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Abstract

Kaldor called the constancy of certain ratios stylized facts, Klein and Kosobud called
them great ratios. While they often appear in theoretical models, the empirical literature
finds little evidence for them, perhaps because the procedures used cannot deal with lack
of co-integration, two-way causality, and cross-country error dependence. We propose a
new system pooled mean group estimator that can deal with these features. Monte Carlo
results show it performs well compared with other estimators, and using it on a dataset
over 150 years and 17 countries, we find support for five of the seven ratios considered.

I. Introduction

The idea that certain economic ratios are roughly constant in the long run is an old one.
Kaldor (1957, 1961) described them as stylized facts and Klein and Kosobud (1961)
labelled them great ratios. Kaldor (1957, p591) wrote: ‘A satisfactory model concerning
the nature of the growth process in a capitalist economy must also account for the
remarkable historical constancies revealed by recent empirical investigations’. Other ratios
thought to be constant appear in finance including the dividend-price ratio, discussed by
Campbell and Shiller (1988).

Although there was some skepticism about these stylized facts,1 they have been
widely adopted in theoretical models in economics and finance, and are often implied by
economic theories about the conditions required for balanced growth, arbitrage or debt
solvency. Jones and Romer (2010, p225) in a paper called ‘The New Kaldor facts’, take
the old ones for granted. They say: ‘Redoing this exercise nearly 50 years later shows just
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1For example, Robert Solow in his classic book, Growth Theory, commented that there ‘is no doubt that they are
stylized, though it is possible to question whether they are facts’ (Solow 1970, p2).
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2 Bulletin

how much progress we have made. Kaldor’s first five facts have moved from research
papers to textbooks. There is no longer any interesting debate about the features that a
model must contain to explain them’.

The great ratios hypothesis has also prompted a large empirical literature, including
recent contributions by Müller and Watson (2018), Kapetanios et al. (2020), and
Harding (2020). This literature is less supportive of the hypothesis. Harding provides a
survey of the literature and notes: ‘econometric tests reject the great ratios hypothesis but
economic growth theorists and quantitative macroeconomic model builders continue to
embed that hypothesis in their work’. Most, but not all, of these studies focus on individual
countries and consider two variables, say yt and xt, t = 1, 2, ..., T , the logarithms of the
numerator and denominator for instance, and investigate if their difference, zt = yt − xt,
is stationary over a reasonably long period. This might be done by estimating a long-run
coefficient θ in yt = θxt + ut and testing whether θ = 1 or by testing whether the difference
yt − xt is stationary, having neither stochastic nor deterministic trends.2 Stationarity of
yt − xt can be tested either using Dickey and Fuller (1979) type tests or the KPSS test
proposed by Kwiatkowski et al. (1992). Both approaches are known to have important
limitations. Testing for unit roots tends to lack power, particularly against highly persistent
yet stationary alternatives. The KPSS test involves estimating the long-run variance of the
partial sum series, st = ∑t

τ=1 zτ , which requires quite long time series if the size of the
test is to be controlled, particularly when zt is stationary but highly persistent. A number of
other studies treat yt and xt as unit root processes, or more generally as first-order integrated
processes, I(1), and test whether they are co-integrated with a unit long-run coefficient,
so that zt becomes stationary, or an I(0) process.3 The co-integration approach allows
separation of the possibility of co-integration between yt and xt from the requirement of
a unit long-run coefficient. For example, it is often found that logs of real income and
consumption co-integrate but their long-run coefficient is not unity. Co-integration tests
are more informative but suffer from similar limitations to unit root testing. Müller and
Watson (2018) find that inference on long-run covariability of yt and xt is complicated and
critically depends on the exact form of their long-run persistence. Harding (2020) argues
that unit root and co-integration tests cannot produce valid inference on the great ratios
hypothesis, because of the nature of the stationary distribution of the ratio.

This paper suggests that a possible reason for the lack of evidence for the great
ratios hypothesis is the inability of the econometric procedures used to deal with lack of
co-integration, two-way causality between the variables in the ratios, and cross-country
error dependence; all likely features of the data. Lack of co-integration could result from
failures of the error correction mechanisms that bring yt and xt back to their long-run
equilibrium relationship. Such failures of the error correction mechanisms, which may be
associated with major shocks such as wars, depressions, natural disasters, or important
policy failures, make it difficult to estimate the long-run coefficients with any precision
from the relatively short-span time series that are typically used for a single country.

2If there are deterministic trends in xt and yt they must be co-trending such that the trend cancels out for the
difference not to have a trend.
3There can be a long-run relationship whether the variables are both I(0) or both I(1) but it will only be a
cointegrating relationship in the I(1) case. When the variables are I(0) they must be co-trending, the trends cancel
out, for the great ratios hypothesis to hold.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 3

A panel data approach that considers the great ratios hypothesis across many countries
may be more effective. There are a number of relevant panel estimators. The pooled
mean group (PMG) estimator of Pesaran, Shin, and Smith (1999) has heterogeneous
short run coefficients and homogeneous long-run coefficients. Heterogeneous short run
coefficients allow for failure of cointegration, since the country-specific error correction
coefficients, that govern adjustments towards the long-run equilibrium, can be zero in
some countries. Homogeneous long-run coefficients are appropriate for the great ratios,
since they imply a homogeneous long-run coefficient of unity across all countries. The
PMG is a single equation estimator and so cannot handle two-way long-run causality.
Breitung (2005) modified PMG to handle two-way long-run causality, but unfortunately
his two-step estimator breaks down when there are non-cointegrating episodes in the panel
under consideration. Similar limitations apply to other panel estimators that we consider
later, including the panel dynamic OLS (PDOLS) estimator proposed by Mark and
Sul (2003).

To deal with the three problems, lack of cointegration, two-way causality and error
cross-section dependence, we propose a new system PMG estimator, or SPMG for short.4

This has a vector error correction form for the two equations for yt and xt with a long-run
coefficient θ which is homogeneous across countries, and which should take the value
one if the great ratio hypothesis is true. However, the estimation method does allow
for heterogeneous short run coefficients, namely the error correction coefficients and
the coefficients of lagged changes across the country-specific equations. In the absence
of cointegration both error-correction coefficients will be zero. SPMG is robust to lack
of cointegration for some units because the error-correction coefficients effectively act
as weights, and therefore the contribution of the units without co-integration to the
SPMG estimate of the long-run coefficient will be negligible. Under regularity conditions
typically assumed in the literature, the SPMG estimator of θ can be viewed as a quasi-ML
(QML) estimator which is asymptotically normal, super consistent in T , the number of
time periods, and converges to its true value at the rate of T

√
(1 − π)n, where n is the

number of countries and π is the constant fraction (0 < π < 1) of countries that do not
co-integrate. No restrictions on the relative rate of n(1 − π) and T will be needed for
consistency of θ̂ as n(1 − π) and T → ∞. However, for valid inference, (1 − π)n/T → 0
is required. This condition is likely to be met in most cross-country applications, including
the empirical application considered in this paper where n = 17 and T = 140. It is well
known that T needs to be relatively large for estimation of long-run effects. Pooling with
respect to θ helps with the power of testing for θ = 1, while allowing for heterogeneity in
short-run dynamics.

Error cross-sectional dependence is likely in cross-country panel studies and ignoring it
could lead to artificially low SEs. To achieve reliable small sample inference in the presence
of cross-sectional error dependence, we adopt a bootstrap procedure.5 Extensive Monte

4The SPMG estimator can also be viewed as a panel version of Johansen (1991) maximum likelihood approach
where the co-integrating vectors,

{
βi, i = 1, 2, . . . , n

}
are assumed to be the same across all i (βi = β). In this set up

Johansen’s reduced rank computational algorithm is no longer applicable and the estimates of the common long-run
coefficients, β, and the n unit-specific error correction coefficients must be computed iteratively.
5Cross-sectional dependence is often modelled by an unobserved factor, but having another factor shift the long-run
relationship is not compatible with the great ratio hypothesis. Thus correcting the SEs is appropriate.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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4 Bulletin

Carlo (MC) experiments show that the SPMG estimator with bootstrapped confidence
intervals is the only estimator that meets all three robustness criteria (two-way long-run
causality, lack of cointegration, and error cross-section dependence) and at the same time
has satisfactory small sample properties. The MC results also show that the performance
of other panel estimators considered are not satisfactory. Firstly they all suffer from
large size distortions in the case of sample sizes that are typically available, even if their
assumptions are met. Second, and more importantly, the assumptions they require are too
restrictive for the analysis of great ratios, as they either require co-integration conditions
to hold in all countries and/or the direction of long-run causality between yt and xt to be
known.

In the empirical application we use the long-span data covering the period 1870–2016
for a panel of 17 countries that has been made available in the Jordà-Schularick-Taylor
(JST) macrohistory database.6 We focus on the SPMG estimator, but for comparison
we also report estimates obtained using PMG, PDOLS, Breitung’s estimator, and the
mean group estimator based on individual Müller and Watson (2018) estimates. We
present estimates of the mean long-run coefficient for seven theoretical relationships.
For consumption on GDP, the SPMG estimator of the long-run coefficient is 0.907
(0.884–0.930), with the bootstrapped 95% confidence interval in brackets; for investment
on GDP the long-run coefficient is 1.044 (1.029–1.059); for imports on exports the
long-run coefficient is 0.967 (0.961–0.973); for government debt on GDP we have 1.051
(0.993–1.108); for short on long interest rates we obtain 1.010 (0.912–1.108); for inflation
on long interest rates 0.653 (0.419–0.888); and finally for inflation on money growth 1.227
(1.153–1.300). From a statistical perspective, with the exception of two ratios (debt-GDP
and long-short rates), all the remaining long-run estimates are significantly different from
one at the 5% level. But given that the long-run estimates are based on a large number of
observations (147 years pooled across 17 countries), perhaps it is not surprising that some
of the point estimates that are close to unity are still found to be statistically different
from unity. From an economic perspective, all but two (those involving inflation) are
quite close to unity, with their point estimates falling in the narrow range of 0.9 to 1.1. Of
the seven long-run relations considered we can confidently conclude that our empirical
results do not support the hypothesis of a unit long-run relationship between inflation
and the long-term interest rate, and inflation and money supply growth. The remaining
five long-run relations tend to support the great ratio hypothesis, and their inclusion in
macroeconomic model seems to us to be justified.

The rest of the paper is set out as follows: section II reviews the literature on the theory
and econometrics of the great ratios hypothesis. Section III introduces the system PMG
estimator. Section IV summarizes Monte Carlo evidence on the performance of individual
estimators. Section V provides empirical evidence for the presence of unit elasticities for
seven great ratios using the different estimators, and discusses the findings. Section VI
ends with some concluding remarks. Appendix A provides additional information on the
data and Appendix S1 provides details of the individual panel estimators; the bootstrapping
procedure adopted; a description of the design of the Monte Carlo experiments; and Monte
Carlo results.

6See Jordà, Schularick, and Taylor (2017) and Jordà et al. (2019), and the link http://www.macrohistory.net/data.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 5

II. The great ratios hypothesis

Three types of theoretical mechanisms for stationary great ratios have been suggested
in the literature. These arise from the requirements for balanced growth, arbitrage or
solvency.

The first mechanism relates to the conditions required for the existence of steady states
in growth models. In deterministic neoclassical growth models where technical progress
happens at a constant rate, balanced growth paths require output, capital, investment and
consumption to grow at the same rate, implying constant consumption-output, capital-
output and investment-output ratios. In stochastic settings these ratios vary over time but
must be stationary.7 Attfield and Temple (2010) point out that the equilibrium values of
the great ratios depend on the structural parameters of the growth model, which may vary
over time.

A second mechanism is through arbitrage where profitable opportunities due to
misalignments of prices in product or asset markets are exploited, removing the divergence.
The central issue is that certain pairs of variables cannot diverge indefinitely, since even
small differences in growth rates blow up over the longer term. Examples are real wages
and labour productivity that underlie the labour share; stock prices and dividends as in
Campbell and Shiller (1988); or prices of similar goods in different countries denominated
in the same currency.

A third mechanism operates through solvency conditions on variables like the balance
of payments and government debt as shares of income, which requires that countries cannot
accumulate debt indefinitely. However, as argued by Bohn (2007), solvency cannot be
inferred from the statistical properties of debt because the inter-temporal budget constraint
and transversality condition impose little restriction on the time series properties of the
variables. Chudik et al. (2017) show for a panel of countries that, while log public debt
and income are I(1), they do not co-integrate for around half of the countries considered.
Even for those that co-integrate, there are statistically significant departures from the unit
elasticity.

Empirical studies that attempt to test the great ratios hypotheses face a range of
difficulties. There are measurement issues. Cette, Koehl, and Philippon (2019) and
Barro (2021) raise these in the case of the share of wages. There are issues with the
techniques. Müller and Watson (2018) argue that problems arise due to lack of sufficiently
long samples and the fact that inference depends on the long-run persistence properties
of the underlying variables. There are also well-known problems with testing for unit
roots, discussed in the introduction. Stock and Watson (2017) following Elliott (1998)
emphasize that evidence for co-integration can be very fragile in the case of departures
from exact unit roots. There are further problems with bounded time series, such as ratios
that lie between zero and one, Cavaliere and Xu (2014). Testing for deterministic trends
can also be problematic as shown recently by Elliott (2020). However empirical studies
such as Harvey, Leybourne, and Newbold (2003), who examine four ratios for the G7
countries, Mills (2009) who analyses the Klein–Kosobud data using modern econometric

7Deterministic models of growth were considered by Solow (1956), Swan (1956), Barro and Sala-i-Martin (1995),
among others. Stochastic growth models were developed by Merton (1975), Donaldson and Mehra (1983), Binder
and Pesaran (1999), among others.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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6 Bulletin

techniques, and Tropimov (2017) who considers the stability of the capital output ratio,
all tend to question the long-run stability of the great ratios.

The possibility that lack of co-integration results from the failure of the error correction
mechanisms that bring yt and xt back to their long-run equilibrium relationship has been
considered. Siklos and Granger (1997) proposed the concept of regime-sensitive co-
integration whereby the variables fall in and out of an equilibrium relationship and the
underlying series need not be co-integrated at all times. Cointegration is switched off
when a common stochastic trend is added. Psaradakis, Sola, and Spagnolo (2004) consider
Markov switching error-correction models where the speed of adjustment to equilibrium
could be different in different regimes.

To examine why the great ratios hypothesis might fail, consider two variables, xit and
yit, which might be the logarithms of the numerator or denominator of one of the great
ratios, for country i = 1, 2, ..., n over the period t = 1, 2, ..., T , with the error correction
representation:8

�yit = ayi − φyiξi,t−1 +
p−1∑

�=1

ψ
′
yi��wi,t−� + uyit, (1)

�xit = axi − φxiξi,t−1 +
p−1∑

�=1

ψ
′
xi��wi,t−� + uxit, (2)

where �yit = yit − yi,t−1, �xit = xit − xi,t−1, �wit = (�yit, �xit)
′, with the common error

correction term defined by

ξit (θi) = yit − θixit − μit. (3)

The above system of equations allows for two-way short run as well as long run feedbacks
between yit and xit. Also by allowing the error correction coefficients, φyi and φxi, to vary
over countries the above specification can deal with failure of error correction in some
countries such that φxi = φyi = 0.

In the above set up, the great ratios hypothesis applied to wit = (yit, xit)
′ may fail

because (i) the long-run coefficient is not unity, θi �= 1; (ii) there are trends or level
shifts in the long-run relationship, μit �= 0; (iii) there is no adjustment, φxi = φyi = 0.
For instance, Kapetanios et al. (2020) assume θi = 1, and show that for a number of
ratios calculated using recent UK data ξit is I(1) using a constant μit, but I(0) using a
non-parametric estimate of a slowly varying μit. We abstract from intercept shifts in the
long-run relations and set μit = 0 in (1).

III. System PMG estimator

Since the null of the great ratios hypothesis is a homogeneous long-run coefficient, namely
θi = θ = 1, for all i, the objective is to estimate θ and test H0 : θ = 1, allowing for the

8Given our interest in great ratios we focus on bivariate relationships. Applications with more than two variables
are subjects of further research.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 7

fact that there may be failure of error correction such that φyi or φxi can be zero in some
countries. To do this we need an estimator of θ that allows for (i) two-way long-run
causality between xit and yit, (ii) possible failure of error correction, φyi = φxi = 0 for
some countries, and (iii) robust inference on testing θ = 1 that allows for the cross-section
dependence. We propose a system pooled mean group (SPMG) estimator that has these
characteristics.

As noted above, since under the great ratios hypothesis the long-run coefficients, θi,
are the same across countries, then the PMG estimator of Pesaran et al. (1999) is a natural
starting choice. But it only applies if direction of long-run causality between yit and xit

is known, and does not allow for two-way long-run causality between yit and xit. The
concept of long-run causality is discussed in Granger and Lin (1995) and Pesaran, Shin,
and Smith (2001), and in the context of (1) and (2) is defined in terms of φyi and φxi.
Specifically, xit (yit) is said to long-run cause yit (xit) if φyi �= 0 and φxi = 0 (φyi = 0 and
φxi �= 0). Two-way long-run causality arises when φyi and φxi are both non-zero. It is also
worth noting that long-run causality does not rule out short-term feedbacks from �yi,t−�,
� = 1, 2, ...p − 1, to �xit (and vice versa). As can be seen from (1) and (2) lagged changes
of both variables appear in both equations. In the case of most great ratios, there is no
reason to believe that there is a single known direction of causality, whether in the short
or long run.

Denoting the 2 × 1 vector φi = (
φyi, φxi

)′
, we allow for φi = 0 for some countries.

The system of equations (1)– (3) can be written as

�wit = −φiβ
′wi,t−1 + Υiqit + uit, (4)

where wit = (yit, xit)
′, β = (1, −θ)′, Υi = (

ai, Ψi,1, Ψi,2, ..., Ψi,p−1
)′

, ai = (
ayi, axi

)′
, Ψi� =

(
ψyi�, ψxi�

)′
, for � = 1, 2, ..., p − 1, qit =

(
1, �w′

i,t−1, �w′
i,t−2, ..., �w′

i,t−p+1

)′
, and uit =

(
uyit, uxit

)′
is a 2 × 1 error vector with E(uit) = 0, and E(u′

ituit) = Σi, a positive definite
covariance matrix.

To deal with two-way long-run causality, Breitung (2005) considers the 2 × 1 vector
γi = Σ−1

i φi and assumes that γ′
iφi = φ′

iΣ
−1
i φi �= 0, for all i. Then premultiplying both

sides of (4) by γ′
i he obtains9

φ′
iΣ

−1
i �wit = −

(
φ′

iΣ
−1
i φi

)
β
′wi,t−1 + φ′

iΣ
−1
i Υiqit + φ′

iΣ
−1
i uit,

which in turn yields
zit = −β

′wi,t−1 + φ′
iΣ

−1
i Υiqit + vit, (5)

where zit =
(
φ′

iΣ
−1
i φi

)−1
φ′

iΣ
−1
i �wit, and vit =

(
φ′

iΣ
−1
i φi

)−1
φ′

iΣ
−1
i uit. Under the

normalization β = (1, −θ)′, the above equation can be written equivalently as

z+
it = θxi,t−1 + κ

′
iqit + vit, (6)

9Breitung considers a more general set up where there are k ≥ 2 variables and 0 < r < k co-integrating relationships.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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8 Bulletin

where z+
it =

(
φ′

iΣ
−1
i φi

)−1
φ′

iΣ
−1
i �wit + yi,t−1, and κi = φ′

iΣ
−1
i Υi.10 Breitung (2005)

proposed a two-step estimator where the initial estimates of φi and Σi are obtained from
the first step regressions (4) for each cross section unit not imposing homogeneity of θ

(using Johansen or Engle-Granger approach), while the pooled θ is estimated from the
second stage (6). However, when φi = 0 for some i, then (5) and (6) are no longer defined,
and the two-step Breitung’s estimator is not robust to absence of co-integration in some

cross-section units, since the variance of
(
φ̂

′
iΣ̂

−1
i φ̂

)−1
blows up if φi = 0.

The SPMG allows for two-way causality without needing to use the inverse of
φ̂

′
iΣ̂

−1
i φ̂i. We follow the same likelihood approach as the PMG but maximize the system

log-likelihood function for wit given by the model (4), allowing for one or both elements
of φi to be zero for some i.

Under Gaussian errors, the log-likelihood function for unit i conditional on the initial
observations wi,1, wi,2, ..., wi,p is given by

Li,T
(
θ , φi, Σi

) = −(T − p)

2
ln(2π) + (T − p) ln

∣
∣
∣Σ−1

i

∣
∣
∣

− 1

2

T∑

t=p+1

u′
itΣ

−1
i uit,

where uit
(
θ , φi

)
is defined by (4) which we write more compactly as

uit = �wit + φiξi,t−1 (θ) − Υiqit,

with the error correction term, ξit (θ) = yit − θxit. Concentrating out the effects of short-
term dynamics (represented by qit) and pooling the individual log-likelihood functions
under error cross-sectional independence, we now obtain the following concentrated
system log-likelihood function

Ln,T (θ , φ, Σ) = −(T − p) n

2
ln(2π) + (T − p)

n∑

i=1

ln
∣
∣
∣Σ−1

i

∣
∣
∣

− 1

2

n∑

i=1

T∑

t=p+1

ũit
(
θ , φi

)′
Σ−1

i ũit
(
θ , φi

)
, (7)

where φ = (
φ′

1, φ′
2, ..., φ′

n

)′
, Σ = (Σ1, Σ2, ..., Σn)

′, ũit
(
θ , φi

)′
are row-vectors of Ũi =

[
ũi,p+1

(
θ , φi

)
, ũi,2

(
θ , φi

)
, . . . , ũi,T

(
θ , φi

) ]′
given by

Ũi = Ũi
(
θ , φi

) = Hi
[
�Wi + ξi,−1 (θ)φ′

i

]
, (8)

10Abstracting from higher order lags, and from deterministic terms, equations (5) and (6) correspond to equations
(3) and (6) of Breitung (2005) for k = 2, and r = 1.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 9

in which ξi,−1 (θ) = [ξip (θ) , ξi,p+1 (θ) , ..., ξi,T−1 (θ)]′, �Wi = (
�wi,p+1,�wi,p+2,, ...,

�wiT )′, �wit = (�yit, �xit)
′. Hi is orthogonal projection matrix given by Hi =

IT−p − Qi(Q
′
iQi)

−1Q′
i, where Qi is matrix of observations on qit, namely Qi =(

qi,p+1, qi,p+2, ..., qi,T

)′
.

Following this approach, the first-order conditions for θ , φi and Σi imply the following
implicit solutions for MLE estimators, θ̂ , φ̂i and Σ̂i:

θ̂ = −
[

n∑

i=1

(
φ̂

′
iΣ̂

−1
i φ̂i

)
x′

i,−1Hixi,−1

]−1 n∑

i=1

x′
i,−1Hi

(
�Wi + yi,−1φ̂

′
i

)
Σ̂

−1
i φ̂i, (9)

φ̂i = −[
ξ
′
i,−1 (θ) Hiξi,−1 (θ)

]−1
�W′

iHiξ
′
i,−1 (θ) , (10)

and
Σ̂i = (T − p)−1

[
�Wi + ξi,−1 (θ) φ̂

′
i

]′
Hi

[
�Wi + ξi,−1 (θ) φ̂

′
i

]
, (11)

where xi,−1 = (
xip, xi,p+1, ..., xi,T−1

)′
, yi,−1 = (

yip, yi,p+1, ..., yi,T−1
)′

. Given an initial

estimate of θ , say θ̂
(1), initial estimates φ̂

(1)

i and Σ̂
(1)
i can be computed using (10)

and (11). The estimates φ̂
(1)

i and Σ̂
(1)
i , can then be used to update the estimate of θ , say

θ̂
(2), using (9), and so on until convergence.

Note that φ̂i (and Σ̂
−1
i ) effectively act as weights in (9). Specifically, when φ̂i →p 0

for some i, then the contribution of this unit to the pooled estimate of θ̂ in (9) will be
negligible, and tends to zero as T → ∞. This is why SPMG continues to be applicable
even if yit and xit do not co-integrate for some (but not all) units. In addition, SPMG is
invariant to the ordering of the variables, while the two-step version of Breitung (2005) is
not. More formally, following the literature, assume that uit are independently distributed
over i and t, with mean 0 and finite positive definite covariances, Σi (specifically
0 < c < λmin (Σi) < λmax (Σi) < C < ∞), and wit � I(1) for all i, but allow a number of
error correction vectors, φi, to be zero (non-cointegrating). Specifically, without loss of
generality, suppose that

φ′
iφi > 0, for i = 1, 2, . . . , m, (12)

φi = 0, for i = m + 1, m + 2, ..., n. (13)

Using standard results from the literature we have φ̂i = φi + op(1), and Σ̂
−1
i =

Σ−1
i + op(1), and11

Hi

(
�Wi + yi,−1φ̂

′
i

)
= Hi

(
Ui − θ0Hixi,−1φ

′
i

) + op(1).

where θ0 is the true value of θ . Using these results in (9) it now follows that

n1/2T
(
θ̂ − θ0

) = −Q−1
nT qnT + op(1), (14)

11See, for example, Pesaran et al. (1999) and Breitung (2005), and the references cited therein.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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10 Bulletin

where

QnT = n−1
n∑

i=1

(
φ′

iΣ
−1
i φi

)(
T−2x′

i,−1Hixi,−1
)

, and

qnT = n−1/2
n∑

i=1

(

T−1
T∑

t=1

x̃i,t−1u′
it

)

Σ−1
i φi. (15)

Under cross-sectional independence, and certain regularity conditions concerning the
moments of uit, it then follows that n1/2T

(
θ̂ − θ

)
tends to a Gaussian distribution so long

as QnT tends to a non-zero limit as n and T → ∞.12 Since wit is a unit root process,
then T−2x′

i,−1Hixi,−1 converges to a stochastically bounded and strictly positive random
variable, and it is sufficient that n−1 ∑n

i=1 φ′
iΣ

−1
i φi also converges to a non-zero limit.

Under (12) and (13) we have (note that by assumption λmax (Σi) < C < ∞)

n−1
n∑

i=1

φ′
iΣ

−1
i φi =

(m

n

)
[

m−1
m∑

i=1

φ′
iΣ

−1
i φi

]

> (1/C)
(m

n

)
(

m−1
m∑

i=1

φ′
iφi

)

,

and QnT tends to a non-zero limit as n and m → ∞, if m/n = 1 − π > 0, where π is
the fraction of units that are not co-integrating. Therefore, under regularity conditions
typically assumed in the literature, the SPMG estimator of θ can be viewed as a quasi-ML
(QML) estimator which is asymptotically normal and converges to its true value at the rate
of T

√
(1 − π)n. The convergence rate of the SPMG estimator in terms of n and T is not

affected by a non-zero π , so long as π is not too close to unity. However, in practice the
effective number of units in the panel is discounted by the proportion of non-cointegrating
units.

We carry out inference using conventional SEs (assuming error cross-sectional
independence), robust SEs (allowing for arbitrary error cross-sectional dependence),
and bootstrapped confidence intervals, outlined in sections S.1 and S.2.3 of Appendix S1.

There are also a number of time series estimators of unit-specific co-integrating vectors,
such as the original Engle–Granger, fully modified OLS, dynamic OLS, and ARDL as
well as system estimators like Johansen that can be used to investigate the empirical
validity of the great ratios hypothesis.13 These estimators can be averaged across countries
to yield corresponding mean group (MG) panel data estimators introduced in Pesaran
and Smith (1995) . This not only reduces country-specific sampling errors, but it also
allows the calculation of non-parametric SEs directly based on the individual estimates,
which are robust to serial correlation and heteroskedasticity at the individual country
level, avoiding complicated inference problems. Furthermore, as shown in Chudik and
Pesaran (2019), the MG group procedure is valid if the error cross-sectional dependence

12As noted in the introduction, no restrictions on the relative rate of n and T are needed for consistency of θ̂ as
n and T → ∞. However, n/T → 0 is required for valid inference, but this is likely to be satisfied in the type of
applications considered.
13See Engle and Granger (1987), Phillips and Hansen (1990), Johansen (1991), Stock and Watson (1993),
Phillips (1995), and Pesaran and Shin (1999).

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 11

is weak. However, the MG estimator requires that all country-specific estimators are
consistent, a condition which will not be met when the co-integration condition does not
hold for some of the units under consideration. To ensure that all units being considered
are in fact co-integrating involves pretesting and is subject to further complications.
For these reasons we focus on PMG and system PMG estimators. To deal with the
possibility of strong error cross-sectional dependence we consider robust SEs (outlined in
equation (S.26)) and, in addition, we adopt a bootstrap algorithm, with details provided in
Appendix S1.14

In our application, the SPMG estimator does not allow for time variation in φ. The
analysis can be extended to scenarios where φ = 0 for some sub-periods and φ �= 0 in
others, by considering each sub-period as if it relates to a new synthetic country. This
extension was not pursued because identification of such sub-periods is not straightforward,
and the time series data available for many countries is rather short and any sample splits
can lead to biased estimates due to short sub-samples.

IV. Monte Carlo evidence

In this section we investigate the finite-sample performance of alternative panel estimators
of long-run relationships, and accuracy (confidence interval coverage rate) of tests of the
common long-run coefficient which is of interest in the analysis of great ratios. As noted
already, the focus of our Monte Carlo experiments is on (i) robustness of the estimators to
possible failure of cointegration in the case of some units, (ii) the ability of the estimator
to perform well regardless of the direction of long run causality, and last but not least
(iii) the robustness of inference based on the long-run estimates to heteroskedasticity and
cross-sectional error dependence. This section provides a summary of the Monte Carlo
findings. A detailed account of the estimators used and the design and results of these
experiments is presented in the online supplement.

Summary of data generating process

In the discussion above and in the empirical application we assume that while φi may
equal zero, it is not time varying. For the Monte Carlo we represent the failure of
co-integration by allowing the φ to be time varying and to be zero for a proportion of the
time. Accordingly, we generate wit = (yit, xit)

′ using a VAR(2) model, which we write in
the error-correcting representation as

�yit = ayi − φyit(yi,t−1 − θxi,t−1) + ψyyi�yi,t−1 + ψyxi�xi,t−1 + uyit,

�xit = axi − φxit(yi,t−1 − θxi,t−1) + ψxyi�yi,t−1 + ψxxi�xi,t−1 + uxit.

The coefficient of interest is θ , the long-run coefficient, which we set equal to one.
When the error-correcting coefficients φyit �= 0 and φxit = 0, there is a long-run

relationship with long-run causality from x to y, which we denote as x → y. When both

14While the robust SEs work well for a sufficiently large T , regardless of cross sectional dependence, bootstrap
SPMG confidence intervals performed the best in all our Monte Carlo experiments summarized in the next section.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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12 Bulletin

φyit, φxit �= 0 the long-run causality runs both ways, which we denote as x ↔ y. Initially,
we consider data generating processes (DGP) where the direction of long-run causality is
from x to y (x → y) and set φxit = 0 for all i, t, and generate φyit to be non-zero except for
a number of non-cointegrating episodes with durations that vary from a minimum of 10
periods and a maximum of T periods (namely the full sample). This is achieved by setting

φyit =
{

0, for t ∈ Ti

φyi, for t /∈ Ti
,

where φyi ∼ IIDU (0.1, 0.25) and Ti denotes the set of non-cointegrating episodes for
unit i, with each episode having duration Ti. With probability (1 − π), we set Ti = 0
(namely Ti = ∅), and with probability π , we draw Ti uniformly from the set of integers
{10, 11, ..., T}. The start of non-cointegrating episodes in Ti is also generated stochastically.
In experiments where x ↔ y, we generate φxit similarly to φyit, namely using the identical
index sets Ti, and generate φxi as φxi ∼ IIDU (−0.15, −0.05). The parameter π controls the
occurrence of non-cointegrating episodes. We consider π = 0, the benchmark case with
no non-cointegrating episodes, π = 0.05 with relatively few non-cointegrating episodes,
and π = 0.2 with more frequent non-cointegrating episodes.

Another key aspect of our design is the strength of error cross-sectional dependence
which has importance implications for inference, in particular. We consider three options,
the independent case, where uit = (

uyit, uxit
)′

is independent of ujt for all i �= j, and two
cross-sectionally correlated cases with spatial and latent factor dependence. Specifically,
we consider a spatial autoregressive model (SAR) and a mixed spatial factor model. We set
the spatial autoregressive parameter to 0.6, and allow the factors to be strong. In all cases,
uit are generated allowing for non-zero contemporaneous covariances, Cov

(
uyit, uxit

) �= 0,
using both Gaussian and non-Gaussian error distributions, to check the robustness of
different estimation methods to departures from Gaussianity.

In total we consider 36 different experiments, spanning the choices of (a) π

(probability of non-cointegration), (b) the direction of long-run causality, (c) error
cross-section dependence, and (d) error distributions.15 For each experiment we
consider 20 pairs of sample size combinations obtained from T ∈ {50,100, 150,200}
and n ∈ {17, 30, 50,100, 200}, and use RMC = 2,000 replications to obtain the results. We
include n = 17 because that is the number of countries in our empirical application. Among
the choices of (n, T), the smaller values are relevant for typical empirical applications
in economics, whereas the larger choices of (n, T) are interesting from an econometric
perspective as they shed more light on the consistency, validity of asymptotic SEs, and the
relative importance of n and T dimensions. We consider five estimators outlined below.

Five estimators

We consider the PMG estimator by Pesaran et al. (1999) (with asymptotic inference or
with bootstrapped inference outlined in Appendix S1), and the system PMG estimator
outlined above. The third estimator is mean group estimator based on individual Müller

15In Appendix S1 we also consider time series heteroskedasticity and show that this does not substantially affect
coverage rates.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 13

and Watson (2018) estimates. In particular, we split the sample period into q non-
overlapping sub-samples of (approximately) equal size, where q is treated as fixed as
(n, T) changes. We then take simple temporal averages for each of the sub-samples,
and average individual cross-section specific least squares estimates computed using the
sample of q temporally averaged periods. We refer to this estimator as MGMW. Due
to temporal averaging, this estimator has the potential to be quite robust. The fourth
estimator included in this study is two-step estimator by Breitung (2005), and the fifth
estimator is the off-the-shelf popular panel dynamic OLS (PDOLS) estimator by Mark
and Sul (2003). We do not make any modifications to PDOLS estimator and its inclusion
in this study is for completeness and for the comparison purposes. PDOLS need not be
robust to episodes of non-cointegration and/or cross-sectionally correlated panels, but it
is an important benchmark in the literature.16

Summary of Monte Carlo findings

We begin with reporting the results for the baseline case in Tables 1 and 3 where the errors
are cross-sectionally independent and Gaussian, the long-run causality is known to run
from x to y, and there are no episodes of non-cointegration. In this case we expect all five
estimators to work reasonably well. Focusing on the sample size combination closest to
our empirical applications, namely T = 100, and n = 17, the best RMSE value of 0.0231
is achieved by the PMG estimator, followed closely by the SPMG with a RMSE of 0.0253,
two-step Breitung with a RMSE of 0.0256, with the RMSEs of the remaining estimators
quite a bit higher, falling in the range 0.0289 to 0.0528 (see Table 1). From an econometric
perspective, a difference in RMSE of over 125% between the worst (MGMW) and the
best (PMG) estimators is large. From an economic perspective, however, even the worst
RMSE is rather small and all five estimators yield reasonably precise estimates of the
long run coefficient in the baseline experiments. A similar ordering of the five estimators
is obtained when we consider bias, except for the SPMG which now has the smallest bias
followed by the PMG. The results also show the importance of the T dimension for the
performance of all the five estimators.

The 95% coverage rate for the different estimators of the long-run coefficient are
reported in Tables 1 and 3. For (T = 100, n = 17) sample size the simulated coverage
rates vary from 79.4% (for PDOLS, p = 1, in Table 1) to 91.5%–94.0% (bootstrapped
confidence intervals of the PMG and the SPMG reported in Table 3). Bootstrapped
inference reported in Table 3 appears to be uniformly better than the conventional
alternatives reported in Table 1.17 While for the values of T > 100, coverage rates are
reasonably good, this is not the case for T = 50, where the conventional confidence
intervals are in the range of 8.5% to 86.7%.

16Additional panel estimators in the literature are the panel Fully modified OLS (FMOLS) estimator by Pedroni (2001)
and the recently introduced panel Bewley estimator by Chudik, Pesaran, and Smith (2021).
17We have also considered a robust alternative to the conventional estimator of SPMG variance, outlined in
equation (S.26) in Appendix S1, and its thresholding version (S.27). While the robust SEs work very well for
T = 200, regardless of cross-sectional dependence (and for all our choices of n, see Table S38), they suffer from the
same small sample drawbacks as the conventional SEs. Bootstrap SPMG confidence intervals performed the best in
all Monte Carlo experiments.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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14 Bulletin

TABLE 1

MC results for the estimation of long-run coefficientθ0 = 1 in the baseline experiments

Bias (×100) RMSE (×100) Coverage rate (×100)

n \ T 50 100 150 200 50 100 150 200 50 100 150 200

PMG estimator
17 −1.05 −0.22 −0.09 −0.06 5.49 2.31 1.40 1.00 71.1 83.8 89.0 90.5
30 −0.86 −0.19 −0.09 −0.05 4.22 1.64 1.03 0.74 67.7 85.1 88.2 90.3
50 −1.03 −0.26 −0.10 −0.05 3.21 1.32 0.79 0.57 69.9 83.6 88.8 89.5
100 −0.91 −0.22 −0.08 −0.05 2.26 0.89 0.55 0.39 68.2 85.0 88.8 91.5
200 −0.98 −0.21 −0.09 −0.05 1.76 0.64 0.38 0.28 62.0 84.0 89.4 91.2

SPMG estimator
17 0.12 0.06 0.04 0.01 6.71 2.53 1.47 1.03 59.5 79.4 86.2 89.1
30 0.24 0.07 0.02 0.01 4.95 1.74 1.06 0.76 59.1 80.5 86.8 88.7
50 −0.01 −0.04 −0.01 0.00 3.59 1.38 0.80 0.59 59.9 79.6 87.0 87.8
100 0.10 0.01 0.01 0.00 2.46 0.93 0.57 0.40 61.2 81.0 86.0 89.6
200 0.00 0.01 0.01 0.00 1.71 0.65 0.39 0.28 61.3 81.4 87.2 88.6

MGMW estimator, q = 5
17 −5.54 −1.97 −0.98 −0.60 10.53 5.28 3.56 2.62 86.7 92.1 93.9 94.1
30 −5.64 −1.84 −0.87 −0.49 8.92 4.19 2.80 2.04 82.2 90.7 92.5 92.3
50 −5.64 −2.09 −0.99 −0.55 7.63 3.52 2.18 1.56 76.8 87.2 90.3 92.3
100 −5.59 −1.91 −0.96 −0.55 6.76 2.77 1.66 1.15 63.4 82.4 89.0 91.8
200 −5.55 −1.92 −0.93 −0.54 6.14 2.38 1.36 0.90 40.7 71.4 82.2 88.2

two-step Breitung’s estimator
17 −2.56 −0.66 −0.30 −0.18 5.64 2.56 1.60 1.14 76.2 85.5 90.1 91.2
30 −2.25 −0.57 −0.26 −0.13 4.46 1.90 1.14 0.85 74.6 85.7 90.5 91.1
50 −2.34 −0.65 −0.28 −0.15 3.71 1.54 0.91 0.66 68.9 84.5 89.7 91.8
100 −2.30 −0.62 −0.28 −0.15 3.08 1.14 0.66 0.47 57.2 81.8 88.9 90.7
200 −2.31 −0.62 −0.27 −0.15 2.72 0.92 0.51 0.35 39.2 75.3 85.2 87.9

PDOLS estimator, leads and lags order p = 1
17 −4.86 −2.39 −1.58 −1.17 6.82 3.44 2.27 1.67 75.8 79.4 80.5 81.8
30 −4.65 −2.30 −1.52 −1.11 5.94 2.93 1.91 1.42 69.2 70.9 71.8 73.1
50 −4.73 −2.38 −1.54 −1.12 5.50 2.76 1.79 1.31 56.0 54.1 55.9 59.4
100 −4.65 −2.31 −1.52 −1.11 5.07 2.51 1.65 1.21 31.7 30.4 31.4 32.8
200 −4.63 −2.30 −1.50 −1.10 4.83 2.40 1.57 1.15 8.5 7.1 7.6 7.8

PDOLS estimator, leads and lags order p = 4
17 −2.73 −1.20 −0.76 −0.56 6.59 2.89 1.79 1.30 83.9 88.6 90.1 90.7
30 −2.47 −1.09 −0.71 −0.51 5.23 2.23 1.36 1.01 82.9 87.0 89.3 88.8
50 −2.49 −1.16 −0.74 −0.52 4.18 1.88 1.17 0.84 80.8 83.9 84.6 85.8
100 −2.50 −1.14 −0.73 −0.52 3.48 1.55 0.97 0.70 72.3 75.0 77.4 77.2
200 −2.48 −1.14 −0.72 −0.52 3.01 1.35 0.85 0.62 59.7 61.0 61.2 60.8

PDOLS estimator, leads and lags order p = 8
17 −1.34 −0.60 −0.32 −0.24 10.82 3.27 1.83 1.28 70.4 87.7 90.8 92.4
30 −1.48 −0.46 −0.30 −0.20 8.14 2.41 1.32 0.95 71.1 89.6 92.1 92.2
50 −1.42 −0.52 −0.31 −0.21 5.95 1.83 1.05 0.73 75.2 89.5 90.8 92.4
100 −1.33 −0.49 −0.31 −0.21 4.35 1.34 0.77 0.54 75.1 88.6 90.0 90.9
200 −1.30 −0.52 −0.31 −0.22 3.24 1.02 0.59 0.42 76.1 85.6 87.8 88.2

Notes: Coverage rate is 95% confidence interval coverage rate. This table reports findings for the estimation of
long-run coefficient θ0 = 1 in experiments featuring Gaussian errors, LR causality x → y, π = 0, and no cross-
section dependence of errors. See section S.3.1 of Appendix S1 for full details of the DGP. Description of the PMG,
SPMG, MGMW and two-step Breitung estimators, and the description of bootstrapping procedures are provided in
sections S.2.1–S.2.3 of the Appendix S1. PDOLS is the panel dynamic OLS estimator by Mark and Sul (2003). The
number of Monte Carlo replications is RMC = 2,000.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 15

Consider now the most ‘demanding’ experiment under which we allow for non-
Gaussian and cross-sectionally correlated errors with both spatial and factor dependencies
(denoted as factor + SAR), two-way long-run causality, and π = 0.2 (a relatively high
occurrence of non-cointegrating episodes). The results of this case are summarized in
Tables 2 and 3.18 The SPMG (with bootstrapped confidence intervals in Table 3) emerges
as the only reliable estimator and is therefore a clear winner. It is also the only estimator
without serious bias. For T = 100, and n = 17, its bias is only 0.0004 compared with
the range of −0.0373 to −0.0098 for the other estimators. Similarly the RMSE value of
the SPMG estimator at 0.0183 is substantially smaller than the RMSE obtained for the
other estimators, which are 0.0210 for PMG, 0.0669 for MGMW, 0.0723 for the two-step
Breitung estimator, and 0.0634, 0.0660, 0.0781, for the PDOLS(1,4,8). The large gap
between SPMG and two-step Breitung estimators is primarily due to the fact that 20% of
the cross-section units in these experiments are not co-integrating, and this is not allowed
under the two-step Breitung estimator. The need to bootstrap for accurate inference is
again confirmed by the 94.0% coverage of the SPMG bootstrapped confidence interval
compared with the conventional coverage of only 67.6%. Coverage rates of the remaining
estimators are poor, and fall in the range of 58%–88%.

While no Monte Carlo exercise, regardless of how extensive or carefully designed,
can guarantee the reliability of any particular estimator in real datasets, it can illuminate
lack of robustness or other problems in a controlled setting containing features thought
to be found in real-world data. As is well known, confidence intervals designed for
cross-sectionally independent errors are invalid when errors are in fact cross-sectionally
dependent, and the seriousness of this problem is clearly documented by the detailed
Monte Carlo results in Appendix S1. In addition, while it is not guaranteed that confidence
intervals that are robust to cross-section dependence will perform well in practice, the
bootstrapped confidence intervals adopted in this paper had rather good coverage rates.

Tests indicate that cross-section correlation of residuals is clearly present in the data
used in this paper. The other two aspects of our design – two-way causality and the
existence of non-converging episodes – cannot be as easily validated, but are both
plausible a priori. Thus it is reassuring to have an estimator that is robust to those features.

We also considered the small sample properties of the MG estimators based on
Johansen and ARDL individual country estimates, but found that they did not perform
well as compared to the pooled approach, particularly when compared to the system PMG
estimator. As is well known, MG estimators require the underlying individual estimates
to have finite moments, and this condition does not hold in general. This was found to be
the case when we used country-specific Johansen’s estimates.

We also considered a number of other approaches to deal with non-cointegrating
episodes. Given the long span of our data and the possibility of no co-integration during
particular episodes we tried averaging estimates over sub-periods within each cross-section
unit. We also tried pretesting whereby we first tested for co-integration before including the
estimate when computing the MG estimator. After considerable investigation, we found

18Summary results for all other experiments (between these two extremes reported in Tables 1–3) are provided in
Appendix S1. Findings presented in the supplement suggest that non-Gaussianity does not have significant influence
on the results. This suggests that the distributional form of the errors is unlikely to be of great importance in practice.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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16 Bulletin

TABLE 2

MC results for the estimation of long-run coefficient θ0 = 1 in experiments with non-Gaussian errors,
x ↔ y, π = 0.2 and CS dependence of errors

Bias (× 100) RMSE (× 100) Coverage rate (×100)

n \ T 50 100 150 200 50 100 150 200 50 100 150 200

PMG estimator
17 −1.98 −0.98 −0.65 −0.51 4.54 2.10 1.34 1.02 54.9 62.0 65.8 66.2
30 −1.74 −0.87 −0.62 −0.45 3.40 1.72 1.12 0.83 50.4 57.8 58.0 59.7
50 −1.77 −0.85 −0.58 −0.42 3.01 1.43 0.93 0.70 45.2 50.7 52.9 55.0
100 −1.62 −0.85 −0.56 −0.41 2.44 1.23 0.80 0.60 35.9 38.7 39.7 43.4
200 −1.59 −0.82 −0.55 −0.41 2.20 1.11 0.73 0.54 26.9 27.6 27.5 28.8

SPMG estimator
17 −0.02 0.04 0.01 0.01 5.92 1.83 1.12 0.85 53.8 67.6 71.6 72.3
30 0.12 0.05 −0.02 0.00 3.23 1.40 0.88 0.64 53.0 64.3 67.5 69.8
50 0.00 0.05 0.03 0.02 2.43 1.05 0.66 0.48 53.0 64.0 68.6 71.4
100 0.10 −0.01 0.00 0.01 1.85 0.74 0.46 0.34 51.2 63.2 69.9 71.4
200 0.05 0.01 0.01 0.01 1.24 0.53 0.33 0.24 50.1 63.0 67.5 70.3

MGMW estimator, q = 5
17 −2.65 −1.92 −1.39 −1.26 8.97 6.69 5.72 5.45 83.9 87.8 89.2 92.3
30 −2.04 −1.62 −1.23 −1.11 7.06 5.18 4.74 4.40 83.5 87.6 89.3 90.1
50 −2.41 −1.48 −1.21 −0.95 6.02 4.08 3.66 3.36 81.3 84.1 87.6 88.5
100 −1.95 −1.40 −1.21 −0.95 4.59 3.22 2.87 2.55 78.5 82.7 83.8 85.9
200 −2.04 −1.32 −1.09 −1.01 4.08 2.67 2.30 2.17 72.3 78.1 79.6 80.3

two-step Breitung’s estimator
17 −4.15 −2.82 −2.20 −2.26 10.12 7.23 6.47 7.65 50.8 58.4 61.6 61.4
30 −4.04 −2.69 −2.21 −1.94 8.42 6.28 5.31 4.90 49.0 54.2 58.8 60.9
50 −4.19 −2.53 −2.18 −1.83 7.14 5.13 4.76 4.28 41.0 52.6 55.8 59.5
100 −4.04 −2.47 −2.16 −1.99 6.13 4.56 3.78 4.20 33.2 45.5 48.1 49.9
200 −4.04 −2.51 −2.11 −1.85 5.28 3.69 3.10 2.82 22.9 35.6 38.0 41.6

PDOLS estimator, leads and lags order p = 1
17 −5.16 −3.73 −2.97 −2.74 8.72 6.34 5.42 5.17 75.4 83.0 82.7 86.1
30 −4.97 −3.61 −2.95 −2.59 7.31 5.37 4.64 4.15 74.5 79.3 81.2 84.6
50 −5.14 −3.39 −2.88 −2.51 6.81 4.64 3.98 3.62 65.2 75.0 74.2 78.7
100 −4.97 −3.33 −2.90 −2.54 6.03 4.10 3.62 3.24 56.4 62.3 62.7 64.4
200 −4.89 −3.35 −2.82 −2.51 5.65 3.85 3.29 2.95 44.8 44.2 45.0 50.0

PDOLS estimator, leads and lags order p = 4
17 −4.42 −3.34 −2.69 −2.53 9.70 6.60 5.61 5.33 75.9 84.6 85.5 88.4
30 −4.27 −3.27 −2.69 −2.37 7.91 5.51 4.68 4.16 73.3 83.0 84.8 88.2
50 −4.52 −3.02 −2.60 −2.30 7.04 4.59 3.93 3.57 70.9 81.5 82.0 84.5
100 −4.38 −2.96 −2.65 −2.33 5.99 3.94 3.50 3.14 63.7 74.5 75.1 74.1
200 −4.35 −3.01 −2.57 −2.30 5.48 3.64 3.11 2.79 56.9 62.1 60.7 63.9

PDOLS estimator, leads and lags order p = 8
17 −3.65 −3.29 −2.64 −2.51 13.62 7.41 6.10 5.69 58.2 83.0 85.1 87.8
30 −3.62 −3.23 −2.65 −2.32 10.63 6.17 5.00 4.38 56.5 81.0 84.2 88.0
50 −3.93 −2.92 −2.54 −2.23 8.74 4.95 4.15 3.69 57.5 80.7 82.7 86.1
100 −3.88 −2.84 −2.62 −2.29 7.12 4.14 3.64 3.22 52.9 75.5 77.2 77.4
200 −4.04 −2.91 −2.53 −2.27 6.24 3.77 3.18 2.83 48.2 66.7 67.1 69.0

Notes: Coverage rate is 95% confidence interval coverage rate. This table reports findings for the estimation
of long-run coefficient θ0 = 1 in experiments featuring non-Gaussian errors, LR causality x ↔ y, π = 0.2, and
factor+SAR CS dependence of errors. See notes of Table 1.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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Revisiting the great ratios hypothesis 17

TABLE 3

Robust bootstrapped 95% confidence interval coverage rates (×100) for PMG and SPMG estimators in
MC experiments

n \ T 50 100 150 200 50 100 150 200

Baseline experiments

PMG estimator SPMG estimator

17 90.1 93.5 94.4 94.4 86.7 91.5 93.6 94.2
30 89.0 94.3 94.0 94.9 86.1 93.8 93.7 94.6
50 89.0 92.7 94.7 94.2 86.2 92.1 94.2 94.2
100 89.9 93.5 94.5 94.8 86.0 93.5 93.9 93.9
200 85.8 93.3 94.9 95.0 87.5 93.1 94.7 95.0

Experiments with non-Gaussian errors,
x ↔ y, π = 0.2 and CS dependence of errors

PMG estimator SPMG estimator

17 87.8 91.8 90.6 91.2 88.5 94.0 93.8 95.0
30 87.6 87.9 88.2 88.1 89.4 92.3 93.6 93.2
50 83.9 86.1 86.4 87.3 89.5 92.4 93.5 94.3
100 78.3 78.8 79.7 81.2 87.5 92.4 94.0 94.1
200 71.8 71.5 71.8 71.9 88.7 92.4 93.6 94.7

Notes: Bootstrapped critical values are computed in each of the Monte Carlo replication as described in sections S.2.1-
S.2.3 of Appendix S1, based on Rb = 2,000 bootstrap replications. See notes of Tables 1 and 2.

out that splitting the sample into sub-periods does not seem to be beneficial, because (as
the Monte Carlo experiments show), having a large T dimension is crucial for estimation
and inference. There was mixed evidence on the value of pre-testing for the existence of
level relationships. Pretesting is not required for PMG and system PMG estimators since
the individual estimates are weighted by the magnitude of error-correcting coefficients,
which makes them robust to non-cointegrating units.

V. Empirical evidence

In the empirical application, we estimate pooled long-run coefficients for seven bivariate
relationships using a panel of 17 countries over the years 1870–2016 from the Jordà-
Schularick-Taylor macro-history database. The relations are: (1) the logarithms of real
consumption per capita and real GDP per capita; (2) the logarithms of investment and
GDP; (3) the logarithms of imports and exports; (4) the logarithms of public debt and
GDP; (5) short- and long-term interest rates; (6) inflation and long-term interest rates;
and (7) inflation and money growth.19 In each case we estimate the long-run coefficient
and its 95% confidence interval. While the dynamics of adjustments might differ across
countries, the great ratios hypothesis implies that the long-run coefficient will take a
common value of unity. Details of the data and variables are given in the Appendix A.
Except for the export–import relationship, these pairs overlap with those considered by
MW. They use a 68-year post-war US sample and consider data on some other variables
including unemployment, total factor productivity, stock returns, dividends and earnings.

19Strictly the last three relationships are not ratios as such, but their long run constancy is often assumed.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.

 14680084, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/obes.12571, W

iley O
nline L

ibrary on [12/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



18 Bulletin

We consider the same estimators investigated in the Monte Carlo section. Regarding
the PDOLS and its corresponding Monte Carlo evidence on negative consequences of a
too short lead/lag order, we only consider the longer lead and lag orders, p = 4 and 8.
The estimators reported below are (1) PMG, the PMG estimator of Pesaran et al. (1999);
(2) SPMG; (3) MGMW, the mean group estimator based on Müller and Watson (2018)
country-specific estimates, using temporally aggregated data into q = 5 sub-periods; (4)
the two-step Breitung (2005) estimator; (5) PDOLS, p = 4 is the panel dynamic OLS
estimator by Mark and Sul (2003) using 4 leads and lags; and (6) PDOLS, p = 8. For the
PMG and SPMG two sets of confidence intervals are provided, asymptotic and bootstrap,
while for the other estimators only asymptotic confidence intervals are given. More details
can be found in Appendix S1.

We use the largest available balanced panel for each pair of variables, as described in
the Appendix A. The number of countries (n) ranges from 14 (investment) to 17 and the
number of time periods (T) from 121 to 143 years.

Other than the SPMG, the estimators are not invariant to normalization and like Müller
and Watson (2018) we provide estimates under both long-run causal ordering, namely
θ̂ y.x and θ̂ x.y. Only in the case of SPMG is one estimator exactly the reciprocal of the
other, namely θ̂ y.xθ̂ x.y = 1. This property does not hold for other estimators that depend
on whether yt is regressed on xt or vice versa.

The pooled estimates of the long-run coefficients together with their 95% confidence
intervals are summarized in Table 4. For each pair of variables (y, x) we report six
different estimates of θ̂ y.x and θ̂ x.y, namely PMG, SPMG, PMW, Breitung, PDOLS(4),
and PDOLS(8). To check for possible error cross-sectional dependence, at the bottom of
Table 4 we also report the average pairwise correlation coefficient of residuals from the
panel data models and related CD test statistics due to Pesaran (2004, 2015). It is clear that
there are significant degrees of error cross-section dependence and for statistical testing
it is prudent to focus on bootstrapped confidence intervals reported for PMG and SPMG
estimators.

With such a large number of observations and quite small SEs, in some cases, it is not
clear that traditional significance testing is the appropriate criteria for judging closeness
to unity. For debt-GDP and long-short interest rates relationships, the estimated long-run
coefficients are close to unity and not significantly different from it at the 5% level.
The SPMG (with a bootstrapped 95% confidence interval) gives long-run coefficients of
θ̂Debt-GDP = 1.05 (0.993–1.108) for debt on GDP and θ̂Short–Long = 1.01 (0.912–1.108)
for short- on long-term rates. Similar results are obtained using the other estimators. The
bracketed figures refer to 95% confidence intervals.

For investment-GDP and imports-exports, the long-run coefficients are also estimated
to be close to unity. But due to their high precision the null hypothesis that the long-run
coefficient is in fact unity gets rejected. The SPMG gives θ̂ INV-GDP = 1.044 (1.029–1.059)
for investment on GDP and θ̂ IM-EX = 0.967 (0.961–0.973) for imports on exports. Again
similar results are obtained when other estimators are considered.

The estimates of the long-run coefficient for consumption-GDP pair are somewhat
away from one. For example, using the SPMG method we obtain θ̂CON-GDP = 0.907
(0.884–0.930), with the other estimates slightly lower ranging from a low of 0.883 when
we use PDOLS(4), and 0.900 when we use PMG.

© 2023 The Authors. Oxford Bulletin of Economics and Statistics published by Oxford University and John Wiley & Sons Ltd.
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For the remaining two relationships the evidence is more mixed, with different
estimators yielding different results. For regressions of inflation on money supply growth
the estimates of θINF−Money are not significantly different from one in the case of MGMW,
Breitung, PDOLS(4), and PDOLS(8) estimators. But an opposite conclusion is reached if
the long-run coefficient is estimated by running regressions of money supply growth on
inflation. This is the case if we consider Breitung, PDOLS(4) and PDOLS(8) estimators.
A unit long-run relationship between money supply growth and inflation is supported only
by the MGMW estimator irrespective of which way the regressions are implemented.
PMG and SPMG both strongly reject the null of a unit long-run relationship between
inflation and money supply growth.

Almost all estimates of the long-run coefficient of inflation on long-term interest rate
are significantly below unity – the exception being when the long-run coefficient is
estimated by PDOLS(8) using the regression of inflation on the long-term interest rate.
Even in this case the long-run coefficient is poorly estimated and an opposite conclusion is
reached if the long-run estimate is computed from the reverse regression of the long-term
rate on inflation.

Overall, it is quite encouraging that five out of the seven long-run coefficients are quite
close to unity, with substantial empirical evidence in support of Debt to GDP and Imports
to Exports as being great ratios, and the difference between long- and short-term interest
rates being stationary. The evidence on consumption-GDP and investment-GDP as great
ratios is less overwhelming. This is particularly problematic for the consumption-GDP
ratio where the largest estimate obtained for the long-run elasticity of consumption to
GDP is 0.907 (using SPMG) which is difficult to rationalize. At the level of the cross
section of individual households this could correspond to the well established pattern that
savings as a proportion of income increase with income, the rich save more. At the level
of the time series for a country, this could correspond to the fact that the measured private
consumption is only a part of total consumption and with increasing income, government
consumption has accounted for a growing part.

VI. Concluding comments

By using long span panel data and a robust estimator we provide more evidence for close
to unit elasticities for two balanced growth conditions, two solvency conditions and a
stable term structure, but find evidence against a unit long-run coefficient in the case of
the Fisher relationship and the inflation money growth relationship.

We relied on long-span panel data to overcome the drawbacks of the single-country
regressions. However, panel analysis of great ratios presents its own challenges – namely
possible failures of cointegration, the unknown direction of long-run causality, and cross-
sectionally correlated observations. To overcome these challenges, we have proposed a
new system PMG estimator. Monte Carlo simulations show that SPMG performs better
in small samples than alternative estimators even in the presence of two-way long-run
causality, failure of co-integration, and error cross-sectional dependence. However, it is
important to highlight that the present paper does not address the much more challenging
topic of estimating multiple co-integrating relations in heterogeneous panels, and requires
the time dimension to be much larger than the cross section dimension.
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Appendix A

The data are taken from the Jordà-Schularick-Taylor (JST) Macrohistory Database
(available at http://www.macrohistory.net/data/),20 see Jordà et al. (2017). Jordà
et al. (2019) provide further discussion of the rate of return data. JST provide data for 17
countries over the period 1870–2016. There are clearly issues with the measurement of
economic variables over such a long span. However, JST is a carefully compiled database
which has been widely used. The data are assembled from a wide variety of sources with
different definitions of variables and countries vary because of boundary changes.21 For
instance, the long interest rate is on government bonds, with a maturity typically around
10 years, but sometimes longer like the British Consols which were perpetuals. From
about 1950 the maturity is fairly accurately defined at about 10 years. While the series
may be noisy, there is a lot of variation, so the signal-noise ratio may be high.

Table A1 lists the series we use together with their availability. We use the largest
balanced panel for estimations. For each country i, we omit gap years (if any) and compute
the number of available time periods for each country, denoted as Ti. Then we re-order

TABLE A1

Variable description and data availability*

Name Gap years † Description Variable construction ‡

Real consumption per capita 88 (3.5%) log of real consumption per capita
index

log(rconpc)

Real GDP per capita 0 (0%) log of real GDP per capita index log(rgdppc)
GDP 25 (1%) log of nominal GDP (local ccy) log(gdp)
Investment 220 (8.8%) log of nominal investment

(local ccy)
log(iy*gdp)

Imports 41 (1.6%) log of nominal imports (local ccy) log(imports)
Exports 41 (1.6%) log of nominal exports (local ccy) log(exports)
Public Debt 184 (7.4%) log of public debt (local ccy) log(debtgdp*gdp)
Short IR 148 (5.9%) short nominal interest rate,

log(1+r/100), r is in % per year
log(1+stir/100)

Long IR 35 (1.4%) long nominal interest rate,
log(1+r/100), r is in % per year

log(1+ltrate/100)

Inflation 17 (0.7%) Annual Consumer Price Inflation log(cpi/cpi(−1))
Money 172 (6.9%) Annual nominal broad money

growth
log(money/money(−1))

Notes: ∗The source for all variables is the Jordà-Schularick-Taylor (JST) macrohistory database available at http://
www.macrohistory.net/data/, see, Jordà et al. (2017, 2019). We have downloaded the latest version available at the
beginning of September 2020, which is ‘JSTdatasetR4’ (Release 4, May 2019).
†The full sample covers nmax = 17 countries and T = 147 years, together nmax Tmax = 2,499 country-year
datapoints. Countries are: Australia, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France,
UK, Italy, Japan, The Netherlands, Norway, Portugal, Sweden, and USA. Time is 1870–2016. The column ‘Gap
years’ reports the number of country-year data points with missing data. The shares of the gap years in the overall
sample are reported in the parentheses.
‡The column ‘Variable construction’ shows variable transformations referencing the underlying variable codes in
the JST database.

20We downloaded version JSTdatasetR4 (Release 4, May 2019), in particular we have downloaded datafile http://
www.macrohistory.net/JST/JSTdatasetR4.xlsx.
21There is detailed documentation of the sources at http://www.macrohistory.net/data/.
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countries so that T1 ≥ T2 ≥ · · · ≥ Tnmax . Note that T1 is the largest time dimension (and
the largest number of observations) if only one country was to be used for estimation, 2T2

is the largest number of observations for a balanced panel if two countries were chosen for
estimation, and so on. We find n∗ = max 1≤n≤nmax {nTn}, and the largest balanced panel
features n∗ countries and Tn∗ periods.

Final Manuscript Received: August 2022
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Supporting Information

Additional Supporting Information may be found in the online Appendix:

Appendix S1. Supporting information.

Data replication package: the data replication package is available at
https://doi.org/10.3886/E188961
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