression discontinuity cutoff age, comparing the effect of turning age 65 in 2006–2009 to its effect in 
1998–2005. 1 The objects of interest are the net impacts of Medicare coverage on individuals with diabetes (with i subscripting 
individuals, a subscripting age and t subscripting the year in which the survey wave was collected),

�[����|������� = 1,����������� = 1] − �[����|������� = 1,����������� = 0],

for 2006 ≤ � ≤ 2009, 1998 ≤ � < 2006,
 (2)

Which is unobservable since every individual above age 65 is eligible for Medicare, while individuals eligible for Medicare 
prior to 65 are selected for worse health (as they typically qualify via having been on SSDI for two years), and so aren't compa-
rable to non-enrollees younger than 65. I exploit the discontinuity in Medicare eligibility at age 65 to identify the reduced-form 
effect of Medicare on those made eligible for it (an Intention to Treat (ITT) effect) 2:

��� = �0 + �1����������� + �0(��� − �̄) + �1(��� − �̄) ×����������� + �21[�≥2006]

+ �3����������� × 1[�≥2006] + �41[�≥2004] + �5����������� × 1[�≥2004] + ����� + ����,
|

|

|

|

��� − �̄
ℎ

|

|

|

|

< 1, (3)

where Medicareiat = 1 if individual i's age in months a in period t is greater or equal to 780 (= 65 × 12). f0, f1 are polynomial 
functions of order p, according to the order of the local polynomial regression that is used (in practice, either local linear (p = 1) 
or local quadratic (p = 2) due to recent work demonstrating that higher-order polynomials can lead to estimators with undesir-
able properties (Gelman & Imbens, 2018)).

The standard identifying assumptions in this design are that

lim
𝑎𝑎𝑖𝑖𝑖𝑖→�̄�𝑎+

𝐸𝐸[𝑣𝑣𝑖𝑖𝑎𝑎𝑖𝑖|𝑎𝑎𝑖𝑖𝑖𝑖] = lim
𝑎𝑎𝑖𝑖𝑖𝑖→�̄�𝑎−

𝐸𝐸[𝑣𝑣𝑖𝑖𝑎𝑎𝑖𝑖|𝑎𝑎𝑖𝑖𝑖𝑖], (4)

lim
𝑎𝑎𝑖𝑖𝑖𝑖→�̄�𝑎+

𝐸𝐸[𝑣𝑣𝑖𝑖𝑎𝑎𝑖𝑖|𝑎𝑎𝑖𝑖𝑖𝑖, 𝑖𝑖 ≥ 2006] − lim
𝑎𝑎𝑖𝑖𝑖𝑖→�̄�𝑎−

𝐸𝐸[𝑣𝑣𝑖𝑖𝑎𝑎𝑖𝑖|𝑎𝑎𝑖𝑖𝑖𝑖, 𝑖𝑖 ≥ 2006]

= lim
𝑎𝑎𝑖𝑖𝑖𝑖→�̄�𝑎+

𝐸𝐸[𝑣𝑣𝑖𝑖𝑎𝑎𝑖𝑖|𝑎𝑎𝑖𝑖𝑖𝑖, 𝑖𝑖 𝑡 2006] − lim
𝑎𝑎𝑖𝑖𝑖𝑖→�̄�𝑎−

𝐸𝐸[𝑣𝑣𝑖𝑖𝑎𝑎𝑖𝑖|𝑎𝑎𝑖𝑖𝑖𝑖, 𝑖𝑖 𝑡 2006]
 (5)

that is, that unobserved factors trend smoothly at the cutoff age 𝐴𝐴 𝐴𝐴𝐴 , and that there is no difference in the discontinuities after 
2006 relative to before 2006. In the Appendix A, I test for the presence of discontinuities in observable outcomes other than 
diagnosis, which would cast doubt on this assumption. As in Card et al. (2008) and Card et al. (2009), I find that the main 
threat to identification - discontinuous changes in labor force participation - is not borne out in the data (see Appendix A). 
Intuitively, individuals just above and below the age-eligibility criterion are comparable to each other apart from their eligibility 
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KALISKI 7

for Medicare, and those close to the cutoff age in 2006–2009 are comparable to their older counterparts in 1998–2005 in their 
reaction to Medicare except for the expanded options for prescription drug coverage on Medicare in 2006–2009.

I also include an indicator for the post-2004 period and its interaction with the Medicare eligibility indicator for two reasons. 
The first is to capture announcement effects, since Part D was signed into law in December 2003, some months after the end of 
the 2002 wave of the HRS and a few months before the beginning of the interviews for the 2004 wave of the HRS. The second 
is that in the period between Part D's announcement and implementation, Medicare beneficiaries were provided with subsidies 
via the Prescription Drug Card and Transitional Assistance programs (Cubanski et al., 2004; Huh & Reif, 2017). Any effect of 
these interim measures that is distinct from the impact of the full implementation of Part D will be absorbed by this post-2004 
indicator and its interaction with the Medicare eligibility indicator.

Low-income, low-asset individuals with diabetes who qualified for Medicaid coverage in the period before 2006 were guar-
anteed full coverage for the costs of using insulin. This motivates a placebo test: estimating Equation (3) restricting attention to 
Medicaid recipients. I implement and discuss this placebo test, which shows no change in the behavior of those who transition 
to being dually eligible for both Medicaid and Medicare, in the Appendix A.

I use data from three sources: the Health and Retirement Study (HRS), a cleaned version of the HRS called the RAND-HRS 
(Chien et al., 2013), and a cleaned version of a survey administered to a subset of Health and Retirement Study participants 
called the Consumption and Activities Mail Survey (CAMS), the RAND-CAMS.

3.1.1 | The Health and Retirement Study (HRS)

The Health and Retirement Study is a nationally representative longitudinal survey administered by the Institute for Social 
Research at the University of Michigan. In 1998, the individuals are drawn from four birth cohorts: the Oldest Old (born 
pre-1924), the Children of the Depression (born 1924–31), the original cohort from 1992 (born 1931–41) and the War Babies 
(born 1942–47), plus their co-habitants in the households in which they resided at the time of the survey. The HRS followed up 
respondents every two years, providing data on surviving individuals from the 1998 wave in 2000, 2002, 2004, 2006 and 2008. 
Individuals are included in the sample if they self-report a diagnosis of diabetes. In 1998, this amounts to 3043 respondents to 
the HRS, rising to 3771 respondents in the 2008 wave of the HRS.

Since the 2006 wave of the survey was collected between March 2006 and February 2007, which was after the initial diffi-
culties with the rollout of Medicare Part D had been overcome, I code the post-Part D era as inclusive of both the 2006 and 2008 
waves. The interview period for the 2008 wave extended into early 2009. Not all of the variables used in the analysis were avail-
able in the RAND HRS data. In particular, the insulin usage indicator variable had to be merged from the original HRS data.

3.1.2 | RAND-HRS

The RAND-HRS data is a subset of the HRS data with cleaning and imputations performed by a team of researchers from the 
RAND Corporation. Further details of its construction can be found in Chien et al. (2013). This data provides the following 
variables used in the analysis: individual-level characteristics such as education, gender, race, marital status, self-reported 
health, and age in months at the time of the interview (based on the difference between the month and year of the interview 
and reported month and year of birth). This last variable is the running variable for the difference-in-discontinuities design 
employed in this paper.

3.1.3 | Consumption and Activities Mail Survey (RAND-CAMS)

The RAND-CAMS data is a cleaned subset of the Consumption and Activities Mail Survey (CAMS), a survey administered to 
a subset of HRS respondents in years that fall in between survey years of the HRS. I use the waves that correspond most closely 
to the sample period since this is not administered at the same time as the main HRS interviews: 2001, 2003, 2005, 2007 and 
2009. This provides data on expenditure on a wide array of goods, both durable and nondurable. This allows for an additional 
test for discontinuities in expenditure around the age 65 threshold (see Appendix A).

3.2 | Baseline results

Figure 1 displays local linear regressions fit either side of age 65, the age at which individuals qualify for Medicare coverage, 
for a regression with self-reported diagnosis of diabetes as the dependent variable. Diagnoses appear to trend smoothly at age 65 
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KALISKI8

before 2006, when Part D prescription drug coverage is introduced, and thereafter jump slightly at age 65 in 2006–2009. Table 1 
reports estimates from local linear and local quadratic regressions of the size of the post-2006 difference-in-discontinuities in 
diabetes diagnoses. The estimates for both sets of regressions are estimated for four cases: (i) the “optimal” bandwidth for the 
local linear specification, h = 60, (ii) half this bandwidth, h = 30, (iii) double this bandwidth, h = 120, and (iv) including all 
observations. Though the difference-in-discontinuities is not statistically significant for the “optimal” local linear bandwidth of 
h = 60, there does appear to be a statistically significant increase in the rate of diagnosis of diabetes at both narrower and wider 
bandwidths. A researcher presenting the above table as a robustness check for main results examining outcomes among individ-
uals with diabetes is unlikely to persuade her audience that there is no problem with endogenous sample selection on the basis 
of diabetes diagnoses, which would motivate her to use one of the two methods proposed above to either bound or point-identify 
the impact of Medicare on outcomes measured in this subgroup. Consistent with Figure 1, but not calculations made using the 
“optimal” (for the local-linear case, MSE-minimizing) bandwidth of Calonico et al. (2014) of h = 60, an increase of between 
1.7 and 2.7% points in the frequency of diabetes diagnosis may occur at age 65 after 2006. This suggests that individuals in 
the sample are more likely to report being diagnosed with diabetes once they turn 65 once prescription drug coverage is made 
available on Medicare.

That the increase in diagnoses after age 65 happens only after 2006 can be rationalized via two mechanisms. First, thera-
peutic measures and screenings are complements (Kenkel, 2000). If individuals anticipate that they are more likely to afford 
treating the consequences of living with diabetes via prescription drug coverage, this may encourage them to be screened for 

Bandwidth (h)

(1) (2) (3) (4) (5) (6) (7) (8)

30 60 120 ∞ 30 60 120 ∞

Medicare × 1[t ≥ 2006] 0.027* 0.010 0.018* 0.017** 0.027* 0.010 0.018* 0.017**

(2.092) (0.838) (2.267) (3.001) (2.080) (0.836) (2.212) (2.998)

N 19,221 37,648 70,342 114,254 19,221 37,648 70,342 114,254

Note: Estimates are from interaction between the treatment indicator for qualifying for Medicare in the month individuals turn 65 and the indicator for the period 
2006–2009. Standard errors are clustered at the individual level. Columns (1–4) report local linear regression results; Columns (5–8) report local quadratic regression 
results. The optimal bandwidth for the local linear regression, selected by the MSE criterion of Calonico et al. (2014), is h = 60. t statistics in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

T A B L E  1  Changes in diabetes diagnoses at age 65 in 2006–2009.

F I G U R E  1  Changes in self-reported diabetes diagnoses at age 65, 1998–2009. The dependent variable is self-reported, coded as 1 if a 
respondent answers “yes” to the question of whether they have been diagnosed with diabetes, and 0 otherwise. The running variable is months of 
Medicare eligibility, calculated as age in months—780, so that 0 is the month in which individuals turn 65. Source: Author's own calculations using 
a combination of the 1998–2008 waves of the Health and Retirement Study and RAND-HRS data, via the R package “rdrobust”.
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KALISKI 9

diabetes relative to the case where they do not have prescription drug coverage and face higher cost-sharing for antidiabetic 
medications. Second, at least one previous study has found evidence of “upcoding” of diagnoses due to risk adjustment after the 
implementation of Part D (Geruso & Layton, 2020). This is due to the bundling of many Part D plans with Medicare Advantage 
plans, the latter of which provided incentives for physicians to make diagnoses of chronic conditions at higher rates in order 
to earn greater transfer payments for enrolling riskier individuals. Geruso and Layton (2020) find a statistically significant 
increase in the probability of Medicare enrollees being diagnosed with a chronic condition in 2006 relative to their pre-2006 
counterparts. Consistent with this explanation, I find higher and increasing proportion of individuals with diabetes who report 
being enrolled in a Medicare HMO in 2006–2009 relative to 1998–2005, in which this proportion declined (see Appendix A).

Consider a researcher who has run the above robustness check that tests whether inclusion in the subsample of people 
with diabetes changes at age 65. The null results for the “optimal” bandwidth (Table 1) are unlikely to convince a skeptical 
reviewer that her main results are not subject to sample selection on the basis of diagnosis, especially given the pattern visible 
in Figure 1. What this paper's proposed method allows her to do is to argue for the informativeness of her main results regard-
less of whether diagnosis rates actually do increase at the cutoff. If they do not, she has point-identified the effect of interest. If 
diagnosis rates do increase, and Monotone Diagnosis Response and Monotone Subgroup Selection hold, she can argue that her 
estimates represent lower bounds for the treatment effect of interest. In addition, if she has a panel dimension in the data, and 
the necessary stability assumption holds, she can use within-person variation to estimate the extent of the bias due to changing 
diagnosis rates and correct for them.

Figure 2 and Table 2 both exhibit evidence that self-reported insulin use decreased at age 65 among individuals with diabe-
tes prior to 2006, with this decrease diminishing or closing completely with the advent of prescription drug coverage under 
Medicare Part D. There is an overall decline in self-reported insulin use of 4% points prior to 2006 when individuals with diabe-
tes qualify for Medicare (Table 2, column 1). In the Appendix A, I provide some evidence that this is due to individuals drop-
ping their employer-provided health insurance when they qualify for Medicare. It is unlikely that this is due to employer-based 
health plans disenrolling individuals at age 65 as this contradicts provisions of both COBRA and HIPAA regulations.

Though the increase of 3% points at the same age once Part D prescription drug coverage is introduced is not statisti-
cally significant, a Wald test of the sum of the two effects canceling out cannot reject the null hypothesis that β1 + β3 = 0 
(p = 0.6446). The decline pre-2006 and subsequent increase after Part D prescription drug coverage is introduced appears to 
be driven primarily by changes in initiation of insulin therapy by individuals who were not previously using insulin (column 
2), which is consistently statistically significant across the two specifications. The magnitude of these effects on initiations of 

F I G U R E  2  Changes in insulin use at age 65 among individuals with diabetes. The dependent variable is self-reported, coded as 1 if a 
respondent answers “yes” to the question of whether they use insulin to manage their diabetes, and 0 otherwise. The running variable is months of 
Medicare eligibility, calculated as age in months—780, so that 0 is the month in which individuals turn 65. Source: Author's own calculations using 
a combination of the 1998–2008 waves of the Health and Retirement Study and RAND-HRS data, via the R package “rdrobust”.

 10991050, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hec.4718, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KALISKI10

insulin use is also consistent across the two specifications: a 9-percentage point decline at age 65 in the rate of take-up among 
non-users prior to 2006, offset by a 3 percentage-point increase in this rate post-2006.

Both the empirical results above and the diagnosis-constant treatment effects (in the next subsection) suggest a greater 
sensitivity to prescription drug coverage than some of the prior literature for insulin use decisions; for example, the estimated 
own-price elasticity for insulin in Einav et al. (2018) is −0.02 (not reported in the main text of their paper, but in Table A14 of 
their online Appendix A). There are two potential reasons for this.

First, since the insulin use question in the HRS is just a yes/no response to whether or not an individual currently uses insu-
lin, the above estimates correspond to the extensive margin of insulin use. The fact that the responses estimated here are at the 
extensive rather than intensive margin has the advantage of making it easier to reconcile the large extensive-margin response 
with the smaller intensive margin price elasticity of demand for insulin 3 identified by Einav et al. (2018), since extensive- and 
intensive-margin responses need not be similar. Their relative size will depend on which individuals are at the margin and 
which are infra-marginal, as in the case of the Marginal Treatment Effect and Average Effect of Treatment on the Treated (cf. 
Heckman et al. (2006)).

Second, the identifying variation used in this paper induces a different subset of marginal individuals to change their behav-
ior. Einav et al. (2018) exploit bunching at the kink created by Medicare Part D's “donut hole” in coverage: beyond $2510 in 
prescription drug costs, individuals face 100% cost-sharing until they reach the “catastrophic” coverage threshold of $5726 
in out-of-pocket expenditures. Users of insulin who face costs of these magnitudes - almost certainly due to heavy required 
usage - are likely much less able to maintain their immediate well-being than individuals who require less intensive regimens 
of insulin usage to control their blood sugar levels. This is likely why the responsiveness of these individuals to the changes in 
cost-sharing around the donut hole is much smaller than the responsiveness of individuals who are at the margin of deciding 
whether or not to begin using insulin. The results suggest that the extensive margin of insulin usage - the start/don't start insu-
lin decision - accounts for a large share of the price elasticity of −0.25 for all antidiabetic medications estimated by Goldman 
et al. (2004). 4

3.3 | The diagnosis-constant effect of prescription drug coverage on insulin use

The baseline results indicate a negative impact of qualifying for Medicare on insulin use prior to prescription drug coverage 
being included in Medicare in 2006. Of the coefficients that measure the positive, offsetting impact of Part D prescription drug 
coverage, the positive coefficient for overall insulin use is not statistically significant, but the one for initiations of insulin use 
by previous non-users is. At the same time, there is some evidence that the rate at which diabetes is diagnosed for new Medicare 
beneficiaries increased after 2006, consistent with prior studies (for example, Geruso and Layton (2020)), and that cost-related 
nonadherence to medication decreased among individuals with diabetes at age 65 after Part D was introduced.

This combination of results, in line with the method outlined in Section 2, suggests that the estimated effect of Medicare 
prescription drug coverage in 2006–2009 on initiations of insulin use is an underestimate relative to the diagnosis-constant 
effect. Both Monotone Subgroup Selection and Monotone Diagnosis Response are plausible due to the increasing severity of 

Local polynomial  
order, p

p = 1 p = 2

(1) (2) (3) (4) (5) (6) (7) (8)

Insulin Began insulin
Stopped 
insulin

Didn't fill: 
Cost Insulin Began insulin

Stopped 
insulin

Didn't 
fill: Cost

Medicare −0.06** −0.09*** −0.00 0.04* −0.06** −0.09*** −0.00 0.03

(−3.07) (−5.10) (−0.32) (2.35) (−2.74) (−5.28) (−0.62) (1.50)

Medicare × 1[t ≥ 2006] 0.03 0.03* −0.01 −0.08*** 0.02 0.03** −0.01 −0.07***

(0.90) (2.18) (−1.28) (−3.76) (0.99) (2.79) (−1.92) (−4.20)

N 7285 7288 7288 7282 11,402 11,405 11,405 11,389

Note: Estimates are from the treatment indicator for qualifying for Medicare in the month individuals turn 65 and its interaction with the indicator for the period 
2006–2009. Standard errors are clustered at the individual level. All specifications use the Uniform kernel and include controls for race, gender, education and smoking 
status. The bandwidth used is 60 months for the local linear specification, and 100 months for the local quadratic specification, selected by the MSE criterion of 
Calonico et al. (2014). t statistics in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

T A B L E  2  Changes in insulin use at age 65 for individuals with diabetes, pre- and post-2006.
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KALISKI 11

the illness over time. Undiagnosed individuals with diabetes are likely to only be more likely to be diagnosed when in more 
frequent contact with medical practitioners, which supports the assumption of Monotone Subgroup Selection in the case of the 
effect of Medicare eligibility on diabetes diagnosis. Rates of insulin use are likely to be lower for individuals who are only diag-
nosed in the counterfactual with greater access to healthcare since those on the margins of a diagnosis will tend to be healthier, 
in the early stages of the disease, or otherwise be capable of adequate control of their blood sugar levels without injecting 
insulin. This is borne out by Table 3, which documents rates of insulin use by time from first diagnosis in the HRS data (cf. 
Inzucchi et al. (2015), who find that in a sample of individuals with diabetes who had been diagnosed on average 2 years prior 
to the start of the study period, one of their subgroups had a cumulative insulin use initiation rate of 9.9%, similar to the overall 
rate found in this data for individuals who were between 8 and 10 years from diagnosis).

Otherwise, an undiagnosed individual is likely to undergo a severe medical episode that necessitates contact with health 
care providers, during which a diagnosis is more likely to be made. Thus, Monotone Diagnosis Response is also plausible in 
this setting. This combination of assumptions allows us to conclude, as in Section 2, that the estimated effect of prescription 
drug coverage is likely to be a lower bound for the diagnosis-constant effect. Formally:

Monotone Subgroup Selection: For every individual i,

�����(1) ≥ �����(0) ⇔ �����(�������� = 1) ≥ �����(�������� = 0), 

Monotone Diagnosis Response:

𝐸𝐸
[
Began Insulin𝑖𝑖(1)|𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖(1) = 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖(0) = 1

]
≥ 𝐸𝐸

[
Began Insulin𝑖𝑖(1)|𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖(1) = 1, 𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷𝑖𝑖(0) = 0

]
, 

and so,

�
[

Began Insulin�(1) − Began Insulin�(0)|��������� = 1, �����(1) = �����(0) = 1
]

≥ �
[

Began Insulin�(1)|��������� = 1, �����(1) = 1
]

− �
[

Began Insulin�(0)|��������� = 0, �����(0) = 1
]

,
 

the left hand side of which inequality is the diagnosis-constant effect of treatment on the treated, and the right hand side of 
which is estimated for the pre- and post-2006 regimes. Since we have evidence that rates of diagnosis of diabetes are affected 
by the advent of the post-2006 regime, we can conclude that the positive impact on initiations of insulin use estimated above 
post-2006 is a lower bound for its impact on initiations among individuals who had already been diagnosed with diabetes prior 
to qualifying for Medicare in the period 2006–2009.

The HRS data also follows the same respondents from wave to wave, allowing us to examine within-person outcomes 
among the newly diagnosed. Since the regression-discontinuity framework assumes that individuals close to the cutoff are 
comparable, under those assumptions it follows that

�
[

Began Insulin65+ |����65+ = 1, ����65− = 0
]

= �[Began Insulin|�������� = 1, ����(1) = 1, ����(0) = 0],
 

which allows us to calculate

�[Began Insulin|�������� = 1, ����(1) = 1, ����(0) = 1]

=
�
[

Began Insulin65+ |����65+ = 1
]

− �
[

Began Insulin65+ |����65+ = 1, ����65− = 0
] [Pr(����65+ = 1) − Pr(����65− = 1)]

Pr(����65+ = 1)
Pr(����65− = 1)
Pr(����65+ = 1)

, 

(1) (2) (3) (4) (5) (6)

Overall 0–2 years 2–4 years 4–6 years 6–8 years 8–10 years

Insulin use rate 0.24*** 0.04*** 0.04*** 0.05*** 0.07*** 0.09***

(43.07) (10.04) (10.94) (11.54) (12.21) (12.46)

N 20,327 2516 3536 3492 2913 1664

Note: Estimates are mean rates of insulin use, conditioning on the length of time in the HRS data for which the 
respondent reports having diabetes. Increments are in 2 years, reflecting that the HRS survey data is collected 
every 2 years. t statistics in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

T A B L E  3  Rates of progression to 
insulin use in the Health and Retirement 
Study (HRS) data for individuals with 
diabetes, by length of time for which a 
diagnosis is reported.
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KALISKI12

via the Law of Total Probability (as in Section 2) and Bayes' Rule.
Since the HRS data includes information on whether individuals are newly diagnosed, we can calculate 

𝐴𝐴 𝐴𝐴
[
Began Insulin65+ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷65+ = 1, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷65− = 0

]
 , which turns out to be 0.033, just under half the overall average of 0.079. 

Using the most pessimistic of the estimates of the discontinuous increase in individuals with diabetes in 2006–2009 of 0.027, 
together with the pre-65 proportion of individuals with diabetes of 0.207, produces Pr(����65− = 1)

Pr(����65+ = 1) =
0.207

0.207+ 0.027 = 0.88 and 

hence [Pr(����65+ = 1)−Pr(����65− = 1)]
Pr(����65+ = 1) = 0.12 . Together with the sample proportion 𝐴𝐴 𝐴𝐴

[
Began Insulin65+ |𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷65+ = 1

]
= 0.079 , 

this gives �
[

Began Insulin65+ |����65+ = 1&����65− = 1
]

= 0.079− 0.033× 0.12
0.88 = 0.085 . Under Monotone Subgroup Selection, 

the untreated outcome estimated for the under-65s is common to the estimated treatment effect and its diagnosis-constant 
counterpart, and so the diagnosis-constant treatment effect exceeds the “naive” estimate that ignores new diagnoses  
by �

[

Began Insulin65+ |����65+ = 1&����65− = 1
]

− �
[

Began Insulin65+ |����65+ = 1
]

= 0.085 − 0.079 = 0.006 . Since the 
main estimate of the positive effect of Part D on initiations of insulin use is an increase of 3% points, this implies that the 
diagnosis-constant estimate of this effect is an increase of 3.6% points. Under the maintained assumptions, the main results 
could be understating the impact of Part D prescription drug coverage on initiation of insulin use by 20% relative to the true 
increase.

4 | DISCUSSION

Identifying the causal impact of health insurance on particular subgroups is often of interest to applied researchers. When 
those subgroups themselves change - as the result of new diagnoses, for example, - this can result in biased estimators of the 
objects of interest. This paper exploits panel data to estimate the extent of this bias by identifying the average outcome among 
the newly diagnosed and using the Law of Total Probability and Bayes' Rule to subtract it from the overall estimate. This 
results in a “diagnosis-constant” estimate of the causal effect of interest. The differences between the two can be substantial: 
the “diagnosis-constant” treatment effect is one-sixth larger in the empirical application considered in this paper. Even in the 
absence of panel data, relatively mild assumptions based on subject matter knowledge allow us to conclude that the estimated 
treatment effect is a lower bound for its diagnosis-constant counterpart.

There are two main mechanisms that could produce the increase in diabetes diagnoses observed above. The first is increased 
contact with health care providers, which increases the probability that a latent condition is diagnosed. The second is “upcod-
ing” (Geruso & Layton,  2020), whereby Medicare Advantage plans' primary care providers are encouraged to loosen the 
criteria for making a diagnosis due to the benefits to such plans of enrolling individuals with diabetes that accrue via risk 
adjustment payments. Both mechanisms have similar implications for insulin use among the newly diagnosed. Individuals with 
Type II diabetes who are able to live without being conscious of an official diagnosis are typically in the early stages of the 
disease, as mismanagement of the disease in its later stages can induce a hyperglycemic (“high blood sugar”) coma. They are 
therefore unlikely to be recommended to begin insulin therapy to manage their condition by a primary care provider. This is 
borne out by the lower-than-average estimated rate of insulin use among those newly diagnosed with diabetes in the HRS data. 
As a result, the estimated causal effect of prescription drug coverage on insulin use via the difference-in-discontinuities design 
is biased  toward zero, and is a lower bound for the true causal effect. Exploiting the panel dimension of the HRS data allows 
us to say by how much this estimator underestimates the “diagnosis-constant” causal effect: it is as much as 20% smaller in 
relative terms.

The empirical results of this paper contribute to a growing literature that finds that individuals are equally responsive 
to the price of high-value care as they are to the price of low-value care, despite economic theory predicting that the latter 
should exceed the former (Abaluck et al., 2018; Baicker et al., 2015; Chandra et al., 2021; Einav et al., 2018; Goldman 
et  al.,  2004, 2007; Gross et  al.,  2022). Despite physicians agreeing that individuals with Type II diabetes should begin 
insulin use as soon as it is recommended to them by their primary care provider (Nathan et al., 2009), I find significant 
evidence of delayed initiation of insulin therapy. By contrast, I find much weaker evidence that worse prescription drug 
coverage leads to cessation of insulin therapy once it has already begun. While there has been significant recent attention 
devoted to insulin rationing among users due to its cost (Herkert et al., 2019), this study's results suggest that an additional, 
underappreciated problem with the high price of insulin is that it deters the marginal individual from beginning to use it in 
a timely manner.

The main policy implication of this paper's methodology is that even when “causal” estimates of the sensitivity of health 
care consumption to its price are available, policymakers may still be underestimating the extent to which individuals may 
forgo important investments in their health due to cost considerations. This will be the case if the treatment effect is examined 
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KALISKI 13

separately for costly subgroups of interest (such as individuals with diabetes) without accounting for the fact that membership 
in that subgroup in self-reported data is endogenous. The asymmetry between current users and non-users’ responses to price 
changes is evidence that current use of insulin makes future use more likely (i.e., there is persistence in insulin use, possibly 
via habit formation). As a result, one option available to policymakers that doesn't appear to be used in any OECD countries 
as of the time of writing is a “first X fills free” policy that lowers the price for first-time users for a pre-specified amount of 
time. Since current users are less sensitive to the price than those not yet using insulin, this lower price for non-users is likely to 
capture most of the increase in take-up that would result from a lower price for all individuals with diabetes. Similarly, once  the 
price  increases again after the initial subsidy period expires, the decline in insulin use due to higher out-of-pocket costs is, as 
per the empirical results, likely to be significantly smaller than the initial increase in the proportion using insulin. I leave further 
study of these short-run subsidies to future research.

While the paper uses health insurance and diagnosis of latent conditions as the setting for these methods throughout, 
in principle they could be applied to any situation where a covariate is affected by treatment and a subgroup defined by a 
particular value of that covariate is of interest. For example, some welfare payments such as the United States' Earned Income 
Tax Credit (EITC) treat single and married recipients differently in the calculation of benefits for which they are eligible 
(Dickert-Conlin & Houser, 2002). Recent work by Ortigueira and Siassi (2022) finds that the overall tax and transfer system 
in the United States incentivizes cohabitation for single mothers. If a researcher wants to examine the separate impact of the 
EITC on single recipients relative to married or cohabiting recipients, then the method outlined in this paper could help them 
to account for the impact of the EITC on household formation, which would ordinarily prevent the researcher from isolating 
the subgroup-specific causal effects.

Finally, this paper deals only with binary indicators of inclusion in a subgroup. Many endogenously determined subgroups 
of interest will vary continuously with some characteristic instead. In the empirical application used in this paper, data on 
the severity of the diabetes for any particular individual (as measured by their HbA1C levels, for instance) was not available. 
Had it been available, different subgroups within the subgroup of individuals with diabetes could be considered, such as the 
subgroup with blood sugar levels high enough to make it likely that their physician would recommend that they begin using 
insulin. These data would allow the researcher to speak not just to the question of take-up but adherence to medical recommen-
dations (the latter of which are not observed in the data used above). Future work could extend the above analysis to examine 
“severity-constant” treatment effects that condition on some variable being above a threshold value that triggers different 
treatment regimes.
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ENDNOTES
  1 Studies using a similar research design include Card et al. (2008, 2009), Anderson et al. (2012, 2014) and Asfaw (2019). Studies that also exploit 

the age of Medicare eligibility as a source of exogenous variation, but in a “triple-difference” design, include Dave and Kaestner  (2009) and 
Wettstein (2020).

  2 Note that the object of interest is not the causal effect of access to health insurance per se as in the motivating example for this paper, as Medicare 
both gives the previously uninsured access to health insurance and expands coverage options for those who were already insured prior to age 65 
(Card et al., 2009). This paper therefore focuses on the net effect of qualifying for Medicare coverage, rather than attempting to identify the separate 
contributions of the extensive margin (health insurance vs. no insurance) and intensive margin (more generous insurance) of health insurance to this 
effect.

  3 The measure of quantity demanded in Einav et al. (2018) is whether an individual fills a prescription of a particular drug in the month of December. 
This measures the intensive margin of the demand for prescription drugs. The question in the Health and Retirement Study regarding insulin usage 
asks whether or not individuals currently use insulin to manage their condition, that is, whether they use it at all.

  4 Goldman et al. (2004) estimate that a doubling of co-payments for antidiabetic medications results in a 25% (relative, not percentage point) reduc-
tion in their usage. This is not reported as a price elasticity in their paper; I take the implied point elasticity to be 𝐴𝐴

−25%

100%
= −0.25 .
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