
Usage Guidelines:
Please refer to usage guidelines at contact lib-eprints@bbk.ac.uk.
Title
Differences in Intrinsic Gray-Matter Connectivity and their genomic underpinnings in Autism Spectrum Disorder

Authors
Johanna Leyhausena,b,c, Tim Schäfera,b, Caroline Gurra,b, Lisa M. Berga,b, Hanna Seelemeyera,b, Charlotte M. Pretzschd, Eva Lothd, Bethany Oakleyd, Jan K. Buitelaare, Christian F. Beckmanne, Dorothea L. Florisc,f, Tony Charmang, Thomas Bourgeronh, Tobias Banaschewskii, Emily JH Jonesj, Julian Tillmannk, Chris Chathaml, The EU-AIMS LEAP Group, Declan Murphyd, Christine Eckera,b,d

Affiliations
a Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, 60528 Frankfurt am Main, Germany.
b Brain Imaging Center, Goethe-University, 60528 Frankfurt am Main, Germany.
c Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.
d Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK.
e Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Center, 6525 EN Nijmegen, The Netherlands.
f Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland.
g Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK.
h Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris Cedex 15, France.
i Child and Adolescent Psychiatry, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, 68159 Mannheim, Germany.
j Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7JL, UK.
k F. Hoffmann–La Roche, Innovation Center Basel, Basel, Switzerland.

Corresponding author: Johanna Leyhausen; Department of Child and Adolescent Psychiatry, Deutscherordenstrasse 50, University Hospital, Goethe University, 60528 Frankfurt am Main; Tel: +49 (0)69 6301 85832; E-Mail: johanna.leyhausen@kgu.de

Short running title: Differing intrinsic gray-matter connectivity in autism

Keywords: ASD, neuroimaging, structural MRI, intrinsic wiring costs, imaging-genetics
Abstract

Background
Autism is a heterogeneous neurodevelopmental condition accompanied by differences in brain connectivity. Structural connectivity in autism has mainly been investigated within the white matter. However, many genetic variants associated with autism highlight genes related to synaptogenesis and axonal guidance, thus also implicating differences in ‘intrinsic’ (i.e. gray-matter) connections in autism. Intrinsic connections may be assessed in vivo via so-called intrinsic global and local wiring costs.

Methods
Here, we examined intrinsic global and local wiring costs in the brain of N=359 autistic individuals and N=279 controls, aged 7-31 years from the EU-AIMS Longitudinal European Autism Project (LEAP). FreeSurfer was used to derive surface mesh representations to compute the estimated length of connections required to wire the brain within the gray-matter. Vertex-wise between-group differences were assessed using a general linear model. A gene expression decoding analysis based on the Allan Human Brain Atlas was performed to link neuroanatomical differences to putative underpinnings.

Results
Group differences in global and local wiring costs were predominantly observed in medial and lateral prefrontal brain regions, in inferior temporal regions, and at the left temporoparietal
junction. The resulting neuroanatomical patterns were enriched for genes previously implicated in the etiology of autism at the genetic and transcriptomic level.

Conclusion

Based on intrinsic gray-matter connectivity, the study investigated the complex neuroanatomy of autism and linked between-group differences to putative genomic and/or molecular mechanisms to parse the heterogeneity of autism and provide targets for future subgrouping approaches.
Introduction

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental condition characterized by difficulties with social communication, as well as restricted and repetitive behavior (1). Studies suggest that autism is associated with differences in neuroanatomy and structural brain connectivity (2). Investigating these differences and their putative genetic mechanisms might aid to identify targeted support.

Magnetic resonance imaging (MRI) has extensively been used to examine differences in brain connectivity in vivo. For example, functional and structural studies suggest that autism is accompanied by differences in global (i.e. long-range) and local (i.e. short-range) connectivity compared to non-autistic individuals even though there is some dispute over the sign and scale of these difference. Some studies report decreased global and increased local connectivity in autism (3–6), while others report significant increases (7) or decreases in global and local functional connectivity, respectively (8). Such heterogeneity in findings might be due to various reasons including variability in participant demographics, sample sizes, or connectivity features (8–11). Evidence also suggest that differing brain connectivity is associated with clinical traits in autism, i.e. alterations in functional brain connectivity in limbic, frontoparietal and motor regions are associated with repetitive behavior (12), and with the severity of core autism features (13). Thus, examining brain connectivity may provide important novel insights into the neurobiological underpinnings of different clinical autistic traits.

Most previous neuroimaging studies investigating brain connectivity in autism focused on so-called ‘extrinsic’ connections that pass through the cortical white matter (e.g. 14). However,
genetic and transcriptomic studies suggest that many genetic variants associated with autism include genes related to synaptogenesis, maturation and axonal guidance, hence also implicating differences in ‘intrinsic’ (i.e. gray-matter) connectivity in the pathophysiology of the condition (15–17). Intrinsic cortico-cortical connections are confined to the cortical sheet and travel in parallel to the cortical surface (18). As described in histological studies, such intrinsic connections can range up to a few millimeters and are found in the prefrontal (19), visual, and somatosensory cortex (20). Intrinsic connections are related to various surface-based geometric features such as surface area (21), cortical separation distances (22), and Gaussian curvature (23) and are considered to be ‘intrinsic’ as they are independent from the two-dimensional folding of the cortex, and cannot be removed without deformation of the cortical surface (22). Therefore, measuring intrinsic connections provides insights that are not accessible by traditional volume-based approaches, and may provide in vivo proxy markers that are closely related to the aetiology of autism (i.e., genetic underpinnings).

To date, there is only one study that has examined differences in intrinsic connectivity in vivo in autistic adults (6). This study examined the intrinsic organization of the cortex using geodesic distances which represent the shortest path between two points (i.e. vertices) along the cortical surface, thus running in parallel to intrinsic horizontal connections (22). These distances were subsequently used to estimate intrinsic wiring costs. Global wiring costs were quantified by ‘mean separation distances’ (MSD) representing the average geodesic distance from a vertex to the rest of the surface. Local wiring costs were estimated using ‘geodesic circles’ projected onto the cortical surface. Here, the radius of a geodesic circle represents the ‘intra-areal’ wiring costs (i.e., costs required to wire the cortex within the circle), while the perimeter represents the ‘inter-
areal wiring costs (i.e., costs associated with wiring the cortex outside the circle) (see supplement and SF1 for schematic illustration). The study by Ecker et al. (6) reported that the brain in autism is characterized by (i) reduced global wiring costs, (ii) increased inter-areal wiring costs, and (iii) decreased intra-areal wiring costs compared to the non-autistic brain suggesting that intrinsic measures of brain morphometry are particularly well suited to describe the neuroanatomy of autism, and are conceptually linked to specific neurobiological mechanisms.

So far, direct evidence linking differing intrinsic brain connectivity to specific genes and neurobiological mechanisms remain missing. However, studies leverage the power of the spatial gene expression data provided by the Allan Human Brain Atlas (AHBA, 24) to link imaging phenotypes to putative genetic mechanisms (25–27). Utilizing the AHBA, it is possible to genetically ‘decode’ patterns of neuroanatomical variability, i.e., to identify genes with a spatial pattern of expression resembling the neuroimaging map. The resulting list of genes with a significant spatial correlation can be tested for an enrichment of specific gene sets previously associated with autism.

The objective of the current project was therefore to (i) replicate and extend earlier finding on intrinsic wiring costs in a large and clinically heterogeneous sample of autistic individuals and controls provided by the EU-AIMS Longitudinal European Autism Project (LEAP, 11), and (ii) to establish the putative genomic and/or molecular mechanisms mediating these differences in the brain to facilitate future subgrouping approaches.
Methods and Materials

Participants

The data used in this study was provided by the multicentered EU-AIMS LEAP project. A comprehensive description of the sample has been published elsewhere (11,25,28). In brief, N=359 (male=258, female=101) individuals with autism and N=279 (male=178, female=101) controls between the age of 6-30 years with structural MRI data were included in this study (Table 1). A detailed description of inclusion/exclusion criteria, clinical assessments, and medication status can be found elsewhere (Supplement and 25). Independent ethics committees approved the study, and written informed consent was obtained for all participants.

MRI data acquisition

All participants underwent MR-imaging in 3-T scanners located at six different sites using comparable acquisition paradigms: (i) University of Cambridge, U.K., (ii) King’s College London, U.K., (iii) Central Institute of Mental Health, Mannheim, Germany, (iv) Radboud University Medical Centre, Netherlands, (v) University Medical Centre Utrecht, Netherlands and (vi) Rome University, Italy. For all participants, a high-resolution structural T1-weighted image was acquired with full head coverage (slice thickness=1.2mm, in plane resolution=1.2x1.2mm², see supplement TS2). Subsequently, these T1-weighted images were used for surface reconstruction with FreeSurfer software.
Cortical surface reconstruction using FreeSurfer

FreeSurfer, version 6.0.0 was used to obtain cortical surface representations for each T1-weighted image of N=708 individuals within the LEAP sample. These fully automated processes have been described in detail elsewhere (29,30). All surface reconstructions underwent thorough quality assessments (see 25). In total, a sample of N=638 individuals was used, N=359 in the autistic group and N=279 in the non-autistic group. For reasons of computational efficiency (6), surface reconstructions were downsampled to 40,962 vertices per hemisphere (fsaverage6 template), and pial surfaces were used for the computation of global and local wiring costs.

Estimation of global wiring costs: Mean Separation Distance (MSD)

We initially computed Mean Separation Distances (MSD) to estimate the degree of global intrinsic wiring costs based on the individual’s pial surface reconstruction. MSDs represent the average geodesic distance between each vertex and all other vertices characterizing the cortical surface (see supplement and SF1 for details). Geodesic distance computations were performed using the “Fast-Marching” toolbox for MATLAB (R2021a, The Mathworks) that provides ‘exact’ geodesic distances (31–33). This resulted in a n-by-n matrix of distances D with zero values in the diagonal, with n indicating the number of vertices of the surface. The elements of D thus hold the geodesic distance from a vertex to all other vertices. The mean values of row/columns (1-by-n) of this matrix represent the MSD for each vertex.
Estimation of local wiring costs: Radius Function and Perimeter Function

Subsequently, we estimated local wiring costs by means of geodesic circles. Each circle had a radius \(r \) and a perimeter \(p \) and covered 5% of the total surface area. This percentage was chosen as (i) it has been shown to elicit a stable cortical pattern incorporating both the high frequency local variations at lower scales, and more global trends at higher scales (see 22), and (ii) to make our findings comparable to previous reports (6). The resulting radius of each circle determines the ‘radius function’, and was used to estimate the ‘intra-areal’ wiring costs at that vertex, i.e. the minimum length of connections required to connect a vertex with other vertices inside this area. In turn, the perimeter of the circle was used to estimate the ‘inter-areal’ wiring costs at a vertex that indicate the length of connections required to wire a vertex with neighboring vertices outside the given area (6,22). We examined MSD, radius function, and perimeter function at each vertex with a 2mm smoothing kernel (6), and examined the robustness of the results across different smoothing filters (see supplement).

Surface-based statistical analyses

For statistical analyses, the SurfStat toolbox (https://www.math.mcgill.ca/keith/surfstat/) for MATLAB (33) and R (34) was used. Vertex-wise between-group differences in MSD, perimeter function, and radius function were examined with a general linear model (GLM) incorporating group, sex, and acquisition site as fixed effect factors, and age, full-scale IQ (FSIQ), and pial surface area (SA) as continuous covariates and \(\epsilon_i \) is the residual error at vertex \(i \).
$Y_i = \beta_0 + \beta_1 \text{Group} + \beta_2 \text{Sex} + \beta_3 \text{Age} + \beta_4 \text{FSIQ} + \beta_5 \text{Site} + \beta_6 \text{SA} + \varepsilon_i$

Coefficient β_1 was used to estimate the between-group differences that were normalized by the corresponding standard error. Corrections for multiple comparisons were performed using random-field-theory based cluster analysis for non-isotropic images with a cluster-based significance threshold (p_{clust}) of 0.05 (two-tailed) (35). Effect sizes associated with each model term were assessed using Cohen’s f, where values of 0.1, 0.25, and 0.4 indicate small, medium, and large effects, respectively. In the autistic group, brain-behavior correlations between differences in MSD, perimeter function, and radius function and the severity of autism traits were examined using Pearson’s r. Autism traits were assessed using ADOS (36), ADI-R (37), SRS-2 (38), SSP(39), and RBS-R (40).

We also examined the effects of medication status and compared our results across distinct age-stratified subgroups, i.e., adults (>18 years), adolescents (12-18 years), children (<12 years), and a group with mild learning disability, i.e., >12 years and IQ<75 (see supplement for details). To compare differences in intrinsic wiring costs with other morphometric features, we also examined between-group differences in vertex-wise measures of surface area (SA) (41) and local gyrification index (lGi, 42), with focus on the relationship between variability in MSDs and SA (see supplement for details).

Gene Expression Decoding Analysis
To link the neuroanatomical findings of differences in intrinsic gray-matter wiring costs to putative genetic underpinnings, a gene expression decoding analysis (GEDA) was performed (25,27). The GEDA within Neurosynth/Neurovault (43,44) assessed the spatial correlation between gene expression data of N=20,787 genes from the Allen Human Brain Atlas (24) and the neuroanatomical findings from the vertex-wise between-group comparisons. A comprehensive description of the enrichment analyses is provided in the Supplement.
Results

Subject demographics

There were no differences between the autistic and non-autistic group in terms of age ($t(638)=0.28, p=0.78$), and total surface area ($t(638)=0.15, p=0.88$). However, autistic individuals had a significant lower full-scale IQ (mean=98.8, SD=9.73) than non-autistic controls (mean=104.75, SD=18.24) ($t(638)=3.64, p=0.001$).
Table 1). We covaried for these measures in all subsequent analyses. Our sample included more autistic males than male controls, and more males than females (Table 1).

Differences in wiring costs

Global intrinsic wiring costs. Autistic individuals showed significant differences in MSDs compared to the control group. More specifically, the brain in autism showed significantly decreased MSDs in several clusters that included the (i) right lateral and medial prefrontal cortex (approximately Brodman area (BA) 10/11/46), (ii) left lateral orbitofrontal cortex and medial prefrontal cortex (BA 10/11), and (iii) left rostral middle frontal cortex and pars triangularis (BA 44/45/46) (Figure 1A,B). Effect sizes for the main effect of group (mean=0.04,SD=0.03) and all other model terms are displayed in Figure 1C. These differences are most pronounced during adulthood and adolescents (see Figure 2 and ST4) and are stable across smoothing filters (see SF6), and when covarying for medication status (see SF4).

Local intrinsic wiring costs. The brain in autism was also characterized by clusters with significantly increased perimeter function. Here, significant increases in autism were observed in the (i) right rostral middle frontal cortex (BA 46), (ii) right middle temporal cortex (BA 20/21), and in the (iii) left inferior parietal cortex (BA 39) (Figure 1A). Additionally, we observed clusters with significantly decreased radii. These decreases were predominantly observed in the (i) right rostral middle frontal cortex (BA 9/46), (ii) left inferior parietal cortex (BA 39), (iii) left supramarginal gyrus (BA 40), (iv) left superior frontal cortex (BA 9), (v) left lateral orbitofrontal cortex (BA 11),
and in the (vi) medial orbitofrontal cortex (BA 12/32) (Figure 1A). Effect sizes for the main effect of group (Perimeter function: mean=0.04, SD=0.03; radius function: mean=0.037, SD=0.03) and all other model terms are displayed in Figure 1C. For the perimeter function, these differences were most pronounced during adolescents, and across adolescence and adulthood for the radius function (Figure 2 and ST4).

Brain behavioral correlations. To assess the association between intrinsic global and local wiring costs and autistic traits, we correlated the average MSD, perimeter function, and radius function in significant clusters of the autistic group with the severity of autism traits. Within these clusters, increased perimeter function was significantly positive correlated (0.14<r<0.2) with severity of autism traits. There were no significant correlations between MSDs and radius function and measures of trait severity (Supplement SF2).

Gene Set Enrichment Analysis. To link imaging phenotypes to potential genetic underpinnings in autism, we performed a gene decoding analysis using the AHBA. This resulted in N=480, N=382 and N=322 significant genes for MSD, perimeter function, and radius function, respectively (nominal p<0.01). These gene sets showed an enrichment for (i) differentially expressed genes (DEG) in autism, (ii) for biological pathways, and (iii) for different cell types and gene coexpression modules underpinning typical brain development. For MSD, we found an enrichment in downregulated DEGs, namely CTX.down.M10, CTX.down.M16, CTX.down.M4 (45) and ASD.DEGs.down (46) (Figure 3A) which have been associated with the Gene Ontology (GO) terms representing synaptic functioning and neuronal genes (45,46). Perimeter function was enriched
for DEGs that are upregulated or downregulated, namely CTX.up.M9, CTX.down.M16 (45), ASD.DEGs.up (46), and DEG (47) (Figure 3A) that have been linked to GO terms representing inflammatory response and neuronal firing rate (45, 46). For radius function, we found an enrichment for DEGs that are upregulated in autism, namely CTX.up.M20 (45) (Figure 3A) which have been linked to GO terms representing development and regulation of cell differentiation (45). Furthermore, we found an enrichment for biological pathways of the KEGG Pathway database (48). The MSD gene list was enriched for the pathways of axonal guidance, calcium signaling pathway, and retrograde endocannabinoid signaling (Figure 3B). Perimeter function was enriched for pathways of neurodegeneration for multiple diseases and retrograde endocannabinoid signaling. Radius function was enriched for the calcium signaling pathway (Figure 3B).

Additionally, we observed an enrichment for coexpression modules underpinning typical brain development (49). More specifically, gene sets of MSD and radius function were significantly enriched for modules representing “synaptic transmission” (modules 2 and 15) that have been associated with GO terms calcium signaling, synaptic transmission, and neuroactive ligand-receptor interaction (49) (Figure 3C). Enrichment analysis resulted in an enrichment for different cell types (50), e.g., for excitatory neurons in MSD, for pericytes, oligodendrocyte precursor cells, excitatory neurons, and radial glia cells in perimeter function, and for endothelial cells, interneurons, and excitatory neurons in radius function (Figure 4). The pathway and process enrichment analysis conducted with Metascape highlighted several significant GO terms for MSD, perimeter function and radius function, e.g., nervous system development, synaptic signaling, and neuron projection morphogenesis (Supplement FS2).
Discussion

Here, we examined between-group differences in intrinsic wiring costs of the brain in a large and clinically diverse sample of autistic individuals and non-autistic controls and established their link to putative genomic mechanisms. Using measures of intrinsic wiring costs, we established that the intrinsic organization of the brain in autism differs significantly from the non-autistic brain in both global and local wiring costs. Differences in local wirings costs were also significantly correlated with the severity of autism traits. Brain regions with differences in intrinsic wiring costs were enriched for genes known to be implicated in autism. Our study therefore highlights the importance of examining intrinsic features of brain anatomy as putative biomarkers for autism that might aid future subgrouping approaches.

Initially, we assessed global wiring costs using Mean Separation Distances (MSDs) which represent the average length of connections required to wire each vertex to the rest of the cortex. We established that autistic individuals had significantly reduced MSDs in several frontal lobe regions including the dorsolateral-prefrontal cortex (DLPFC), the orbitofrontal cortex, and the pars triangularis. A similar pattern of differences in global wiring costs has been reported in an earlier study by Ecker at al., conducted in a smaller sample of male autistic adults (6). Notably, differences in the intrinsic organization of the cortex have also been reported in other mental health conditions such as major depression disorder (51), schizophrenia (52,53), and ADHD (54). However, the neuroanatomical patterns associated with these differences vary widely between conditions and are distinct from the pattern we observe in ASD. Moreover, the pattern of differences in intrinsic wiring costs only partially overlapped with the patterns of regional
variations associated with measures of surface area and/or IGI (42,55,56), suggesting that each feature measures distinct aspects of the cortical architecture (Supplement SF7). Differences in local wiring costs, on the other hand, were estimated based on the radius and perimeter function representing the wiring potential within and between a given cortical area, respectively. We observed decreased radius function, and increased perimeter function in autism, with largest effects in frontal, temporal, and parietal brain regions. The radius function is often inversely correlated with the perimeter function of the cortex, i.e., a decreased radius of a geodesic circle is associated with an increased perimeter. Consequently, in regions with significant differences in local wiring costs, a reduced radius function implies easier wiring within the region, while an increased perimeter function indicates a facilitated development of connections between areas. As with MSDs, a similar regional pattern of differences in local wiring costs has been reported in autism previously (6). Our study thus replicates prior findings in an independent sample of males and females, and children and adolescents, generalizing our findings to the wider autism spectrum.

Differences in intrinsic brain connectivity have previously been linked to a differential (i.e. a more non-uniform) expansion of the cortical surface (57), and a divergent growth of the brain in autism, particularly in frontal and temporal lobes, that may be driven by an accelerated cortical expansion of the surface and might lead to a higher degree of folding (57–59). In turn, the differential cortical expansion in autism may be related to the increased density of minicolumns and therefore to a reduced neuropil space (60,61), which mainly contains axons of GABA-ergic inhibitory interneurons (62). Consequently, this reduction in neuropil space may contribute to an imbalance between excitation to inhibition (i.e. E/I imbalance) (63,64), and a perturbed
formation of the brain’s neurocircuitry, which has also been implicated in other neuropsychiatric conditions such as schizophrenia (65). Moreover, our analyses within age-stratified subgroups showed that differences in intrinsic wiring costs are age-dependent and may therefore be sensitive to different neurodevelopmental stages. However, while intrinsic measures of brain connectivity have been related to specific aspects of the cortical architecture, it is important to note that the wiring costs examined in this study are a theoretical measure, i.e., do not represent the actual length of connections per se, but rather indicate the ‘wiring potential’ within the cortical sheet. Within this framework, reduced global wiring costs may imply an facilitated development of shorter cortico-cortical fibers at the cost of longer connections (23), supporting the notion of a preference for local over global information processing in autism (66). Regions with reduced global wiring costs partially overlapped with regions previously shown to be functional overconnected in ASD (67,68), thus suggesting that reduced intrinsic wiring might also enhance the degree of functional connectivity. Furthermore, studies employing diffusion tensor imaging have reported reduced white matter connectivity in autism (69), which may suggest that the formation of the grey- and white-matter neurocircuitry of the brain in autism are linked (see also (70)).

Next, we examined the relationship between differing wiring costs and the severity of autism traits within the autism group. Notably, there were no significant correlations between significant clusters of MSDs and the severity of autism traits. Global features of intrinsic brain connectivity that cut across functionally specialized brain areas, may therefore not be specific enough to clearly delineate specific symptom domains. Differences in local wiring costs, which we observed in frontal, temporal and parietal regions were significantly correlated with the severity of social
and repetitive traits as measured by ADOS (36), ADI-R (37), RBS-R (40), SSP (39), and SRS-2 (38). Many of these brain regions are part of the large-scale neurocognitive networks underpinning autism traits, e.g., the ‘social brain’ network (71) and the cortico-striatal-thalamo circuitry (72) that has previously been associated with repetitive behavior in autism (73–75). However, it is important to note that the effect sizes associated with these brain-behavioral correlations are small, as these regions represent isolated components of the wider neurocognitive networks underpinning autism. Thus, future research employing spatially-unbiased vertex-wise approaches is needed to link differences in wiring costs to specific symptom domains.

Last, we leveraged the spatial gene expression data provided by the AHBA (24) to establish whether the patterns of differences in wiring cost also map onto the putative etiological mechanisms underpinning autism. Overall, we found that the pattern of differences in MSDs, perimeter function, and radius function were enriched for genes previously implicated in the etiology of autism by genetic and transcriptomic studies. For example, we observed an enrichment of genes known to be downregulated in the post-mortem cortex in autism, e.g. CTX.down.M10, CTX.down.M4, and CTX.down.M16, that map onto GO terms ‘synaptic functioning’ and ‘neuronal genes’ (45, 46). Additionally, we tested for an enrichment of gene co-expression modules underpinning typical brain development based on the spatio-temporal transcriptomic atlas provided by Kang et al. (49) observing an enrichment of modules 2 and 15 for MSD and radius function, which are linked to the GO term ‘synaptic transmission’. Based on the E/I imbalance hypothesis, we tested for an enrichment of specific cell types (47). However, against our hypothesis of an involvement of inhibitory interneurons in particular, the pattern of differences we observed for MSDs, perimeter function and radius function were more closely
associated with the spatial gene expression patterns expressed in excitatory neurons. This implies that differences in global and local wiring costs cannot be attributed to intraneuronal gene expression signatures exclusively. Future histological studies are therefore needed to identify the specific neuro-architectural underpinning of our *in vivo* findings. We also functionally annotated the genes enriched within the MSD, perimeter function and radius function via pathway/process enrichment analysis using Metascape (76), where we observed a functional enrichment of several KEGG pathways and GO terms, i.e., ‘Nervous system development’, ‘Neuronal system’ (48), and ‘synaptic signaling’ (77). This is in line with previous genetic studies reporting a dysregulation of axonal growth and guidance in autism, and an atypical formation and functioning of synaptic connections (15–17). Thus, although it is difficult to determine whether imaging phenotypes are the cause or the result of autism, our finding of an enrichment of autism-associated genes suggests that intrinsic wiring costs are related to the genetic underpinnings of autism and might therefore be etiologically relevant.

There are several limitations to our study. First, as noted above, our study did not access intrinsic connections directly but estimated these using wiring costs. Wiring costs should therefore be considered a proxy measure representing the estimated ‘wiring potential’ of brain regions rather than the actual connection length (6). Second, we utilized the AHBA to link differences in brain connectivity to putative mechanisms which is the most comprehensive gene expression data set to date (24). However, the gene expression atlas contains data from adult donors exclusively while our sample also includes children and adolescents. Moreover, the coverage of the gene expression data within the AHBA is significantly lower than the spatial resolution of the neuroimaging data. Third, so far, we looked at between-group differences exclusively, which
typically have small effects due to the large heterogeneity of autism. In the future, it will be important to determine how such markers may be used to parse heterogeneity in autism, and whether putative neurobiological subgroups converge onto distinct clinical phenotypes and/or neurodevelopmental outcomes that could aid clinical decisions and facilitate personalized support approaches.

References

Acknowledgments

We gratefully acknowledge the contributions of the EU-AIMS LEAP Group: Jumana Ahmad, Sara Ambrosino, Bonnie Auyeung, Tobias Banaschewski, Simon Baron-Cohen, Sarah Baumeister, Christian F. Beckmann, Sven Bölte, Thomas Bourgeron, Carsten Bours, Michael Brammer, Daniel Brandeis, Claudia Brogna, Yvette de Bruijn, Jan K. Buitelaar, Bhismadev Chakrabarti, Tony Charman, Ineke Cornelissen, Daisy Crawley, Flavio Dell’Acqua, Guillaume Dumas, Sarah Durston, Christine Ecker, Jessica Faulkner, Vincent Frouin, Pilar Garcés, David Goyard, Lindsay Ham, Hannah Hayward, Joerg Hipp, Rosemary Holt, Mark H. Johnson, Emily J.H. Jones, Prantik Kundu, Meng-Chuan Lai, Xavier Liogier D’ardhuy, Michael V. Lombardo, Eva Loth, David J. Lythgoe, René Mandl, Andre Marquand, Luke Mason, Maarten Mennes, Andreas Meyer-Lindenberg, Carolin Moessnang, Nico Bast, Declan G.M. Murphy, Bethany Oakley, Laurence O’Dwyer, Marianne Oldehinkel, Bob Oranje, Gahan Pandina, Antonio M. Persico, Barbara Ruggeri, Amber Ruigrok, Jessica Sabet, Roberto Sacco, Antonia San José Cáceres, Emily Simonoff, Will Spooren, Julian Tillmann, Roberto Toro, Heike Tost, Jack Waldman, Steve C.R. Williams, Caroline Wooldridge, and Marcel P. Zwiers. This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115300 for the project EU-AUIMS and No 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and AUTISM SPEAKS, Autistica, SFARI. The primary contact for the EU-AIMS LEAP Group is Declan G. Murphy (Email: pa-dmurphy@kcl.ac.uk). CE gratefully acknowledges support from the German Research Foundation (DFG) under the Heisenberg Programme (EC480/1-1 and EC480/2-1). DGM also
acknowledges support from the NIHR Maudsley Biomedical Research Centre. DLF is supported by funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101025785. This work has received funding from Horizon Europe [grant agreement no. 101057385] and from UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee [grant no.10039383] (R2D2-MH).

Disclosure

The IHI-JU2 had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. Any views expressed are those of the author(s) and not necessarily those of the IHI-JU2. Jan K. Buitelaar has been in the past 3 years a consultant to/member of advisory board of/and/or speaker for Janssen Cilag BV, Takeda/Shire, Roche, Novartis, Medice, Angelini, and Servier. He is not an employee of any of these companies and not a stock shareholder of any of these companies. He has no other financial or material support, including expert testimony, patents, and royalties. Tobias Banaschewski has served in an advisory or consultancy role for Actelion, Hexal Pharma, Lilly, Medice, Novartis, Oxford outcomes, Otsuka, PCM scientific, Shire and Viforpharma. He received conference support or speaker’s fee by Medice, Novartis and Shire. He is/has been involved in clinical trials conducted by Shire and Viforpharma. He received royalties from Hogrefe, Kohlhammer, CIP Medien, and Oxford University Press. The present work is unrelated to the above grants and relationships. Julian Tillmann is a consultant for F. Hoffmann-La Roche Ltd. Chris
Chatham is an employee of F. Hoffmann–La Roche. Tony Charman has received research grant support from the Medical Research Council (UK), the National Institute for Health Research, Horizon 2020 and the Innovative Medicines Initiative (European Commission), MQ, Autistica, FP7 (European Commission), the Charles Hawkins Fund, and the Waterloo Foundation. He has served as a consultant to F. Hoffmann-La Roche Ltd and Servier. He has received royalties from Sage Publications and Guilford Publications. Declan Murphy has received consultancy fees from Roche and Servier, and grant support from the Medical Research Council (UK), the National Institute for Health Research, Horizon 2020 and the Innovative Medicines Initiative (European Commission). Dr. Jones has received funding from Action Medical Research, EU Horizon 2020, the Innovative Medicines Initiative, the Medical Research Council (UK), MQ: Transforming Mental Health, and the Economic and Social Research Council. Dr. Bölte has served as an author, consultant, or lecturer for Ability Partner, Eli Lilly, Expo Medica, GLGroup, Kompetento, Medice, Prima Psychiatry, Prophase, Roche, Shire, and System Analytic, and he receives royalties for textbooks and diagnostic tools from Huber/Hogrefe, Kohlhammer, and UTB. Dr. Meyer-Lindenberg has served as a consultant for the Agence Nationale de la Recherche, the American Association for the Advancement of Science, Atheneum Partners, Blueprint Partnership, Boehringer Ingelheim, the Brain Mind Institute, BrainsWay, the Catania International Summer School of Neuroscience, Daimler und Benz Stiftung, Elsevier, the Fondation FondaMental, Janssen-Cilag, Hoffmann–La Roche, ICARE Schizophrenia, K.G. Jebsen Foundation, L.E.K. Consulting, The LOOP Zürich, Lundbeck A/S, Lundbeck International Neuroscience Foundation, MedinCell, Roche Pharma, Sage Therapeutics, Sumitomo Dainippon Pharma, Synapsis Foundation–Alzheimer Research Switzerland, System Analytics, Techspert.io, Thieme Verlag, and von Behring Röntgen Stiftung,
and he has received speaking fees from BAG Psychiatrie Oberbayern, Biotest AG, Boehringer Ingelheim, Fama Public Relations, Forum Werkstatt Karlsruhe, Institut d’Investigacions Biom ediques August Pi i Sunyer (IDIBAPS), the International Society of Psychiatric Genetics, Janssen-Cilag, Klinik für Psychiatrie und Psychotherapie, Klinikum Christophsbad, Göppingen, Lilly Deutschland, Lundbeck SAS France, Luzerner Psychiatrie, LVR Klinikum Düsseldorf, LWL Psychiatrie Verbund Westfalen-Lippe, Med Update GmbH, MerzStiftung, Otsuka Pharmaceuticals, Reunions i Ciencia S.L., Siemens Healthineers, Spanish Society of Psychiatry, Südwestrundfunk Fernsehen, Stern TV, and Vitos Klinikum Kurhessen. Dr. Baron-Cohen has served as an author, consultant, or lecturer for Ability Partner, Clarion Healthcare, Expo Medica, Eli Lilly, GLGroup, Kompetento, Medice, Prima Psychiatry, Prophase, Roche, Shire, and System Analytic; he receives royalties for textbooks and diagnostic tools from Huber/Hogrefe, Kohlhammer, and UTB. Dr. Spooren is an employee of F. Hoffmann–La Roche. All other authors report no biomedical financial interests or potential conflicts of interest.

Johanna Leyhausen, Tim Schäfer, Caroline Gurr, Lisa M. Berg, Hanna Seelemeyer, Charlotte M. Pretzsch, Eva Loth, Bethany Oakley, Christian F. Beckmann, Dorothea L. Floris, Thomas Bourgeron, Emily Jones, and Christine Ecker reported no biomedical financial interests or potential conflicts of interest.
Table 1: Table of autistic participants and non-autistic control subjects. Age ranged from 6 to 30 in the autistic group and the non-autistic group. Full-scale IQ ranged from 40 to 148 in the autistic group and from 50 to 142 in the non-autistic group. The ADI scores from social interaction scale ranged from 0 to 29, from the communication scale from 0 to 26 and from the restricted and repetitive behaviors scale from 0 to 12. The ADOS scores ranged from 2 to 10 for the total score, from 3 to 10 for the social affect score and from 1 to 10 for the restricted and repetitive score. ADI-R = Autism Diagnostic Interview-Revised; ADOS= Autism Diagnostic Observation Schedule, SRS = Social Responsiveness Scale-2, RBS-R = Repetitive Behaviors Scale- Revised, SSP = Short Sensory Profiles.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Non-autistic Group (N=279)</th>
<th>Autistic Group (N=359)</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>178</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td>17.35</td>
</tr>
<tr>
<td>Full-scale IQ</td>
<td>104.75</td>
<td>18.25</td>
<td>98.92</td>
</tr>
<tr>
<td>ADI-R scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social interaction</td>
<td>16.7</td>
<td>6.69</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>13.24</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>Restricted and repetitive behaviour</td>
<td>4.3</td>
<td>2.66</td>
<td></td>
</tr>
<tr>
<td>ADOS scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social affect</td>
<td>6.12</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Restricted and repetitive behaviour</td>
<td>4.63</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>SRS-2</td>
<td>70.11</td>
<td>12.1</td>
<td></td>
</tr>
<tr>
<td>RBS-R</td>
<td>16.34</td>
<td>13.94</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>139.43</td>
<td>27.27</td>
<td></td>
</tr>
<tr>
<td>Total surface area</td>
<td>228532</td>
<td>22854.8</td>
<td>228852</td>
</tr>
<tr>
<td>Mean separation distance</td>
<td>122.94</td>
<td>5.61</td>
<td>122.91</td>
</tr>
<tr>
<td>Perimeter Function</td>
<td>291.39</td>
<td>14.98</td>
<td>291.89</td>
</tr>
<tr>
<td>Radius Function</td>
<td>41.08</td>
<td>1.92</td>
<td>41.09</td>
</tr>
</tbody>
</table>
Figure 1: Neuroanatomical results. Panel A shows the t statistics for the unthresholded contrast autism against non-autistic controls for MSD, perimeter function and radius function, respectively. Panel B shows clusters with significantly increased (orange) and decreased (blue) MSD, perimeter function and radius function in autism relative to controls (random-field-theory-based cluster corrected p<0.05, two-tailed). Panel C shows the effect sizes associated with individual model terms. MSD = Mean separation distance; ASD = Autism Spectrum Disorder; SA = Total Surface Area; FSIQ = Full-scale IQ, L = left, R = right.

Figure 2: Neuroanatomical results within age groups.

Clusters are significantly increased (orange) and decreased (blue) for MSDs, perimeter function and radius function relative to controls (random field-theory-based cluster corrected p<0.05, two-tailed). Panel A highlights differences in the adult group, i.e. > 18 years. Panel B highlights differences in the adolescent group, i.e. 12 to 18 years. Panel C highlights differences within the children group, i.e. < 12 years. Panel D highlights differences in the adult and adolescent group, i.e. > 12 years with an IQ < 75. MSD = Mean separation distance.

Figure 3: Gene set enrichment analysis. Panel A shows significant odds ratios at a false discovery rate (FDR) corrected p threshold of 0.01 resulting from the gene set enrichment analyses for genes expressed in the different t-maps for MSD, perimeter function and radius function, respectively. Gene sets were subdivided into sets with differential gene expression in autism and sets representing ASD risk genes that contain either common variants (ASD.risk.common) or rare de novo variants (ASD.risk.DeNovo). Gene sets are annotated and labeled based on their original
publication. CTX = cortex; DEG = differentially expressed gene; down = down-regulated expression in autism; up = upregulated expression in autism. Panel B shows genes sets taken from different KEGG pathways. Axon_Gui = Axonal Guidance, Cal_Sig = Calcium Signaling pathway, Cell_Adh = Cell Adhesion, Endocan_Sig = Retrograde Endocannabinoid Signaling, Neurodeg = Pathways of Neurodegeneration. Panel C shows set enrichment of genes mediating typical brain development as reported in the spatiotemporal transcriptome data set provided by Kang et al. (47). Set names contain their respective coexpression module label (e.g., M1), followed by their functional description based on their Gene Ontology term enrichment. Panel D shows spatiotemporal expression profiles of brain gene modules significantly enriched in the MSD map for module 2 (left panel) enriched for genes implicated in synaptic transmission, and for module 15 (right panel) enriched for synaptic transmission. The x-axis shows the developmental time frame (pcw=postconception weeks) and the y-axis shows the different brain regions: OFC=orbital prefrontal cortex; DFC=dorsolateral prefrontal cortex; VFC=ventrolateral prefrontal cortex; MFC=medial prefrontal cortex; M1C=primary motor (M1) cortex; S1C=primary somatosensory (S1) cortex; IPC=posterior inferior parietal cortex; A1C=primary auditory (A1) cortex; STC=superior temporal cortex; ITC=inferior temporal cortex; V1C=primary visual (V1) cortex; HIP=hippocampus; AMY=amygdala; STR=striatum; MD=mediodorsal nucleus of the thalamus; CBC=cerebellar cortex.

Figure 4: Cell type enrichment analyses. Panel A is a schematic illustration of cell types in germinal zones of the developing cortex, adapted from Polioudakis et al. (50). CP=cortical plate; Cpi=inner cortical plate; Cpo=outer cortical plate; SP=subplate; IZ=intermediate zone;
SVZ=subventricular zone; iSVZ=inner subventricular zone; oSVZ=outer subventricular zone; VZ=ventricular zone; RG=radial glia; IP=intermediate progenitor; MN=newborn migrating excitatory neuron; EN=excitatory neuron; IN=interneuron; O=oligodendrocyte precursor; E=endothelial cell; P=pericyte; M=microglia. Panel B shows cell-type enrichment odds ratios and associated -log10(q) values for gene sets expressed in the t-map for MSD. Cell types are colored and labeled based on Polioudakis et al. (50) (see also Figure 4A). MP=mitotic progenitor; OPC=oligodendrocyte precursors; CGE/MGE=caudal and medial ganglionic eminence-derived interneurons; IP=intermediate progenitors; oRG/vRG=outer and ventricular radial glia. Panel C shows cell-type enrichment odds ratios and associated -log10(q) values for gene sets expressed in the t-map for perimeter function. Panel D shows cell-type enrichment odds ratios and associated -log10(q) values for gene sets expressed in the t-map for radius function.