
BIROn - Birkbeck Institutional Research Online

Artale, A. and Gnatenko, A. and Ryzhikov, Vladislav and Zakhariyashchev,
Michael (2023) A decidable temporal DL-Lite logic with undecidable first-
order and datalog-rewritability of ontology-mediated atomic queries. In: Kutz,
O. and Lutz, C. and Ozaki, A. (eds.) Proceedings of the 36th International
Workshop on Description Logics (DL 2023). CEUR Workshop Proceedings
3515. CEUR.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/51763/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/51763/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Decidable Temporal DL-Lite with Undecidable
FO-rewritability of Ontology-Mediated Queries
Extended Abstract

Alessandro Artale1, Anton Gnatenko1, Vladislav Ryzhikov2 and
Michael Zakharyaschev2

1

Free University of Bozen-Bolzano, Italy

2

Birkbeck, University of London, U.K.

Abstract
We design a logic in the temporal DL-Lite family (with non-Horn role inclusions and restricted tempo-
ralised roles), for which answering ontology-mediated atomic queries (OMAQs) can be done in ExpSpace
and even in PSpace for ontologies without existential quantification in the rule heads but determining
FO-rewritability or (linear) Datalog-rewritability of OMAQs is undecidable. On the other hand, we
show (by reduction to monadic disjunctive Datalog) that deciding FO-rewritability of OMAQs in the
non-temporal fragment of our logic can be done in 3NExpTime.

Keywords
Temporal description logics, DL-Lite, ontology-mediated query, first-order rewritability.

1. Introduction

Temporal description logics are used to reason about relational data that evolves in time. Along
with the standard DL constructs on concepts and roles they admit temporal operators such
as ○𝐹 (at the next moment), □𝐹 (always in the future), ♢𝐹 (sometime later) and their past-
time counterparts, which give rise to temporalised concepts and roles. Being non-monodic [1],
temporalised roles notoriously lead to high computational complexity even if coupled with a
lightweight DL component [2, 3, 4]. Thus, any type of DL-Lite temporalised concept inclusions
(CIs) with unguarded non-Horn temporalised role inclusions (RIs) (say, 𝑃 ⊑ 𝑅 ⊔○𝐹𝑆) result
in an undecidable logic, while with Horn, Krom or core temporalised RIs the logic becomes
decidable in ExpSpace or PSpace depending on the available temporal operators [3].

The proliferation of ontology-based data access [5] in the past decade has extended the
list of traditional reasoning problems in DLs—such as satisfiability checking and answering
ontology-mediated queries (OMQs)—with the rewritability problem into a target query language
ℒ [6, 7, 8, 9]: given an OMQ 𝑄, decide whether there exists an ℒ-rewriting of 𝑄, that is, an
ℒ-query 𝜙 returning the same answers as 𝑄 over any data instance. Typical target query

DL 2023: 36th International Workshop on Description Logics, September 2–4, 2023, Rhodes, Greece

" artale@inf.unibz.it (A. Artale); agnatenko@unibz.it (A. Gnatenko); vlad@dcs.bbk.ac.uk (V. Ryzhikov);
michael@dcs.bbk.ac.uk (M. Zakharyaschev)
� 0000-0002-3852-9351 (A. Artale); 0000-0003-1499-2090 (A. Gnatenko); 0000-0002-6847-6465 (V. Ryzhikov);
0000-0002-2210-5183 (M. Zakharyaschev)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:artale@inf.unibz.it
mailto:agnatenko@unibz.it
mailto:vlad@dcs.bbk.ac.uk
mailto:michael@dcs.bbk.ac.uk
https://orcid.org/0000-0002-3852-9351
https://orcid.org/0000-0003-1499-2090
https://orcid.org/0000-0002-6847-6465
https://orcid.org/0000-0002-2210-5183
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

languages are the first-order logic (FO, possibly with various built-in predicates) and (linear)
Datalog. For temporal OMQs given in the propositional temporal logic LTL, the FO-rewritability
problem has recently been studied in [10]. Here, we present our initial observations on the FO-
and Datalog-rewritability problems for OMQs with temporal DL-Lite ontologies. We design a
logic with a restricted form of temporalised roles and non-Horn RIs whose syntax and potential
usefulness are illustrated by the following example.

Example 1. Imagine that we are modelling the European transport network. Some passengers
may like to go by plane in one direction but return by train (say, to safely bring back a selection
of wines, cheeses and fine teas). To highlight such routes, one could use the following RI:

flight ⊓ ♢𝐹 train
− ⊑ safeFlightConnection, (1)

where train
− denotes the inverse of the role train (connection) from one city to another. (In our

modelling, we do not regard the roles flight and train as ‘global’ because they depend on the
season, day of a week, etc.) We may further partition the connections into certain classes, e.g.,
national and international, and infer properties of connected cities based on this classification.
This is achieved by means of the following non-Horn RIs:

safeFlightConnection ⊑ national ⊔ international,

∃international ⊑ InternationalAirport.
(2)

Axiom (1) is an example a guarded ♢-RI, where the temporalised role ♢𝐹 train
− is ‘guarded’ by

the role name flight. Thus, safeFlightConnection may be inferred at a time instant only when
there exists a flight from one city to another and, sometime later, there is a return train. ⊣

The temporal description logic TDL-Lite
[♢]
bool

we introduce in this paper admits arbitrary
Boolean CIs with temporalised concepts, and only guarded ♢-RIs with temporalised roles that
take the form

𝑅1 ⊓ · · · ⊓𝑅𝑛 ⊓ ♢𝑛+1𝑅𝑛+1 ⊓ . . .♢𝑘𝑅𝑘 ⊑ 𝑅𝑘+1 ⊔ · · · ⊔𝑅𝑚, (3)

where the 𝑅𝑖 are role names or their inverses, the ♢𝑖 are sequences of ♢𝐹 and ♢𝑃 , and 𝑛 ≥ 1.
We prove that answering ontology-mediated atomic queries (OMAQs) in TDL-Lite

[♢]
bool

can be

done in ExpSpace for combined complexity, and in PSpace for the flat fragment of TDL-Lite
[♢]
bool

,
which disallows positive occurrences of ∃𝑅 in ontology axioms (Th. 1). However, determining
whether such a query can be rewritten into an FO- or a (linear) Datalog query is algorithmi-
cally undecidable (Th. 2). On the other hand, we observe that FO-rewritability of OMAQs in
TDL-Lite

[♢]
bool

without temporalised concepts and roles becomes decidable in 3NExpTime (Th. 3).

2. OMAQ Answering and FO-rewritability in TDL-Lite [♢]
bool

The logic TDL-Lite
[♢]
bool

is a member of the TDL-Lite family [4, 3], which comprises temporal
extensions of various languages in the atemporal DL-Lite family [11, 12, 13]. The alphabet of

TDL-Lite
[♢]
bool

consists of individual names 𝑎0, 𝑎1, . . . , concept names 𝐴0, 𝐴1, . . . , and role names

𝑃0, 𝑃1, A basic role 𝑅 is either a role name 𝑃𝑖 or its inverse 𝑃−
𝑖 . A basic concept 𝐶 is either

a concept name 𝐴𝑖 or ∃𝑅. Temporalised concepts, 𝐷, and roles, 𝑆, are defined by the grammar:

𝐷 ::= 𝐶 | ○𝐹𝐷 | ○𝑃𝐷 | ♢𝐹𝐷 | ♢𝑃𝐷 | □𝐹𝐷 | □𝑃𝐷,

𝑆 ::= 𝑅 | ♢𝐹𝑆 | ♢𝑃𝑆.
(4)

A concept inclusion (CI) in TDL-Lite
[♢]
bool

takes the form 𝜗1 ⊓ · · · ⊓ 𝜗𝑘 ⊑ 𝜗𝑘+1 ⊔ · · · ⊔ 𝜗𝑘+𝑚,
where the 𝜗𝑖 are temporalised concepts. A guarded ♢-role inclusion (guarded ♢-RI) takes the
form (3). As usual, the empty ⊓ is ⊤ and the empty ⊔ is ⊥.

A TBox, 𝒯 , is a finite set of CIs, and an RBox, ℛ, is a finite set of guarded ♢-RIs. Taken
together, they form an ontology, 𝒪, in TDL-Lite

[♢]
bool

. An ABox signature, Σ, is a set of concept
and role names. A ABox, 𝒜, over Σ is a finite set of facts of the form 𝐴𝑖(𝑎, ℓ) and 𝑃𝑖(𝑎, 𝑏, ℓ),
where 𝐴𝑖, 𝑃𝑖 ∈ Σ and ℓ ∈ Z is a timestamp. We denote by ind(𝒜) the set of individual names
in 𝒜, by min(𝒜) and max(𝒜) the minimal and maximal timestamps in 𝒜, respectively, and by
tem(𝒜) the closed interval [min(𝒜),max(𝒜)].

An ontology-mediated atomic query (OMAQ) is a triple 𝑄(𝑥, 𝑡) = (𝒪,Σ, 𝐴(𝑥, 𝑡)), where 𝒪
is an ontology in TDL-Lite

[♢]
bool

, Σ is an ABox signature, and 𝐴 a concept name. (Note that the
symbols in 𝒪 and 𝐴 do not have to be in Σ.) A pair (𝑎, ℓ) ∈ ind(𝒜) × tem(𝒜) is a certain

answer to 𝑄(𝑥, 𝑡) over a Σ-ABox𝒜 if 𝐴(𝑎, ℓ) is true in every modelℳ of (𝒪,𝒜); for a detailed
definition of a model the reader is referred to [3]. We denote by ans𝑄(𝒜) the set of all certain
answers to 𝑄 over 𝒜. The query answering problem for 𝑄 over 𝒜 is the decision problem for
ans𝑄(𝒜). We also consider ontology-mediated Boolean atomic queries (OMBAQs) of the form
𝑄 = (𝒪,Σ, 𝐴) that require a ‘yes/no’ answer: a certain answer to an OMBAQ 𝑄 over𝒜 is ‘yes’
if, in every modelℳ of (𝒪,𝒜), there exists a pair (𝑎, ℓ) ∈ ind(𝒜)× tem(𝒜) such that 𝐴(𝑎, ℓ)
is true inℳ, and ‘no’ otherwise.

With an ABox 𝒜 we associate a temporal FO-structure S𝒜 with domain ind(𝒜)× tem(𝒜),
over which we can evaluate FO(<)- and Datalog-queries with atoms of the form 𝐴(𝑥, 𝑡),
𝑃 (𝑥, 𝑦, 𝑡), (𝑡1 < 𝑡2). Let ℒ be any relevant query language: FO(<), linear or arbitrary Datalog
queries. An OMAQ 𝑄(𝑥, 𝑡) = (𝒪,Σ, 𝐴(𝑥, 𝑡)) is ℒ-rewritable if there exists an ℒ-query 𝜙(𝑥, 𝑡),
such that ans𝑄(𝒜) = { (𝑎, ℓ) ∈ ind(𝒜) × tem(𝒜) | S𝒜 |= 𝜙(𝑎, ℓ) }, for every Σ-ABox 𝒜.
An OMBAQ 𝑄 is ℒ-rewritable if there is an ℒ-query 𝜙 without answer variables such that
S𝒜 |= 𝜙 iff the certain answer to 𝑄 over 𝒜 is ‘yes’. It is known that FO(<)-, linear Datalog-,
and Datalog-rewritability guarantee answering OMAQs/OMBAQs in AC0 [14], NL [15], and
PTime [16] for data complexity, respectively. For the non-temporal fragment of TDL-Lite

[♢]
bool

,
answering OMAQs/OMBAQs is ExpTime-complete for combined complexity [17]. We establsih
an ExpSpace upper bound for answering OMAQs/OMBAQs in full TDL-Lite

[♢]
bool

. We also consider

the flat TDL-Lite
[♢]
bool

that disallows concepts ∃𝑅 on the right-hand side of CIs. This restriction
reduces the complexity of answering OMAQs/OMBAQs to PSpace.

Theorem 1. Answering TDL-Lite
[♢]
bool

OMAQs/OMBAQs is in ExpSpace and ExpTime-hard for com-

bined complexity. Answering flat TDL-Lite
[♢]
bool

OMAQs/OMBAQs is PSpace-complete for combined

complexity.

However, checking whether a query is rewritable into FO(<) or (linear) Datalog turns out to
be undecidable even for flat ontologies.

Theorem 2. FO(<)-rewritability, linear Datalog-rewritability (if NL ̸= coNP), and Datalog-

rewritability (if PTime ̸= coNP) are undecidable for flat TDL-Lite
[♢]
bool

OMAQs/OMBAQs.

The proof of Th. 2 makes use of the interaction between non-Horn RIs and temporal axioms.
FO-rewritability of OMAQs/OMBAQs becomes decidable in the case when ontologies do not
contain temporal operators. We obtain a positive result for the language DL-Litebool that disal-
lows temporalised concepts and temporalised roles in TDL-Lite

[♢]
bool

. The proof is via a translation
to monadic disjunctive Datalog, adapting a similar technique for𝒜ℒ𝒞ℐ [7]. However, non-Horn
RIs increase the complexity from 2NExpTime to 3NExpTime.

Theorem 3. Checking FO-rewritability of DL-Litebool OMAQs/OMBAQs is in 3NExpTime.

3. Related Work

The problem of deciding if a given OMQ is rewritable into a conventional query language ℒ
has been investigated for several important description logics. Bienvenu et al. [6] considered
𝒜ℒ𝒞 and its extensions with OMAQs through the lenses of CSP and MMSNP. In particular, FO-
rewritability of𝒜ℒ𝒞ℱ OMAQs is undecidable (𝒜ℒ𝒞ℱ is an extension of𝒜ℒ𝒞 with functionality

constraints on roles). Feier et al. [7] proved 2NExpTime-completeness of FO-rewritability of
OMQs with CQs in𝒜ℒ𝒞ℐ . Lutz and Sabellek [8] established that every conjunctive OMQ in ℰℒ
is either FO-rewritable, or linear Datalog-rewritable, or PTime-complete, and showed that each
of the associated decision problems is ExpTime-complete. Gerasimova et al. [9] showed FO-
rewritability to be in 2NExpTime for OMQs with CQs and the non-Horn ontology {𝐴 ⊑ 𝐵⊔𝐶}.
Description logics with non-Horn RIs such as DL-Litebool, however, have not been considered.
Separately, rewritability to first-order languages was studied by Artale et al. [18] and Kurucz
et al. [10] for pure temporal logics, using automata- and group-theoretic techniques.

In this paper, we take a first step towards understanding (temporal) DL-Lite with guarded non-
Horn role inclusions by establishing two results: a decidability procedure for FO-rewritability
of OMQs in DL-Litebool, and an undecidability result for FO(<)- and Datalog-rewritability of
OMQs in TDL-Lite

[♢]
bool

, i.e., DL-Litebool with temporalised concepts and (guarded) roles. An open
question is if rewritability is decidable for DL-Litebool with temporalised concepts only.

FO-rewritability (aka boundedness) has been studied for Datalog itself. Predicate boundedness
is undecidable for binary programs [19], and even for linear programs with one binary IDB
relation [20], while for linear monadic programs, it is in PSpace [21]. Uniform boundedness
is undecidable for ternary programs [19], even if they are linear [22] (consult the latter for an
explanation on different forms of Datalog boundedness). Temporalised RIs in TDL-Lite

[♢]
bool

can
be viewed from the Datalog perspective as using binary, or even ternary IDBs. However, the
undecidability proofs of [19], [20] and [22] make use of chains, i.e., Datalog rules where the
right-hand part contains constructs like 𝑅(𝑋1, 𝑋2) ∧ 𝑅(𝑋2, 𝑋3), which is inexpressible in
DL-Lite. Compared to 𝒜ℒ𝒞ℱ , DL-Lite lacks negation and qualified role existential predicates.

References

[1] I. M. Hodkinson, F. Wolter, M. Zakharyaschev, Monodic fragments of first-order temporal
logics: 2000-2001 A.D, in: R. Nieuwenhuis, A. Voronkov (Eds.), Logic for Programming,
Artificial Intelligence, and Reasoning, 8th International Conference, LPAR 2001, Havana,
Cuba, December 3-7, 2001, Proceedings, volume 2250 of Lecture Notes in Computer Science,
Springer, 2001, pp. 1–23. URL: https://doi.org/10.1007/3-540-45653-8_1. doi:10.1007/
3-540-45653-8_1.

[2] C. Lutz, F. Wolter, M. Zakharyaschev, Temporal description logics: A survey, in:
S. Demri, C. S. Jensen (Eds.), 15th International Symposium on Temporal Representa-
tion and Reasoning, TIME 2008, Université du Québec à Montréal, Canada, 16-18 June
2008, IEEE Computer Society, 2008, pp. 3–14. URL: https://doi.org/10.1109/TIME.2008.14.
doi:10.1109/TIME.2008.14.

[3] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev,
First-order rewritability and complexity of two-dimensional temporal ontology-mediated
queries, Journal of Artificial Intelligence Research 75 (2022) 1223–1291. URL: https:
//jair.org/index.php/jair/article/view/13511. doi:https://doi.org/10.1613/jair.1.
13511.

[4] A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, A cookbook for temporal
conceptual data modelling with description logics, ACM Trans. Comput. Logic 15 (2014).
URL: https://doi.org/10.1145/2629565. doi:10.1145/2629565.

[5] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev,
Ontology-based data access: A survey, in: J. Lang (Ed.), Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden, ijcai.org, 2018, pp. 5511–5519. URL: https://doi.org/10.24963/
ijcai.2018/777. doi:10.24963/ijcai.2018/777.

[6] M. Bienvenu, B. T. Cate, C. Lutz, F. Wolter, Ontology-based data access: A study through
disjunctive datalog, csp, and mmsnp, ACM Trans. Database Syst. 39 (2015). doi:10.1145/
2661643.

[7] C. Feier, A. Kuusisto, C. Lutz, Rewritability in Monadic Disjunctive Datalog, MMSNP, and
Expressive Description Logics, Logical Methods in Computer Science Volume 15, Issue 2
(2019). URL: https://lmcs.episciences.org/5502. doi:10.23638/LMCS-15(2:15)2019.

[8] C. Lutz, L. Sabellek, A complete classification of the complexity and rewritability of
ontology-mediated queries based on the description logic el, Artificial Intelligence 308
(2022) 103709. doi:https://doi.org/10.1016/j.artint.2022.103709.

[9] O. Gerasimova, S. Kikot, A. Kurucz, V. Podolskii, M. Zakharyaschev, A tetrachotomy of
ontology-mediated queries with a covering axiom, Artificial Intelligence 309 (2022) 103738.
doi:https://doi.org/10.1016/j.artint.2022.103738.

[10] A. Kurucz, V. Ryzhikov, Y. Savateev, M. Zakharyaschev, Deciding fo-rewritability of regular
languages and ontology-mediated queries in linear temporal logic, J. Artif. Int. Res. 76
(2023). doi:10.1613/jair.1.14061.

[11] D. Calvanese, G. De Giacomo, D. Lemho, M. Lenzerini, R. Rosati, Dl-lite: Tractable
description logics for ontologies, in: Proceedings of the 20th National Conference on
Artificial Intelligence - Volume 2, AAAI’05, AAAI Press, 2005, p. 602–607.

https://doi.org/10.1007/3-540-45653-8_1
http://dx.doi.org/10.1007/3-540-45653-8_1
http://dx.doi.org/10.1007/3-540-45653-8_1
https://doi.org/10.1109/TIME.2008.14
http://dx.doi.org/10.1109/TIME.2008.14
https://jair.org/index.php/jair/article/view/13511
https://jair.org/index.php/jair/article/view/13511
http://dx.doi.org/https://doi.org/10.1613/jair.1.13511
http://dx.doi.org/https://doi.org/10.1613/jair.1.13511
https://doi.org/10.1145/2629565
http://dx.doi.org/10.1145/2629565
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.1145/2661643
http://dx.doi.org/10.1145/2661643
https://lmcs.episciences.org/5502
http://dx.doi.org/10.23638/LMCS-15(2:15)2019
http://dx.doi.org/https://doi.org/10.1016/j.artint.2022.103709
http://dx.doi.org/https://doi.org/10.1016/j.artint.2022.103738
http://dx.doi.org/10.1613/jair.1.14061

[12] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and
efficient query answering in description logics: The dl-lite family, Journal of Automated
Reasoning 39 (2007) 385–429. doi:10.1007/s10817-007-9078-x.

[13] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-lite family and relations,
Journal of Artificial Intelligence Research 36 (2009) 1–69. URL: https://doi.org/10.1613%
2Fjair.2820. doi:10.1613/jair.2820.

[14] N. Immerman, Descriptive Complexity, Springer Verlag, 1998.
[15] E. Grädel, Capturing complexity classes by fragments of second-order logic, Theoretical

Computer Science 101 (1992) 35 – 57. URL: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-0026886786&doi=10.1016%2f0304-3975%2892%2990149-A&partnerID=
40&md5=80969aef1ee918e4ddcc5d494a847639. doi:10.1016/0304-3975(92)90149-A,
cited by: 64.

[16] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive power of logic
programming, ACM Comput. Surv. 33 (2001) 374–425. doi:10.1145/502807.502810.

[17] R. Kontchakov, V. Ryzhikov, F. Wolter, M. Zakharyaschev, Boolean Role Inclusions in
DL-Lite With and Without Time, in: Proceedings of the 17th International Conference
on Principles of Knowledge Representation and Reasoning, 2020, pp. 582–591. URL: https:
//doi.org/10.24963/kr.2020/58. doi:10.24963/kr.2020/58.

[18] A. Artale, R. Kontchakov, A. Kovtunova, V. Ryzhikov, F. Wolter, M. Zakharyaschev, First-
order rewritability of ontology-mediated queries in linear temporal logic, Artificial
Intelligence 299 (2021) 103536. URL: https://www.sciencedirect.com/science/article/pii/
S0004370221000874. doi:https://doi.org/10.1016/j.artint.2021.103536.

[19] G. G. Hillebrand, P. C. Kanellakis, H. G. Mairson, M. Y. Vardi, Undecidable boundedness
problems for datalog programs, The Journal of Logic Programming 25 (1995) 163–190.
doi:https://doi.org/10.1016/0743-1066(95)00051-K.

[20] M. Y. Vardi, Decidability and undecidability results for boundedness of linear recursive
queries, PODS ’88, Association for Computing Machinery, New York, NY, USA, 1988, p.
341–351. doi:10.1145/308386.308470.

[21] R. v. d. Meyden, Predicate boundedness of linear monadic datalog is in pspace, Inter-
national Journal of Foundations of Computer Science 11 (2000) 591–612. doi:10.1142/
S0129054100000351.

[22] J. Marcinkowski, Achilles, turtle, and undecidable boundedness problems for small
datalog programs, SIAM Journal on Computing 29 (1999) 231–257. doi:10.1137/
S0097539797322140.

[23] O. Lichtenstein, A. Pneuli, Propositional temporal logics: decidability and completeness,
Logic Journal of the IGPL 8 (2000) 55–85. doi:10.1093/jigpal/8.1.55.

[24] M. L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Inc., USA, 1967.
[25] T. Feder, M. Y. Vardi, The computational structure of monotone monadic snp and constraint

satisfaction: A study through datalog and group theory, SIAM Journal on Computing 28
(1998) 57–104. doi:10.1137/S0097539794266766.

[26] B. Larose, C. Loten, C. Tardif, A characterisation of first-order constraint satisfaction
problems, in: 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), 2006,
pp. 201–210. doi:10.1109/LICS.2006.6.

[27] L. Barto, The collapse of the bounded width hierarchy, Journal of Logic and Computation

http://dx.doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1613%2Fjair.2820
https://doi.org/10.1613%2Fjair.2820
http://dx.doi.org/10.1613/jair.2820
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026886786&doi=10.1016%2f0304-3975%2892%2990149-A&partnerID=40&md5=80969aef1ee918e4ddcc5d494a847639
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026886786&doi=10.1016%2f0304-3975%2892%2990149-A&partnerID=40&md5=80969aef1ee918e4ddcc5d494a847639
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026886786&doi=10.1016%2f0304-3975%2892%2990149-A&partnerID=40&md5=80969aef1ee918e4ddcc5d494a847639
http://dx.doi.org/10.1016/0304-3975(92)90149-A
http://dx.doi.org/10.1145/502807.502810
https://doi.org/10.24963/kr.2020/58
https://doi.org/10.24963/kr.2020/58
http://dx.doi.org/10.24963/kr.2020/58
https://www.sciencedirect.com/science/article/pii/S0004370221000874
https://www.sciencedirect.com/science/article/pii/S0004370221000874
http://dx.doi.org/https://doi.org/10.1016/j.artint.2021.103536
http://dx.doi.org/https://doi.org/10.1016/0743-1066(95)00051-K
http://dx.doi.org/10.1145/308386.308470
http://dx.doi.org/10.1142/S0129054100000351
http://dx.doi.org/10.1142/S0129054100000351
http://dx.doi.org/10.1137/S0097539797322140
http://dx.doi.org/10.1137/S0097539797322140
http://dx.doi.org/10.1093/jigpal/8.1.55
http://dx.doi.org/10.1137/S0097539794266766
http://dx.doi.org/10.1109/LICS.2006.6

26 (2014) 923–943. doi:10.1093/logcom/exu070.
[28] H. Chen, B. Larose, Asking the metaquestions in constraint tractability, ACM Trans.

Comput. Theory 9 (2017). doi:10.1145/3134757.

A. Proofs

Theorem 1. Answering TDL-Lite
[♢]
bool

OMAQs/OMBAQs is in ExpSpace and ExpTime-hard for com-

bined complexity. Answering flat TDL-Lite
[♢]
bool

OMAQs/OMBAQs is PSpace-complete for combined

complexity.

Proof. We start with the formal definition of a TDL-Lite
[♢]
bool

model that we need for the proof.

A TDL-Lite
[♢]
bool

knowledge base (KB) is a pair 𝒦 = (𝒪,𝒜) of an ontology and an ABox. An
interpretation is a pair ℐ = (Δℐ , ·ℐ(𝑛)), where Δℐ ̸= ∅ and, for each 𝑛 ∈ Z,

ℐ(𝑛) = (Δℐ , 𝑎ℐ1 , . . . , 𝐴
ℐ(𝑛)
1 , . . . , 𝑃 ℐ(𝑛)

1 , . . .) (5)

is a standard (non-temporal) description logic interpretation with 𝑎ℐ𝑖 ∈ Δℐ , 𝐴ℐ(𝑛)
𝑖 ⊆ Δℐ and

𝑃 ℐ(𝑛)
𝑖 ⊆ Δℐ ×Δℐ . Thus, we assume that the domain Δℐ and the interpretations 𝑎ℐ𝑖 ∈ Δℐ of

the individual names are the same for all 𝑛 ∈ Z. The description logic and temporal constructs
are interpreted in ℐ(𝑛) as follows:

(𝑃−
𝑖)ℐ(𝑛) =

{︀
(𝑢, 𝑣) | (𝑣, 𝑢) ∈ 𝑃 ℐ(𝑛)

𝑖

}︀
, (∃𝑆)ℐ(𝑛) =

{︀
𝑢 | (𝑢, 𝑣) ∈ 𝑆ℐ(𝑛), for some 𝑣

}︀
,

(□𝐹𝐷)ℐ(𝑛) =
⋂︁
𝑘>𝑛

𝐷ℐ(𝑘), (□𝑃𝐷)ℐ(𝑛) =
⋂︁
𝑘<𝑛

𝐷ℐ(𝑘), (6)

(○𝐹𝐷)ℐ(𝑛) = 𝐷ℐ(𝑛+1), (○𝑃𝐷)ℐ(𝑛) = 𝐷ℐ(𝑛−1), (7)

(♢𝐹𝑆)
ℐ(𝑛) =

⋃︁
𝑘>𝑛

𝑆ℐ(𝑘), (♢𝑃𝑆)
ℐ(𝑛) =

⋃︁
𝑘<𝑛

𝑆ℐ(𝑘). (8)

All axioms are interpreted in ℐ globally in the sense that an inclusion 𝜗1 ⊓ · · · ⊓ 𝜗𝑘 ⊑ 𝜗𝑘+1 ⊔
· · · ⊔ 𝜗𝑘+𝑚, is true in ℐ if 𝜗ℐ(𝑛)1 ∩ · · · ∩ 𝜗ℐ(𝑛)𝑘 ⊆ 𝜗

ℐ(𝑛)
𝑘+1 ∪ · · · ∪ 𝜗

ℐ(𝑛)
𝑘+𝑚, for all 𝑛 ∈ Z.

An interpretationℳ = (Δ, ·ℳ) is called a model of a KB 𝒦 = (𝒪,𝒜) if all concept and role
inclusions of 𝒪 and all assertions of 𝒜 are true inℳ. A KB 𝒦 is called consistent if it has a
model.

Consistency checking for knowledge bases can be used for answering OMAQs and OM-
BAQs. Indeed, let 𝑄(𝑥, 𝑡) = (𝒪,Σ, 𝐴(𝑥, 𝑡)) be an OMAQ. If a KB (𝒪,𝒜) is inconsis-
tent, then ans𝑄(𝒜) = ind(𝒜) × tem(𝒜). Otherwise, (𝑎, 𝑘) ∈ ans𝑄(𝒜), if and only if
(𝒪 ∪ {𝐴 ⊓ 𝐵 ⊑ ⊥},𝒜 ∪ {𝐵(𝑎, 𝑘)}) is inconsistent . Here 𝐵 /∈ Σ is a fresh concept name.
Likewise, if 𝑄 = (𝒪,Σ, 𝐴) is an OMBAQ, then the answer for 𝑄 over 𝒜 is "Yes" whenever
(𝒪,𝒜) is inconsistent. If it is consistent, then the answer is "Yes", whenever (𝒪∪{𝐴 ⊑ ⊥},𝒜) is
inconsistent. Therefore, it suffices to prove the respective complexity bounds for the consistency
checking problem.

We first deal with the flat case. For the upper bound, we reduce flat TDL-Lite
[♢]
bool

to LTL by
grounding all concept and role inclusions of 𝒪 with individual names from 𝒜. For the lower

http://dx.doi.org/10.1093/logcom/exu070
http://dx.doi.org/10.1145/3134757

bound, we note that flat TDL-Lite
[♢]
bool

contains LTL as a sub-language. Then the theorem follows
from the fact that LTL is PSpace-complete [23].

For the general case of TDL-Lite
[♢]
bool

, the ExpTime-hardness follows from the fact that it
extends DL-Liteg-bool, which is ExpTime-complete [17].

We now prove the ExpSpace upper bound. Fix a TDL-Lite
[♢]
bool

knowledge base 𝒦 = (𝒪,𝒜).
As a first step, we translate 𝒦 to a theory T𝒦 in the first-order temporal logic 𝒬𝒯 ℒ. On the
second step we provide a translation of T𝐾 to pure LTL. The size of the resulting theory will be
exponential in the size of 𝒦. Since LTL is PSpace-complete, this yields the ExpSpace algorithm
for TDL-Lite

[♢]
bool

.
We define the first-order temporal logic 𝒬𝒯 ℒ following Artale et al. [4], but restricting to

operators ○,♢,□. Its language consists of variables {𝑥1, 𝑥2, . . . }, constants {𝑎1, 𝑎2, . . . }, and
predicates {𝐴1, 𝐴2, . . . } with associated arities. A predicate of arity zero is called a proposition.
Formulas 𝜙 of 𝒬𝒯 ℒ are defined by the following grammar:

𝜙 ::= 𝐴𝑖(𝑡1, . . . , 𝑡𝑘𝑖) | ⊥ | ¬𝜙 | 𝜙 ∧ 𝜙 | ∀𝑥𝜙 | 𝑂𝜙
𝑂 ::= ○𝐹 | ○𝑃 | ♢𝐹 | ♢𝑃 | □𝐹 | □𝑃

Here, 𝑘𝑖 is the arity of 𝐴𝑖, 𝑡𝑗 are terms, i.e. variables or constants, and 𝑥 is a variable.
An interpretation ℐ = {Δ, ·ℐ} gives, for every 𝑛 ∈ Z, a first-order structure

ℐ(𝑛) = (Δ, 𝑎ℐ1 , . . . , 𝐴
ℐ(𝑛)
1 , . . .).

As in case of TDL-Lite
[♢]
bool

interpretations, we assume that the domainΔ and the interpretations of

the constants 𝑎ℐ𝑖 ∈ Δ are the same for all 𝑛, while the interpretations of predicates𝐴ℐ(𝑛)
𝑖 ⊆ Δ𝑘𝑖

may differ. An assignment 𝜎 maps variables to the elements of Δ. The semantics of 𝒬𝒯 ℒ are
defined in terms of an interpretation and an assignment. For a term 𝑡 the symbol 𝑡 ℐ,𝜎 denotes 𝑡 ℐ

if 𝑡 is a constant and 𝜎(𝑡) if it is a variable.

ℐ, 𝑛, 𝜎 |= 𝐴𝑖(𝑡1, . . . , 𝑡𝑘𝑖) ⇐⇒ (𝑡 ℐ,𝜎1 , . . . , 𝑡 ℐ,𝜎𝑘𝑖
) ∈ 𝐴ℐ(𝑛)

𝑖 ;

ℐ, 𝑛, 𝜎 ̸|= ⊥;
ℐ, 𝑛, 𝜎 |= ¬𝜙 ⇐⇒ ℐ, 𝑛, 𝜎 ̸|= 𝜙;

ℐ, 𝑛, 𝜎 |= 𝜙 ∧ 𝜓 ⇐⇒ ℐ, 𝑛, 𝜎 |= 𝜙 and ℐ, 𝑛, 𝜎 |= 𝜓;

ℐ, 𝑛, 𝜎 |= ∀𝑥𝜙 ⇐⇒ ℐ, 𝑛, 𝜎′ |= 𝜙 for all 𝜎′ that differ from 𝜎 on 𝑥 only;

ℐ, 𝑛, 𝜎 |= ○𝐹𝜙 ⇐⇒ ℐ, 𝑛+ 1, 𝜎 |= 𝜙;

ℐ, 𝑛, 𝜎 |= ○𝑃𝜙 ⇐⇒ ℐ, 𝑛− 1, 𝜎 |= 𝜙;

ℐ, 𝑛, 𝜎 |= ♢𝐹𝜙 ⇐⇒ ℐ,𝑚, 𝜎 |= 𝜙 for some 𝑚 > 𝑛;

ℐ, 𝑛, 𝜎 |= ♢𝑃𝜙 ⇐⇒ ℐ,𝑚, 𝜎 |= 𝜙 for some 𝑚 < 𝑛;

ℐ, 𝑛, 𝜎 |= □𝐹𝜙 ⇐⇒ ℐ,𝑚, 𝜎 |= 𝜙 for all 𝑚 > 𝑛;

ℐ, 𝑛, 𝜎 |= □𝑃𝜙 ⇐⇒ ℐ,𝑚, 𝜎 |= 𝜙 for all 𝑚 < 𝑛.

We use standard abbreviations: ⊤ = ¬⊥, 𝜙 ∨ 𝜓 = ¬(¬𝜙∧ ̸= 𝜓), and ∃𝑥𝜙 = ¬∀𝑥¬𝜙. If
a formula 𝜙 contains no free variables (i.e. is a sentence), then we omit the assignment 𝜎 in
ℐ, 𝑛, 𝜎 |= 𝜙 and write ℐ, 𝑛 |= 𝜙.

An interpretation ℐ is a model for a set of 𝒬𝒯 ℒ sentences (a theory) T, if ℐ, 0 |= 𝜙 for all
𝜙 ∈ T. A theory is called consistent if it has a model.

We would like to obtain a finite 𝒬𝒯 ℒ theory T𝒦, such that it is consistent if and only if 𝒦
is so. The translation follows that of Artale et al. [4] with some modifications to treat the
non-Horn role inclusions of TDL-Lite

[♢]
bool

.
Recall that we have basic concepts and roles, and temporalized concepts and roles, defined

by (4). A basic concept is either a concept name 𝐴𝑖 or a symbol of the form ∃𝑅, where 𝑅 is a
basic role. A basic role is either a role name 𝑃𝑖 or its inverse 𝑃−

𝑖 .
Given an ontology 𝒪 = 𝒯 ∪ℛ, a set of basic roles R = {𝑅1, . . . , 𝑅𝑘} is called a role type, if

the following two conditions hold:

1. The interpretation ℐR =
(︀
{𝑎, 𝑏}, ·ℐ

)︀
, such that𝑅ℐ = {(𝑎, 𝑏)} for all𝑅 ∈ R and𝑅ℐ = ∅

otherwise, is a model ofℛ.
2. The knowledge base 𝒦R =

(︀
𝒯 , {∃𝑅(𝑎), ∃𝑅−(𝑏) | 𝑅 ∈ R}

)︀
is consistent.

The signature of T𝒦 includes the following symbols:

• For each concept name 𝐴𝑖, a unary predicate 𝐴𝑖(𝑥);
• For each basic role 𝑅, a binary predicate 𝑅(𝑥, 𝑦), two unary 𝐸𝑅(𝑥), 𝐸𝑅−(𝑥). If ⊥ is

used in role inclusions of 𝒦, we treat 𝐸⊥, 𝐸⊥− simply as ⊥;
• For each 𝑎 ∈ ind(𝒜), a constant symbol 𝑎.

Naturally, for a temporalized concept 𝐷 = op
*𝐴, where 𝐴 is a concept name and op

* is a
sequence of temporal operators, we can write a 𝒬𝒯 ℒ formula 𝐷(𝑥) = op

*𝐴(𝑥). Further, for
a temporalized concept 𝐷 = op

* ∃𝑅 we write 𝐷(𝑥) = op
*𝐸𝑅(𝑥) in 𝒬𝒯 ℒ. Similarly, for a

temporalized role 𝑆 = op
*𝑅 we write 𝑆(𝑥, 𝑦) = op

*𝑅(𝑥, 𝑦).
We now are ready to define T𝒦 as the minimal set of formulas satisfying the following

conditions. For each concept inclusion, 𝐷1 ⊓ · · · ⊓𝐷𝑘 ⊑ 𝐷𝑘+1 ⊔ · · · ⊔𝐷𝑘+𝑚, T𝒦 contains

□𝐹□𝑃 ∀𝑥
(︀
𝐷1(𝑥) ∧ · · · ∧𝐷𝑘(𝑥) −→ 𝐷𝑘+1(𝑥) ∨ · · · ∨𝐷𝑘+𝑚(𝑥)

)︀
. (9)

Similarly, for each role inclusion, 𝑆1 ⊓ · · · ⊓ 𝑆𝑘 ⊑ 𝑆𝑘+1 ⊔ · · · ⊔ 𝑆𝑘+𝑚, T𝒦 contains

□𝐹□𝑃 ∀𝑥∀𝑦
(︀
𝑆1(𝑥, 𝑦) ∧ · · · ∧ 𝑆𝑘(𝑥, 𝑦) −→ 𝑆𝑘+1(𝑥, 𝑦) ∨ · · · ∨ 𝑆𝑘+𝑚(𝑥, 𝑦)

)︀
. (10)

To encode the semantics of roles, T𝒦 contains

□𝐹□𝑃 ∀𝑥∀𝑦 𝑅(𝑥, 𝑦) −→ 𝐸𝑅(𝑥) ∧ 𝐸𝑅(𝑦) (11)

□𝐹□𝑃 ∀𝑥∀𝑦 𝑅(𝑥, 𝑦) −→ 𝑅−(𝑥, 𝑦). (12)

To encode the behavior of roles in the anonymous part, we use a projection of role types to
pairs of monadic concepts. Let Tp(𝑅) denote the collection of all role types that contain the
basic role 𝑅. For R = {𝑅1, . . . , 𝑅𝑘}, let ℰR(𝑥) denote the conjunction

𝐸𝑅1(𝑥) ∧ · · · ∧ 𝐸𝑅𝑘(𝑥)

and ℰ−R(𝑥) denote the conjunction

𝐸𝑅−
1 (𝑥) ∧ · · · ∧ 𝐸𝑅

−
𝑘 (𝑥).

Then, for each basic role 𝑅 in 𝒦, T𝒦 contains the following axiom:

□𝐹□𝑃 ∀𝑥

⎛⎝𝐸𝑅(𝑥) −→
⋁︁

R∈Tp(𝑅)

(︀
ℰR(𝑥) ∧ ∃𝑦 ℰ−R(𝑦)

)︀⎞⎠ (13)

Finally, T𝒦 contains the following ABox representation:⋀︁
𝐴(𝑎,𝑘)∈𝒜

○𝑘𝐴(𝑎) ∧
⋀︁

𝑃 (𝑎,𝑏,𝑘)∈𝒜

○𝑘𝑃 (𝑎, 𝑏). (14)

This finishes the construction of T𝒦.

Lemma 1. The theory T𝒦 is consistent if and only if 𝒦 is consistent. Moreover, |T𝒦| = 2poly(|𝒦|)
.

Proof. It can be verified from the description above that |T𝒦| = 2poly(|𝒦|). We now show that
the consistency of 𝒦 coincides with the consistency of T𝒦.

(⇒) Letℳ =
(︀
Δ, ·ℳ

)︀
be a model of 𝒦. We construct a model 𝒩 =

(︀
Δ, ·𝒩

)︀
for T𝒦 with

the same domain Δ. For every 𝑎 ∈ ind(𝒜) we set 𝑎𝒩 = 𝑎ℳ. For each concept name 𝐴
we set 𝐴𝒩 = 𝐴ℳ and for each basic role 𝑅 we set 𝑅𝒩 = 𝑅ℳ and 𝐸𝑅𝒩 = (∃𝑅)ℳ. By
construction, 𝒩 satisfies the (9)—(14), so it is a model of T𝒦.

(⇐) Conversely, suppose𝒩 =
(︀
Δ, ·𝒩

)︀
is a model of T𝐾 . We construct a modelℳ =

(︀
Δ𝜔, ·ℳ

)︀
for 𝒦 with the domain Δ𝜔 =

⋃︀
𝑛∈NΔ× {𝑛}. In other words, for each natural number 𝑛 we

create a copy of Δ, and the domain ofℳ is a disjoint union of these copies. By ⟨𝑢, 𝑛⟩we denote
the copy of 𝑢 ∈ Δ that belongs to the 𝑛th copy of Δ in Δ𝜔 .

We now define the interpretation function. For each 𝑎 ∈ ind(𝒜) we set 𝑎ℳ = ⟨𝑎𝒩 , 0⟩.
Further, for each concept name 𝐴, 𝑢 ∈ Δ, 𝑛 ∈ N, and 𝑘 ∈ Z, we set ⟨𝑢, 𝑛⟩ℳ ∈ 𝐴ℳ(𝑘) if
𝑎𝒩 ∈ 𝐴𝒩 (𝑘). The interpretation of roles is done in two steps. Fix a 𝑘 ∈ Z. First, for each
basic role 𝑅 and each 𝑢, 𝑣 ∈ Δ, and 𝑛 ∈ N, we let

(︀
⟨𝑢, 𝑛⟩, ⟨𝑣, 𝑛⟩

)︀
∈ 𝑅ℳ(𝑘) if (𝑢, 𝑣) ∈ 𝑅𝒩 (𝑘).

Second, for each basic role 𝑅, consider any 𝑢 ∈ 𝐸𝑅𝒩 (𝑘). By (13) there exist a role type R and
𝑦 ∈ Δ, such that 𝑅 ∈ R, and 𝒩 , 𝑘 |= ℰR(𝑢) and 𝒩 , 𝑘 |= ℰ−R(𝑦). Then for each 𝑊 ∈ R and
𝑛 ∈ N we set

(︀
⟨𝑢, 𝑛⟩, ⟨𝑦, 𝑛+ 1⟩

)︀
∈𝑊ℳ(𝑘). This finishes the construction ofℳ.

It remains to verify thatℳ is a model of 𝒦. Observe that, by construction, for each concept
name 𝐴, 𝐴ℳ = 𝐴𝒩 . Moreover, for each basic role 𝑅, (∃𝑅)ℳ = 𝐸𝑅𝒩 . Since 𝒩 satisfies (9),
ℳ satisfies 𝒯 . Then, consider any ⟨𝑢, 𝑛⟩, ⟨𝑣,𝑚⟩ ∈ Δ𝜔 . If 𝑛 = 𝑚, then the roles between the
two elements were introduced on the first step and taken from 𝒩 . By (10), they form a role
type. If 𝑛 ̸= 𝑚, then the roles between the two elements were introduced on the second step
and by construction form a role type. It follows thatℳ satisfiesℛ.

The next step is to further translate T𝒦 to a pure LTL theory. First, we shall get rid of the
existential quantifier in the formula (13). Namely, for each role type R we add to the signature
a proposition 𝐵R and a constant 𝑑R− . Then, let T′

𝒦 be a 𝒬𝒯 ℒ theory obtained from T𝒦 by

substituting all formulas of type (13) with

□𝐹□𝑃 ∀𝑥

⎛⎝𝐸𝑅(𝑥) −→
⋁︁

R∈Tp(𝑅)

ℰR(𝑥) ∧𝐵R

⎞⎠ (15)

𝐵R −→ ℰ−R(𝑑R−) (16)

Note that the formula (16) talks about the moment of time 0. Moreover, it is still the case that
|T′

𝒦| = 2poly (|𝒦|).

Lemma 2. The theory T′
𝒦 is consistent if and only if T𝒦 is consistent.

Proof.

(⇒) Let 𝒩 =
(︀
Δ′, ·𝒩

)︀
be a model of T′

𝒦. We construct a model ℳ =
(︀
Δ, ·ℳ

)︀
of T𝒦 as

follows. Let 𝒩 [𝑘] =
(︀
Δ′

𝑘, ·𝒩 [𝑘]
)︀

denote a 𝒬𝒯 ℒ interpretation with Δ′
𝑘 = Δ′ × {𝑘} and

·𝒩 [𝑘](𝑛) = ·𝒩 (𝑛+𝑘). Further, let Δ = Δ′ ∪
⋃︀

𝑘∈ZΔ
′
𝑘 . Define ·ℳ so that on ind(𝒜) it coincides

with ·𝒩 , and for predicates it coincides with ·𝒩 on Δ′ and with ·𝒩 [𝑘] on Δ′
𝑘. Clearly,ℳ is a

model of T′
𝒦. To see thatℳ is also a model of T𝒦, observe that it satisfies the formula (13),

since for each R and each 𝑘 ∈ Z it has an element ⟨𝑑R− , 𝑘⟩, such that

□𝐹□𝑃 ∀𝑥

⎛⎝𝐸𝑅(𝑥) −→
⋁︁

R∈Tp(𝑅)

(︀
ℰR(𝑥) ∧ ℰ−R(⟨𝑑R− , 𝑘⟩)

)︀⎞⎠ (17)

is true inℳ.
(⇐) Letℳ =

(︀
Δ, ·ℳ

)︀
be a model of T𝒦. We create a model 𝒩 =

(︀
Δ′, ·𝒩

)︀
for T′

𝒦. For each
role type R consider the following interpretationℳR =

(︀
ΔR, ·ℳR

)︀
. There are two possible

cases. Case A: there exists 𝑘 ∈ Z and 𝛿R ∈ Δ, withℳ, 𝑘 |= ℰ−R(𝛿R). Then letℳR =ℳ[−𝑘].
Case B: there is no such 𝑘 and 𝑢. Then letℳR =ℳ.

We set Δ′ = Δ ∪
⋃︀

RΔR and define ·𝒩 as follows. On ind(𝒜) it coincides with ·ℳ. For
each role type R, in Case A we set 𝐵𝒩

R to be true, and 𝑑𝒩R− = 𝛿R. In Case B we set 𝐵𝒩
R to be

false, and 𝑑𝒩R− to be any 𝛿 ∈ Δ′. For predicates, ·𝒩 coincides with ·ℳ on Δ and ·ℳR on ΔR.
Then 𝒩 satisfies (15) and (16), hence it is a model of T′

𝒦.

The theory T′
𝒦 belongs to the universal fragment of 𝒬𝒯 ℒ. Namely, all the variables in its

formulas are universally quantified. This allows us to ground T′
𝒦 by substituting variables in

its formulas in all possible ways with constants from ind(𝒜) ∪ {𝑑R− | R is a role type}. Since
the predicates in T′

𝒦 are of arity at most 2, that gives an LTL theory T′′
𝒦 with size polynomial in

the size of T′
𝒦. This allows us to conclude the proof of the theorem with the following lemma.

Lemma 3. There exists an LTL theory T′′
𝒦 that is consistent if and only if𝒦 is consistent. Moreover,

|T′′
𝒦| = 2poly(|𝒦|)

.

Theorem 2. FO(<)-rewritability, linear Datalog-rewritability (if NLogSpace ̸= coNP), and

Datalog-rewritability (if PTime ̸= coNP) are undecidable for flat TDL-Lite
[♢]
bool

OMAQs (OMBAQs).

Proof. We reduce the halting problem of 2-counter machines to deciding FO(<)- and (linear)
Datalog-rewritability of OMAQs/OMBAQs. Recall, that a 2-counter machine is defined by a
finite set of states 𝑆 with distinguished initial state 𝑠𝑖𝑛𝑖𝑡 and final state 𝑠𝑓𝑖𝑛, two counters able
to store non-negative integers, and a transition function Θ. On each step the machine performs
a transition by changing its state and incrementing or decrementing each counter by 1 with
a restriction that their values remain non-negative. The next transition is chosen according
to the current state and the values of the counters. However, the machine is only allowed to
perform zero-tests on counters and does not distinguish between two different positive values.

Formally, transitions are given by a partial function

Θ: 𝑆 × {0,+} × {0,+} → 𝑆 × {−1, 0, 1} × {−1, 0, 1},

defined for each triple (𝑠, 𝑐, 𝑑) except for the case 𝑠 = 𝑠𝑓𝑖𝑛.
Let sgn(0) = 0 and sgn(𝑘) = + for all 𝑘 > 0. A computation of 𝑀 is a sequence of

configurations, that is, of triples

(𝑠0, 𝑐0, 𝑑0), (𝑠1, 𝑐1, 𝑑1), (𝑠2, 𝑐2, 𝑑2) . . . (𝑠𝑛, 𝑐𝑛, 𝑑𝑛),

such that for each 𝑖 ≥ 0 holds Θ(𝑠𝑖, sgn(𝑐𝑖), sgn(𝑑𝑖)) = (𝑠𝑖+1, 𝜀1, 𝜀2) and 𝑐𝑖+1 = 𝑐𝑖 + 𝜀1,
𝑑𝑖+1 = 𝑑𝑖 + 𝜀2. We assume that 𝑐0, 𝑑0 ⩾ 0 and Θ is such that 𝑐𝑖, 𝑑𝑖 ⩾ 0 for all 𝑖. A proper

computation is the (unique) one with 𝑠0 = 𝑠𝑖𝑛𝑖𝑡, 𝑐0, 𝑑0 = 0 and 𝑠𝑛 = 𝑠𝑓𝑖𝑛.
We say that 𝑀 halts if it has a proper computation, that is, if starting from (𝑠𝑖𝑛𝑖𝑡, 0, 0) it

reaches 𝑠𝑓𝑖𝑛 sooner or later. It was shown by Minsky [24] that 2-counter machines can simulate
Turing machines and therefore the halting problem for 2-counter machines is undecidable.

Let 𝑀 be a 2-counter machine. We construct a OMBAQ 𝑄𝑀 = (𝒪,Σ, Yellow), answering
which is in AC0 if 𝑀 does not halt, but becomes coNP-hard if 𝑀 halts. The latter is achieved
by reduction of graph (non) 3-colorability problem. Answering OMAQs/OMBAQs, rewritable
to FO(<), linear Datalog and Datalog, is, respectively, in AC0, NLogSpace, and PTime, for data
complexity. Therefore, modulo the respective assumptions on complexity classes, deciding the
rewritability of 𝑄𝑀 into each of these languages would allow to solve the halting problem for
𝑀 . In the end of the section, we generalize this construction to OMAQs.

The ABox signature Σ contains a concept name 𝐼 and role names 𝑅, 𝑉1, 𝑉2, 𝐸. We first
describe the ontology 𝒪. Apart from the symbols of Σ, we will use other concept and role
names that do not appear in ABoxes, but can be inferred using the concept and role inclusions
of 𝒪. From now on, we assume that all ABoxes are over Σ.

To simulate the computations of 𝑀 we need a representation of its states, counters and
transitions. That is, for each state 𝑠𝑖 ∈ 𝑆 and every 𝛼, 𝛽 ∈ {0,+}, representing the signs of the
two counters, we create a concept name 𝑆 𝛼𝛽

𝑖 and restrict such concepts to be global.

𝑆 𝛼𝛽
𝑖 ⊓ 𝑆 𝛾𝛿

𝑗 ⊑ ⊥, for all (𝑖, 𝛼, 𝛽) ̸= (𝑗, 𝛾, 𝛿), (18)

𝑆 𝛼𝛽
𝑖 ⊑ □𝐹□𝑃𝑆

𝛼𝛽
𝑖 , for all (𝑖, 𝛼, 𝛽). (19)

For brevity, assume that 𝑠𝑖𝑛𝑖𝑡 = 𝑠0 and 𝑠𝑓𝑖𝑛 = 𝑠𝑓 .
To encode a machine configuration we use a "zero" concept name 𝑍 , and two concept names

𝐶1 and 𝐶2 representing the two counters. These concepts are forced to be “instantaneous”:

𝑍 ⊓ ♢𝐹𝑍 ⊑ ⊥ 𝐶1 ⊓ ♢𝐹𝐶1 ⊑ ⊥ 𝐶2 ⊓ ♢𝐹𝐶2 ⊑ ⊥ (20)

If a counter is different from zero then it must hold at a time point different from that one where
𝑍 holds, called in the following zero point. This is captured by the following axiom:

𝑍 ⊓ 𝐶𝛼
1 ⊓ 𝐶

𝛽
2 ⊓ 𝑆

𝛾𝛿
𝑖 ⊑ ⊥, (21)

for all (𝛼, 𝛽) ̸= (𝛾, 𝛿), with 𝛼, 𝛽, 𝛾, 𝛿 ∈ {0,+}, and all 𝑠𝑖 ∈ 𝑆. Here𝐶 0
𝑗 = 𝐶𝑗 and𝐶+

𝑗 = ♢𝐹𝐶𝑗 ,
for 𝑗 = 1, 2.

The transitions between configurations are regulated by axioms on roles. For state transitions
we use the role name 𝑅 ∈ Σ and make sure that such a "state transition" is done at a zero point:

∃𝑅 ⊑ 𝑍, ∃𝑅− ⊑ 𝑍. (22)

Next, we claim that the states connected by 𝑅 comply with Θ. For each 𝜉 = (𝑠𝑖, 𝛼, 𝛽) ∈
𝑆 ×{0,+}2 and each 𝑠𝑗 ∈ 𝑆, such that Θ(𝑠𝑖, 𝛼, 𝛽) = (𝑠𝑗 , 𝜀1, 𝜀2), for some 𝜀1, 𝜀2 ∈ {−1, 0, 1},
we add a role name 𝑅 𝜉

𝑠𝑗 together with the following axioms:

𝑅 ⊑
⨆︁
𝜉,𝑠𝑗

𝑅 𝜉
𝑠𝑗 , ∃𝑅 𝜉

𝑠𝑗 ⊑ 𝑆
𝛼𝛽
𝑖 , ∃

(︁
𝑅 𝜉

𝑠𝑗

)︁−
⊑

⨆︁
𝛼′,𝛽′

𝑆 𝛼′𝛽′

𝑗 . (23)

It remains to ensure that the transitions to the state encoded by 𝑆 𝛼′𝛽′

𝑗 respect the values of
the counters in the state 𝑠𝑗 . For each counter 𝐶𝑗 , 𝑗 = 1, 2, we use the role name 𝑉𝑗 ∈ Σ and,
for all 𝜉 = (𝑠𝑖, 𝛼, 𝛽), the following role axioms.

∃𝑉𝑗 ⊑ 𝐶𝑗 , 𝑉𝑗 ⊑
⨆︁
𝜉

𝑉 𝜉
𝑗 , ∃𝑉 𝜉

𝑗 ⊑ 𝑆
𝛼𝛽
𝑖 , ∃

(︁
𝑉 𝜉
𝑗

)︁−
⊑ ○𝜉

𝑗𝐶𝑗 , (24)

where, ○𝜉
𝑗 is ○𝑃 , ○𝐹 , or the empty string, depending on whether Θ(𝜉) = (𝑠, 𝜀1, 𝜀2) with 𝜀𝑗

being −1, 1, or 0, respectively.
We also use the concept name 𝐼 ∈ Σ as a marker of a start of the computation:

𝐼 ⊑ 𝑆 00
0 . (25)

Let 𝒪machine be the set of axioms (18)-(25). It can be used to verify what we call "computation
paths", that is, whether there exists a sequence of individuals of an ABox, 𝒜, representing a
configuration of a 2-counter machine, 𝑀 .

Formally, given an ABox 𝒜 over Σ, such that (𝒪machine,𝒜) is consistent, we say that 𝒜 has a
computation path if there is a pair (𝜎,𝑚) with 𝑚 ∈ Z and 𝜎 being a sequence of individuals
𝑎0, 𝑎1, . . . , 𝑎𝑛 of 𝒜 such that the following properties hold:

• 𝑅(𝑎𝑖, 𝑎𝑖+1,𝑚) ∈ 𝒜, 0 ⩽ 𝑖 < 𝑛;
• there is 𝑚𝑖

1 ⩾ 𝑚 such that 𝑉1(𝑎𝑖, 𝑎𝑖+1,𝑚
𝑖
1) ∈ 𝒜, 0 ⩽ 𝑖 < 𝑛;

• there is 𝑚𝑖
2 ⩾ 𝑚 such that 𝑉2(𝑎𝑖, 𝑎𝑖+1,𝑚

𝑖
2) ∈ 𝒜, 0 ⩽ 𝑖 < 𝑛.

We call 𝑛 the length of the computation path. With proper computation path we denote a
computation path such that 𝐼(𝑎0,𝑚) ∈ 𝒜 and (𝒪,𝒜) |= 𝑆 𝛼𝛽

𝑓 (𝑎𝑛,𝑚), for some 𝛼, 𝛽 ∈ {0,+}.

We need some means to distinguish proper computations from non-proper ones. The idea is
to check for the "parallel" roles 𝑅, 𝑉1, 𝑉2, find the beginning of the computation path marked
with 𝐼 , and traverse the computation path till the end to check for the final state. To this end,
we introduce role names 𝑇, 𝑇 00, 𝑇 01, 𝑇 11 and concept names 𝐴,𝐴,𝐵,𝐵 together with new
axioms. Role 𝑇 encodes the notion of "transition" and connects subsequent individuals of the
computation path. We start by enforcing that every correct transition results in 𝑇 with the
following axioms:

𝑅 ⊓△𝑉1 ⊓△𝑉2 ⊑ 𝑇, (26)

where △ is either the empty string or the temporal operator ♢𝐹 giving thus four different
axioms.

Furthermore, the concept name 𝐴 should hold in the beginning of the configuration path,
and then should spread along the subsequent individuals of the computation path. Therefore, 𝐴
holds in the initial state of the computation path:

𝐼 ⊑ 𝐴, (27)

and should remain true only along proper computation paths:

𝐴 ⊓𝐴 ⊑ ⊥, 𝑇 ⊑ 𝑇 00 ⊔ 𝑇 01 ⊔ 𝑇 11, ∃𝑇 𝑎𝑏 ⊑ 𝐴𝑎, ∃
(︁
𝑇 𝑎𝑏

)︁−
⊑ 𝐴𝑏, (28)

with 𝐴0 = 𝐴 and 𝐴1 = 𝐴. Intuitively, 𝑇 11 labels proper computation paths while both 𝑇 00

and 𝑇 01 are labeling non-proper ones. If 𝐴 holds at the end of a computation path, then, the
path is a proper computation path and we signal this by making true also 𝐵:

𝐴 ⊓
⨆︁
𝛼𝛽

𝑆𝛼𝛽
𝑓 ⊑ 𝐵 (29)

Let 𝒪𝑙𝑖𝑛𝑘 comprise axioms (26)-(29). This ontology ’links’ the computations of 𝑀 , axiomatised
by 𝒪machine, to our original plan of reducing graph (non) 3-colorability to answering 𝑄𝑀 .
Assume, that an ABox contains a proper computation path and a graph, constituted by edges of
the role name 𝐸. The idea is to use 𝐵 as a trigger to initialize the coloring of this graph.

If 𝐵 was inferred somewhere at a time point 𝑚, it spreads over instances of the role 𝐸, that
represent edges of the graph. These is achieved in the same fashion as before via the following
axioms:

𝐵 ⊓𝐵 ⊑ ⊥, 𝐸 ⊑ 𝐸11 ⊔ 𝐸00 (30)

∃𝐸00 ⊑ 𝐵, ∃
(︀
𝐸00

)︀− ⊑ 𝐵, (31)

∃𝐸11 ⊑ 𝐵, ∃
(︀
𝐸11

)︀− ⊑ 𝐵. (32)

Finally, we require all 𝐵-labeled to be properly colored in four colors, Red, Blue, Green, Yellow.
That is:

𝐵 ⊑ Red ⊔ Blue ⊔ Green ⊔ Yellow. (33)

We make colors pairwise disjoint. Let 𝒞1, 𝒞2 range over the colors. Then:

𝒞 1 ⊓ 𝒞 2 ⊑ ⊥, for all 𝒞1 ̸= 𝒞2. (34)

Further, the coloring is correct, that is, 𝐸 always connects two distinct colors. This is obtained
introducing role names 𝐸 𝒞1,𝒞2 , for each (𝒞1, 𝒞2), 𝒞1 ̸= 𝒞2, and the axioms:

𝐸 ⊑
⨆︁

𝒞1 ̸=𝒞2

𝐸 𝒞1,𝒞2 , ∃𝐸 𝒞1,𝒞2 ⊑ 𝒞1, ∃𝐸−
𝒞1,𝒞2 ⊑ 𝒞2. (35)

Remark 1. These axioms will only trigger the coloring of the 𝐸-connected component attached to

the end of the computation path. However, since 3-colorability is NP-hard already for connected

graphs, this is not a problem.

We set the ontology 𝒪color to contain the axioms (30)-(35), and 𝒪 = 𝒪machine ∪𝒪link ∪𝒪color,
and let 𝑄𝑀 = (𝒪𝑀 ,Σ, Yellow) .

Intuitively, if 𝒜 is an ABox over Σ, such that (𝒪,𝒜) is consistent, and 𝑀 does not halt, then
there is always a model of (𝒪,𝒜) with no Yellow. Therefore, the answer to 𝑄𝑀 is always ’no’.
If, however, 𝑀 halts, then 𝑄𝑀 checks for (non) 3-colorability of an 𝐸-graph contained in 𝒜 at
the same time point as the proper computation path.

We now formalize this intuition. We assume that all ABoxes are formulated in terms of Σ.

Lemma 4. There exists an FO(<)-formula 𝜙𝑀 such that for an arbitrary ABox 𝒜 it holds that

(𝒪,𝒜) is inconsistent if and only if 𝒜 |= 𝜙𝑀 .

Proof. Any ABox is consistent with 𝒪link and 𝒪color. For 𝒪machine, there is a finite number of
possible violations of axioms and all of them are definable by a FO(<)-formula.

Corollary. The query 𝑄𝑀 is rewritable into FO(<), linear Datalog, or Datalog, if and only if it is

rewritable to the respective language over the class of ABoxes consistent with 𝒪.

Given that, we can now safely restrict our attention to ABoxes consistent with 𝒪. We denote
such ABoxes as 𝒪-ABoxes.

Lemma 5. There is an 𝒪-ABox containing a proper computation path if and only if 𝑀 halts.

Proof. (⇒) Let𝒜 be an𝒪-ABox containing a proper computation path (𝜎,𝑚), 𝜎 = (𝑎0, . . . , 𝑎𝑛).
Consider a modelℳ of (𝒪,𝒜) and the corresponding path inℳ. We construct a computation
of 𝑀 :

(𝑠0, 𝑐0, 𝑑0), (𝑠1, 𝑐1, 𝑑1), (𝑠2, 𝑐2, 𝑑2) . . . (𝑠𝑛, 𝑐𝑛, 𝑑𝑛), (36)

so that for each 𝑖, 0 ⩽ 𝑖 ⩽ 𝑛:

• each 𝑠𝑖 corresponds to the unique 𝑆 𝛼𝛽
𝑖 which holds for each 𝑎𝑖 inℳ due to the axioms

(18), (23), (25);
• 𝑐𝑖 = 𝑚𝑖

1 −𝑚 and 𝑑𝑖 = 𝑚𝑖
2 −𝑚.

It is easy to see that (36) is a proper computation of 𝑀 , and thus that 𝑀 halts.
(⇐) Let now 𝑀 have a proper computation of the form (36). Construct an ABox 𝒜 by

allowing:

• ind(𝒜) = {𝑎𝑖 | 0 ⩽ 𝑖 ⩽ 𝑛};
• 𝑅(𝑎𝑖, 𝑎𝑖+1, 0), 𝑈1(𝑎𝑖, 𝑎𝑖+1, 𝑐𝑖), 𝑈2(𝑎𝑖, 𝑎𝑖+1, 𝑑𝑖) ∈ 𝒜, 0 ⩽ 𝑖 < 𝑛;

• 𝐼(𝑎0, 0) ∈ 𝒜, 0 ⩽ 𝑖 ⩽ 𝑛.

It is easy to see that 𝒜 is consistent with 𝒪, and that ((𝑎0, . . . , 𝑎𝑛), 0) is a proper computation
path.

Let 𝐺𝐸,𝒜(𝑚) denote the set of assertions of 𝒜, restricted to the role name 𝐸 and the time
point 𝑚. We view it as a (non-directed) graph, with ind(𝐺𝐸,𝒜(𝑚)) as the set of nodes and
{(𝑢, 𝑣) | 𝐸(𝑢, 𝑣,𝑚) ∈ 𝐺𝐸,𝒜(𝑚) or 𝐸(𝑣, 𝑢,𝑚) ∈ 𝐺𝐸,𝒜(𝑚)} as edges. Further, for 𝑎 ∈ ind(𝒜),
let 𝐺𝐸,𝒜(𝑎,𝑚) be the connected component of 𝐺𝐸,𝒜(𝑚), containing 𝑎. We refer to the nodes
of 𝐺𝐸,𝒜(𝑎,𝑚) by ind(𝐺𝐸,𝒜(𝑎,𝑚)).

Lemma 6. For an arbitrary𝒪-ABox𝒜, the certain answer to𝑄𝑀 over𝒜 is ‘yes’ if and only if there

is a proper computation path ((𝑎0, . . . , 𝑎𝑛),𝑚) in 𝒜 such that 𝐺𝐸,𝒜(𝑎𝑛,𝑚) is not 3-colorable.

Proof. (⇒) Consider an 𝒪-ABox 𝒜 and suppose that in every modelℳ of (𝒪,𝒜) there is
an individual 𝑎, and a time point ℓ ∈ tem(𝒜), such that Yellow(𝑎, ℓ) is true in ℳ. Since
Yellow ̸∈ Σ, then (𝒪,𝒜) |= ∃𝑥, 𝑡.𝐵(𝑥, 𝑡). Thus, by 𝒪link, there is a proper computation path
((𝑎0, . . . , 𝑎𝑛),𝑚) in 𝒜. If 𝐺𝐸,𝒜(𝑎𝑛,𝑚) is 3-colorable, then there exists a model without Yellow.
Therefore, it is not 3-colorable.
(⇐) Suppose that𝒜 contains a proper computation path ((𝑎0, . . . , 𝑎𝑛),𝑚). Then, 𝐼(𝑎0,𝑚) ∈ 𝒜,
and thus (𝒪,𝒜) |= 𝑆 00

0 (𝑎0,𝑚) and (𝑆𝛼𝛽
𝑓 ⊓ 𝐴 ⊓ 𝐵)(𝑎𝑛,𝑚), for some 𝛼, 𝛽 ∈ {0,+}. And

therefore, (𝒪,𝒜) |= 𝐵(𝑏,𝑚) for all 𝑏 ∈ ind(𝐺𝐸,𝒜(𝑎𝑛,𝑚)). Suppose that 𝐺𝐸,𝒜(𝑎𝑛,𝑚) is not
3-colorable. Then any coloring of it with Red, Blue, Green, Yellow contains all four colors. Due
to 𝒪color, every modelℳ of the 𝒪-ABox 𝒜 contains an individual 𝑐, such that Yellow(𝑐,𝑚)
holds inℳ. I.e., the certain answer to 𝑄𝑀 over 𝒜 is ‘yes’.

Lemma 7. The OMBAQ 𝑄𝑀 = (𝒪,Σ, Yellow) is FO(<)-rewritable if and only if 𝑀 does not

halt.

Proof. (⇒) If 𝑀 does not halt then, by Lemma 5 there is no proper computation path in any 𝒪-
ABox𝒜, so by Lemma 6 the certain answer to𝑄𝑀 is ’no’. Then, 𝜙𝑀 −→ ⊥ is a FO(<)-rewriting
of 𝑄𝑀 .

(⇐) Suppose now that 𝑀 halts. By Lemma 5, there is an 𝒪-ABox, 𝒜, containing a proper
computation path (𝜎, 0). Let 𝐺 be an arbitrary connected graph. Starting from 𝒜, construct an
𝒪-ABox 𝒜𝐺 by adding to 𝒜 a copy of 𝐺 at 0. The edges of 𝐺 are represented by the role name
𝐸. Clearly, the translation from 𝐺 to𝒜𝐺 is in AC0. Then evaluating 𝑄𝑀 over𝒜𝐺 answers if 𝐺
is not 3-colorable. Therefore, answering 𝑄𝑀 is coNP-hard and thus not in AC0.

Therefore, deciding FO(<)-rewritability of 𝑄𝑀 would solve the halting problem for 𝑀 . We
further observe that:

1. FO(<)-rewritability implies (linear) Datalog-rewritability.
2. Linear Datalog-rewritability implies answering in NLogSpace.
3. Datalog-rewritability implies answering in PTime.

Thus modulo the assumptions NLogSpace ̸= coNP and PTime ̸= coNP, respectively, deciding
linear Datalog-rewritability and Datalog-rewritability of 𝑄𝑀 would solve the halting problem
for 𝑀 .

Theorem 2 for OMBAQs now follows from the above. The case for OMAQs requires a small
adjustment described below.

Fix a 2-counter machine 𝑀 . The construction of a corresponding OMAQ 𝑄′
𝑀 follows that of

the OMBAQ 𝑄𝑀 as described above. However, we can not use the a OMAQ to check for the
Yellow label somewhere in the ABox.

To handle this, we, once again, make use of a fresh role name 𝑊 .
Let 𝒪sensor consist of axioms that make 𝑌 𝑒𝑙𝑙𝑜𝑤 spread along 𝑊 in the same fashion as it

was done for the concept 𝐵. Then 𝑄′
𝑀 (𝑥, 𝑡) = (𝒪 ∪ 𝒪sensor,Σ ∪ {𝑊}, 𝑌 𝑒𝑙𝑙𝑜𝑤(𝑥, 𝑡)). If 𝑀

does not halt, then 𝑄′
𝑀 is FO(<)-rewritable similarly to 𝑄𝑀 . Suppose that 𝑀 halts. We adjust

the reduction of (non) 3-colorability problem for the case of OMAQs. Given a graph 𝐺, first
construct the ABox 𝒜𝐺, described in the proof of Lemma 7. Then add a fresh individual 𝑤 and
use 𝑊 to connect all nodes of 𝐺 at time 𝑚 with 𝑤. Then 𝐺 is 3-colorable if and only if there is
a modelℳ which does not contain 𝑌 𝑒𝑙𝑙𝑜𝑤(𝑤, 0).

Theorem 3. Checking rewritability of DL-Litebool OMAQs (OMBAQs) into FO is in 3NExpTime.

Proof. The decision procedure relies on a translation of an OMAQ (OMBAQ) to an equivalent
Monadic Disjunctive Datalog program and further on an existing FO-rewritability checking
algorithm for MDDLog given by Feier et al. [7]. They provide a translation to MDDLog for
ontologies specified in𝒜ℒ𝒞ℐ with simple role inclusions of type𝑅 ⊑ 𝑆, called role subsumption
axioms. Here we adapt this technique to the case of arbitrary boolean role inclusions. We start
with the necessary definitions.

Fix two alphabets, of variables 𝑉 𝑎𝑟 = {𝑋1, 𝑋2, . . . } and of constants 𝐶𝑜𝑛𝑠𝑡 =
{𝐾1,𝐾2, . . . }. A Disjunctive Datalog (DDLog) rule is an expression of the form

𝛼1(X1) ∨ · · · ∨ 𝛼𝑘(Xk)←− 𝛽1(Y1) ∧ · · · ∧ 𝛽𝑚(Ym) (37)

Here 𝛼𝑖, 𝛽𝑗 are relation symbols with associated arities and all Xi, Yj are tuples of symbols in
𝑉 𝑎𝑟 ∪𝐶𝑜𝑛𝑠𝑡𝑠 of lengths respecting the arity. We call the left hand part of the rule its head and
the right hand part its body. Each variable occurring in the head must also occur in the body. A
DDLog program 𝜋 is a finite collection of DDLog rules with a selected relation 𝐺𝑜𝑎𝑙 that never
appears in rule bodies and occurs only in "goal rules" of the form

𝐺𝑜𝑎𝑙(X)←− 𝛽1(Y1) ∧ · · · ∧ 𝛽𝑚(Ym) (38)

Relation symbols that occur in the head of at least one rule of 𝜋 are called IDB relations, and all
those occurring only in rule bodies are called EDB relations. The set of all IDB relations of 𝜋
constitutes its IDB schema, while the set of all relation symbols of 𝜋 (EDB + IDB) is its EDB

schema.
The semantics of DDLog is borrowed from first-order logic. Denote by FO(𝜋) a first-order

theory obtained from an DDLog program 𝜋 by universally quantifying its variables in all rules.
Given an ABox 𝒜 we write 𝒜 |= 𝜋(𝑎1, . . . , 𝑎𝑛) if and only if FO(𝜋) ∪ 𝒜 |= 𝐺𝑜𝑎𝑙(𝑎1, . . . , 𝑎𝑛)
in the sense of the first-order logic.

Monadic DDLog (MDDLog for short) restricts IDB relations to be of arity at most 1. The size
of 𝜋 is the number of symbols needed to write it down, counting each relation symbol as one. A
program is called boolean if the arity of 𝐺𝑜𝑎𝑙 is zero.

Fix a DL-Litebool OMAQ 𝑄(𝑥, 𝑡) = (𝒪,Σ, 𝐴(𝑥, 𝑡)). We would like to obtain an MDDLog
program 𝜋𝑄 that is equivalent to 𝑄 in the sense that 𝑎 is a certain answer to 𝑄 over 𝒜 if and
only if 𝒜 |= 𝜋𝑄(𝑎), for any Σ-ABox 𝒜 and any individual 𝑎. If, instead, 𝑄 is an OMBAQ, then
our goal is to construct a program 𝜋𝑄 such that the answer for 𝑄 over 𝒜 is "Yes" if and only if
𝒜 |= 𝜋𝑄.

The translation is similar to the one done in the proof of Th. 1. We use constants 𝑑R− for
role types to simulate the behavior or roles in the anonymous part of the model. Constants, in
fact, are just syntactic sugar: later we will show how to get rid of them.

The difference is, however, that MDDLog does not allow binary IDB relations. To capture
reasoning on roles in the MDDLog encoding, we collect all possible inferences on roles as a
pre-processing stage, and then project them to unary relations witnessing domain and range of
roles. This step will lead to an exponential blow-up in the size of 𝜋𝑄.

We now present the MDDLog encoding, 𝜋𝑄, obtained by encoding the TBox in the rule
set 𝜋𝒯 , the RBox in the rule set 𝜋ℛ, and the query in the goal rule 𝜋𝐺. Fix an OMAQ 𝑄(𝑥, 𝑡) =
(𝒯 ∪ℛ,Σ, 𝐴(𝑥, 𝑡)) (or an OMBAQ 𝑄 = (𝒯 ∪ℛ,Σ, 𝐴)). In the following, for every concept 𝐶 ,
by 𝐶 in 𝑄 we mean that 𝐶 is used in 𝑄, and for every role 𝑅, by 𝑅 in 𝑄 we mean that either 𝑅
or 𝑅− is used in 𝑄. Recall that a role 𝑅 can be both a role name 𝑃 or its inverse 𝑃−. Recall
also the definition of a role type from the proof of the Theorem 1.

The EDB schema of an MDDLog program 𝜋𝑄 includes the following relation symbols:

• For each concept name 𝐴 in 𝑄, a unary relation 𝐴(𝑋);
• For each concept ∃𝑅 in 𝑄, a unary relation 𝐸𝑅(𝑋);
• For each role 𝑅 in 𝑄, a binary relation 𝑅(𝑋,𝑌), two unary relations 𝐸𝑅(𝑋), 𝐸𝑅−(𝑋).

If ⊥ is used in role inclusions of 𝑄, we treat 𝐸⊥, 𝐸⊥− simply as ⊥.
• For each role type R of roles in 𝑄, a constant 𝑑R− .

Let 𝜋𝒯 be the MDDLog rule set encoding the TBox, 𝒯 , such that, for each concept inclusion,
𝐶1 ⊓ · · · ⊓ 𝐶𝑘 ⊑ 𝐶𝑘+1 ⊔ · · · ⊔ 𝐶𝑘+𝑚, it contains a rule:

𝐷𝑘+1(𝑋) ∨ · · · ∨𝐷𝑘+𝑚(𝑋)←− 𝐷1(𝑋) ∧ · · · ∧𝐷𝑘(𝑋), (39)

where 𝐷𝑖 = 𝐴𝑖, if 𝐶𝑖 = 𝐴𝑖, and 𝐷𝑖 = 𝐸𝑅, if 𝐶𝑖 = ∃𝑅.
To encode the RBox, we use a projection of roles, which are binary, to pairs of monadic concepts.
We first introduce some definitions.

Let Sat(W) denote the collection of all role types R such that W ⊆ R. For each set of roles
W = {𝑊1, . . . ,𝑊𝑡} which is a role type consider the following rule (cf. (13)):⎛⎝ ⋁︁

R∈Sat(W)

ℰR(𝑋) ∧ ℰ−R(𝑌)

⎞⎠←−𝑊1(𝑋,𝑌) ∧ · · · ∧𝑊𝑡(𝑋,𝑌) (40)

While the head of this "rule" is in disjunctive normal form, we obtain an MDDLog rule set,
denoted as 𝜋S, by converting (40) to a conjunctive normal and then adding a separate rule for

each disjunctive clause. Furthermore, for each role 𝑊 in 𝑄 consider the following rules:⎛⎝ ⋁︁
R∈Sat(𝑊)

ℰR(𝑋) ∧ ℰ−R(𝑑R−)

⎞⎠←− 𝐸𝑊 (𝑋) (41)

The MDDLog rule set, denoted as 𝜋∃𝑆 , is obtained from the above formulas. Intuitively, this
program is needed to capture properties of the anonymous part encoded via the 𝑑R− constants.

We can now define the MDDLog rule set, 𝜋ℛ, to be the union of the following rule sets:

• 𝜋R, for each set of roles R as defined in (40);
• programs 𝜋∃𝑅, for each role 𝑅 in 𝑄 as defined in (41);
• 𝜋𝑅, which, for each role 𝑅 in 𝑄, is the following rule:

𝐸𝑅(𝑋)←− 𝑅(𝑋,𝑌); (42)

Finally, the goal rule, 𝜋𝐺, contains the rule:

𝐺𝑜𝑎𝑙(𝑋)←− 𝐴(𝑋) or 𝐺𝑜𝑎𝑙←− 𝐴(𝑋), (43)

for 𝑄 being an OMAQ or an OMBAQ, respectively. Recall that we defined 𝜋𝑄 = 𝜋𝒯 ∪ 𝜋ℛ ∪ 𝜋𝐺.
We can now prove the following main result.

Lemma 8. Let𝑄 be a DL-Litebool OMAQ or OMBAQ. There exists an equivalent MDDLog program

𝜋𝑄 of size 𝑂
(︀
2|𝑄|)︀

.

Proof. We consider the more difficult case of OMBAQs. Let 𝑄 = (𝒪,Σ, 𝐴) be an OMBAQ with
𝒪 = 𝒯 ∪ ℛ, and 𝜋𝑄 an MDDLog program obtained from 𝑄 as described above. It is easy to
check that |𝜋𝑄| = 𝑂

(︀
2|𝑄|)︀.

Fix an arbitrary Σ-ABox 𝒜. Recall that FO(𝜋𝑄) is the first-order theory obtained by univer-
sally quantifying rules of 𝜋𝑄. It suffices to prove that there exists a model of (𝒪∪ {𝐴 ⊑ ⊥},𝒜)
if and only if there exists a model of FO(𝜋𝑄) ∪ 𝒜 ∪ {¬∃𝑥.𝐴(𝑥)}.

(⇒) Letℳ =
(︀
Δ, ·ℳ

)︀
be a model of (𝒪 ∪ {𝐴 ⊑ ⊥},𝒜). We construct a model 𝒩 =

(︀
Δ, ·𝒩

)︀
for FO(𝜋𝑄) ∪ 𝒜 ∪ {¬∃𝑥.𝐴(𝑥)} using the same domain Δ. For every 𝑎 ∈ ind(𝒜) we set
𝑎𝒩 = 𝑎ℳ. For every role type R choose any 𝑑 ∈

{︀
𝑢 ∈ Δ | 𝑢 ∈ (∃𝑅)ℳ for all 𝑅 ∈ R

}︀
. If

this set is empty, take any 𝑑 ∈ Δ. We set 𝑑𝒩
R− = 𝑑. Finally, for each atomic concept 𝐴 set

𝐴𝒩 = 𝐴ℳ and for each role 𝑅 set 𝑅𝒩 = 𝑅ℳ and 𝐸𝑅𝒩 = (∃𝑅)ℳ. It can be easily verified
that 𝒩 is an 𝐴-countermodel of FO(𝜋𝑄) ∪ 𝒜.

(⇐) Conversely, suppose 𝒩 = (Δ, ·𝒩) is a model of FO(𝜋𝑄) ∪ 𝒜 ∪ {¬∃𝑥.𝐴(𝑥)}. We can
choose 𝒩 to be a Herbrand model, so that Δ = ind(𝒜) ∪ {𝑑R− | R is a role type 𝑄}, with an
obvious interpretation 𝑎𝒩 = 𝑎 for 𝑎 ∈ ind(𝒜) and 𝑑𝒩

𝑅 = 𝑑R− for any R.
We construct a modelℳ = (Δ, ·ℳ) for (𝒪 ∪ {𝐴 ⊑ ⊥},𝒜) using the same domain Δ. We

also borrow the interpretation of ABox individual names. Further, for each atomic concept 𝐴
set 𝐴ℳ = 𝐴𝒩 .

The interpretation of roles is defined in three steps. First, for each role 𝑅 and any 𝑢, 𝑣 ∈ Δ
we let (𝑢, 𝑣) ∈ 𝑅ℳ if 𝒩 |= 𝑅(𝑢, 𝑣). This way we satisfy the role assertions of the ABox.

Second, we ensure that𝐸𝑅 predicates in𝒩 correspond to ∃𝑅 inℳ. Consider any 𝑢 such that
𝑢 ∈ 𝐸𝑊 {𝒩} for some role 𝑊 . By (41), there exists a role type R such that ℰR(𝑢) ∧ ℰ−R(𝑑R−)
is true in 𝒩 . We set (𝑢, 𝑑R−) ∈ 𝑅ℳ for each 𝑅 ∈ R.

Third, we ensure that roles ofℳ satisfy the RBox ℛ. For this we "recover" the inferred
roles from their encoding in 𝒩 with pairs of 𝐸𝑅,𝐸𝑅− predicates. For a pair 𝑢, 𝑣 ∈ Δ define
Rol(𝑢, 𝑣) to be the set of those roles 𝑅 for which we have already established (𝑢, 𝑣) ∈ 𝑅ℳ on
the previous steps. Our goal is to enrich this set so that it forms a role type.

Note, that if at least one of 𝑢 and 𝑣 is anonymous, Rol(𝑢, 𝑣) is a role type by construction.
So suppose 𝑢, 𝑣 ∈ ind(𝒜). Then by (40) there exists a role type R such that ℰR(𝑢) ∧ ℰ−R(𝑣) is
true in 𝒩 . Finally, we set (𝑢, 𝑣) ∈ 𝑅ℳ for all 𝑅 ∈ R.

Now, for every two objects 𝑢, 𝑣 ∈ Δ the set {𝑅 | (𝑢, 𝑣) ∈ 𝑅ℳ} is a role type. Therefore,
ℳ |= ℛ.

It remains to verify that for each role 𝑅 we have ∃𝑅ℳ = 𝐸𝑅𝒩 . Indeed, for each 𝑢 ∈ Δ, if
𝐸𝑅(𝑢) holds in𝒩 then we have𝑅(𝑢, 𝑑R−) inℳ for some typeR ∋ 𝑅. Therefore 𝑢 ∈ ∃𝑅ℳ by
the semantics of description logic. Conversely, suppose that𝑅(𝑢, 𝑣) holds inℳ. If𝑅(𝑢, 𝑣) ∈ 𝒜,
then we have 𝐸𝑅(𝑢), 𝐸𝑅−(𝑣) in 𝒩 by the rule (42). If, on the other hand, 𝑅(𝑢, 𝑣) was added
toℳ on the second or the third step of role interpretation, then by construction 𝐸𝑅(𝑢) and
𝐸𝑅−(𝑣) must be true in 𝒩 .

Therefore, the interpretation of concepts in ℳ coincides with the corresponding unary
predicates of 𝒩 . Since 𝒩 satisfies rules of type (39), ℳ |= 𝒯 . Therefore, ℳ is a model
of (𝒪 ∪ {𝐴 ⊑ ⊥},𝒜).

We note that 𝑑R− constants can be eliminated by a cost of a polynomial growth of the
program. Indeed, let 𝜋𝑐𝑄 comprise those rules of 𝜋𝑄 that use constants, while 𝜋𝑐𝑓𝑄 consist of
all constant-free rules. Let also 𝜋𝑔𝑄 be the result of grounding all rules in 𝜋𝑄 with constants
{𝑑R | 𝑅 is a role type}. Since each rule contains at most two variables, the size of 𝜋𝑔𝑄 is

polynomial in the size of 𝜋𝑄. Finally, it is not hard to see that 𝜋𝑔𝑄 ∪ 𝜋
𝑐𝑓
𝑄 is a constant-free

program equivalent to 𝜋𝑄.
The program 𝜋𝑔𝑄 ∪ 𝜋

𝑐𝑓
𝑄 can be further converted into an instance of generalized coCSP of size

triple exponential in the size of the original query 𝑄 (cf. Feier et al. [7], Theorem 3.3, which is
restated from Feder and Vardi [25]). In turn, FO-rewritability for coCSP is NP-complete (see
Larose et al. [26], Barto [27], Chen and Larose [28]).

	1 Introduction
	2 OMAQ Answering and FO-rewritability in TDL-Litebool[◇]
	3 Related Work
	A Proofs

