
BIROn - Birkbeck Institutional Research Online

Enabling Open Access to Birkbeck’s Research Degree output

Essays on diagnostic testing in time series model

https://eprints.bbk.ac.uk/id/eprint/52054/

Version: Full Version

Citation: Grivas, Charisios (2023) Essays on diagnostic testing in time
series model. [Thesis] (Unpublished)

c© 2020 The Author(s)

All material available through BIROn is protected by intellectual property law, including copy-
right law.
Any use made of the contents should comply with the relevant law.

Deposit Guide
Contact: email

https://eprints.bbk.ac.uk/id/eprint/52054/
https://eprints.bbk.ac.uk/theses.html
mailto:lib-eprints@bbk.ac.uk


Essays On Diagnostic Testing In Time

Series Models

Charisios Grivas

Thesis submitted for the degree of Doctor of Philosophy.

Department of Economics, Mathematics, and Statistics

Birkbeck College

University of London

August 2023



Declaration

I declare that the work presented in this Ph.D. thesis is my own original work. Where information has been

derived from other sources, I confirm that this has been clearly and fully identified and acknowledged. No part

of the thesis contains material previously submitted to this University or to any other institution for a degree.

Charisios Grivas, August 2023

Statement of Published Work

A version of the second chapter, Chapter 2 of my thesis has been published as:

Grivas, Charisios. ”An Automatic Portmanteau Test For Nonlinear Dependence.” Econometrics and Statistics

(2023).

Statement of Conjoint Work

One out of my three primary chapters that form this thesis involves conjoint work, as specified below.

Chapter III “Bandwidth Selection for Estimators of Time-Varying Stochastic Coefficient Models” is conjoint

work with Zacharias Psaradakis. Overall, my contribution amounts to two thirds of the total paper.

i



Acknowledgements

Throughout my PhD I have been helped, encouraged and supported by multiple individuals, and I apologize

for not being able to name and thank each person individually.

First and foremost, I would like to thank my principal supervisor Zacharias Psaradakis, who has provided me

with invaluable guidance and insights, given me many opportunities, and has taught me a lot about research.

His contribution and kindness has been deeply appreciated and will always be remembered. I would also

like to thank my secondary supervisor, Walter Beckert, for his guidance, advice and support, that have been

instrumental in helping me shape my work and my academic thinking.

I have been fortunate to interact with many during my PhD, each of whom have taught me something valuable

and are owed my thanks. To name a few: Weining Wang, Liudas Giraitis, Marian Vávra, Ron Smith, Yunus

Aksoy, Raffaella Giacomini, Karolos Arapakis, Andreas Drichoutis, Alejandro Riaño, Nikos Paltalidis, Rubens

Morita, Spyros Symeonidis, Konstantinos Adamopoulos and Jose Camarena Brenes.

The Economics Department at Birkbeck University has been a great environment to learn and conduct research.

I have greatly benefited from the comments and questions of many faculty members, as well as fellow PhD

students.

Funding Acknowledgements

I gratefully acknowledge the funding that made my PhD possible. I was funded by the Birkbeck School of

Business, Economics and Informatics through a fee waiver and a teaching assistant scholarship.

ii



Abstract

The Ph.D thesis, titled Essays On Diagnostic Testing In Time Series Models, investigates several issues related

to inference in time series models. The aim is to develop a deeper understanding of issues involving hypothesis

testing and inference in models that exhibit some non-linear dependence or time-varying endogeneity. This

thesis is made up of five main chapters,

In the first chapter (Chapter 1) we provide a motivation for the thesis.

In the second chapter (Chapter 2), we develop a data-driven version of a portmanteau test for detecting nonlinear

types of statistical dependence. The test properly controls the type I error without being sensitive with respect

to the number of autocorrelations used. In addition, the automatic test is found to have higher power in

simulations when compared to the standard portmanteau test, for both raw data and residuals.

In the third chapter (Chapter 3), we propose a bootstrap version of a time-varying Hausman test statistic,

which compares kernel based time-varying OLS and IV estimators of regression coefficients, allowing for possible

changes in the endogeneity status of the regressors over time. In this chapter, we examine the finite-sample

performance of the asymptotic and the bootstrap version of the test by means of Monte Carlo simulations and

we establish the asymptotic validity of a simple, easy to use bootstrap procedure. The bootstrap test has more

accurate size and higher power than its asymptotic counterpart. What is more, it is demonstrated that the size

and power of the bootstrap test are insensitive with respect to the choice of the bandwidth parameters. This is

of particular importance since in current practice researchers use a variety of ad hoc approaches to bandwidth

selection which are typically based on objective functions that address estimation concerns rather than test

accuracy.

In the fourth chapter (Chapter 4), we study the problem of bandwidth choice for non-parametric instrumental

variable and least square estimation for econometric models whose coefficients can vary over time either de-

terministically or stochastically, under both endogeneity and exogeneity. In this chapter, we compare different

data-driven selectors for the smoothing parameter. We find that data-driven methods perform well for both the

estimators. Quite interestingly, we find that selecting the bandwidth parameter in a data-driven way for the

time-varying least square estimation under endogeneity provides a way to reduce the finite small sample bias of

the estimator.

In the last chapter we summarize the results of the thesis.
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Chapter 1

Introduction

Non-linearity, endogeneity, structural change and parameter instability are prominent features of many relation-

ships among economic and financial variables. It is not surprising, therefore, that problems relating to effective

detection of such features and to statistical inference in their presence have attracted a phenomenal amount of

interest in econometrics and statistics. A wide variety of methods have been developed that offer ways to test for

neglected nonlinearity in econometric models, for potential endogeneity of explanatory variables in regression

models, and for parameter instability and structural change of various forms. At the same time, a large array of

models with built-in non-linear features have been proposed, as well as parametric and non-parametric methods

for optimal inference in the presence of instrumental variables and/or parameter instability of specific or general

forms.

The work in this thesis contributes to several strands of this vast literature. Focusing primarily on models

for time series data, we consider problems relating to diagnostic tests for non-linear dependencies, to tests

for endogeneity in the presence of parameter instability of general unspecified forms, and to the selection of

smoothing parameters for non-parametric inference in models with stochastically or deterministically time-

varying parameters.

The problem of testing for non-linear dependence in raw data or in residuals from a parametric time series

model is taken up in the second chapter of the thesis. A common limitation of most portmanteau tests for

serial correlation and non-linear dependence based on sample autocorrelations is that the choice of the number

of autocorrelations to be used in the construction of the relevant test statistics is arbitrary. Building on a

recently proposed idea for an automatic version of a portmanteau test for autocorrelation in raw data, we

develop a data-driven version of a widely used portmanteau test for detecting non-linear types of statistical

dependence. The proposed test has good size properties, without being sensitive with respect to the number

of autocorrelations used, the latter being chosen in an automated (i.e., data-driven) way. In addition, the

automatic test has superior power when compared to the standard portmanteau test based on a pre-specified
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number of autocorrelations. Most importantly, the automatic test procedure is extended to deal with the case

of autocorrelations based on squared residuals from a fitted model, thus providing a general diagnostic test for

(second-order) non-linear dependence.

In the third chapter of the thesis, we develop a bootstrap version of a time-varying Hausman test for endogeneity

in linear regression models with time-varying parameters. The test is based on non-parametric kernel least

squares and instrumental variables estimators of regression coefficients, when the latter vary smoothly, either

deterministically or stochastically, subject only to appropriate boundedness and smoothness conditions. What

is more, the test allows for possible changes in the endogeneity status of the explanatory variables over time.

This is a departure from the traditional setting in which the exogeneity status of an independent variable is

treated as binary throughout the sample period. In view of the substantial empirical evidence in favour of

structural change in macroeconomic and finance models, such an assumption about the time invariance of the

exogeneity status of a variable appears restrictive, and it is doubtful that a conventional Hausman test is the

most appropriate way of detecting failures of orthogonality between explanatory variables and unobservable

disturbances. Taking as a point of departure a recently proposed time-varying version of the Hausman test,

we consider its accuracy in samples of sizes that are relevant for applications. Since a test based on critical

values obtained from the large-sample asymptotic null distribution of the test statistic tends to suffer from size

distortions and low power, we propose using a version of the test that relies on critical values obtained from

a suitable bootstrap approximation to the sampling distribution of the test statistic. Such a bootstrap-based

test is shown to have more accurate size and higher power than its asymptotic counterpart. What is more,

the size and power of the bootstrap test are found to insensitive with respect to the choice of the smoothing,

or bandwidth, parameters that are required to construct kernel estimators of the regression parameters. The

asymptotic validity of an easy-to-use bootstrap version of the time-varying Hausman test is also established.

Linear regression models with time-varying parameters and potentially endogenous explanatory variables are

also at the centre of the fourth chapter of the thesis. Here, we focus on the problem of choosing the bandwidth

parameter for non-parametric kernel-based least squares and instrumental variables estimators of regression

coefficients. As is well known from the literature on non-parametric kernel estimation, the choice of bandwidth

significantly impacts the performance of kernel estimators. Small bandwidth values can yield under-smoothed

estimates which have high variance, while large values may result in over-smoothing and large bias. In our con-

text, the potential presence of endogenous explanatory variables in the model further complicates the already

difficult problem of effective bandwidth choice. To address this problem, we consider a variety of automated

(i.e., data-driven) bandwidth selection methods. These include selection methods based on cross-validation,

wild bootstrap and dependent wild bootstrap resampling, and a non-parametric variant of Akaike’s information

criterion. Unlike earlier work, which considered non-parametric regressions with fixed or random (but exoge-

nous) explanatory variables, time-invariant coefficients, and white-noise errors, the models considered in this

chapter have stochastically varying coefficients, explanatory variables that may be exogenous or endogenous,

and errors which may be serially uncorrelated and homoskedastic, heterogeneously distributed, or serially cor-

2



related. It is shown that cross-validation and bootstrap-based procedures provide effective data-driven choices

of the bandwidth under a variety of conditions that are relevant in econometrics.

The final chapter of the thesis summarises the main findings and concludes.
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Chapter 2

An Automatic Portmanteau Test for

Nonlinear Dependence

1 Introduction

One of the most popular approaches for detecting serial correlation is based on the Box–Pierce portmanteau

test (see Box and Pierce (1970)), or its finite-sample correction developed by Ljung and Box (1978). The test

statistic is simply the sample size times the sum of squares of the first p sample autocorrelations. A problem

that practitioners often face is how to correctly specify ad hoc the order of lags p for the autocorrelation in a

way that will properly control the probability of type I error while having a high power.

An attractive application of portmanteau tests is on the residuals of fitted autoregressive moving average

(ARMA) models. Following the methodology of Box and Jenkins (1990), once a model has been fitted, the

econometrician performs a number of tests on the residuals to check the adequacy of the model. This process

of checking the residuals for any remaining serial correlation continues until the resulting residuals contain no

detectable additional structure. In practice, portmanteau tests are more useful for disqualifying unsatisfactory

models from consideration than for selecting the best-fitting model among closely competing candidates, as

pointed out by Brockwell and Davis (2009) (page 312).

However, as Anderson (1979) observed, the autocorrelation function of the squared series can be useful in

identifying non-linearity in time series. In particular, even when the series appears not to be autocorrelated, the

squared series could be autocorrelated, hence revealing some form of nonlinear dependence. Motivated by this

observation, McLeod and Li (1983) proposed a modification of the Ljung–Box test based on the squared series

or squared residuals from a fitted model. As Luukkonen et al. (1988) demonstrate, the McLeod-Li(ML ) test is

particularly successful in the presence of autoregressive conditional heteroskedasticity (ARCH) and stochastic
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volatility, the test being asymptotically equivalent to a Lagrange Multiplier test for ARCH (see also Psaradakis

and Vávra (2019)). In fact, Luukkonen et al. (1988) call it an ARCH test to ”remind the reader that it is an

ARCH test”. Although the test generally has good control of the probability type I error, this is dependent on

the number of autocorrelations p used to construct the test being carefully chosen.

The aim of this chapter is to propose a data-driven version of the McLeod–Li test that deals with the problem

of selecting the number of autocorrelations p in an effective manner. Building upon the seminal work by

Escanciano and Lobato (2009), we let the data determine the order p, by automatically adapting to the order of

the serial correlation present. Under the null hypothesis of independent, identically distributed data (i.i.d) data,

the proposed test statistic follows asymptotically a chi-square distribution with one degree of freedom. Under

the alternative hypothesis of non-i.i.d. data, the test chooses p depending on the serial correlation present and

is consistent. An attractive feature of the automatic version of the McLeod–Li test, is that its size properties

are not dependent on the choice of the p value.

Adapting the methodology of Escanciano and Lobato (2009), our chapter contributes to the literature in two

distinct ways. First, by considering squared data instead of raw data, we provide a means of identifying nonlinear

dependence in a time series. Second, and more importantly, we extend the procedure to squared residuals from

a fitted model, thus providing a general diagnostic test for (second-order) nonlinear dependence.

The chapter is organized as follows. In Section 2, we briefly present an overview of the McLeod-Li test, introduce

the proposed test for both raw data and residuals, and establish their asymptotic properties. In Section 3, we

explore the finite-sample behaviour of the test by means of Monte Carlo simulations. Finally, some concluding

remarks and suggestions for possible future research are given in Section 4.

2 The McLeod and Li Portmanteau Test

In this section, we first revisit the McLeod–Li test for raw data and propose an automatic version of the test.

We then consider the case of residuals from a fitted model.

2.1 Preliminaries

Consider a strictly stationary time series {yt}Tt=1 with E[y4t ] <∞. For any 0 ≤ j ≤ T−1, let γ(j) = cov
(
y2t , y

2
t−j

)
and its sample analogue γ̂ (j) = 1

T−j

∑T
t=1+j

(
y2t − δ̄

) (
y2t−j − δ̄

)
, with δ̄ = 1

T

∑T
t=1 y

2
t . The portmanteau test

of McLeod and Li (1983) is based on the statistic:

ML(p) = T (T + 2)

p∑
j=1

ρ̂2 (j)

T − j
, (2.1)
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where ρ̂ (j) = γ̂ (j) /γ̂ (0) is the lag-j sample autocorrelation of the squared series and p is the maximum lag

order (number of autocorrelations) specified ad hoc by the econometrician. Under the null hypothesis that

{yt}Tt=1 is i.i.d., ρ (j) = γ(j)/γ(0) = 0 for all j ≥ 1 and ML(p) has a χ2 (p) asymptotic distribution as T → ∞.

2.2 Automatic Portmanteau Test

In their novel paper, Escanciano and Lobato (2009) proposed a modification of the Ljung–Box portmanteau test

that allows the data to automatically determine the number of autocorrelations on the basis of an information

criterion. The proposed test statistic is the maximum value of the portmanteau test statistics penalized by a

term that is an increasing function of the number of autocorrelations.

Analogously to Inglot and Ledwina (2006) and Escanciano and Lobato (2009), our automatic version of the

McLeod–Li test is based on the statistic:

AML = ML (p̃) ,

where

p̃ = min{p : 1 ≤ p ≤ d,Lp = max
1≤u≤d

Lu},

and

Lu = ML (u)− π (u, T, q) .

Here, d serves as a fixed upper bound, q is a fixed positive number, to be defined later, and π (u, T, q) is a

penalty function that takes the form

π (u, T, q) =


u log T, if max1≤j≤d

√
T |ρ̂ (j) | ≤ √

q log T ,

2u, if max1≤j≤d

√
T |ρ̂ (j) | > √

q log T .

(2.2)

Note that in (2.2) the penalty function involves a switching rule between the Bayesian information criterion

(BIC) criterion (Schwarz (1978)) and the Akaike information criterion (AIC) (Akaike (1974)). This combination

of the two criteria is desirable since BIC is able to properly control type I error and is more powerful when

there is first-order serial correlation in the data. When higher-order serial correlation is present, AIC yields

more powerful tests. The threshold
√
qlogT employed here is an adaptation of the standard solution for a white

noise sequence of i.i.d N(0, 1) random variables; see Inglot and Ledwina (2006) (page 126-127) for a motivation

of such a data-driven rule.

Our first theorem establishes the asymptotic null distribution of the automatic McLeod–Li test.

Theorem 1. If {yt}Tt=1 is i.i.d with E[y4t ] <∞, then AML has a χ2 (1) asymptotic distribution as T → ∞.

The next theorem shows that the test is consistent against a fixed alternative under which ρ (j) ̸= 0 for some

6



j ≥ 1.

Theorem 2. If {yt}Tt=1 is strictly stationary and ergodic with E[y4t ] < ∞, then the test based on AML is

pointwise consistent, as T → ∞, against the alternative HK
a : ρ (1) = · · · = ρ (K − 1) = 0, ρ (K) ̸= 0 for

1 ≤ K ≤ d.

The proofs of the theorems are in the Appendix 2.A.2.

2.3 Residual Portmanteau Test

We now consider the case where the adequacy of a fitted model is checked by using a portmanteau test based

on the autocorrelations of the squared residuals. The econometrician observes a finite stretch of data {yt}Tt=1

from a stochastic process with mean µ satisfying:

yt = µ+

∞∑
j=0

c(β, j)ϵt−j , (2.3)

where c (β, j) are real weights, assumed to be known functions of an unknown finite-dimensional vector of

parameters β and satisfying
∑∞

j=0 |c (β, j) | < ∞ and c (β, 0) = 1, and {ϵt}∞t=1 are strictly stationary white

noise errors with E[ϵt] = 0 and E[|ϵt|s] < ∞ for some s ≥ 8. A well-known special case of (2.3), as considered

in McLeod and Li (1983), are ARMA(r1, r2) processes, for which the weights c (β, j) satisfy
∑∞

j=0 c(β, j)z
j =

ϑ (z) /φ(z) for all complex |z| ≤ 1, where ϑ (·) and φ (·) are polynomials of degree r1 and r2, respectively, having

no common roots and no roots inside or on the unit circle.

Following McLeod and Li (1983), the autocorrelation function of the squared errors {ϵ2t} can be useful in

identifying nonlinear dependence. The presence of such nonlinear dependence is of importance since it can

be an indication of misspecification of the fitted model, or can, if taken into consideration, lead to improved

forecast accuracy (Granger and Ap (1978)). The errors {ϵt} are, of course, unobservable in practice and hence

one must use residuals {ϵ̂t}Tt=1 in their place.

Given a consistent estimator θ̂ = (β̂, µ̂) of θ = (β, µ), and assuming (2.3) is invertible, residuals can be computed

as (e.g., Kreiss (1991)):

ϵ̂t = yt − µ̂−
t−1∑
j=1

c
(
β̂, j
)
(yt−j − µ̂). (2.4)

Suitable estimators of θ can be obtained by quasi-maximum likelihood, instrumental variables, or least-squares

methods (see, e.g., Kuersteiner (2001) and the references therein). Then, given a prespecified fixed p ≥ 1, a test

for nonlinear dependence in {ϵt} may be based on the McLeod–Li portmanteau statistic:

ML∗ (p) = T (T + 2)

p∑
j=1

ρ̂2ϵ̂ϵ̂ (j)

T − j
, (2.5)
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where ρ̂ϵ̂ϵ̂ (j) = γ̂ϵ̂ϵ̂ (j) /γ̂ϵ̂ϵ̂ (0), γ̂ϵ̂ϵ̂ (j) =
1

T−j

∑T
t=1+j

(
ϵ̂2t − δ̄ϵ̂

) (
ϵ̂2t−j − δ̄ϵ̂

)
for 0 ≤ j ≤ T −1, and δ̄ϵ̂ =

1
T

∑T
t=1 ϵ̂

2
t

. Under suitable regularity conditions (see Assumption 1 below), ML∗(p) has a χ2 (p) asymptotic distribution

as T → ∞ when {ϵt} are i.i.d. with E[ϵ8t ] <∞ (see Psaradakis and Vávra (2019)).

Instead of relying on an ad hoc choice for the number of estimated autocorrelations p in (2.5), we suggest

employing an automatic version of the test, analogous to that introduced in the previous subsection. The

test statistic is AML∗ = ML∗ (p̃), with p̃ determined in the same manner as before but now using a penalty

function π (u, T, q) that takes the form:

π (u, T, q) =


u log T, if max

√
T |ρ̂ϵ̂ϵ̂ (j) | ≤

√
q log T ,

2u, if max1≤j≤d

√
T |ρ̂ϵ̂ϵ̂ (j) | >

√
q log T .

(2.6)

To establish the asymptotic properties of the automatic test, we will need the following assumption.

Assumption 1. (a) C(z) =
∑∞

j=0 c(β, j)z
j is analytic and without zeros inside and on the unit circle, and

differentiable with respect to β; (b) θ̂ is
√
T -consistent for θ; (c)

√
T |∂γ̃ϵϵ(j)/∂θ| = Op(1) for 0 ≤ j ≤ T − 1,

where γ̃εε (j) =
1

T−j

∑T
t=1+j

(
ϵ2t − δ̄ϵ

) (
ϵ2t−j − δ̄ϵ

)
and δ̄ϵ =

1
T

∑T
t=1 ϵ

2
t .

These conditions, which are similar to those of Psaradakis and Vávra (2019), ensure that the residuals in (2.4)

are well defined and the estimated autocorrelations ρ̂ϵ̂ϵ̂ (·) are consistent and asymptotically normal under the

null hypothesis of i.i.d. errors. In the ARMA case mentioned earlier, with parameters estimated by conventional

methods (see, e.g., Brockwell and Davis (2009)[Ch. 8]), all the requirements of the assumption are satisfied.

The asymptotic properties of the automatic test are given in the next two theorems. Here, ρϵϵ (j) = γϵϵ(j)/γϵϵ(0)

for j ≥ 0, where γϵϵ(j) = cov
(
ϵ2t , ϵ

2
t−j

)
.

Theorem 3. If {ϵt}∞t=1 is i.i.d. with E[ϵ8t ] <∞ and Assumption 1 holds, then AML∗ has a χ2(1) asymptotic

distribution as T → ∞.

Theorem 4. If Assumption 1 holds and ρ̂ϵ̂ϵ̂ (j) = ρϵϵ (j) + op(1) for all 0 ≤ j ≤ T − 1, then the test based on

AML∗ is consistent, as T → ∞, against the fixed alternative HK
a : ρϵϵ(1) = · · · = ρϵϵ(K − 1) = 0, ρϵϵ(K) ̸= 0

for 1 ≤ K ≤ d.

The proofs of the theorems are in the Appendix 2.A.2.

Note that the assumption that E[ϵ8t ] < ∞ is a standard requirement for ML-type tests (e.g., McLeod and Li

(1983), Psaradakis and Vávra (2019)) and ensures that sample autocovariances of squared errors have a well-

defined asymptotic distribution when the errors are not autocorrelated. It may be possible to relax the moment

condition somewhat along the lines of Anderson (1991), although this would typically require imposing stronger

restrictions on the parameters of the data-generating process. A different approach that has been considered in

the literature relies on using the absolute value of a time series or log-squared time series in the construction
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of ML test statistics as these only require the existence of the fourth moment. These approaches, however,

are beyond the scope of the chapter and the interested reader is referred to Pérez and Ruiz (2003), and the

references therein, for some discussion.

It is also worth remarking that methods based on automatic model selection typically entail biases, as shown

by Leeb and Pötscher (2005), and the sampling distributions of estimators and test statistics may be affected

as a result. Ideally, any such effects should not be ignored post estimation. When the McLeod–Li test, or its

automatic version, are applied to the residuals of a particular model to test for possible nonlinear dependence, the

diagnostic testing may affect subsequent inference. However, a number of strategies have been proposed to deal

with this issue, as pointed out by Fenga and Politis (2011). For example, Broersen and de Waele (2004) suggest

a model selection method based on hierarchical models. They develope a model selection strategy limiting

the selection to ARMA(r, r − 1) candidate models and show that this does not lead to a lower-quality model

being selected even in finite samples. On the other hand, Buckland et al. (1997) consider bootstrap as a way of

incorporating model uncertainty into inference. The bootstrap, with model selection applied independently to

each resample, allows inference without conditioning on a single selected model.

2.4 Linearity Test

A time series {yt} is sometimes considered to be linear if it admits a representation such as (2.3) with respect

to an i.i.d. sequence {ϵt}. This is the notion of linearity considered in McLeod and Li (1983), Lawrance and

Lewis (1987), Berg et al. (2010) and Giannerini et al. (2015), among others. Within this framework, deviations

from the i.i.d. assumption about the errors {ϵt} are viewed as evidence of nonlinear behaviour of {yt}. Hence,

one may employ tests based on the ML∗ or AML∗ statistics constructed from the residuals of a suitable

approximation to (2.3) as general portmanteau tests for detecting deviations from linearity. Lee et al. (1993),

for example, use a first-order autoregressive model to obtain the required residuals, while McLeod and Li (1983)

rely on autoregressive models the order of which is estimated by means of information criteria. Note however,

that this is not the only notion of non-linearity in the literature. For example, Hannan (1973) considers a

different characterization based on the properties of one-step-ahead linear predictors.

3 Simulation Results

In this section, Monte Carlo experiments are carried out to investigate the finite-sample performance of the

AML test. The main objective is to compare the properties of the automatic ML to the standard ML, in

the presence and absence of nonlinear serial dependence in the errors of a model. To conserve space, we only

consider the case of residuals with a slight abuse of notation, denoting as AML and ML the tests applied to

the residuals instead of AML⋆ and ML⋆. The case of raw data is provided in the supplement.
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In all simulations in this section, 10,000 independent artificial time series yt of length 100+T with T ∈

{50, 100, 200, 500} are generated , but only the last T observations for each series are used. We consider

p/T = 2.5%, 5%, 7% and 10% for the original test. The nominal level considered, for comparing the empirical

significance levels of AML and ML, is α = 5% . To conserve space, simulation results for nominal levels 0.01

and 0.10 are not reported here but provided similar results. We set d = 75, as in Escanciano and Lobato (2009),

except when T = 50 where we use d = 25,and q = 3.6 following our simulations in the next section. Note that

in both Escanciano and Lobato (2009) and Inglot and Ledwina (2006) q is set to 2.4.

3.1 Choice of q

As discussed in section 2 above, expression (2.2) involves a fixed parameter q which provides a switching rule

between the BIC and AIC criteria. In this subsection, we provide evidence to support our choice of q = 3.6 used

in some of the Monte Carlo simulations, in a similar manner to Escanciano and Lobato (2009) and Inglot and

Ledwina (2006). Specifically, we estimate the empirical size of the test by Monte Carlo simulation for a sample

of T = 500. For all the simulations in this subsection, AML is applied to the residuals obtained from an AR(1)

model with a coefficient β ∈ {±0.5,±0.9}, for eight different values of q, (q = 1.2, 1.5, 1.8, 2.4, 2.7, 3, ∞).

Similar results are obtained for other values of the β parameter but are not provided due to space constraints.

1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 ∞

5

6

7

8

9

10

11

12

13

14

15

q

S
iz
e(
%
)

Size of the test

β = −0.9
β = −0.5
β = 0.5
β = 0.9

α = 5%

Figure 2.1: Rejection frequencies at 5% level for the AML test on the residuals of an AR(1) model, where the
error follows a standard normal distribution, and for different values of constant q. Simulations are based on
T = 500.

Figure 2.1 above, presents graphically the rejection probabilities under the null, where the errors are generated

from a standard normal distribution. Figure 2.1 shows that for q > 3 the rejection probability becomes relative

flat near 5% and hence the value of q = 3.6 suffices to properly control for type I error.

We also provide some further justification for our choice for q, under the alternative hypothesis. Specifically, in

Figure 2.2 below, we report the rejection frequencies for the automatic test under the alternative for T = 500.
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We employ an EGARCH(1,1) model, which we will revisit in subsection 3.2, as model 5. Simulations based

on a stochastic volatility model provided similar results and are hence omitted. Again, Figure 2.2 shows that

q = 3.6 is a reasonable choice with high power, that does not vary much.

1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 ∞

99.5

99.55

99.6

99.65

99.7

99.75

99.8

q

P
ow
er
(%

)

Power of the test

β = −0.9
β = −0.5
β = 0.5
β = 0.9

Figure 2.2: Rejection frequencies at 5% level for the AML test on the residuals of an AR(1) model, where the
error follows a EGARCH, and for different values of constant q. Simulations are based on T = 500.

3.2 Level and Power of Tests based on Residuals

In this subsection, we examine the application of the test on residuals. Following McLeod and Li (1983), we

consider the residuals of an AR(1) model, that is:

yt = βyt−1 + ϵt (2.7)

where β ∈ {0,±0.6,±0.9}. We estimate that model by least squares and allow for a constant. Under the null,

the errors {ϵt} are an i.i.d. sequence, following:

1. a standard normal distribution,

2. a t-distribution with 9 degrees of freedom.

The latter choice is made so that the error term satisfies the finite eighth moment condition. A log-normal

distribution was also considered as an alternative to the t-distribution but provided similar results. Under the

alternative, we allow the errors to have one of the structures defined below.

Under the alternative, the following data-generating processes(DGPs) are used in the simulations for the error

term:

1. ϵt = vtσt where σ
2
t = 0.001 + 0.05ϵ2t−1 + 0.90σ2

t−1,
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2. ϵt = vt exp(σ
2
t ), where σ

2
t = 0.936σ2

t−1 + 0.32ut,

3. ϵt = vtvt−1,

4. ϵt = vt−2vt−1(vt−2 + vt + 1),

5. ϵt = vtσt where log σ2
t = 0.001 + 0.5|vt−1| − 0.2vt−1 + 0.95 log σ2

t−1,

6. ϵt = −0.5ϵt−1I(ϵt−1 ≤ 1) + 0.4ϵt−1I(ϵt−1 > 1) + ut,

7. ϵt = −0.5ϵt−1{1−G(ϵt−1)}+ 0.4ϵt−1G(ϵt−1) + ut,

8. ϵt = 0.8u3t−2 + ut.

In all the DGPs above, {ut} and {vt} are i.i.d. standard normal random variables independent of each other, I(A)

is the indicator of event A, and G(x) = 1/(1+e−x) is the logistic distribution function. The DGPs cover a wide

variety of nonlinear processes often encountered in economics and finance. Models 1-4 are taken from Romano

and Thombs (1996) and represent a GARCH process, a stochastic volatility process, an 1-dependent process, and

an uncorrelated non-martingale-difference process, respectively. 5 is an EGARCH process taken from Escanciano

and Lobato (2009). The remaining three DGPs are taken from Psaradakis and Vávra (2019); they represent a

threshold AR (TAR) [6], a smooth-transition AR [7], and a nonlinear MA (NLMA) [8]. Bilinear models were

also considered but provided similar results. The Monte Carlo rejection frequencies of the conventional ML

test and its automatic version, AML (at nominal level 5%) are shown in Figure 2.3-Figure 2.7. Under the null,

the AML has empirical size close to the nominal level while the size of ML varies substantially. Figure 2.3

presents the empirical size of the tests under the null of i.i.d standard normal errors and t-distributed errors.

The empirical size of the ML test seems to be quite close to the nominal level only for T = 100, and varies a

lot depending on the choice of p, while the bigger the sample the more it deviates from 5%. The empirical size

of the AML, on the other hand, does not differ significantly from the nominal level regardless of the sample

size T . It is worth mentioning that the AML experiences small size distortions for a 1% significance level for

small samples. On the other hand, the automatic test seems to have proper size for significance levels of 10%

independently of the sample size. Nevertheless, we argue that for sample sizes typically encountered in finance,

the automatic test has size close to nominal at all significance levels.
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Figure 2.3: Rejection frequencies of ML and AML for the residuals under the null, at 5% singificance level
and for different sample sizes.
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In Figure 2.4-Figure 2.7 we show the rejection frequencies under the alternative. For virtually all DGP, and

across all sample sizes, the AML outperforms the ML. The automatic test has higher rejection frequencies

than the ML not only for ARCH models but also for a variety of different nonlinear models. Also, the value of

the β does not seem to affect the size and the power of the tests.

Figure 2.4 below depicts the rejection frequencies for a sample size of T = 50. The AML test statistic provides

higher power for all DGP, with the most obvious case for 5, while the power of the ML depends somewhat on

the choice of p.
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Figure 2.4: Rejection frequencies of ML and AML for the residuals under the alternative for T = 50 at 5%
singificance level.
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Figure 2.5 shows the rejection frequencies for T = 100. Again the AML provides higher power compared to

ML. The sensitivity of the ML to the choice of p is more apparent here. Note the increase in power of the

automatic test for 5 and 4. Similarly as above, the value of the β does not seem to affect the power of the tests.
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Figure 2.5: Rejection frequencies of ML and AML for the residuals under the alternative, for T = 100 and at
5% singificance level.

Moving on to sample sizes that are most common in finance, we see that our main conclusions remain unaffected

as seen in Figure 2.6 and Figure 2.7. Starting from Figure 2.6 and a sample size of T = 200 we notice that the

AML has higher power than the ML, while the latter seems to have a large sensitivity to the parameter p.
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Figure 2.6: Rejection frequencies of ML and AML for the residuals under the alternative, for T = 200 and at
5% singificance level.
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For example, for 1, the power of the ML is stable and around 0.2 for values of p close to 10 but it goes below 0.2

for values less or greater than 10. Similarly, for 5-7 the ML has a power around 0.15 when p = 5 while its power

diminishes for other values of p. Finally, similar results are obtained for T = 500 as depicted in Figure 2.7.
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Figure 2.7: Rejection frequencies of ML and AML for the residuals under the alternative, for T = 500 and at
5% singificance level.

17



4 Summary and Conclusion

A data-driven version of the McLeod-Li portmanteau test for detecting nonlinear dependence is proposed. The

proposed test is easy to implement, has a chi-square asymptotic distribution and, most importantly, it properly

controls the probability of type I error for sample sizes that are common in applications. The simulation results

for both raw data and residuals indicate good size and power properties in finite samples.

Further research could focus on choosing the parameter q in a data-driven way too. This could be done for

example by means of bootstrapping or subsampling. Other interesting extensions of the automatic procedure

would be to tests based on cross-correlations of the type considered in Psaradakis and Vávra (2019), and tests

for multivariate time series and comparisons with the procedures developed in Escanciano et al. (2013).

2.A Appendix

2.A.1 Additional Simulation Results For Raw Data

In this section, we compare the AML with ML for raw data by means of Monte Carlo simulations. The raw

data are assumed to follow the data generating processes(DGP) described in Section 3.2 of the main text.

Figure 2.8-Figure 2.13 present the rejection frequencies from the simulation studies conducted in section 3.2 of

the main text. Figure 2.8 presents the results under the null of a i.i.d N(0, 1) (S1), and t-distribution with 9

degrees of freedom (S2) for four different sample sizes, namely T = 50, T = 100, T = 200, T = 500 at 5%

significance level. The size of the AML is close to nominal for all different DGP and across all sample sizes

while the size of ML varies with p and the sample size. For example, the size of ML for T = 500 is close to

10% while the size of AML remains close to 5%.
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Figure 2.8: Rejection frequencies under the null at 5% significance level.

The rest of the graphs, namely Figure 2.9-Figure 2.13 depict the rejection frequencies under the alternatives

as presented in section 3.2 of the main text. The DGPs cover a wide variety of nonlinear processes often

encountered in economics and finance. For all DGPs and all sample sizes, the AML outperforms the ML.
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Figure 2.9: Rejection frequencies of ML and AML under the alternative, for T=50, at 5% significance level.
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Figure 2.10: Rejection frequencies of ML and AML under the alternative, for T = 100, at 5% singificance
level.
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Figure 2.11: Rejection frequencies of ML and AML under the alternative, for T = 100, at 5% singificance
level.
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Figure 2.12: Rejection frequencies of ML and AML under the alternative, for T = 200, at 5% singificance
level.
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Figure 2.13: Rejection frequencies of ML and AML under the alternative, for T = 500, at 5% singificance
level.

2.A.2 Proofs

Proof of Theorem 1: Define

pBIC = min{m : 1 ≤ m ≤ d;LBIC (m) ≥ LBIC (h) , h = 1, 2, ...., d},

where LBIC (p) =ML (p)− p logT . We need to prove that:

limT→∞P (p̃ = pBIC) = 1, (2.8)

and

limT→∞P (pBIC = 1) = 1, (2.9)

Under the null of i.i.d data,
√
T ρ̂ has a N (0, I) asymptotic distribution, where ρ̂ = (ρ̂(1) , ..., ρ̂ (p)) and I is the

identity matrix.

Now, consider the event

AT (q) = { max1≤j≤d

√
T |ρ̂ (j) | >

√
q log T}

and assume q ≥ 2. We have max1≤j≤d

√
T |ρ̂ (j) | = Op(1) under the null, so that P (AT (q)) → 0, which implies

that (2.8) holds. We also have

P (pBIC = 1) = 1−
d∑

i=2

P (pBIC = i) ≥ 1−
d∑

i=2

P (LBIC (i) ≥ LBIC (1)) (2.10)

and,

P (LBIC (i) ≥ LBIC (1)) ≤ P (ML ≥ (i− 1) log T )
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and since under the null ML is Op (1) we conclude that (2.9) holds. Therefore, Theorem 1 follows from an

application of Lindeberg-Lévy CLT for i.i.d random variables(see Billingsley (2013)27.2, p.359).

Proof of Theorem 2: Define

pAIC = min{m : 1 ≤ m ≤ d;LAIC (m) ≥ LAIC (h) , h = 1, 2, ...., d}

where LAIC (p) =ML (p)− 2 p. We need to prove that:

lim
T→∞

P (p̃ = pAIC) = 1 (2.11)

and

lim
T→∞

P (pAIC ≥ K) → 1 (2.12)

Consider the event

AT (q) = { max
1≤j≤d

√
T |ρ̂ (j) | <

√
q log T}

Then for K ≤ d we have ρ̂ (K) → ρ (K) ̸= 0 by the Ergodic Theorem and

P (AT (q)) ≤ P
(√

T |ρ̂ (K) | <
√
q log T

)
→ 0

and so (2.11) holds. Now for (2.12), we have:

P (pAIC = k)≤ P (LAIC (k) ≥ LAIC (K))

≤ P (|ML (k) | ≥ 2 (k −K) + |ML (K) |) → 0

which follows directly from an application of the Ergodic Theorem and so (2.12) also holds. Hence, ∀ M > 0

P (ML (p̃) ≤M) =P (ML (p̃) ≤M ∩ p̃ ≥ K) + o (1)

≤ P
(
|ρ̂ (K) |2 ≤M

)
+ o (1)

= o (1)

and so ML (p̃) → ∞, asymptotically and hence the test is consistent against HK
a , ∀K ≤ d

Proof of Theorem 3: By a similar argument as in the proof of Theorem 1, under the null, and and by defining

pBIC = min{m : 1 ≤ m ≤ d;LBIC(m) ≥ LBIC(h), h = 1, 2, ...., d}

where LBIC(p) = ML(p) − p logT and ML(p) refers now to the statistic based on residuals we obtain the
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following:

limT→∞P (p̃ = pBIC) = 1 (2.13)

limT→∞P (pBIC = 1) = 1 (2.14)

.

Proof of Theorem 4: Define

pAIC = min{m : 1 ≤ m ≤ d;LAIC(m) ≥ LAIC(h), h = 1, 2, ...., d}

where LAIC(p) =ML(p)− 2p. Under the alternative, we prove that:

lim
T→∞

P (p̃ = pAIC) = 1 (2.15)

and,

lim
T→∞

P (pAIC ≥ K) → 1 (2.16)

Now consider the event

AT (q) = { max
1≤j≤d

√
T |ρ̂ϵ̂ϵ̂(j)| <

√
q log(T )} (2.17)

By a similar argument as in Theorem 2 we can show that

P (AT (q)) → 0

and so (2.15) hold and the rest of the proof follows for (2.16).

24



Chapter 3

Testing For Time-Varying Exogeneity:

A Bootstrap Approach

1 Introduction

Endogeneity status of a variable is usually treated as binary so that a variable is allowed to be either exogenous

or endogenous throughout the whole sample. This might seem restrictive in the presence of changes in regime

resulting from, among others, significant economic and financial events or changes in government policies. For

example, the exogeneity status of the short-term interest rate in a model for inflation may change over a

period in which the policy of the central bank switched from inflation targeting to exchange-rate targeting.

Consequently, specification tests of the type proposed by Hausman (1978) that usually guide the choice of the

IV estimator over the LS need to allow for time-variation. Recently Giraitis et al. (2021)(GKM) proposed a

non-parametric kernel-based, estimation for time-varying IV regression and derived time-varying versions of a

Hausman exogeneity test, allowing for changes in the endogeneity status of the regressors over time. Although

the finite-sample bias of the estimators is found by GKM to be relatively small, time-varying Hausman tests

appear to suffer from size distortions and low power. Furthermore, these distortions are quite sensitive to the

choice of the bandwidth parameters used to construct the relevant non-parametric estimators.

This paper proposes to use suitable bootstrap procedures to approximate the distribution of the time-varying

Hausman test statistic under the null hypothesis of exogeneity, and thus obtain critical values and p-values for

the exogeneity test. In the present context, bootstrap-based versions of the Hausman test are straightforward to

implement, and as our Monte Carlo simulations reveal, control the test size better than the asymptotic test, that

is the test that uses critical values from the asymptotic null distribution of the test statistic. More importantly

perhaps for the time variant case studied here, the bootstrap test is quite insensitive to the bandwidth values

used. In addition, we provide a consistency result for the time-varying LS estimator in the subsection 3.A.2.
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This might be of independent interest as it is obtained under more general conditions than Giraitis et al. (2014).

In much of the literature, IV inferential procedures and related Hausman-type tests typically rely on the as-

sumption that both the functional form and parameters of the model under consideration remain constant over

time. Similarly, the relationship between the endogenous variables and the instruments is normally assumed to

remain unchanged. These assumptions, although crucial, are obviously open to criticism. Zhang et al. (2008)

for instance, argue that the conflicting conclusions about the importance of key variables in the determination

of inflation based on the NKPC may be due to neglected parameter variation.

In view of these difficulties, attempts have been made to allow for structural breaks in models the parameters

of which are estimated by IV. Prominent among these is Hall et al. (2012) who extended the framework of Bai

and Perron (1998) to linear models with endogenous regressors. A limitation of this approach, however, is that

the structural breaks are considered to be deterministic in nature. More recently, Giraitis et al. (2021) relaxed

considerably this requirement. Building upon the work of Chen (2015a) and Giraitis et al. (2014), GKM proposed

a non-parametric, kernel-based, estimation and inferential theory for time-varying IV regressions, allowing for

both deterministic and random coefficients. What is more, their framework allows for possible changes in the

endogeneity status of the explanatory variables. Tests for such changes in endogeneity may be performed using

time-varying Hausman-type tests which, in this set up, rely on time-varying LS and IV coefficient estimates.

Based on the simulations provided by GKM the true and nominal levels of the test differ when asymptotic

critical values are used whilst these differences vary considerably with the bandwidth.

The ability of bootstrap procedures to provide accurate approximations to the sampling distributions of esti-

mators and test statistics is well documented in the literature(see, e.g. Beran and Ducharme (1991)) and Hall

(1992) among others). The basic idea of bootstrap testing amounts to treating the sample as the population

and drawing a large number of bootstrap samples from a distribution that obeys the null. These samples are

then used to compute the bootstrap critical values and p-values of the test. In many cases, the use of bootstrap

critical values over asymptotic ones can provide significant reduction in errors in the level of the test statistic(c.f

Horowitz (2001)). In the more familiar setup of regression models with time-invariant parameters fu Wong

(1996) employed a bootstrap-based version of the conventional full-sample Hausman test and showed that it

can provide substantial improvements over the corresponding asymptotic test.

The qualitative and quantitative differences between the bootstrap and asymptotic versions of the time-varying

Hausman test are illustrated empirically by considering an emprical model for the US Phillips curve with time-

varying parameters. Models for the NKPC have attacted a lot of attention in the literature as they are used

to identify the forward-looking components of inflation and the trade-off between inflation and unemployment

over the cycle. Following GKM, unemployment is used as a forcing variable for inflation. The bootstrap version

of the time-varying Hausman test seems to be less sensitive to the choice of the bandwidth parameter than the

asymptotic test, while also suggesting time endogeneity of unemployment for a longer period of time around

2000 when compared to the asymptotic test.
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The paper is organized as follows: In Section 2, we briefly present an overview of the problem addressed by

GKM and review the time-varying Hausman test proposed. In Section 3, we discuss the bootstrap approach

in this context. Section 4 examines the behaviour of the test statistic by means of Monte Carlo simulations.

Section 5 presents the empirical application. Finally, some concluding remarks and some directions on further

research are given in Section 6.

2 Theory

Giraitis et al. (2014) introduced a non-parametric time-varying OLS estimation method that is based on a kernel

generalisation of a rolling window. GKM expanded the results in the IV context with either deterministic or

random coefficients, and derived a time-varying version of the Hausman exogeneity test comparing the time-

varying OLS and IV estimators, allowing for a shift in endogeneity status over time.

To fix ideas, we consider the following regression model for a univariate series, yt:

yt = x
′

tβt + ut (3.1)

xt = Ψ
′

tzt + vt (3.2)

where xt = (x1,t, . . . , xp,t)
′
is a p×1 vector of random variables, βt = (β1,t, . . . , βp,t)

′
is a p×1 parameter vector

and ut is random noise. In (3.2), zt = (z1,t, . . . , zn,t)
′
is a n × 1 vector of random variables, Ψ

′

t = (ψlk,t) is a

p× n parameter matrix and vt = (v1,t, . . . , vp,t)
′
is a p× 1 noise vector.

Under the assumption of exogeneity of the regressors, the OLS estimator of βt is

β̂t = (

T∑
j=1

bH,|j−t|xjx
′

j)
−1(

T∑
j=1

bH,|j−t|xjyj), (3.3)

computed with kernel weights bH,|j−t| and bandwidth parameter H to be defined below in (3.7).

Assume now that endogenous variables xt are correlated with ut but there exist some exogenous instruments

zt such that:

E[ztut] = 0, E[ztv
′

t] = 0, t ≥ 1. (3.4)

GKM introduced1 a kernel type estimator for βt

β̃t = (

T∑
j=1

bH,|j−t|Ψ̂
′

jzjx
′

j)
−1(

T∑
j=1

bH,|j−t|Ψ̂
′

jzjyj) (3.5)

1In GKM’s notation β̃t is β̃1,t.
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where bH,|j−t| are again the kernel weights with bandwidth parameter H and Ψ̂j is the kernel OLS estimator

Ψ̂t = (

T∑
j=1

bL,|j−t|zjz
′

j)
−1(

T∑
j=1

bL,|j−t|zjx
′

j) (3.6)

which is a consistent estimate of Ψj .

Note the different bandwidth parameters L and H used in (3.6) and (3.5) respectively. The kernel weights are

of the form:

bH,|j−t| = K(
|j − t|
H

) (3.7)

where H → ∞, H = o(T ) is the bandwidth parameter and K(x), x ∈ (0, α) is a non-negative continuous

function with a finite or infinite support such that2 for some C > 0 and ν > 3,

K(x) ≤ C(1 + xν)−1, |(d/dx)K(x)| ≤ C(1 + xν)−1, x ∈ (0, α). (3.8)

Under assumptions3 (1)-(5) in Giraitis et al. (2021), GKM proposed a time-varying version of the Haus-

man exogeneity test, which compares the time-varying IV and OLS estimators defined above, allowing for

changes in the endogeneity status over time. Denote Kt =
∑T

j=1 bH,|j−t| and K2,t =
∑T

j=1 b
2
H,|j−t|. Set

VT,t = (Sx̂x̂,t)
1/2(Sxx,t)

1/2(β̂t − β̃t) where Sxx,t = K−1
t

∑T
j=1 bH,|j−t|xjx

′
j
, Sx̂x̂,t = K−1

t

∑T
j=1 bH,|j−t|x̂j x̂

′

j ,

x̂j = Ψjzj . The test statistic takes the form of

St =
K2

t

K2,t
V

′

T,tΣ̂
−1
v̂v̂,tVT,tσ̂

−2
û,t (3.9)

where Σ̂v̂v̂,t := K−1
t

∑T
j=1 bH,|j−t|v̂j v̂

′

j , σ̂
2
û,t := K−1

t

∑T
j=1 bH,|j−t|û

2
j based on residuals ûj = yj − x

′

j β̃j and

v̂j = xj − Ψ̂
′

jzj which can be used to test the null hypothesis H0 : E[vtut] = 0 that xj is exogenous at time t.

Under the null, the test statistic is asymptotically distributed as χ2
p.

As shown in GKM, size distortions of the test statistic in (3.9) can be substantial even for large sample sizes.

These size distortions seem to be quite sensitive to the choice of the bandwidth parameters H and L and also

on the number of instruments. In the next section, we present an overview of the bootstrap approaches used

and discuss a number of issues regarding their implementation.

3 The Bootstrap

Originally proposed by Efron (1979), bootstrap constitutes a major tool in the hands of statisticians for ap-

proximating the sampling distribution and variance of complicated statistics. Also, as pointed out by Politis

2These bounds are used to obtain Bernstein type inequalities for sums of α-mixing variables with thin or heavy tailed distribu-
tions, similarly to Dendramis et al. (2021).

3These assumptions will be referred as GKM assumptions.
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(2003), Beran and Ducharme (1991) among many, bootstrap tests can often provide significant refinements to

asymptotic tests. However, bootstrap often involves a number of choices to be made ex-ante by the researcher.

This is especially important in the case of endogeneity.

The first issue that needs to be addressed is that any bootstrap procedure to be employed needs to retain any

possible dependence between x and z. Here, we do not make any assumption regarding the parametric model

for x and z and hence we use nonparametric bootstrap. Depending on the presence of dependence between

these variables one might want to employ a fixed design bootstrap, as proposed by Kreiss (1997),where x and

z are held fixed or resample blocks of rows of data from (xt, zt) using block bootstrap4 as proposed by Kunsch

(1989). A well known difficulty however, of the block bootstrap is that the block size b needs to be determined

in advance by the practitioner.

The choice of the block size is critical for the performance of the bootstrap. If the block size chosen is too small

then the dependency among the blocks is broken and hence it cannot be expected that the bootstrap samples

will mimic closely the original data. If, on the other hand, the block size is chosen to be too large, the bootstrap

samples are no longer random enough. However, only in few cases literature provides guidance regarding the

selection of the block size (c.f Bühlmann and Künsch (1999), Lahiri (1999) and Hall et al. (1995a)). In most of

the cases, simple rules specifying the rate at which b should increase with sample size are provided for specific

applications. Usually those include b = O(T 1/3) or b = O(T 1/2). In this case, there is no simple rule guiding

the choice of the block size and so different values for b need to be examined.

Note here, that the asymptotic test of GKM is obtained under the independence assumption of the error term.

These errors however are allowed to be heterogeneously distributed and hence, it is important that any selected

bootstrap procedure is able to capture such heterogeneity in the error term.

Another important issue, in testing for exogeneity, is the mode of resampling so that the null distribution is

imposed, as discussed in Kapetanios (2010). This is especially important if, for example, the whole distribution is

bootstrapped and used instead of the asymptotic χ2 approximation. In particular, resampling from a distribution

obeying the constraints of the null, even though the data may not satisfy the null, guarantees that the bootstrap

test has power that is approaching one under the alternative(see e.g Lehmann et al. (1986), Sec 15.6).

Then, the practitioner needs to generate yt using parametric bootstrap. This, of course requires to choose

whether to use TV-OLS estimates or TV-IV estimates. Note here that under the null, both of these estimators

are consistent although TV-OLS is more efficient. In this paper,5 TV-OLS estimates are employed.

In view of the above, we suggest two alternative bootstrap procedures: The first alternative is the fixed-desing

wild bootstrap. The algorithm is as follows:

4Alternatively, one could use variants of the MBB as in Politis and Romano (1991) who propose the Circular Bootstrap to deal
with the end effects. This path was also explored. See the robustness analysis in section 3.A.

5A preliminary Monte Carlo analysis suggested that similar results are obtained using either OLS or IV estimator. Results are
available upon request from the authors.
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1. Estimate (3.1) by TV-OLS and obtain the residuals and the estimates of û and β̂t respectively.

2. The wild bootstrap is applied to OLS residuals ût by premultiplying them with ηt so that now the bootstrap

errors are given by u⋆ = ηtût, where {η}Tt=1 is an i.i.d standard normal distribution, independent of all

other random processes.

3. Use β̂t, (zt, xt) and {u⋆}Tt=1 in (3.1) to obtain bootstrap samples of size T for yt and denote them y⋆t .

4. Use (zt, xt, y
⋆
t ) to obtain TV-OLS and TV-IV estimates given by (3.3) and (3.5) respectively, and calculate

the Hausman test S⋆ for the bootstrap sample.

(iv) Repeat steps 2-3 B times to produce B bootstrap test statistics.

The second alternative is a combination of the moving block bootstrap for pairs of x and z and wild bootstrap,

as proposed by Kapetanios (2010) (see also Goncalves and Kilian (2004) for an application in a different

framework.) and the algorithm is the following:

1. Estimate (3.1) by TV-OLS and obtain the residuals and the estimates of ût and β̂t respectively.

2. Resample blocks of rows of (zt, xt) using a block bootstrap approach to produce bootstrap samples of size

T , for the regressors, as suggested by Kunsch (1989).

3. The wild bootstrap is applied to the TV-OLS residuals ût by premultiplying them with ηt so that I

have u⋆t = ηtût, where {η}Tt=1 is an i.i.d standard normal distribution, independent of all other random

processes.

4. Use β̂, (z⋆t , x
⋆
t ) and u

⋆
t in (3.1) to obtain bootstrap samples of size T for yt and denote them y⋆t .

5. Use (z⋆t , x
⋆
t , y

⋆
t ) to obtain TV-OLS and TV-IV estimates given by (3.3) and (3.5) respectively, and calculate

the Hausman test S⋆
b for the bootstrap sample6.

6. Repeat 2-5 B times to obtain B bootstrap tests.

The wild bootstrap uses a transformation of the residuals to construct the bootstrap error term u⋆t = ηtût where

ηt is a random variable with mean 0 and variance 1. Different distributions have been employed for ηt including

those of Rademacher as suggested by Davidson and Flachaire (2008) and Mammen as proposed by Mammen

(1993). Using wild bootstrap guarantees that the null is imposed as we now have E⋆(x⋆tu
⋆
t ) = E⋆(x⋆t ûtηt) = 0.

The Wild bootstrap algorithm used, stems from Kapetanios (2010).

Consequently, an issue that needs to be addressed, is the number of bootstrap replications. Hall (1992) proposed

to choose B, the number of bootstrap repetitions such that ν/(B + 1) = 1 − α for a positive integer ν. This

implies in turn that α is a rational such that α = α1/α2 for positive integers α1 and α2 with no common integer

6The notation S⋆
b reads a Hausman test statistic for the bootstrap sample with block size b.
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divisors. Then B = α2h− 1 and ν = (α2 − α1)/h for positive integer h7. As Davidson and MacKinnon (2000)

showed, using B = 399 is about the minimum for a test that guarantees a loss of power less than 1% at 0.05

level.

Finally, the consistency of the bootstrap approximation to the sampling distribution of the local Hausman test

statistic can be concluded by showing convergence in probability of the conditional law of S⋆ given the sample

y, x denoted as L(S⋆) to the same limit as the law of S, under the null. This result is summarized in Theorem 5

below which is formally proven in subsection 3.A.2. The following conditions included as an assumption below,

are needed for the bootstrap procedure.

Assumption 2. Assume that

1. E(||S−1
xx,t||4sp) = O(1) ,

2. E(||xt||8p) = O(1) where p = 1 + ϵ for ϵ > 0.

Theorem 5. Under Assumptions 1-4 in GKM and Assumption 2 above and as T → ∞

L(S⋆) ⇒ L(S) in probability.

The condition (1) from Assumption 2 guarantees the existence of the finite fourth moment of the matrix S−1
xx,t

while (2) ensures that (3.A.58) is bounded and imposes a further restriction of magnitude p > 0 on Assumption

1(i) in GKM.

4 Simulation Results

In this Section, Monte Carlo experiments are carried out to investigate the finite-sample performance of the

time-varying local Hausman test proposed by GKM and the bootstrap version of it. In all simulations8, in this

section, we use 5000 Monte Carlo replications and 999 bootstrap replications. The experiments found in this

section are the same as those employed in GKM.

As data generating process (DGP) under the exactly identified case, we consider the following model:

yt = βtxt + ut, xt = ψtzt + vt (3.10)

for t = 1, . . . , T . Following GKM, correlation between ut and vt is introduced by specifying them as

ut = se1,t + (1− s)e2,t vt = se1,t + (1− s)e3,t (3.11)

7For instance, for α = 0.05 I have α1 = 1, α2 = 20,B = 20h− 1 and ν = 19h for a positive integer h. So B = 19, 39, 59, .... etc.
8All simulations were performed using an Apple M1 with a 8 GB unified memory. The code was written and executed in

JuliaPro-1.5.3.
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where s = 0, 0.2, 0.5, 0.8, 0.9 and {e1,t} ,{e2,t} and {e3,t} are mutually independent NIID(0, 1) sequences.

The parameters βt = T−1/2ξ1,t, ψt = T−1/2ξ2,t,t = 1, . . . , T are generated as two independent rescaled random

walks, such that ξl,t− ξl,t−1 ∼ N(0, 1) for l = 1, 2 that are also independent of {ψt},{ut} and {vt}. This implies

that both the structural and the reduced form regressions have time-varying coefficients. Exogeneity of xt is

implied by s = 0, while for s = 0.2, 0.5, 0.8, 0.9, xt is endogenous. The magnitude of s hence, provides a means

for controlling the extent of endogeneity.

We examine two estimators of βt namely: the TV-OLS β̂t and the TV-IVβ̃t. These are computed using the

Gaussian kernel9 K(x) = exp(−x2/2) with a variety of bandwidth values H for estimation of βt and L for

ψt. Specifically, we set H = Th1 and L = Th2 with h1, h2 = 0.4 and 0.5 as in GKM. Results for values of

0.7 are also reported in the section 3.A. Lower values for the bandwidth increase robustness of estimates to

parameter changes but decrease efficiency. Further, we consider three sample sizes of length 100 + T with

T ∈ {100, 200, 400}. The first 100 observations are then discarded in order to eliminate initial value effects and

only the remaining T observations are used. We now discuss the bootstrap implementation that is employed in

the rest of the section.

Two bootstrap procedures are considered, as discussed in section 3. The first bootstrap procedure is the fixed-

design wild bootstrap. where no resampling of (xt, zt) is taking place. The bootstrap version of the time-varying

Hausman test under this bootstrap framework is denoted as S⋆. The second bootstrap method is a combination

of block resampling of rows of (xt, zt) with block size b and wild bootstrap. The bootstrap version of the time-

varying Hausman test is denoted as S⋆b . Multiple values for the block size b,that are proportional or multiples

to the sample size T are examined. In both of the aforementioned procedures, the bootstrap error term is

constructed as u⋆t = ηtût where ηt is an i.i.d standard Normal10 distributed sequence.

To evaluate the performance of the test statistic, we examine the rejection frequencies of the local time varying

Hausman test at 5% significance level and for t = T/2 which is representative as there is no change of the

endogeneity status in the DGP. These frequencies are reported in Table 3.1-Table 3.3.

9Similar results were obtained using both the Epanechnikov kernel K(x) = 0.75(1− x2) for |x| < 1 and the exponential kernel
K(x) = exp(−cxα) where c > 0 and α > 0.

10The Rademacher latice distribution was also used as an alternative to the standard Normal but provided similar results.
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Table 3.1: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model (3.10)-
(3.11). Bandwidths are set as H = Th1 and L = Th2 . Parameter s controls exogeneity(s = 0) or endogeneity
status(s ̸= 0).

T=100

s h1 h2 S S⋆ S⋆
b=2 S⋆

b=4 S⋆
b=6 S⋆

b=8

0 0.4 0.4 0.024 0.045 0.056 0.056 0.053 0.052
0.4 0.5 0.296 0.046 0.055 0.053 0.052 0.049
0.5 0.4 0.030 0.045 0.063 0.060 0.059 0.058
0.5 0.5 0.030 0.050 0.061 0.056 0.057 0.055

0.2 0.4 0.4 0.031 0.047 0.062 0.058 0.058 0.056
0.4 0.5 0.036 0.048 0.057 0.052 0.053 0.052
0.5 0.4 0.039 0.055 0.066 0.064 0.061 0.060
0.5 0.5 0.038 0.057 0.065 0.065 0.065 0.062

0.5 0.4 0.4 0.306 0.333 0.377 0,3744 0.369 0.369
0.4 0.5 0.308 0.328 0.351 0.345 0.342 0.337
0.5 0.4 0.447 0.477 0.511 0.511 0.513 0.513
0.5 0.5 0.445 0.472 0.499 0.498 0.496 0.495

0.8 0.4 0.4 0.712 0.790 0.801 0.798 0.795 0.795
0.4 0.5 0.689 0.758 0.771 0.765 0.763 0.758
0.5 0.4 0.447 0.477 0.511 0.511 0.513 0.513
0.5 0.5 0.783 0.852 0.862 0.860 0.859 0.858

0.9 0.4 0.4 0.713 0.798 0.807 0.802 0.801 0.800
0.4 0.5 0.690 0.751 0.776 0.773 0.769 0.763
0.5 0.4 0.806 0.873 0.871 0.871 0.868 0.869
0.5 0.5 0.783 0.848 0.864 0.860 0.857 0.859

Table 3.1 shows the rejection frequencies for the local Hausman test for T = 100. The asymptotic test appears

to exhibit considerable size distortions for all bandwidth parameters and also low power. On the other hand,

bootstrap procedures seem to outperform the asymptotic test both in terms of size and power irrespectively of

the bandwidth parameter chosen. The size is close to the nominal 5% while the power is at least 38.5% larger

than the power of the asymptotic test statistic.
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Table 3.2: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model (3.10)-
(3.11). Bandwidths are set as H = Th1 and L = Th2 . Parameter s controls exogeneity(s = 0) or endogeneity
status(s ̸= 0).

T=200

s h1 h2 S S⋆ S⋆
b=4 S⋆

b=6 S⋆
b=8 S⋆

b=16

0 0.4 0.4 0.023 0.048 0.060 0.061 0.058 0.056
0.4 0.5 0.028 0.049 0.057 0.054 0.051 0.048
0.5 0.4 0.031 0.050 0.058 0.060 0.056 0.055
0.5 0.5 0.040 0.053 0.063 0.061 0.063 0.061

0.2 0.4 0.4 0.029 0.048 0.061 0.057 0.057 0.054
0.4 0.5 0.035 0.050 0.057 0.052 0.052 0.047
0.5 0.4 0.039 0.056 0.068 0.066 0.066 0.061
0.5 0.5 0.040 0.053 0.063 0.061 0.063 0.061

0.5 0.4 0.4 0.367 0.404 0.445 0.444 0.443 0.435
0.4 0.5 0.362 0.397 0.413 0.409 0.407 0.399
0.5 0.4 0.533 0.569 0.609 0.607 0.605 0.598
0.5 0.5 0.528 0.570 0.604 0.597 0.595 0.591

0.8 0.4 0.4 0.714 0.812 0.811 0.807 0.805 0.798
0.4 0.5 0.694 0.770 0.768 0.766 0.762 0.759
0.5 0.4 0.818 0.897 0.879 0.877 0.875 0.869
0.5 0.5 0.799 0.879 0.871 0.868 0.868 0.861

0.9 0.4 0.4 0.713 0.806 0.813 0.812 0.810 0.801
0.4 0.5 0.691 0.756 0.771 0.768 0.765 0.760
0.5 0.4 0.824 0.893 0.885 0.882 0.881 0.870
0.5 0.5 0.040 0.053 0.063 0.061 0.063 0.061

Table 3.2 presents the rejection frequencies for the local Hausman test for T = 200. The size of the bootstrap

procedures are close to the nominal level irrespective of the bandwidth parameters. In terms of power, there is

at least a 10.5% increase through the use of bootstrap. This is especially the case for small values of s where

the power refinements through the use of bootstrap account for at least a 41% gain. The hausman test obtained

under the fixed-design wild bootstrap seems to outperform both the asymptotic test and the test obtained under

the pairwise block bootstrap in terms of size while only having a slightly lower power.

Similar results are obtained from Table 3.3 for T = 400. The power is at least 9.8% larger than the power of

the asymptotic test. Overall, the fixed-design wild bootstrap version of the Hausman test seems to outperform

the asymptotic test statistic in terms of power while retaining size close to nominal.
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Table 3.3: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model (3.10)-
(3.11). Bandwidths are set as H = Th1 and L = Th2 . Parameter s controls exogeneity(s = 0) or endogeneity
status(s ̸= 0).

T=400

s h1 h2 S S⋆ S⋆
b=6 S⋆

b=8 S⋆
b=16 S⋆

b=32

0 0.4 0.4 0.023 0.046 0.058 0.059 0.054 0.052
0.4 0.5 0.028 0.047 0.053 0.052 0.048 0.050
0.5 0.4 0.028 0.050 0.062 0.064 0.060 0.055
0.5 0.5 0.028 0.051 0.063 0.063 0.059 0.056

0.2 0.4 0.4 0.029 0.055 0.071 0.071 0.063 0.061
0.4 0.5 0.035 0.056 0.062 0.060 0.051 0.053
0.5 0.4 0.041 0.060 0.078 0.076 0.075 0.067
0.5 0.5 0.041 0.062 0.078 0.078 0.073 0.069

0.5 0.4 0.4 0.433 0.500 0.522 0.521 0.515 0.509
0.4 0.5 0.425 0.494 0.478 0.476 0.460 0.465
0.5 0.4 0.622 0.678 0.693 0.689 0.687 0.676
0.5 0.5 0.615 0.672 0.688 0.684 0.681 0.679

0.8 0.4 0.4 0.729 0.857 0.812 0.808 0.804 0.796
0.4 0.5 0.701 0.815 0.771 0.766 0.762 0.760
0.5 0.4 0.832 0.929 0.893 0.891 0.885 0.876
0.5 0.5 0.810 0.918 0.876 0.877 0.870 0.867

0.9 0.4 0.4 0.725 0.879 0.818 0.814 0.807 0.800
0.4 0.5 0.694 0.814 0.769 0.766 0.757 0.758
0.5 0.4 0.835 0.941 0.896 0.896 0.885 0.878
0.5 0.5 0.809 0.929 0.878 0.877 0.871 0.864

Next, the overidentified case is also examined. Following GKM, we study the following model

yt = βtxt + ut, xt = ψ1,tz1,t + ψ2,tz2,t + vt (3.12)

for t = 1, . . . , T where (ψ1,t) and (z1,t) have the same specification as (ψt) and (zt) from above, (ψ2,t) = T−1/2ξ3,t

for t = 1, . . . , T is generated such that ξ3,t − ξ3,t−1 ∼ NIID(0, 1) and (z2,t) is a sequence of standard normal

i.i.d random variables.

Using (3.12) we now report the rejection frequencies in Table 3.4-Table 3.6 below.
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Table 3.4: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05 for model (3.12).
Bandwidths are set as H = Th1 and L = Th2 . Parameter s controls exogeneity(s = 0) or endogeneity
status(s ̸= 0).

T=100

s h1 h2 S S⋆ S⋆
b=2 S⋆

b=4 S⋆
b=6 S⋆

b=8

0 0.4 0.4 0.055 0.074 0.072 0.073 0.075 0.074
0.4 0.5 0.051 0.064 0.071 0.070 0.067 0.068
0.5 0.4 0.069 0.079 0.085 0.084 0.086 0.084
0.5 0.5 0.056 0.062 0.068 0.069 0.070 0.068

0.2 0.4 0.4 0.065 0.078 0.079 0.081 0.080 0.080
0.4 0.5 0.061 0.070 0.073 0.073 0.072 0.071
0.5 0.4 0.084 0.092 0.094 0.094 0.094 0.094
0.5 0.5 0.069 0.075 0.075 0.077 0.076 0.077

0.5 0.4 0.4 0.379 0.373 0.410 0.413 0.409 0.410
0.4 0.5 0.386 0.380 0.398 0.398 0.396 0.394
0.5 0.4 0.535 0.511 0.555 0.555 0.557 0.554
0.5 0.5 0.542 0.533 0.562 0.558 0.562 0.564

0.8 0.4 0.4 0.883 0.863 0.912 0.911 0.910 0.909
0.4 0.5 0.892 0.886 0.921 0.918 0.917 0.916
0.5 0.4 0.945 0.932 0.955 0.956 0.956 0.954
0.5 0.5 0.952 0.948 0.969 0.968 0.968 0.966

0.9 0.4 0.4 0.907 0.951 0.935 0.934 0.932 0.934
0.4 0.5 0.906 0.958 0.936 0.935 0.933 0.933
0.5 0.4 0.956 0.968 0.968 0.968 0.967 0.968
0.5 0.5 0.958 0.976 0.972 0.972 0.971 0.972

Table 3.4 reports the rejection frequencies for the local Hausman test for T = 100. The size of the asymptotic

test is close to the nominal value although it varies quite a bit with respect to the bandwidth parameter. Note

for h1 = 0.5 and h2 = 0.4 the size of the asymptotic test is 0.069. The size of the test based on the Fixed-Design

WB seems to be higher than the both the nominal and the asymptotic. In terms of power, the power of the

asymptotic test is always lower than the power of the test based on the Fixed-Design WB in the case of weak

endogeneity while for strong endogeneity,the two have similar power.

Turning next to Table 3.5, we show the rejection frequencies for T = 200. Again similar results to T = 100

are obtained. The asymptotic test has size close to nominal while the size of the Fixed-design WB based test

approaches the nominal size. There are severe size distortions for both the asymptotic test and the bootstrap

based tests for h1 = 0.5 and h2 = 0.4. The power of the asymptotic test is close to the power of the Fixed-design

WB based test although the power of the latter increases with s. In all cases, pairwise block bootstrap test

performs worse than both the asymptotic test and the Fixed-design WB based test.
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Table 3.5: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05 for model (3.12).
Bandwidths are set as H = Th1 and L = Th2 . Parameter s controls exogeneity(s = 0) or endogeneity
status(s ̸= 0).

T=200

s h1 h2 S S⋆ S⋆
b=4 S⋆

b=6 S⋆
b=8 S⋆

b=16

0 0.4 0.4 0.048 0.063 0.069 0.063 0.067 0.067
0.4 0.5 0.047 0.058 0.064 0.06 0.063 0.067
0.5 0.4 0.067 0.0083 0.086 0.087 0.084 0.087
0.5 0.5 0.054 0.057 0.074 0.074 0.074 0.071

0.2 0.4 0.4 0.053 0.055 0.078 0.077 0.075 0.074
0.4 0.5 0.052 0.056 0.064 0.061 0.062 0.061
0.5 0.4 0.078 0.065 0.095 0.095 0.096 0.094
0.5 0.5 0.064 0.063 0.079 0.079 0.079 0.078

0.5 0.4 0.4 0.474 0.500 0.522 0.521 0.518 0.517
0.4 0.5 0.476 0.517 0.503 0.499 0.498 0.493
0.5 0.4 0.666 0.672 0.696 0.694 0.698 0.693
0.5 0.5 0.675 0.700 0.704 0.700 0.700 0.699

0.8 0.4 0.4 0.927 0.963 0.952 0.951 0.950 0.949
0.4 0.5 0.920 0.960 0.943 0.942 0.940 0.938
0.5 0.4 0.970 0.986 0.982 0.982 0.981 0.980
0.5 0.5 0.967 0.988 0.982 0.981 0.981 0.981

0.9 0.4 0.4 0.930 0.975 0.958 0.959 0.956 0.955
0.4 0.5 0.920 0.966 0.947 0.946 0.944 0.944
0.5 0.4 0.975 0.992 0.985 0.984 0.984 0.982
0.5 0.5 0.970 0.990 0.984 0.983 0.982 0.981

Finally, in Table 3.6 we present the results for T = 400. The asymptotic test has small size distortions while the

size of the Fixed-design WB based test is close to the nominal value. On the other hand, the block bootstrap’s

size experiences some size distortions. In terms of power, asymptotic bootstrap and Fixed-design WB based

test’s performance is quite close for low values of s while the difference increases for larger values of s in favour of

the Fixed-design WB based test. As expected, the size distortions of the asymptotic test decrease with sample

size. Overall, Fixed-design WB based test retains the proper size across all sample sizes, bandwidth parameter

values and number of instruments whilst also outperforms the asymptotic test in terms of power.
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Table 3.6: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05 for model (3.12).
Bandwidths are set as H = Th1 and L = Th2 . Parameter s controls exogeneity(s = 0) or endogeneity
status(s ̸= 0).

T=400

s h1 h2 S S⋆ S⋆
b=6 S⋆

b=8 S⋆
b=16 S⋆

b=32

0 0.4 0.4 0.042 0.048 0.066 0.066 0.065 0.060
0.4 0.5 0.045 0.051 0.061 0.061 0.059 0.057
0.5 0.4 0.049 0.052 0.075 0.072 0.073 0.069
0.5 0.5 0.046 0.052 0.061 0.062 0.062 0.064

0.2 0.4 0.4 0.049 0.056 0.077 0.075 0.074 0.071
0.4 0.5 0.053 0.059 0.064 0.064 0.061 0.062
0.5 0.4 0.065 0.059 0.085 0.084 0.084 0.080
0.5 0.5 0.060 0.062 0.073 0.075 0.075 0.075

0.5 0.4 0.4 0.601 0.629 0.661 0.661 0.659 0.649
0.4 0.5 0.607 0.644 0.636 0.633 0.626 0.631
0.5 0.4 0.815 0.825 0.847 0.847 0.843 0.837
0.5 0.5 0.819 0.839 0.848 0.848 0.845 0.843

0.8 0.4 0.4 0.935 0.973 0.957 0.957 0.956 0.954
0.4 0.5 0.925 0.965 0.945 0.944 0.942 0.944
0.5 0.4 0.981 0.993 0.990 0.989 0.988 0.987
0.5 0.5 0.972 0.990 0.982 0.982 0.981 0.980

0.9 0.4 0.4 0.936 0.979 0.960 0.960 0.960 0.957
0.4 0.5 0.920 0.969 0.945 0.944 0.942 0.942
0.5 0.4 0.978 0.992 0.985 0.986 0.984 0.982
0.5 0.5 0.972 0.991 0.982 0.981 0.981 0.979

5 Empirical Application

In this section, we follow GKM and employ the local Hausman exogeneity test in a time varying version of the

traditional Phillips curve. The goal here is to compare the asymptotic test with its bootstrap counterpart based

on the Fixed-design wild bootstrap and see whether different results are obtained.

The original article by GKM does not mention the dataset used and hence we consider monthly data obtained

from Louis FRED11. Inflation πt is computed as 100 times the seasonal log difference of the CPIAUCSL variable

and the variable UNRATE is used for unemployment ut. The sample period ranges from 1959:1 to 2021:12 to

include COVID-19 pandemic. The model used is

∆πt = ct + γt∆πt−1 + αt∆ut + et (3.13)

where change in inflation is the dependent variable and change in unemployment together with one lag of the

change in inflation are the independent variables. Differences are used throughout, due to the high persistence

of the series. A Gaussian kernel is employed with bandwidth parameters H = L = T 0.7 since for these values

the asymptotic Hausman test is shown to suffer the most in terms of size and power compared to its bootstrap

version. It is worth noting that for our sample, there appears to be significant serial correlation and hence

results should be viewed with caution because neither asymptotic test nor the bootstrap test allow for serial

11Following the suggestion by Lucchetti and Valentini (2021).
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correlation.

Figure 3.1 shows the time varying OLS and IV coefficient estimates of αt and γt with their associated 90%

confidence intervals, respectively. The time-varying IV12 estimator is quite different from the time-varying OLS

for the parameter α until 2000 while for the remaining, the two overlap. The average values over time of α̂ and

α̃ are about −0.157 and −0.649 which are comparable to the full sample constant parameters OLS and 2SLS

values, −0.109 and 0.127 respectively. The latter, however is not statistical significant.

The lower panel of Figure 3.1 graphs γ̂t and γ̃t with the associated 90% confidence intervals. The two estimators

provide similar results and the two lines seem almost indistinguishable. The average value over time for γ̂t is

0.356 while the full sample constant parameter OLS value amounts to 0.376.
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Figure 3.1: Empirical results for model (3.13).The two panels graph the OLS and IV coefficient estimates for
αt and γt respectively using H = L = T 0.7.

Figure 3.2 presents the p-values of the asymptotic time-varying Hausman test and its bootstrap version based on

the fixed-design wild bootstrap. The upper panel shows the empirical p-values of the two tests forH = L = T 0.7.

For most of the sample, the two tests seem to provide the same results while for the period around 2000 the

two tests show conflicting results. Specifically, the bootstrap version of the Hausman test rejects the null of

exogeneity at 10% significance level while the asymptotic does not reject.

Turning now to the bandwidth parameter values of H = L = T 0.5 the lower panel of Figure 3.2 shows the

p-values of the asymptotic test and its bootstrap counterpart. Given the Monte Carlo simulations in section 4,

these values were the values for which the asymptotic Hausman test experienced the smallest distortions in

terms of size and power and hence can serve as a benchmark to compare the differences found in the two tests.

12Henceforth, OLS estimates will be denoted with a hat and IV estimates with a tilde.
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The two versions of the test for the lower panel in Figure 3.2 seem to be quite similar for most parts, except

for the periods around 1970s and the period from 1990 to 1999 where the bootstrap version of the test points

out to rejecting the null while the asymptotic test shows exogeneity of the regressor.
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Figure 3.2: Empirical results for model (3.13).The two panels graph the empirical p-values of the aymptotic
and bootstrap Hausman tests using H = L = T 0.7 and H = L = T 0.5 respectively.

Next, a forward looking (New-Keynesian) Phillips curve is also considered, as found in GKM and along the

lines of Gaĺı and Gertler, 1999. The New-Keynesian Phillips curve arises from the Calvo model and is given by:

∆πt = ct + ρt∆π
e
t+1 + γt∆πt−1 + αt∆ut + vt (3.14)

or written differently

∆πt = ct + ρt∆πt+1 + γt∆πt−1 + αt∆ut + ϵt (3.15)

where ϵt = ρt(∆π
e
t+1 −∆πt+1) + vt, ∆π

e
t+1 is the optimal one-step ahead forecast of ∆πt+1 made in period t,

and vt is an i.i.d error which is uncorrelated with all leads and lags with the forecast error (∆πe
t+1 −∆πt+1).

Obviously ∆πt+1 is correlated with the error term ϵt and hence a time-varying IV estimator is employed. Note

that Gaĺı and Gertler (1999) only consider the case of constant parameters. We repeat the same experiment

as above, using four lags of the change in unemployment and inflation as instruments, a Gaussian kernel and

H = L = 0.7.
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Figure 3.3: Empirical results for model (3.15).The three panels graph the OLS and IV coefficient estimates for
αt, γt and ρt respectively using H = L = T 0.7.

Figure 3.3 reports the coefficient estimates for this model. The upper panel of Figure 3.3 shows the coefficient

estimates of α̂t and α̃t. The coefficient is close to 0 when estimated by time-varying OLS and never significant.

Similarly, the time-varying IV estimator provides estimates close to 0 except for a small period around ’60s.

The confidence intervals seem to be quite wide around 2000 which might have an impact on the test statistic13.

The middle panel of Figure 3.3 depicts the estimates of γ̂t and γ̃t. They both seem to perform quite similarly

as the two lines seem almost identical. The lower panel graphs the results for ρ̂t and ρ̃t. The two lines appear

to be deviating only for a short period around the ’2000s.

Finally, the upper panel of Figure 3.4 graphs the p-values of the time-varying Hausman test and its bootstrap

version for H = L = T 0.7. The asymptotic test provides lower p-values for the first half of the sample than

the bootstrap test. Interestingly, the bootstrap test rejects the null of exogeneity around the ’2000s while the

asymptotic does not.

The lower panel of Figure 3.4 now depicts the p-values for the two tests for H = L = T 0.5. The two lines

seem almost exact for most of the period except for the 1960s and ’2000s where again the bootstrap rejects the

exogeneity for a small period while the asymptotic does not.

13We further discuss this issue on section 3.A where we perform a robustness check.
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Figure 3.4: Empirical p-values of the time-varying Hausman test for model (3.15) and its bootstrap version for
H = L = T 0.7 and H = L = T 0.5 respectively.

In summary, both the asymptotic and the time-varying boostrap version of the Hausman exogeneity test appear

to perform quite similarly for most parts of the sample. However, contrary to the asymptotic test, its bootstrap

version points out to endogeneity of unemployment for a short period around ’2000s. In light of the results

obtained in Section 4, this is consistent with our findings that the bootstrap test rejects the null more often

than the asymptotic.

6 Conclusion

A usual assumption made when carrying out IV estimation is that the model, and hence the parameter vector,

does not change through time. This in turn, also implies that the endogeneity status of the variable remains

constant through time. This assumption, although crucial is often highly susceptible. A new strand of literature

lead primarily by Giraitis et al. (2021) has proposed a non-parametric IV estimation based on kernels, and

allowing for both deterministic or random coefficients. Consequently, a time-varying Hausman exogeneity test

has been developed to test for a possible switching endogeneity status at a specific point. However, this test

appears to experience size distortions and have low power.

In this paper, we propose an easy-to-use bootstrap version of the test. The performance of the bootstrapped

test is evaluated through Monte Carlo simulations. As it is shown, the bootstrap test obtained under the fixed-

design wild bootstrap has considerable refinements over the asymptotic test statistic with higher power, and

size close to nominal for the exactly identified model. More importantly, the size and power of the bootstraped

test are invariant to the choice of the bandwidth parameters.
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On the other hand, the asymptotic test seems to perform relatively well in the case of the over- identified

model both in terms of size and power. The Fixed-design Wild Bootstrap based test has size close to nominal

for samples sizes typically encountered in macroeconomics while it experiences some small distortions in small

samples.

Revisiting the empirical application by GKM, we estimate a Phillips curve for the USA, using unemployment

as the forcing variable for inflation, and examine whether similar results are obtained using the asymptotic

test and its bootstrap counterpart. The two tests seem to perform quite similarly for most parts except for

a period around 2000 where the bootstrap test points out to endogeneity of unemployment. These results

seem consistent with the Monte Carlo simulations, since the bootstrap test rejects the null more often that the

asymptotic counterpart.

We finish with some open questions for further research. First, this article has focused only on the case of the

local Hausman exogeneity test, but the seminal paper by Giraitis et al. (2021) also proposes a Global Hausman

test for testing for possible endogeneity in a specified interval. Preliminary analysis suggests that bootstrap

refinements could be obtained also in the case of the Global Hausman test. Second, in this article we have

addressed the issue of bootstrapping the local Hausman test so that the test has high power while also having

size close to the nominal, noticing that for the bootstrap test, these do not vary with bandwidth choice as

much as for the asymptotic test. However, one could also select the bandwidth parameter using some form of

calibration as in Shao and Politis (2013) and examine whether similar results are obtained. Finally, our Monte

Carlo simulations reveal some small size distortions of the bootstrap procedures in the case of the over-identified

models which requires further study.

3.A Appendix

In section 3.A, we assess the robustness of the results with respect to a number of different attributes of the

experiments employed in the paper.

3.A.1 Robustness Analysis

1. Number of Monte Carlo Simulations

Figure 3.5 shows the results for the size of the asymptotic and bootstrap versions of the test for (3.10)-

(3.11), T = 100 and h1 = h2 = 0.4 across different number of Monte Carlo simulations. Convergence is

attained at 5000 simulations.
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Figure 3.5: Coverage-size convergence for bootstrap and asymptotic versions of the Hausman test for model
(3.10)-(3.11), T = 100 and h1 = h2 = 0.4.
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2. Bootstrap Alternatives

Although in this article we employ the MBB and the Fixed-design WB, we also consider another alterna-

tive. To begin, by employing the MBB we implicitly assume that the size of each block is equal and fixed

to b and that the sample size of each replication is equal to T which requires some sort of trimming in

case T/b is not an integer and hence we have ignored any end effects. For example, because there is no

data after {yT , xT } the moving blocks method does not define a block of length b beginning at the end

points. Politis and Romano (1991) proposed the Circular Bootstrap to ”wrap” the data around in a circle

so that {y1, x1} follows directly after {yT , xT }. This path has also been explored in a preliminary analysis

but provided similar results to MBB.

3. Kernel Robustness

As mentioned in Section 5, the confidence intervals for the parameter αt appear to be quite wide especially

around 2000 and hence it might well be the case that this is generating the difference of the p-values

between the asymptotic and the bootstrap test statistic. As pointed out by Lucchetti and Valentini

(2021), these wide confidence intervals are caused because of the first stage regression which includes

the huge spike of the unemployment during the first lockdown, which seems to propagate throughout

the whole sample when an infinite support kernel is employed. For this reason, we perform a sensitivity

analysis of the empirical application with respect to different kernels. I consider two kernels with finite

support, namely the Epanechnikov and the triangular. Figure 3.6 depicts the differences between the two
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Figure 3.6: Empirical results for model (3.15).The two panels graph the empirical p-values of the asymptotic
and bootstrap Hausman tests using H = L = T 0.7. The upper panel uses the Epanechnikov kernel while the
lower uses the triangular.

3.A.2 Proofs

The following notation is used in the sequel: L[·] is used to denote ”the law of” while ’⇒’ signifies weak

convergence. Op and op signify being bounded in probability and converging in probability to zero respectively;

P ⋆ and E⋆ denote bootstrap probability and expectation respectively, conditional on the data y, x; for a sequence

of bootstrap quantities {Z⋆
T }, Z⋆

T = O⋆
p(1) signifies that for any cT → ∞, P ⋆(|Z⋆

T | > cT ) = op(1) and V
⋆
T = o⋆p(1)

signifies that P ⋆(|V ⋆
T | > ϵ) = op(1) for any ϵ > 0; similarly, L⋆[·] denotes bootstrap law conditional on the data

y, x; σ̂2
û,t := K−1

t

∑T
j=1 bH,|j−t|û

2
j based on residuals ûj = yj − x

′

j β̃j ; Likewise, σ̂
⋆2
û⋆,t := K−1

t

∑T
j=1 bH,|j−t|û

⋆2
j is

the bootstrap counterpart of σ2
û,t. In what follows, the following relationship between spectral and Frobenius

norms will be used frequently: ||AB|| ≤ ||A||sp||B||.

We first prove the consistency of TV-OLS under more general conditions than Giraitis et al. (2014).

Throughout the rest of the paper the following assumptions are made:

Assumption 3. 1. For θ > 8, uniformly over l and t,

E|xl,t|θ, E|ut|θ ≤ C <∞. (3.A.16)

2. The processes (xl,kxk,t − Exl,txk,t), (xl,tut), (ut) are α-mixing with mixing coefficients αk such that for

some 0 < ϕ < 1 and c > 0

αk ≤ cϕk, k ≥ 1. (3.A.17)
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3. The matrix Σxx,t = E[xtx
′

t] and σu,t = E[u2t ] satisfy maxt≥1 ||Σ−1
xx,t|| <∞, maxt≥1 ||σ−1

u,t ||sp <∞.

Assume also that βt = βT,t are triangular arrays of matrices whose elements satisfy either Assumption 4 or

Assumption 5 below.

Assumption 4. (βk,t) is a non-random sequence of real numbers that satisfies the following smoothness con-

dition

|βk,t − βk,s| ≤ C
|t− s|
T

, t, s = 1, · · · , T, (3.A.18)

and is uniformly bounded in t.

Assumption 5. (βk,t) is a random process that satisfies the smoothness condition

|βk,t − βk,s| ≤ (
|t− s|
T

)1/2qk,s, t, s = 1, · · · , T, (3.A.19)

where the distribution of variables X=βk,tqk,ts has a thin tail:

P (|X| ≥ ω) ≤ exp(−c0|ω|λ), ω > 0, (3.A.20)

for c0, λ > 0 that do not depend on k, t, s and T .

We also assume that the bandwidth parameter H satisfies the following regularity condition:

c1T
1/(θ/2−1)+δ ≥ H, (3.A.21)

where c1 > 0 and δ > 0 is arbitrary small.

Assumptions 3-5 above, are analogous to assumptions 1-3 in GKM. The assumption on the bandwidth parameter

is analogous to equation (17) in GKM.

Finally, assume that

Extut = 0 for t ≥ 1. (3.A.22)

The next theorem establishes consistency of the TV-OLS estimator.

Theorem 6. Suppose xt and ut satisfy Assumption 3 and βt satisfy either Assumption 4 or Assumption 5.

Then, as T → ∞, the estimator β̂t, computed with bandwidth parameter H satisfying (3.A.21), has the property

that:

max
j=1,··· ,T

||β̂t − βt|| = Op(rT,H) (3.A.23)
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where

rT,H =


H−1/2log1/2T +HT−1, if βt satisfies Assumption 4

H−1/2log1/2T + (H/T )1/2log1/αT, if βt satisfies Assumption 5

Proof of Theorem 6: Write

β̂t = βt + S−1
xx,t(∆

(2)
t + Sxu,t) (3.A.24)

where Sxx,t = K−1
t

∑T
j=1 bH,|j−t|xjx

′

j , ∆
(2)
t = K−1

t

∑T
j=1 bH,|j−t|xjx

′

j(βj−βt) and Sxu,t = K−1
t

∑T
j=1 bH,|j−t|xjuj .

By (3.A.24) we now have,

max
t=1,...,T

||β̂t − βt|| ≤ max
t=1,...,T

||S−1
xx,t||sp( max

t=1,...,T
||∆(2)

t ||+ max
t=1,...,T

||Sxu,t||). (3.A.25)

Hence, the desired result follows from showing that:

max
t=1,...,T

||S−1
xx,t||sp = Op(1), (3.A.26)

max
t=1,...,T

||∆(2)
t || = Op(rT,H), (3.A.27)

max
t=1,...,T

||Sxu,t|| = Op(H
−1/2log1/2T ). (3.A.28)

Proof of (3.A.26): Expression (3.A.26) can be splitted in two parts as follows :

Sxx,t = K−1
t

T∑
j=1

bH,|j−t|E[xjx
′

j ] +K−1
t

T∑
j=1

(xjx
′

j − E[xjx
′

j ]) =: S
(1)
xx,t + S

(2)
xx,t.

Now, write

Sxx,t = S
(1)
xx,t(1 + ∆̃t), ∆̃t = S

(1) −1
xx,t (Sxx,t − S

(1)
xx,t), (3.A.29)

where if ||∆̃t||sp < 1 then,

||S−1
xx,t||sp ≤ ||(S(1)

xx,t)
−1||sp||(1 + ∆̃t)

−1||sp ≤ ||(S(1)
xx,t)

−1||sp(1− ||∆̃t||sp)−1 (3.A.30)

≤ max
t=1,...,T

||(S(1)
xx,t)

−1||sp(1− max
t=1,...,T

||∆̃||sp)−1 (3.A.31)

and will show that,

max
t=1,...,T

||(S(1)
xx,t)

−1||sp = Op(1), (3.A.32)

max
t=1,...,T

||∆̃t||sp = op(1) (3.A.33)

which together with (3.A.31) imply (3.A.26): maxt=1,...,T ||S−1
xx,t||sp = Op(1). Under Assumption 3(3) there

exists ν > 0, such that for all t ≥ 1

α
′
Σxx,tα ≥ 1/ν > 0,
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thus for any n× 1 vector α = (α1, · · · , αp)
′
such that ||α||2 = 1,

min
||α||=1

α
′
S
(1)
xx,tα = min

||α||=1
(K−1

t

T∑
j=1

bH,|j−t|α
′
Σxx,tα) ≥ ν−1(K−1

t

T∑
j=1

bH,|j−t|) = 1/ν > 0

and hence the smallest eigenvalue of S
(1)
xx,t is not smaller than 1/ν > 0 which proves (3.A.32). To show (3.A.33),

bound

||∆̃t||sp ≤ ||(S(1)
xx,t)

−1||sp||Sxx,t − S
(1)
xx,t||

and hence, in light of (3.A.32), it suffices to show that

max
t=1,...,T

||Sxx,t − S
(1)
xx,t|| = op(1).

By Assumption 3(2), the (l, k)th component ωl,k,j = xl,jxk,j − E[xl,jxk,j ] of xx
′
is α-mixing. Combining this

with (3.A.21),Assumption 3(1) for θ
′
= θ/2 and Lemma 5(i) of GKM, we obtain

max
t=1,...,T

||Sxx,t − S
(1)
xx,t|| = Op(H

−1/2log1/2T ) = op(1), (3.A.34)

which proves (3.A.33) and concludes the proof of (3.A.26).

Proof of (3.A.27): A typical element of ∆
(2)
t consists of a linear combination of sums

st := K−1
t

T∑
j=1

bH,|j−t|ωlk,j(βk,j − βk,t)

where ωlk,j − E[ωlk,j ] is an α-mixing sequence and E|ωlk,j |θ/2 ≤ C < ∞ for all j. Suppose βt satisfies As-

sumption 2 in GKM. Then |βl,j − βl,t| ≤ C( |t−s|
T ) and (88) of lemma 5(ii) in GKM implies the bound (3.A.27)

maxt=1,...,T |st| = Op(rT,H) with rT,H as defined for Assumption 4. Now suppose βt satisfies Assumption 5

instead. Then |βl,t − βl,s| ≤ ( |t−s|
T )1/2rl,ts and Lemma 5(iii) of GKM implies (3.A.27) with rT,H as defined for

Assumption 5. Proof of (3.A.28):

The l − th element of the p− vector, Sxu is

s̃t = K−1
t

T∑
j=1

bH,|j−t|xl,juj

which under Assumption 3 (2) is an α-mixing sequence. Now, since (3.A.22) holds, Lemma 5 of GKM can be

employed and hence maxt=1,...,T ||Sxu,t|| = Op(H
−1/2log1/2T ) which shows (3.A.28). This concludes the proof

of the theorem.

Proof of Theorem 5: Denote as u⋆t = ηtût the bootstrap errors and y⋆t the dependent variable built from

residuals as described at section 3 for Fixed-design Wild Bootstrap. Then y⋆j = x
′

j β̂j+u
⋆
j = x

′

j β̂t+x
′

j(β̂j−β̂t)+u⋆j
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and hence the OLS estimator can be rewritten as

β̂⋆
t = β̂t + S−1

xx,t(∆
(2)
t + S⋆

xu⋆,t), (3.A.35)

where S−1
xx,t = K−1

t

∑T
j=1 bH,|j−t|xjx

′

j , ∆
(2)
t = K−1

t

∑T
j=1 bH,|j−t|x

′

j(βj−βt) and S⋆
xu⋆,t = K−1

t

∑T
j=1 bH,|j−t|xju

⋆′

j .

Similarly, the IV estimator can be rewritten as

β̃⋆
t = β̂t + S−1

x̂x,t(∆̂
(1)
t + S⋆

x̂u⋆,t). (3.A.36)

Now using the above expressions, the difference between the two estimators β̂⋆
t − β̃⋆

t , can be rewritten as follows:

β̂⋆
t − β̃⋆

t = (β̂⋆
t − β̂t)− (β̃⋆

t − β̂t) (3.A.37)

= S−1
xx,tS

⋆
xu⋆,t − S−1

x̂x,tS
⋆
x̂u⋆,t + R̂t (3.A.38)

where R̂t = K−1
t

∑T
j=1 bH,|j−t|ω̂t,j and

ω̂t,j = S−1
xx,txjxj(β̂j − β̂t)− S−1

x̂x̂,tx̂jx
′

j(β̂j − β̂t). (3.A.39)

. Next, denote, V ⋆
T,t = V ⋆

t = S
1/2
x̂x̂,tS

1/2
xx,t(β̂

⋆
t − β̃⋆

t ) to obtain,

V ⋆
t =V ⋆

1,t + V̂2,t, (3.A.40)

V ⋆
1,t =S

1/2
x̂x̂,tS

1/2
xx,t{S−1

xx,tS
⋆
xu⋆,t − S−1

x̂x,tS
⋆
x̂u⋆,t}, (3.A.41)

V̂2,t =S
1/2
x̂x̂,tS

1/2
xx,tR̂t. (3.A.42)

Now, the fixed-design wild bootstrap analogue of the Hausman test statistic takes the following form:

S⋆ =
K2

t

K2,t
V

′⋆
t Σ̂−1

v̂v̂,tV
⋆
t σ

−2⋆
u⋆,t (3.A.43)

which can be splitted into the main term and the remainder, that is

σ−1⋆
u⋆,tΣ

−1/2
vv,t KtK

−1/2
2,t V ⋆

t =U⋆
t + r⋆t , (3.A.44)

U⋆
t =σ−1⋆

u⋆,tΣ
−1/2
vv,t KtK

−1/2
2,t V ⋆

1,t, (3.A.45)

r⋆t =σ−1⋆
u⋆,tΣ

−1/2
vv,t KtK

−1/2
2,t V̂2,t. (3.A.46)
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Hence, we need to prove

||r⋆t || =o⋆p(1), (3.A.47)

L⋆[U⋆
t ]

p⇒N(0, I). (3.A.48)

Proof of (3.A.47): From Lemma 1, we have that:

||V̂2,t|| ≤ (H/T )γAT qt = Op((H/T )
γ). (3.A.49)

Hence, from (3.A.49) combined with Assumption 1(iii) in GKM, KtK
−1/2
2,t = O(H1/2) we have,

||r⋆t || ≤ KtK
−1/2
2,t ||Σ−1

νν,t|| ||V̂2,t|| (3.A.50)

= O(H1/2(H/T )γ) = o⋆p(1). (3.A.51)

Proof of (3.A.48): It now remains to show that L⋆(U⋆
t ) ⇒ N(0, I) which proves the desired result. For that,

we rewrite U⋆
t as

U̇⋆
t = B⋆

tK
−1/2
2,t

T∑
j=1

bH,|j−t|pt,ju
⋆
j , pt,j = Ltxj − L−1

t Ψ
′

jzj (3.A.52)

where

L1,t = S
1/2
x̂x̂,tS

−1/2
xx,t , L2,t = S

1/2
x̂x̂,tS

1/2
xx,tS

−1
x̂x̂,t

Lt = Σ
1/2
x−ν,x−ν,tΣ

−1/2
xx,t , B

⋆
t = σ⋆−1

u⋆,tΣ
−1
νν,t.

(3.A.53)

Now,

b
′
U̇⋆
t = b

′
Ut + b

′
(U̇⋆

t − Ut) (3.A.54)

where the first term on the RHS follows a N(0, 1) as shown in GKM. Hence, to conclude the proof, it remains

to show that

b
′
(U̇⋆

t − Ut) = op⋆(1). (3.A.55)

Next, by substituting in the expression above:

b
′
(B⋆

tK
−1/2
2,t

T∑
j=1

bH,|j−t|pt,ju
⋆
j −BtK

−1/2
2,t

T∑
j=1

bH,|j−t|pt,juj) (3.A.56)
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and by adding and subtracting in (3.A.56) the term BtK
−1/2
2,t

∑T
j=1 bH,|j−t|pt,ju

⋆
j the expression now becomes:

b
′
(B⋆

tK
−1/2
2,t

T∑
j=1

bH,|j−t|pt,ju
⋆
j −BtK

−1/2
2,t

T∑
j=1

bH,|j−t|pt,ju
⋆
j

+BtK
−1/2
2,t

T∑
j=1

bH,|j−t|pt,ju
⋆
j −BtK

−1/2
2,t

T∑
j=1

bH,|j−t|pt,juj) =

= b
′
[(B⋆

t −Bt)︸ ︷︷ ︸
C1

K
−1/2
2,t

T∑
j=1

bH,|j−t|pt,ju
⋆
j︸ ︷︷ ︸

C2

+BtK
−1/2
2,t

T∑
j=1

bH,|j−t|pt,j(u
⋆
j − uj)︸ ︷︷ ︸

C3

]

Hence it suffices to show that each of the three terms above are op⋆(1). Before proceeding, note ||Bt|| = Op(1)

by the assumptions of the theorem in GKM.

For C1, we have:

||B⋆
t −Bt|| = ||σ⋆−1

u⋆,tΣ
−1
νν,t − σ−1

u,tΣ
−1
νν,t||

≤ ||Σ−1
νν,t|| ||σ⋆−1

u⋆,t − σ−1
u,t ||

≤ C||σ⋆−1
u⋆,t − σ−1

u,t ||

by Assumption 1(iii) in GKM. Hence,

||σ⋆−1
u⋆,t − σ−1

u,t || = ||σ⋆−1
u⋆,t − σ̂−1

û,t + σ̂−1
û,t − σ−1

u,t ||

≤ ||σ⋆−1
u⋆,t − σ̂−1

û,t ||+ ||σ̂−1
û,t − σ−1

u,t ||

≤ ||σ⋆−1
u⋆,t − σ̂−1

û,t ||+ op(1)

by consistency of the estimator for σu,t. Hence, it now remains to show that ||σ⋆−1
u⋆,t − σ̂−1

û,t || = op⋆(1), which is

easily shown by Lemma 2 below.

Next, for C2, using Lemma 3 and noting that the conditions of Lemma are satisfied since u⋆t is a mean zero

random variable such that i) E⋆(u⋆t ) = E⋆(ûtηt) = ûtE
⋆(ηt) = 0 and ii) maxk=1,...,T

∑T
j=1 |E⋆[u⋆ku

⋆
j ]| = 0, we

have

||K−1/2
2,t

T∑
j=1

b2H,|j−t|pt,ju
⋆
j ||2 = Op(A

02
T )O(K−1

2,t

T∑
j=1

b2H,|j−t|)o
⋆
p(1)

= Op(A
02
T )o⋆p(1)

= o⋆p(1),

and using (A.50), Lemma 9 in GKM, we have ||pt,j || ≤ AT rt,j where AT = Op(1) does not depend on t, j and

maxt,j=1,...,T Er
2
t,j = O(1).
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Finally, for C3, we have:

||BtK
−1/2
2,t

T∑
j=1

bH,|j−t|pt,j(u
⋆
j − uj)|| ≤ O(1)||K−1/2

2,t

T∑
j=1

bH,|j−t|pt,j(u
⋆
j − uj)||

and since pt,j is conditionally independent of (u⋆j −uj), we can add and subtract ûj in the above, and by noting

that

||ûj − uj || ≤ ||(β̃j − βj || ||xj ||

≤ ( max
j=1,...,T

||β̃j − βj ||) ||xj ||

= op(1) (By theorem 1 in GKM and Assumption 1 about xj)

we have

||K−1/2
2,t

T∑
j=1

bH,|j−t|pt,j(ûj − uj)|| ≤ K
−1/2
2,t

T∑
j=1

bH,|j−t|||pt,j || ||(ûj − uj)|| (Note that K
−1/2
2,t

T∑
j=1

bH,|j−t| = O(H1/2))

≤ O(H1/2)Op(1)rt,j op(1)

= op(1).

Next, for

||K−1/2
2,t

T∑
j=1

bH,|j−t|pt,j (u
⋆
j − ûj)︸ ︷︷ ︸
m⋆

j

||,

since

max
j=1,...,T

T∑
j=1

|E⋆(m⋆
km

⋆
j )| = max

j=1,...,T

T∑
j=1

|û2jE⋆(ηj − 1)2|

= max
j=1,...,T

T∑
j=1

|û2jE⋆(η2j − 2ηj + 1)|

= 2 max
j=1,...,T

T∑
j=1

|û2j |

= Op(1),

we can use Lemma 3, and hence we have:

||K−1/2
2,t

T∑
j=1

bH,|j−t|pt,jm
⋆
j ||2 ≤ O⋆

p(A
0 2
T )O(K−1

2,t

T∑
j=1

b2H,|j−t|r
2
t,j) = O⋆

p(A
0 2
T ) = o⋆p(1),

thus completing the proof.

Next, define the following quantities: A1,T = maxt=1,...,T ||S−1
xx,t||+

(maxt=1,...,T ||S−1
xx,t||)(maxt=1,...,T ||Ψ̂j−Ψj ||+1), A2,T = maxj=1,...,T (||Ψ̂j−Ψj ||+1)2, q̂1,T = K−1

t

∑T
j=1 bH,|j−t|(

|j−t|
H )γ ν̂t,j
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where ν̂t,j = {||xj ||2 + (1 + ||Ψj ||)||zjx
′

j ||}||(β̂j − β̂t)(
T

|j−t| )
γ ||and q2,T = K−1

t

∑T
j=1 bH,|j−t|(1 + ||Ψj ||)2||zj ||2

such that AT = A1,TA2,T and qt = q
1/2
2,t ||Sxx,t||1/2q̂1,t.

Lemma 1. Let the assumptions of Theorem 4 in GKM be satisfied. Let γ = 1 and γ = 1/2 if βt satisfies

Assumption 2 and Assumption 3, respectively. Then V̂2,t has property:

||V̂2,t|| ≤ (H/T )γAT qt = Op((H/T )
γ) (3.A.57)

where AT = Op(1) and does not depend on t and also maxt=1,...,T Eqt = O(1).

Proof of Lemma 1. : From (3.A.42) we have:

||V̂2,t|| ≤ ||S1/2
x̂x̂,t||sp||S

1/2
xx,t||sp||R̂t|| = ||Sx̂x̂,t||1/2sp ||Sxx,t||1/2sp ||R̂t||

≤ ||Sx̂x̂,t||1/2||Sxx,t||1/2||R̂t||.

Hence, we will show

||R̂t|| ≤(H/T )γA1,T q̂1,t, (3.A.58)

||Sx̂x̂,t||1/2 ≤A2,T q2,t, (3.A.59)

max
t=1,....,T

E||Sxx,t||2 =O(1), (3.A.60)

where Ai,T = Op(1) for i = 1, 2, maxt=1,....,T E|q2,t|2 = O(1), and maxt=1,....,T E|q̂1,t|2 = O(1). Then

||V̂2,t|| ≤||Sx̂x̂,t||1/2||Sxx,t||1/2||R̂t|| (3.A.61)

≤(H/T )AT qt, where AT = A1,TA2,T , qt = q2,t||Sxx,t||1/2q̂1,t. (3.A.62)

Clearly, AT = Op(1) while

max
t=1,....,T

Eq2t ≤ max
t=1,....,T

(Eq̂21,t + ||Sxx,t||2 + Eq22,t) = Op(1),

which proves (3.A.57). Now for (3.A.58)-(3.A.60) recall x̂j = Ψ̂jzj and use the bound

||Ψ̂j || ≤ ||Ψ̂j −Ψj ||+ ||Ψj || ≤ (||Ψ̂j −Ψj ||+ 1)(1 + ||Ψj ||). (3.A.63)

Then ω̂t,j in (3.A.39) can now be bounded as follows:

|ω̂t,j | ≤ (
|j − t|
T

)γA1,tν̂t,j ,
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Then R̂t ≤ (H/T )γA1,T q̂1,t, q̂1,t = K−1
t

∑T
j=1 bH,|j−t|(

|j−t|
H )γ ν̂t,j . From (A.45) in GKM where

max
t=1,....,T

||S−1
xx,t|| = Op(1),

max
t=1,....,T

||S−1
x̂x̂,t|| = Op(1)

and Theorem 1 in GKM we have that A1,T = Op(1). Likewise for q̂1,t we have:

Eq̂21,t ≤E(K−1
t

T∑
j=1

bH,|j−t|(
|j − t|
H

)γ ν̂t,j)
2

≤( max
j=1,....,T

Eν̂2t,j)(K
−1
t

T∑
j=1

bH,|j−t|(
|j − t|
H

)γ)2

≤C max
j=1,....,T

Eν̂2t,j = O(1),

(3.A.64)

because under Assumptions 1-2 in GKM and the fact that we have uniformly in j, t

Eν̂2t,j ≤E[(||xj ||2 + ||zjx
′

j ||)2{(1 + ||Ψj ||)2||(β̂j − β̂t)(
T

|j − t| )
γ ||2}]

≤E[(||xj ||2 + ||zjx
′

j ||)4] + E[(1 + ||Ψj ||)4||(β̂j − β̂t)](
T

|j − t| )
γ ||4]

≤C,

(3.A.65)

where E||β̂j − β̂t||4 = O(1). To see this, we argue as follows: by the cr inequality (see White (2014) page 35)

E(||β̂j − β̂t||4) ≤ 23(E(||β̂j ||4) + E(||β̂t||4))

and so it suffices to prove that

E(||β̂t||4) = O(1).

From the cr inequality the above expression now becomes

E(||β̂t||4) = E(||βt + S−1
xx,t(∆

(2)
t + Sxu,t)||4) (3.A.66)

≤ 23[E(||βt)||4 + E(||S−1
xx,t(∆

(2)
t + Sxu,t)||4)], (3.A.67)

hence I have to show that

E(||S−1
xx,t(∆

(2)
t + Sxu,t)||4) = O(1) (3.A.68)

Now again, by applying the cr inequality we obtain:

E(||S−1
xx,t(∆

(2)
t + Sxu,t)||4) ≤ 23[E(||S−1

xx,t∆
(2)
t ||)4 + E(||S−1

xx,tSxu,t||)4].

Next, by using the property ||AB|| ≤ ||A||sp||B|| ≤ ||A|| ||B|| and Assumption 2.1 we only need to show that
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E(||∆(2)
t ||) = O(1).

So, for ∆
(2)
t we have

||∆(2)
t ||4 ≤ (K−1

t

T∑
j=1

bH,|j−t| ||xjx
′

j(βj − βt)︸ ︷︷ ︸
Z

||)4. (3.A.69)

Hence,

E(K−1
t

T∑
j=1

bH,|j−t|zjt)
4 = K−4

t

T∑
j1,j2,j3,j4

bH,|j1−t| . . . bH,|j4−t|E(zj1,t . . . zj4,t) (3.A.70)

Now by Hölder’s inequality:

E(zj1,t . . . zj4,t) ≤ (E(z4j1,t)
1/4 . . . E(z4j4,t)

1/4,

and so focusing on zj1:

(K−1
t

T∑
j=1

bH,|j−t|(E(z4j1,t)
1/4))4 ≤ C(K−1

t

T∑
j=1

bH,|j−t|)
4.

The last part is derived by

E(z4j1,t) = E[(||xjx
′

j(βj − βt))||)4]

≤ E(||xj ||4||xj ||4||βj − βt||4)

= E(||xj ||8||βj − βt||4),

where now the last line becomes, by Hölder’s inequality:

(E||xj ||8p)1/p(E||βj − βt||4q)1/q

for p = 1 + ϵ which follows from Assumption 2.2. Establishing E(||xtut||4) = O(1) is straightforward from

Assumption 1 in GKM.

Lemma 2. Under the assumptions of Theorem 1 of GKM, we have:

||σ⋆
u⋆,t − σ̂û,t|| = o⋆p(1).

Proof of Lemma 2: Let û⋆t = y⋆t − x
′

tβ̃
⋆
t and y⋆t = x

′

tβ̂t + u⋆t , where u⋆t = ûtηt and ût = yt − x
′

tβ̂t. Then

û⋆t = u⋆+x
′

t(β̃
⋆
t −β̂t) and hence |σ⋆−1

u⋆,t−σ̂⋆−1
û⋆,t | = |K−1

t

∑T
j=1 bH,|j−t|x

′

j(β̃
⋆
j−β̂j)| ≤ K−1

t

∑T
j=1 bH,|j−t||x

′

j(β̃
⋆
j−β̂j)|.

Now, K−1
t

∑T
j=1 bH,|j−t||x

′

j(β̃
⋆
j −βj +βj − β̂j)| ≤ K−1

t

∑T
j=1 bH,|j−t||x

′

j |(|β̃⋆
j −βj |+ |βj − β̂j |) since by Lemma 5

in GKM (87) we have maxt=1,...,T H
−1
∑T

j=1 bH,|j−t||xj | = Op(1) and also under the null of exogeneity we have

that both |β̃⋆
j − βj | and |βj − β̂j | are op⋆(1) and op(1) respectively. The part that |β̃⋆

j − βj | = op⋆(1) is shown

by noting that β̃⋆
j = β̂j +

∑T
j=1 bH,|j−t|x

′

ju
⋆
j and hence adding and subtracting β̂j in the expression ||β̃⋆

j − βj ||

we have |β̃⋆
j − β̂j + β̂j − βj | so by triangle inequality it suffices to show that ||β̃⋆

j − β̂j || = op⋆(1) which is shown
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as follows:

||β̃⋆
j − β̂j || = ||

T∑
j=1

bH,|j−t|x
′

ju
⋆
j ||

≤
T∑

j=1

bH,|j−t|︸ ︷︷ ︸
O(H)

||x′

ju
⋆
j || (by triangular inequality)

Now, we can employ the Cauchy-Schwarz Inequality and hence ||x′

ju
⋆
j || ≤ (||x′2

j || ||u⋆ 2
j ||)1/2 ≤ (||x′

j ||2︸ ︷︷ ︸
C21

||u⋆j ||2︸ ︷︷ ︸
C22

)1/2.

Next, for C22 we have

||u⋆j ||2 = ||ûjηj ||2

≤ ||ûj ||2 ||ηj ||2

≤ ||uj + x
′

j(β̂j − βj)||2 ||ηj ||2

where ||ηj ||2, is bounded. For ||uj + x
′

j(β̂j − βj)||2, we first use the triangular inequality, assumption 1 in GKM

about ||uj ||, ||xj || and that ||β̂j − βj || = op(1).

Lemma 3. Consider the sum

S⋆
T,t =

T∑
j=1

wT,ju
⋆
j

where wT,j are random p×1 vectors and (u⋆j ) are scalar zero mean random variables (conditionally) independent

of wT,j such that

max
k=1,...,T

T∑
j=1

|E⋆[u⋆ku
⋆
j ]| = 0 (3.A.71)

and suppose t = tT ∈ [1, . . . , T ] may vary with T. Also, assume

||wT,j || ≤ AT qT,j , j = 1, . . . , T (3.A.72)

where AT does not depend on j and Eq2T,j ≤ ∞. Then, as T → ∞,

||S⋆
T,t|| = Op⋆(A2

T )o
⋆
p(1) = o⋆p(1) (3.A.73)

Proof of Lemma 3: We will show that

E⋆||A−1
T S⋆

T,t||2 = 0

which implies ||A−1
T S⋆

T,t||2 = o⋆p(1) since S
⋆
T,t = AT (A

−1
T S⋆

T,t). We have

E⋆||A−1
T S⋆

T,t||2 ≤
T∑

k,j=1

A−2
T ||wT,k|| ||wT,j ||E⋆[u⋆ju

⋆
s] (by conditional independence)

56



where by (3.A.72),

A−2
T ||wT,k|| ||wT,j || ≤ qT,kqT,j ≤ q2T,k + q2T,j

and hence,

E⋆||A−1
T S⋆

T,t|| ≤ 2

T∑
j=1

q2T,j |E⋆[u⋆ju
⋆
k]|

≤ 2

T∑
j=1

q2T,j |( max
j=1,...,T

)

T∑
k=1

|E⋆[u⋆ju
⋆
k]| = 0

since from Markov’s inequality and noting that Eq2T,j ≤ ∞, we have ||q2T,j || <∞.
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Chapter 4

Bandwidth Selection for Estimators of

Time-Varying Stochastic Coefficient

Models

1 Introduction

Structural change and parameter instability are pervasive in relationships among economic and financial vari-

ables. To account for such instability in cases where the latter is considered to be relatively smooth rather

than abrupt, various models with smoothly time-varying coefficients, have been proposed, along with suitable

methods for inference on the coefficient path. These include locally linear models with parameters that vary

in a continuous manner according to the values of observable variables (e.g., Terasvirta (1998)), models with

deterministic coefficients that are smooth functions of a rescaled time index (e.g., Robinson (1989, 1991); Cai

(2007); Zhang and Wu (2012); Chen (2015b)), and models with stochastic coefficients evolving as multivariate

ARIMA processes (e.g., Nicholls and Pagan (1985)).

In more recent work, Giraitis et al. (2021) (GKM hereafter) consider linear models in which little structure

is imposed on time-varying coefficients – the latter may be deterministic or stochastic, subject only to certain

smoothness and boundedness conditions. In addition, GKM allow the explanatory variables in the model to be

potentially endogenous, in the sense of being correlated with the unobservable errors, a setting which, like that of

Chen (2015b), is often relevant in econometrics. When a set of instrumental variables (IV) is available, inference

on the time-varying coefficients may be based on one of the kernel IV estimators proposed by GKM. The obvious

advantage of such estimators based on local smoothing is that they do not rely on parametric specifications for

the time-dependence of the parameters. However, as with all kernel-based smoothing techniques, the practical
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use of kernel IV or least-squares (LS) estimators requires choice of a smoothing parameter, known as the

bandwidth, as well as choice of a suitable kernel function – although it is generally accepted that the former

choice has by far the biggest impact on the properties of kernel smoothers in terms of bias–variance trade-off.

In the context of nonparametric regression with deterministic or random (and exogenous) explanatory vari-

ables, several automated, data-driven bandwidth selection methods have been proposed for popular kernel-type

estimators such as local polynomial estimators and estimators of the Nadaraya–Watson, Priestley–Chao and

Gasser–Müller type. Those most commonly used are based on cross-validation (CV) methods, undersmoothing-

penalized goodness-of-fit criteria such as, for example, Akaike’s information criterion (AIC) and Rice’s T -

criterion, bootstrap resampling methods, and so-called plug-in rules – a useful overview can be found in Köhler

et al. (2014). However, as already indicated, the properties of these data-driven bandwidth selection methods

have almost exclusively been studied in regression settings where the explanatory variables are uncorrelated

with or independent of the unobservable errors (or even deterministic). It is, therefore, of interest to exam-

ine whether automated selectors which are known to provide effective bandwidth choices under exogeneity (or

fixed-design) conditions remain successful in the presence of endogeneity, and whether the performance of such

selectors is affected by the strength of correlation between explanatory variables and errors.

Our objective in this paper is to investigate some of these issues by considering the performance of several

automated bandwidth selection methods for kernel IV (and LS) estimators in a general setting similar to

that in GKM, that is, in linear models with time-varying coefficients and explanatory variables which may

be endogenous for the parameters of interest. More specifically, we consider automated bandwidth selection

by means of four different methods, namely, ordinary (leave-one-out) CV, a nonparametric variant of a bias-

corrected version of AIC, and wild bootstrap (WB) and dependent wild bootstrap (DWB) procedures. The

models considered are quite general, having stochastically varying coefficients, explanatory variables that may

endogenous, and errors which may be heteroskedastic and serially correlated. We find that DWB and, rather

remarkably, ordinary CV provide effective choices of the bandwidth under a variety of conditions that are

relevant in econometrics. These data-driven selectors provide a useful and easy to implement way to overcome

the hurdle of choosing bandwidths in the practical application of kernel IV estimators of time-varying coefficients

like those proposed by Chen (2015b) and GKM.

The remainder of the paper is organized as follows. Section 2 introduces the model and related nonparametric

kernel estimators of interest. Section 3 provides a detailed description of our data-driven procedures for the

selection of the bandwidth parameter for IV and LS estimators. Section 4 provides a simulation study of the

small-sample performance of automated bandwidth selectors under a variety of data-generating mechanisms.

Section 5 illustrates the practical use of the automated selection procedures in the context of an empirical

application. Finally, Section 6 summarizes and concludes.

59



2 Model and Estimation

Consider the varying-coefficient linear model given by

yt = β′
txt + ut, t = 1, 2, . . . , T, (2.1)

xt = Ψ′
tzt + vt, (2.2)

where yt is a scalar variable, xt is a p × 1 vector of (potentially endogenous) variables, βt is a p × 1 vector of

coefficients, zt is an n×1 vector of exogenous variables (n ≥ p), Ψt is an n×p matrix of coefficients, and ut and

vt are zero-mean random errors (that may exhibit serial correlation and heteroskedasticity). As in GKM, xt is

considered to be endogenous for βt when E(vtut) ̸= 0 for some t, and exogeneity of zt is taken to mean that

E(ztut) = 0 and E(ztv
′
t) = 0 for all t. The parameters βt and Ψt may be deterministic or stochastic, satisfying

suitable boundedness and smoothness conditions (see Giraitis et al. (2014) and GKM for details and examples).

For the model (2.1)–(2.2), the kernel IV estimator of βt introduced by GKM is1

β̃t =

 T∑
j=1

bH,|j−t|Ψ̂
′
jzjx

′
j

−1
T∑

j=1

bH,|j−t|Ψ̂
′
jzjyj , (2.3)

where bH,|j−t| are kernel weights, H is a bandwidth parameter, and Ψ̂j is a consistent estimator of Ψj . A

natural choice for the latter is the kernel LS estimator

Ψ̂t =

 T∑
j=1

bL,|j−t|zjz
′
j

−1
T∑

j=1

bL,|j−t|zjx
′
j , (2.4)

with bandwidth parameter L (satisfying L ≥ H). The kernel weights in (2.3) and (2.4) are obtained from a kernel

function K : [0,∞) → [0,∞) via bM,l = K(l/M), with bandwidth M > 0 such that M → ∞ and M/T → 0 as

T → ∞. Admissible kernel functions are those satisfying K(w) ≤ C/(1 +wa) and |(d/dw)K(w)| ≤ C/(1 +wa)

for some C > 0 and a > 3; for example, we may take K(w) = α exp(−w2/2) or K(w) = α(1− w)I(0 ≤ w ≤ 1)

for some α > 0, where I(·) is the indicator function.

GKM give conditions on the dependence, heretogeneity and moments of zt, ut and vt, and on the variation in

βt and Ψt, which guarantee consistency and asymptotic normality of β̃t. In the case where xt is exogenous, in

the sense that E(vtut) = 0 for all t, βt can also be consistently estimated using the kernel LS estimator

β̂t =

 T∑
j=1

bH,|j−t|xjx
′
j

−1
T∑

j=1

bH,|j−t|xjyj . (2.5)

(Throughout the paper, H is used as generic notation for the bandwidth parameter associated with an estimator

1This is the estimator denoted β̃1,t in GKM. Under certain conditions (see Lemma 2 in GKM), it is asymptotically equivalent
to the two-stage local linear estimator of Chen (2015b).
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of βt, without implying that β̃t and β̂t share the same bandwidth.)

The key issue that arises in the use of the estimators (2.1), (2.2) and (2.5) in practice is the selection of reasonable

values for the bandwidth parameters H and L for a given sample size T . The choice is important because the

finite-sample properties of the estimators can be affected significantly by the values of the relevant bandwidth.

For example, too small a value for H and/or L may yield undersmoothed estimates which have high variance,

while too large a value may result in oversmoothing and large bias. The asymptotic results in GKM offer little

practical guidance beyond the requirement that C1T
(4/ϑ)+δ ≤ H ≤ L ≤ C2T

1−δ for some δ, C1, C2 > 0 and

ϑ > 4 such that the expected values E(∥ζt∥4+ϑ
) are bounded above uniformly in t, where ζ ′t = (ut, v

′
t, z

′
t) and ∥·∥

denotes the Euclidean norm.2 For practical use, it is, therefore, desirable to have data-driven rules for choosing

the values of the bandwidth parameters.

3 Data-Driven Bandwidth Selection

In this section, we discuss different methods for selecting the bandwidths L and H that are required for the

construction of kernel IV and LS estimator of βt. The data-driven selectors considered are based on CV, AIC,

and WB and DWB methods.

Throughout the remainder of the paper, we consider bandwidths of the form L = Th1 and H = Th2 , with

0 < h2 ≤ h1 < 1. For any h ∈ (0, 1), we use Ψ̂t,h, β̃t,h and β̂t,h to denote, respectively, the LS estimator of Ψt

defined in (2.4) with L = Th, the IV estimator of βt defined in (2.3) with H = Th, and the LS estimator of βt

defined in (2.5) with H = Th.

3.1 Cross-Validation

CV is a widely used method for selecting the smoothing parameter for nonparametric estimators. The basic idea

is to use part of the data for fitting and the remaining part to estimate the average squared error of the fitted

model under different bandwidths, and select the bandwidth which produces the best performance. Automated

CV-based bandwidth selectors for inference in varying-coefficient models have been used by Chen and Hong

(2012), Zhang and Wu (2012) and Chen (2015b), among others, the latter in the context of nonparametric

two-stage LS estimation.

In our IV setting, letting Ψ̂(−t),h be the leave-one-out version of the LS estimator of Ψt given by

Ψ̂(−t),h =

 ∑
1≤j≤T,j ̸=t

bTh,|j−t|zjz
′
j

−1 ∑
1≤j≤T,j ̸=t

bTh,|j−t|zjx
′
j ,

2Based on results from simulation experiments, GKM recommend setting H = L = T 1/2.
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the CV choice of L is L̃CV = T h̃1 , where

h̃1 = argmin
h

{
T∑

t=1

||xt − Ψ̂′
(−t),hzt||2

}
.

In a similar manner, letting β̃(−t),h be the leave-one-out version of the IV estimator of βt, constructed as

β̃(−t),h =

 ∑
1≤j≤T,j ̸=t

bTh,|j−t|Ψ̂
′
j,h̃1

zjx
′
j

−1 ∑
1≤j≤T,j ̸=t

bTh,|j−t|Ψ̂
′
j,h̃1

zjyj ,

the CV choice of H is obtained as H̃CV = T h̃2 , where

h̃2 = argmin
h≤h̃1

{
T∑

t=1

|yt − β̃′
(−t),hxt|2

}
.

In the case of the LS estimator β̂t, the CV choice of H is obtained as ĤCV = T ĥ, where

ĥ = argmin
h

{
T∑

t=1

|yt − β̂′
(−t),hxt|2

}
,

β̂′
(−t),h being the leave-one-out version of the LS estimator of βt given by

β̂(−t),h =

 ∑
1≤j≤T,j ̸=t

bTh,|j−t|xjx
′
j

−1 ∑
1≤j≤T,j ̸=t

bTh,|j−t|xjyj .

Note that the estimator Ψ̂j,h̃1
used to construct β̃(−t),h is based on the bandwidth chosen by CV. It is also worth

noting that, although we focus on the popular leave-one-out CV method, it may be advantageous to construct

CV criteria by leaving out more than one observation or blocks of consecutive observations, especially when the

data and/or errors are strongly correlated (see, e.g., Burman et al. (1994) and Hall et al. (1995b)).

3.2 Information Criterion

Hurvich et al. (1998) and Cai (2007), among others, suggested selecting the bandwidth for smoothing regression

methods by using a nonparametric version of AIC. In our IV context, an AIC-based procedure can be used

sequentially to obtain data-driven choices of first L and then H.

To give a formal description of the procedure, let X and X̂h be the p × T matrices whose t-th columns are xt

and Ψ̂′
t,hzt, respectively, and Qh be the pT × pT matrix satisfying vec(X̂h) = Qhvec(X), where vec(·) is the

vectorization function. The AIC choice of L is obtained as L̃AIC = T h̄1 , where

h̄1 = argmin
h

{
log

(
n∑

t=1

||xt − Ψ̂′
t,hzt||2

)
+

2[tr(Qh) + 1]

pT − tr(Qh)− 2

}
,
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with tr(·) being the trace function. Next, let Rh be the T × T matrix satisfying (β̃′
1,hx1, . . . , β̃

′
T,hxT )

′ =

Rh(y1, . . . , yT )
′, where

β̃t,h =

 T∑
j=1

bTh,|j−t|Ψ̂
′
j,h̄1

zjx
′
j

−1
T∑

j=1

bTh,|j−t|Ψ̂
′
j,h̄1

zjyj .

Then, the AIC choice of H is H̃AIC = T h̄2 , where

h̄2 = argmin
h≤h̄1

{
log

(
n∑

t=1

|yt − β̃′
t,hxt|2

)
+

2[tr(Rh) + 1]

T − tr(Rh)− 2

}
.

Note that, as in the CV selection procedure, the estimator Ψ̂j,h̄1
used to construct β̃′

t,h is based on a data-driven

bandwidth (L̃AIC) obtained by the same method. The trace of the smoother matrices Qh and Rh associated

with any given bandwidth h (as well as that of the smoother matrix Sh below) is typically viewed as the effective

number of parameters involved in the smoothing procedure.

For the LS estimator β̂t, the AIC choice of H is obtained in an analogous manner as ĤAIC = T h̄, with

h̄ = argmin
h

{
log

(
n∑

t=1

|yt − β̂′
t,hxt|2

)
+

2[tr(Sh) + 1]

T − tr(Sh)− 2

}
,

where Sh is the T × T matrix satisfying (β̂′
1,hx1, . . . , β̂

′
T,hxT )

′ = Sh(y1, . . . , yT )
′.

3.3 Bootstrap

The bootstrap approach to bandwidth selection amounts to choosing a bandwidth which minimizes an appro-

priate bootstrap estimator of the average squared error of the fitted model (e.g., Faraway (1990); Hall (1990);

Hall et al. (1995b); González Manteiga et al. (2004)). In our IV context, such an approach can be employed

to obtain data-driven choices of first L and then H. To allow for the possibility that the errors in the model

(2.1)–(2.2) may be heteroskedastic or serially correlated, we rely on the WB and DWB schemes, originally

proposed by Wu (1986) and Shao (2010), respectively. The idea behind such resampling schemes is to construct

bootstrap errors by perturbing residuals by auxiliary random variables that are independent of the data; these

random variables may be chosen to be mutually independent (as in WB) or correlated (as in DWB).

In the case of IV estimation, the selection procedure for L involves the following steps:

(i) Using L̃CV = T h̃1 as pilot bandwidth, generate pseudo-data x∗t according to

x∗t = Ψ̂′
t,h̃1

zt + v̂tη1,t, t = 1, 2, . . . , T,

where v̂t = xt − Ψ̂′
t,h̃1

zt and {η1,t} are random variables, independent of {(yt, x′t, z′t)}, having zero mean

and unit variance. For any h ∈ (0, 1), let Ψ̂∗
t,h be the bootstrap analogue of Ψ̂t,h, defined in the same way
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as the latter but using (x∗′t , z
′
t) in place of (x′t, z

′
t).

(ii) Repeating the previous stepB times (withB sufficiently large), generate independent copies Ψ̂∗
t,h,1, . . . , Ψ̂

∗
t,h,B

of Ψ̂∗
t,h and obtain the bootstrap choice of L as L̃B = Th∗

1 , where

h∗1 = argmin
h

{
B∑

b=1

T∑
t=1

||Ψ̂∗′
t,h,bzt − Ψ̂′

t,h̃1
zt||2

}
.

Next, given the choice L̃B, the selection procedure for H is as follows:

(i) Using Ψ̂t,h∗
1
(the LS estimator of Ψt with bandwidth L̃B) and the pilot bandwidth H̃CV = T h̃2 to construct

the estimator β̃t,h̃2
of βt, generate pseudo-data (y∗t , x

∗′
t ) according to

y∗t = β̃′
t,h̃2

x∗t + ũtη2,t, t = 1, 2, . . . , T,

x∗t = Ψ̂′
t,h∗

1
zt + v̂tη2,t,

where ũt = yt−β̃′
t,h̃2

xt, v̂t = xt−Ψ̂′
t,h∗

1
zt, and {η2,t} are random variables, independent of {(yt, x′t, z′t, η1,t)},

having zero mean and unit variance. For any h ∈ (0, 1), let β̃∗
t,h be the bootstrap analogue of β̃t,h given

by

β̃∗
t,h =

 T∑
j=1

bTh,|j−t|Ψ̂
∗′
j,h∗

1
zjx

∗′
j

−1
T∑

j=1

bTh,|j−t|Ψ̂
∗′
j,h∗

1
zjy

∗
j .

(ii) Repeating the previous step B times, generate independent copies β̃∗
t,h,1, . . . , β̃

∗
t,h,B of β̃∗

t,h and obtain the

bootstrap choice of H as H̃B = Th∗
2 , where

h∗2 = argmin
h≤h∗

1

{
B∑

b=1

T∑
t=1

|β̃∗′
t,h,bxt − β̃′

t,h̃2
xt|2

}
.

Notice that, following Davidson and MacKinnon (2010) and Chen (2015b), ũt and v̂t are multiplied by the same

auxiliary variable η2,t in order to preserve, as much as possible, correlation between ut and vt when generating

bootstrap data (x∗′t , y
∗
t ).

In the case of the LS estimator of βt, the selection procedure for H involves the following steps:

(i) Using ĤCV = T ĥ as pilot bandwidth, generate pseudo-data y∗t according to

y∗t = β̂′
t,ĥ
xt + ûtη3,t, t = 1, 2, . . . , T,

where ût = yt − β̂′
t,ĥ
xt and {η3,t} are random variables, independent of {(yt, x′t)}, having zero mean and

unit variance. For any h ∈ (0, 1), let β̂∗
t,h be the bootstrap version of β̂t,h, defined by replacing (yt, x

′
t) in

the definition of β̂t,h with (y∗t , x
′
t).
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(ii) Repeating the above step B times, generate independent copies β̂∗′
t,h,1, . . . , β̂

∗′
t,h,B of β̂∗

t,h and obtain the

bootstrap choice of H as ĤB = Th∗
, where

h∗ = argmin
h

{
B∑

b=1

T∑
t=1

|β̂∗′
t,h,bxt − β̂′

t,ĥ
xt|2

}
.

The bandwidth selection procedures based on WB and DWB differ only in the choice of the correlation structure

of the collections of auxiliary random variables {ηi,t} (i = 1, 2, 3). In the WB case, we take {ηi,t} to be

independent N (0, 1) random variables. Thus, the bootstrap errors reflect possible heterogeneity in the variance

of the original errors. For the DWB, we follow Shao (2010) and Djogbenou et al. (2015) in taking {ηi,t} to be

a segment of a zero-mean Gaussian process with autocovariance function E(ηi,tηi,τ ) = G({t− τ}/λ), where G

is the triangular Bartlett kernel G(w) = (1 − |w|)I(|w| ≤ 1) and λ > 0 is a bandwidth controlling the extent

of dependence (with λ → ∞ and λ/T → 0 as T → ∞). Hence, the bootstrap errors reflect possible serial

correlation in the original errors.

It may be noted that, if heteroskedasticity and serial correlation are not a concern, then the bootstrap errors

that are required to generate x∗t and y∗t may be obtained by resampling from the empirical distribution of the

relevant residuals. For instance, when selecting the bandwidth H for β̃t, this amounts to choosing bootstrap

errors by sampling independently and uniformly, with replacement, from the residuals {(ũt, v̂′t), t = 1, . . . , T},

after centering them around their arithmetic mean. The use of such a resampling scheme is, however, inadvisable

when the original errors may be serially correlated and/or heteroskedastic (and will not be considered in the

sequel).

4 Monte Carlo Simulations

In this section, simulations are used to evaluate the finite-sample performance of various data-driven bandwidth

selectors for the kernel-based LS and IV estimators β̂t and β̃t. The Monte Carlo experiments are based on

data-generating processes (DGPs) that are variants of those previously used by GKM. We consider exactly

identified and overidentified models, with errors that may be independent and identically distributed (i.i.d.),

heterogeneously distributed, or serially correlated. As it is generally accepted that choice of kernel (K) is

of secondary importance, compared to choice of smoothing parameters (L,H), we use the Gaussian kernel

K(w) = exp(−w2/2) in all subsequent computations.

4.1 Independent, Identically Distributed Errors

The first set of experiments is based on an exactly identified version of the model (2.1)–(2.2), with p = n = 1,

that is,

yt = βtxt + ut, xt = ψtzt + vt, t = 1, 2, . . . , T. (4.1)
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As in GKM, {zt} are i.i.d. N (0, 1) random variables, while {ut} and {vt} are such that

ut = se1,t + (1− s)e2,t, vt = se1,t + (1− s)e3,t, (4.2)

where {e1,t},{e2,t} and {e3,t} are mutually independent collections of i.i.d. N (0, 1) random variables inde-

pendent of {zt}. Thus, the parameter s controls the strength of endogeneity, as measured by Corr(ut, vt) =

s2/[s2 + (1− s)2], with s ∈ {0, 0.2, 0.5}. The coefficients {βt} and {ψt} vary stochastically as rescaled random

walks, with

βt = (1/T )1/2
t∑

j=1

ξ1,j , ψt = (1/T )1/2
t∑

j=1

ξ2,j , (4.3)

where {ξ1,t} and {ξ2,t} are collections of i.i.d. N (0, 1) random variables, independent of each other and of

{(e1,t, e2,t, e3,t, zt)}. We consider two sample sizes, T = 100 and T = 200.

As indicated in the description of the bandwidth selection procedures in Section 3, the same data-driven proce-

dure is used for the selection of both L and H in the case of the IV estimator (the only exception being the use

of a CV pilot bandwidth in the construction of the IV estimator of βt required to generate bootstrap data). For

bootstrap-based selection procedures, the number of bootstrap replications is B = 399. In the case of DWB,

we consider λ ∈ {2, 4, 6, 8, 10} when T = 100 and λ ∈ {6, 8, 12, 16, 32} when T = 200.3 In all cases, the relevant

objective functions are minimized over an equispaced grid of 30 points corresponding to possible bandwidths

ranging from T 0.2 to T 0.9.

The properties of bandwidth selectors for IV and LS estimators of βt are evaluated using several performance

indicators. Specifically, for a kernel-based estimator of βt, say β̌t,ȟ (IV or LS), with bandwidth T ȟ selected

by one of the methods discussed in Section 3, we consider the following performance measures (R denotes the

number of Monte Carlo replications):

(i) average ratio of selected bandwidth to optimal bandwidth, computed as

(1/R)

R∑
r=1

T ȟr−hopt
r ,

where ȟr is the value of ȟ in the r-th Monte Carlo replication and hoptr is the optimal value, i.e., the min-

imizer of (1/T )
∑T

t=1 |β̌t,h−βt|q over h, with q = 1 and q = 2 for the IV and LS estimators, respectively;4

(ii) average median absolute estimation error of β̌t,ȟ, computed as

(1/R)

R∑
r=1

median{|β̌t,ȟr
− βt| : t = 1, . . . , T};

3Recall that our choice for the covariance structure of the DWB auxiliary random variables implies that the latter are ⌈λ− 1⌉-
dependent, where ⌈·⌉ denotes the least-integer function.

4The absolute estimation error (q = 1) is considered in the IV case because the finite-sample distributions of IV-type estimators
tend to be heavy-tailed due to lack of finite moments.
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(iii) average coverage rate of 95% two-sided confidence intervals for βt, computed as

[100/(TR)]

T∑
t=1

R∑
r=1

I(|β̌t,ȟr
− βt|/se(β̌t,ȟr

) ≤ 1.96),

where se(β̌t,ȟr
) is an estimate of the asymptotic standard deviation of β̌t,ȟr

(obtained as in GKM).

All simulation results are based on R = 1, 000 Monte Carlo replications.

Tables 4.1 and 4.2 present results for T = 100 and T = 200, respectively. The data-driven methods are similarly

behaved when selecting the bandwidth for the LS estimator of ψt, DWB (with large bandwidth λ) being slightly

superior in terms of the ratio of the selected bandwidth to the optimal value that minimizes the mean squared

estimation error of ψ̂t. For the IV estimator of βt, CV outperforms all other methods, in terms of the ratio

of the selected bandwidth to the optimal value that minimizes the mean absolute estimation error of β̃t for

T = 100, regardless of whether xt is exogenous (s = 0) or endogenous (s ̸= 0); it is less effective than DWB

(with λ ≥ 16), but only by a slight margin, when T = 200 and s ̸= 0. Furthermore, CV bandwidths produce

pointwise confidence intervals for βt the average coverage of which is close to the coverage associated with the

optimal bandwidth, outperforming other automatically selected bandwidths in this respect for all values of s

and T . It must be pointed out, however, that even the optimal bandwidth (for the given simulated data) yields

confidence intervals the average coverage of which (labelled ‘optimal coverage’ in the tables) falls considerably

short of the nominal 95% rate.5 The AIC-based selector is the least competitive overall, yielding bandwidths that

are lower than the optimal bandwidth and associated confidence intervals for βt which undercover considerably.

There is little to choose among competing methods when considering the average median absolute estimation

error of β̃t, DWB having a slight advantage and being more successful the stronger the correlation between xt

and ut is. It is perhaps noteworthy that DWB based on relatively large values of λ performs well (and dominates

WB) even though the errors (ut, vt) are i.i.d. in the simulations.

5These findings are consistent with those of GKM (for bandwidths H and L taking the values T 0.4 or T 0.5), who also report
undercoverage that becomes more pronounced as the strength of endogeneity increases.
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Estimator CV AIC WB DWB(λ = 2) DWB(λ = 4) DWB(λ = 6) DWB(λ = 8) DWB(λ = 10)

Bandwidth Ratio Ψ̂t 1.084 1.132 1.117 1.111 1.097 1.087 1.072 1.072

β̃t 1.043 0.872 1.113 1.112 1.101 1.087 1.078 1.078

β̂t 1.076 1.138 1.113 1.101 1.084 1.073 1.062 1.055

Estimation Error β̃t 0.241 1.926 0.267 0.259 0.260 0.260 0.259 0.258

s=0 β̂t 0.157 0.153 0.156 0.157 0.157 0.157 0.157 0.157

Coverage β̃t 84.713 68.742 81.303 77.679 78.004 78.396 78.462 78.93

β̂t 70.894 70.274 70.154 70.292 70.616 70.819 71.144 71.371

Optimal Coverage β̃t 86.348

β̂t 77.738

Ψ̂t 1.095 1.148 1.131 1.121 1.104 1.093 1.080 1.080

Bandwidth Ratio β̃t 1.050 0.897 1.136 1.120 1.105 1.098 1.085 1.085

β̂t 1.083 1.137 1.117 1.106 1.091 1.075 1.066 1.060

Estimation Error β̃t 0.218 1.716 0.233 0.234 0.234 0.233 0.234 0.233

s=0.2 β̂t 0.151 0.149 0.150 0.151 0.151 0.151 0.151 0.151

Coverage β̃t 83.342 65.924 80.372 76.605 76.942 77.337 77.349 77.624

β̂t 69.850 69.270 69.107 69.322 69.578 69.982 70.202 70.422

Optimal Coverage β̃t 85.090

β̂t 76.124

Ψ̂t 1.110 1.160 1.145 1.134 1.120 1.107 1.091 1.091

Bandwidth Ratio β̃t 1.064 0.880 1.122 1.113 1.103 1.090 1.078 1.078

β̂t 1.002 1.042 1.033 1.018 1.003 0.989 0.980 0.976

Estimation Error β̃t 0.206 1.994 0.219 0.215 0.218 0.215 0.217 0.216

s=0.5 β̂t 0.245 0.244 0.245 0.245 0.245 0.245 0.245 0.245

Coverage β̃t 80.794 63.457 78.913 75.171 75.486 75.673 75.745 75.992

β̂t 47.365 46.870 46.683 47.017 47.182 47.607 47.830 47.882

Optimal Coverage β̃t 83.016

β̂t 49.735

Table 4.1: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.2) and T = 100.

Estimator CV AIC WB DWB(λ = 6) DWB(λ = 8) DWB(λ = 12) DWB(λ = 16) DWB(λ = 32)

Ψ̂t 1.045 1.074 1.089 1.068 1.061 1.049 1.028 1.028

Bandwidth Ratio β̃t 1.017 0.806 1.067 1.045 1.039 1.032 1.019 1.019

β̂t 1.039 1.070 1.089 1.059 1.053 1.040 1.035 1.024

Estimation Error β̃t 0.230 2.263 0.260 0.237 0.234 0.237 0.238 0.238

s=0 β̂t 0.132 0.130 0.131 0.132 0.133 0.133 0.133 0.133

Coverage β̃t 87.783 70.134 84.146 82.644 82.919 83.098 83.436 83.839

β̂t 73.520 73.227 72.182 72.807 72.963 73.484 73.645 74.175

Optimal Coverage β̃t 89.089

β̂t 79.632

Ψ̂t 1.043 1.074 1.089 1.063 1.054 1.043 1.023 1.023

Bandwidth Ratio β̃t 1.015 0.827 1.061 1.044 1.037 1.027 1.011 1.011

β̂t 1.036 1.060 1.084 1.053 1.046 1.034 1.028 1.018

Estimation Error β̃t 0.205 1.967 0.226 0.211 0.212 0.212 0.213 0.213

s=0.2 β̂t 0.129 0.127 0.128 0.129 0.129 0.129 0.129 0.129

Coverage β̃t 86.928 67.088 83.990 82.367 82.586 82.983 83.086 83.462

β̂t 72.855 72.646 71.558 72.215 72.513 72.911 73.212 73.589

Optimal Coverage β̃t 88.094

β̂t 78.300

Ψ̂t 1.040 1.080 1.089 1.062 1.051 1.041 1.020 1.020

Bandwidth Ratio β̃t 1.029 0.808 1.068 1.046 1.034 1.029 1.015 1.015

β̂t 0.921 0.942 0.962 0.934 0.923 0.913 0.911 0.901

Estimation Error β̃t 0.183 2.263 0.206 0.193 0.192 0.193 0.194 0.193

s=0.5 β̂t 0.273 0.272 0.272 0.272 0.272 0.272 0.273 0.272

Coverage β̃t 85.017 70.1345 82.760 80.965 81.185 81.533 81.666 82.186

β̂t 38.543 37.882 37.136 38.003 38.470 38.814 38.862 39.227

Optimal Coverage β̃t 86.820

β̂t 37.367

Table 4.2: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.2) and T = 200.

Turning to the LS estimator of βt, the results in Tables 4.1 and 4.2 show that, for all bandwidth selectors, the

average median absolute estimation error of β̂t is lower than that of the IV estimator when xt is exogenous or

endogeneity is weak (s = 0.2), while the reverse is true under moderate endogeneity (s = 0.5). The bandwidths

selected by the various methods tend to be somewhat higher than the optimal values when s = 0 or s = 0.2,
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but lower than the optimal values when s = 0.5 and T = 200. As in the IV case, CV and DWB (with λ

that is not too small) generally provide the most accurate choices relative to the optimal bandwidth for β̂t,

the former having a slight advantage when endogeneity is moderately strong, while AIC is the least successful.

Undercoverage of confidence intervals for βt is once again a problem, regardless of which bandwidth selector is

used in the construction of β̂t. Although inaccuracy of LS confidence intervals is not surprising when xt and

ut are correlated (coverage rates are uniformly lower than 50% when s = 0.5), and the use of the LS estimator

is clearly not recommended in these circumstances, the problem is also present when xt is exogenous and β̂t is

consistent.

In sum, although ordinary CV is sometimes reported to perform poorly in nonparametric regression settings

(e.g., Härdle et al. (1988)), it is found to provide effective choices of the bandwidth for kernel IV and LS

estimators of time-varying coefficients (at least when performance measures other than coverage of confidence

intervals are considered), both in the presence and absence of endogeneity. DWB is competitive with the CV

selector and consistently better than WB and AIC.

4.2 Heteroskedasticity and Serial Correlation

To assess the effect of heteroskedasticity (in the form of time-dependent error variances) on the performance

bandwidth selectors, we consider artificial data from a modified version of the DGP (4.1)–(4.3) in which {yt}

are generated according to yt = βtxt + σtut, with the following specifications for σt:

HET-1 : σt = exp(sin(2πt/T ) + 1); (4.4)

HET-2 : σt = exp(sin(2πt/T ) + 1) + 2I(t ≥ T/2). (4.5)

Thus, the sequence {σt} exhibits sine shape under HET-1, which is subject to a level shift under HET-2. These

functional forms have also been used by Chronopoulos et al. (2021).

Table 4.3 summarizes simulation results for s ∈ {0, 0.5} and T = 100. The performance of data-driven bandwidth

selection methods for the IV estimator β̃t is generally similar to that documented earlier under homoskedastic

designs. CV and DWB provide the best choices in terms of closeness of the automatically selected bandwidths

to the optimal value and magnitude of the average median absolute estimation error of β̃t. WB (which explicitly

allows for heteroskedasticity) does as well as CV in terms of the latter performance measures and only slightly

worse in terms of the former. The AIC selector also performs well, but only when considering deviations of

the selected bandwidth from the optimal value and only for s = 0. Interestingly, when xt is exogenous, the

coverage rate of IV confidence intervals for βt improves in comparison to the case of i.i.d. errors. However, in

the presence of endogeneity, all confidence intervals, including those associated with the optimal bandwidth,

have average coverage rates less than 50%. This undercoverage is, as to be expected, even more substantial in
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the case of the LS estimator β̂t, regardless of the bandwidth selector used. Matters improve under exogeneity,

with β̂t outperforming β̃t in terms of average median estimation error.

Estimator CV AIC WB DWB(λ = 2) DWB(λ = 4) DWB(λ = 6) DWB(λ = 8) DWB(λ = 10)

HET-1

Ψ̂t 1.084 1.132 1.117 1.111 1.097 1.087 1.072 1.072

Bandwidth Ratio β̃t 1.056 1.022 1.071 1.072 1.053 1.045 1.035 1.035

β̂t 0.947 1.020 0.958 0.958 0.951 0.941 0.940 0.935

s=0 Estimation Error β̃t 0.607 2.065 0.644 0.604 0.602 0.605 0.603 0.605

β̂t 0.339 0.336 0.339 0.340 0.340 0.340 0.341 0.341

Coverage β̃t 91.377 75.564 91.366 91.100 91.083 91.079 91.150 91.081

β̂t 79.917 78.953 79.604 79.485 79.502 79.727 79.757 79.894

Optimal Coverage β̃t 92.494

β̂t 83.591

Ψ̂t 1.110 1.160 1.145 1.134 1.120 1.107 1.091 1.091

Bandwidth Ratio β̃t 1.057 0.990 1.091 1.080 1.065 1.056 1.038 1.038

β̂t 0.787 0.845 0.806 0.800 0.789 0.785 0.776 0.773

s=0.5 Estimation Error β̃t 0.480 2.693 0.508 0.472 0.481 0.477 0.481 0.480

β̂t 0.661 0.671 0.665 0.664 0.662 0.660 0.659 0.657

Coverage β̃t 87.539 66.476 87.613 87.198 87.246 87.216 87.153 87.254

β̂t 42.982 41.127 42.244 42.445 42.864 43.077 43.424 43.654

Optimal Coverage β̃t 89.397

β̂t 37.162

HET-2

Ψ̂t 1.084 1.132 1.117 1.111 1.097 1.087 1.072 1.072

Bandwidth Ratio β̃t 1.054 1.035 1.060 1.061 1.048 1.034 1.026 1.026

β̂t 0.964 1.011 0.972 0.971 0.965 0.957 0.954 0.951

s=0 Estimation Error β̃t 0.836 2.268 0.897 0.812 0.813 0.820 0.820 0.825

β̂t 0.428 0.414 0.420 0.423 0.425 0.428 0.430 0.431

Coverage β̃t 92.866 80.366 92.889 92.722 92.803 92.736 92.729 92.713

β̂t 81.767 81.468 81.850 81.794 81.742 81.783 81.856 81.778

Optimal Coverage β̃t 94.023

β̂t 87.485

Ψ̂t 1.110 1.160 1.145 1.134 1.120 1.107 1.091 1.091

Bandwidth Ratio β̃t 1.066 1.018 1.087 1.077 1.063 1.054 1.043 1.043

β̂t 0.852 0.909 0.872 0.867 0.858 0.852 0.848 0.845

s=0.5 Estimation Error β̃t 0.696 3.276 0.721 0.660 0.676 0.673 0.681 0.680

β̂t 0.950 0.952 0.952 0.951 0.952 0.952 0.951 0.951

Coverage β̃t 89.919 69.340 90.077 89.855 89.827 89.749 89.693 89.722

β̂t 37.355 35.518 36.319 36.674 36.989 37.260 37.416 37.713

Optimal Coverage β̃t 91.537

β̂t 32.944

Table 4.3: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.4) and (4.5) and T = 100.

Next, to investigate the effect on bandwidth selection of serial correlation in the errors, we consider a variant

of the DGP (4.1)–(4.3) in which

ut = se1,t + (1− s)(1− φ2)1/2ωt, ωt = φωt−1 + e2,t, vt = se1,t + (1− s)e3,t. (4.6)

Thus, for any 0 < |φ| < 1, the autocovariance structure of {ut} is that of a causal ARMA(1, 1) process such

that Corr(ut, vt) = s2/[s2 + (1 − s)2]. The results obtained under this DGP, with T = 100 and φ = 0.8, are

summarized in Table 4.4.6

Although leave-one-out CV is often found to experience difficulties in nonparametric regression settings with

serially correlated errors (e.g., Hart (1991); Opsomer et al. (2001)), deviations from the independence assumption

do not appear to have an adverse affect on CV in our varying-coefficients setting. For either value of s, CV

6Similar results are obtained for φ = −0.8.
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outperforms other methods when selecting the bandwidth for the IV or LS estimator of βt, yielding bandwidths

that are close to the optimal values. Its performance is almost identical to that of DWB (which explicitly allows

for serial correlation) and of WB in terms of the average median absolute estimation error of the estimators, while

AIC is the least successful selector overall. Once again, the coverage of pointwise confidence intervals leaves

much to be desired, even when the optimal bandwidth is used. It should be noted, however, that coverage

results should be viewed with caution in this case since confidence intervals are based on an asymptotic normal

approximation to the distribution of β̃t that is obtained under the assumption that {ztut} is an uncorrelated

process (cf. Theorem 3(ii) in GKM).

Estimator CV AIC WB DWB(λ = 2) DWB(λ = 4) DWB(λ = 6) DWB(λ = 8) DWB(λ = 10)

Ψ̂t 1.084 1.132 1.117 1.111 1.097 1.087 1.072 1.072

Bandwidth Ratio β̃t 1.041 0.868 1.130 1.121 1.102 1.098 1.082 1.082

β̂t 1.039 1.070 1.089 1.059 1.053 1.040 1.035 1.024

Estimation Error β̃t 0.230 1.891 0.250 0.252 0.248 0.250 0.250 0.251

s=0 β̂t 0.153 0.150 0.154 0.153 0.153 0.153 0.153 0.153

Coverage β̃t 83.833 68.791 80.535 76.861 77.139 77.53 77.653 78.027

β̂t 69.811 69.558 69.137 69.349 69.731 70.119 70.299 70.380

IV Optimal Coverage β̃t 85.305

β̂t 76.218

Ψ̂t 1.110 1.160 1.145 1.134 1.120 1.107 1.091 1.091

Bandwidth Ratio β̃t 1.069 0.877 1.131 1.123 1.114 1.102 1.087 1.087

β̂t 0.993 1.040 1.022 1.013 0.995 0.983 0.972 0.967

Estimation Error β̃t 0.200 2.003 0.213 0.212 0.212 0.211 0.213 0.212

s=0.5 β̂t 0.247 0.245 0.246 0.246 0.246 0.247 0.246 0.247

Coverage β̃t 80.685 63.963 78.608 74.959 75.316 75.397 75.715 75.886

β̂t 46.981 46.363 46.389 46.608 46.937 47.244 47.510 47.598

IV Optimal Coverage β̃t 82.991

β̂t 49.730

Table 4.4: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.6) and T = 100.

4.3 Overidentification

In the final set of experiments, we consider an overidentified version of the model (2.1)–(2.2), with p = n−1 = 1,

that is,

yt = βtxt + σtut, xt = ψ1,tz1,t + ψ2,tz2,t + vt, (4.7)

with σt > 0. As before, the coefficients {βt}, {ψ1,t} and {ψ2,t} are generated as independent Gaussian random

walks (rescaled by T−1/2), and {z1,t} and {z2,t} are collections of i.i.d. N (0, 1) random variables independent

of each other and of {(ut, vt, βt, ψ1,t, ψ2,t)}

Simulation results, when (ut, vt) are generated according to (4.2) and σt = 1 for all t, are presented in Tables

4.5 and 4.6. As in exactly identified models, CV and DWB outperform AIC and WB in the vast majority of

cases in terms of the ratio of the selected bandwidth for IV and LS estimators of βt to the optimal value. CV

and WB result in estimates of βt that generally have the lowest median absolute estimation error, for all values

of s, but the former selector has a clear advantage when considering coverage of confidence intervals relatively

to the coverage associated with the optimal bandwidth value.
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Estimator CV AIC WB DWB(λ = 2) DWB(λ = 4) DWB(λ = 6) DWB(λ = 8) DWB(λ = 10)

Ψ̂t 1.045 0.662 1.103 1.101 1.099 1.095 1.094 1.094

Bandwidth Ratio β̃t 1.053 0.835 1.169 1.263 1.250 1.244 1.230 1.230

β̂t 1.084 1.125 1.117 1.108 1.084 1.071 1.065 1.055

Estimation Error β̃t 0.174 0.225 0.161 0.209 0.208 0.207 0.208 0.208

s=0 β̂t 0.137 0.134 0.137 0.137 0.137 0.137 0.137 0.137

Coverage β̃t 88.434 85.768 85.18 74.73 74.908 75.004 74.816 74.853

β̂t 70.072 70.106 69.659 69.621 70.209 70.357 70.487 70.845

Optimal Coverage β̃t 90.414

β̂t 76.358

Ψ̂t 1.042 0.725 1.111 1.108 1.107 1.101 1.103 1.103

Bandwidth Ratio β̃t 1.062 0.919 1.148 1.272 1.262 1.254 1.247 1.247

β̂t 1.079 1.123 1.111 1.103 1.080 1.064 1.059 1.054

Estimation Error β̃t 0.147 0.202 0.156 0.195 0.196 0.195 0.195 0.195

s=0.2 β̂t 0.127 0.126 0.127 0.127 0.127 0.127 0.127 0.127

Coverage β̃t 87.219 83.904 84.944 72.684 72.642 72.877 72.758 72.613

β̂t 69.658 69.457 69.279 69.340 69.703 69.907 69.981 70.151

Optimal Coverage β̃t 89.251

β̂t 75.195

Ψ̂t 1.038 0.766 1.106 1.107 1.105 1.104 1.104 1.104

Bandwidth Ratio β̃t 1.079 0.963 1.135 1.285 1.275 1.274 1.267 1.267

β̂t 1.038 1.076 1.070 1.059 1.035 1.022 1.017 1.009

Estimation Error β̃t 0.137 0.191 0.145 0.187 0.187 0.187 0.187 0.188

s=0.5 β̂t 0.164 0.163 0.163 0.164 0.164 0.164 0.164 0.164

Coverage β̃t 85.886 82.506 84.214 70.819 70.835 70.887 70.881 70.794

β̂t 57.479 57.356 56.935 57.057 57.401 57.67 57.855 57.982

Optimal Coverage β̃t 88.073

β̂t 60.373

Table 4.5: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.7) and T = 100.

Estimator CV AIC WB DWB(λ = 6) DWB(λ = 8) DWB(λ = 12) DWB(λ = 16) DWB(λ = 32)

Ψ̂t 1.033 0.600 1.097 1.093 1.091 1.087 1.079 1.079

Bandwidth Ratio β̃t 1.035 0.701 1.163 1.172 1.173 1.175 1.171 1.171

β̂t 1.037 1.059 1.088 1.055 1.047 1.035 1.029 1.016

s=0 Estimation Error β̃t 0.145 0.209 0.156 0.173 0.173 0.173 0.173 0.173

β̂t 0.117 0.115 0.117 0.117 0.117 0.117 0.117 0.117

Coverage β̃t 90.418 89.023 85.799 78.551 78.587 78.747 78.796 78.931

β̂t 73.619 73.709 72.256 73.016 73.289 73.691 73.914 74.505

Optimal Coverage β̃t 91.534

β̂t 78.519

Ψ̂t 1.034 0.669 1.104 1.100 1.100 1.096 1.092 1.092

Bandwidth Ratio β̃t 1.034 0.776 1.132 1.154 1.156 1.159 1.169 1.169

β̂t 1.035 1.057 1.086 1.052 1.043 1.029 1.024 1.015

s=0.2 Estimation Error β̃t 0.136 0.184 0.140 0.161 0.161 0.162 0.161 0.162

β̂t 0.112 0.111 0.111 0.112 0.112 0.112 0.112 0.112

Coverage β̃t 89.499 87.661 85.942 76.46 76.375 76.435 76.556 76.489

β̂t 73.135 73.128 71.755 72.531 72.781 73.268 73.469 73.928

Optimal Coverage β̃t 90.601

β̂t 77.466

Ψ̂t 1.022 0.722 1.098 1.096 1.093 1.094 1.090 1.090

Bandwidth Ratio β̃t 1.045 0.825 1.108 1.139 1.147 1.157 1.170 1.170

β̂t 0.959 0.980 1.007 0.971 0.960 0.951 0.944 0.938

s=0.5 Estimation Error β̃t 0.123 0.170 0.129 0.154 0.153 0.153 0.153 0.154

β̂t 0.175 0.174 0.175 0.175 0.175 0.175 0.175 0.175

Coverage β̃t 88.212 85.979 85.627 74.341 74.521 74.391 74.474 74.417

β̂t 52.795 52.380 51.396 52.400 52.817 53.145 53.390 53.537

Optimal Coverage β̃t 89.879

β̂t 52.805

Table 4.6: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.7) and T = 200.

Table 4.7 shows results for the case where (ut, vt) are generated as in (4.2) and σt varies according to the

specifications (4.4)–(4.5). CV has superior performance in terms of closeness of the selected bandwidths to

the optimal value and magnitude of the average median absolute estimation error of the IV and LS estimators

of βt. All data-driven methods result in similar average median absolute estimation errors, AIC being the
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least successful selector in this respect. Although the coverage of LS confidence intervals leaves much to be

desired even when s = 0, IV confidence intervals associated with bandwidths selected by CV and WB are quite

accurate, and more so than in the absence of heteroskedasticity. The improved coverage of confidence intervals

in heteroskedastic settings may be due to the fact that the covariance estimator used in their construction

explicitly allows for heterogeneity in the error variances.

Estimator CV AIC WB DWB(λ = 2) DWB(λ = 4) (DWBλ = 6) DWB(λ = 8) (DWBλ = 10)

HET-1

Ψ̂t 1.045 0.662 1.103 1.101 1.099 1.095 1.094 1.094

Bandwidth Ratio β̃t 1.032 0.694 1.117 1.116 1.106 1.099 1.093 1.093

β̂t 1.004 1.071 1.022 1.019 1.009 1.000 0.996 0.991

s=0 Estimation Error β̃t 0.351 0.439 0.356 0.360 0.362 0.360 0.361 0.359

β̂t 0.288 0.283 0.288 0.289 0.289 0.289 0.289 0.288

Coverage β̃t 93.243 91.692 93.171 91.879 91.814 91.776 91.778 91.853

β̂t 76.309 75.302 76.039 76.049 76.201 76.271 76.259 76.461

Optimal Coverage β̃t 86.348

β̂t 77.738

Ψ̂t 1.038 0.766 1.106 1.107 1.105 1.104 1.104 1.104

Bandwidth Ratio β̃t 1.039 0.811 1.101 1.095 1.090 1.088 1.086 1.086

β̂t 0.911 0.970 0.931 0.924 0.914 0.904 0.899 0.897

s=0.5 Estimation Error β̃t 0.286 0.353 0.284 0.297 0.296 0.297 0.297 0.298

β̂t 0.423 0.427 0.426 0.425 0.425 0.423 0.423 0.422

Coverage β̃t 90.714 88.498 90.762 88.031 88.162 88.061 88.035 87.960

β̂t 53.161 51.605 52.417 52.653 52.824 53.281 53.432 53.552

Optimal Coverage β̃t 92.288

β̂t 53.049

HET-2

Ψ̂t 1.045 0.662 1.103 1.101 1.099 1.095 1.094 1.094

Bandwidth Ratio β̃t 1.023 0.681 1.103 1.101 1.091 1.085 1.078 1.078

β̂t 1.003 1.064 1.019 1.016 1.009 1.000 0.997 0.993

s=0 Estimation Error β̃t 0.461 0.626 0.453 0.440 0.444 0.441 0.442 0.443

β̂t 0.358 0.341 0.349 0.352 0.354 0.355 0.357 0.358

Coverage β̃t 95.099 93.774 94.952 93.975 93.949 93.854 93.860 93.919

β̂t 79.135 78.692 79.147 78.931 79.053 79.143 79.200 79.274

Optimal Coverage β̃t 96.105

β̂t 86.390

Ψ̂t 1.038 0.766 1.106 1.107 1.105 1.104 1.104 1.104

Bandwidth Ratio β̃t 1.019 0.783 1.082 1.080 1.070 1.068 1.062 1.062

β̂t 0.935 0.995 0.957 0.952 0.941 0.933 0.928 0.924

s=0.5 Estimation Error β̃t 0.373 0.478 0.365 0.360 0.360 0.360 0.361 0.362

β̂t 0.582 0.578 0.579 0.579 0.581 0.581 0.582 0.583

Coverage β̃t 93.176 91.377 93.220 91.138 91.252 91.100 91.108 91.058

β̂t 50.656 48.683 49.974 49.992 50.283 50.668 50.873 50.883

Optimal Coverage β̃t 94.685

β̂t 51.415

Table 4.7: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.7), (4.4), (4.5) and T = 100.

Finally, Table 4.8 summarizes results when (ut, vt) are generated according to (4.6) and σt = 1 for all t. In

the presence of serial correlation, CV remains the most effective method for selecting bandwidths for the IV

estimator that are close to the optimal values, while DWB has the edge in the case of LS estimation. Even though

CV does better than other methods in terms of coverage of IV confidence intervals, the figures are still well below

the target nominal value (which is also the case for the optimal bandwidth).....ESTIMATION ERROR... As in

exactly identified models, LS confidence intervals associated with any of the automated bandwidths undercover

substantially even when xt is exogeous.
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Estimator CV AIC WB DWB(λ = 2) DWB(λ = 4) DWB(λ = 6) DWB(λ = 8) DWB(λ = 10)

Ψ̂t 1.045 0.662 1.103 1.101 1.099 1.095 1.094 1.094

Bandwidth Ratio β̃t 1.053 0.835 1.169 1.176 1.190 1.196 1.205 1.205

β̂t 1.084 1.125 1.117 1.108 1.084 1.071 1.065 1.055

s=0 Estimation Error β̃t 0.161 0.225 0.174 0.208 0.208 0.207 0.208 0.208

β̂t 0.137 0.134 0.137 0.137 0.137 0.137 0.137 0.137

Coverage β̃t 88.434 85.768 85.180 74.730 74.908 75.004 74.816 74.853

β̂t 70.072 70.106 69.659 69.621 70.209 70.357 70.487 70.845

Optimal Coverage β̃t 90.414

β̂t 76.358

Ψ̂t 1.038 0.766 1.106 1.107 1.105 1.104 1.104 1.104

Bandwidth Ratio β̃t 1.079 0.963 1.135 1.142 1.164 1.186 1.205 1.205

β̂t 1.038 1.076 1.070 1.059 1.035 1.022 1.017 1.009

s=0.5 Estimation Error β̃t 0.137 0.191 0.145 0.187 0.187 0.187 0.187 0.188

β̂t 0.164 0.163 0.163 0.164 0.164 0.165 0.164 0.164

Coverage β̃t 85.886 82.506 84.214 70.819 70.835 70.887 70.881 70.794

β̂t 57.479 57.356 56.935 57.057 57.401 57.670 57.855 57.982

Optimal Coverage β̃t 88.073

β̂t 60.373

Table 4.8: Average ratio of automatically chosen to optimal bandwidth, average median absolute estimation
error, and average pointwise coverage rates under (4.7), (4.6) and T = 100.

5 Empirical Application

In this section, we revisit the time-varying version of the backward-looking Phillips curve analyzed by GKM.

The aim is to compare estimates of the parameters of the model obtained using different data-driven bandwidth

selectors.

More specifically, we consider the model

∆πt = ct + γt∆πt−1 + αt∆Ut + εt, t = 1, 2, . . . , T, (5.1)

where πt is price inflation, Ut is the unemployment rate, ct are constants, εt is a random error, and ∆ is the first-

difference operator. The data (obtained from the FRED database) consist of 648 monthly observations, from

January 1959 to December 2013, on U.S. consumer price inflation and the unemployment rate. Following GKM,

kernel estimates are obtained using (1,∆πt−1,∆Ut−1,∆Ut−2,∆Ut−3,∆Ut−4)
′ as the vector of instruments and

K(w) = exp(−w2/2) as kernel function. As noted in GKM, a Lagrange multiplier test for fourth-order serial

correlation reveals no significant signs of serial correlation in IV residuals of the model (GKM set L = H = T 0.7).

Table 4.9 reports the bandwidthsH = Th for LS and IV estimators that are selected by means of the data-driven

methods discussed in section 3. In the case of bootstrap-based selectors, results are obtained using B = 999

bootstrap replications, with bandwidth λ ∈ {42, 59, 68, 76, 85} for the DWB.7 While the differences between the

bandwidth values chosen by the various procedures do not appear to be substantial, there are some noticeable

differences in the resulting coefficient estimates.

7These choices of λ are of the order T 1/3, which is known to be optimal in certain respects (see Shao (2010)).
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Method h
TV-LS TV-IV

CV 0.643 0.899
AIC 0.642 0.871
WB 0.690 0.823

DWB(λ = 42) 0.597 0.853
DWB(λ = 59) 0.643 0.783
DWB(λ = 68) 0.597 0.807
DWB(λ = 76) 0.690 0.877
DWB(λ = 85) 0.620 0.899

Table 4.9: This table shows h where Th are the bandwidths selected by the data-driven methods for the
backward-looking Phillips curve.

In the LS case, these differences can be seen in Figure 4.1, which shows LS estimates of γt and αt, together

with corresponding 95% pointwise confidence bands, based on bandwidths obtained by CV, WB and DWB

(with λ = 68). Estimates of γt based on the three automatically selected bandwidths are quite similar for

most of the sample, the only exception being a period around 2000. The same is true for estimates of αt, with

some differences among the three sets of estimates also observed during the 1980s. In fact, its only during the

latter period that the coefficient on ∆Ut appears to be statistically significant (at the 5% level), regardless of

the bandwidth selector used. Needless to say, these results should be viewed with caution since LS estimates

are inconsistent unless ∆Ut is exogenous in (5.1). As a matter of fact, this does not appear to be the case: a

time-varying Hausman test rejects exogeneity.

Turning to IV estimation of the parameters of the model (5.1), Figure 4.2 shows IV estimates of γt and αt,

and associated 95% pointwise confidence bands. From the mid 1970’s onwards, there is little difference between

estimates of either parameter obtained using the CV, WB and DWB bandwidth choices, small differences being

evident only early in the sample period. Interestingly, the coefficient on unemployment is statistically significant

(at the 5% level) for all points in the sample, suggesting that a traditional unemployment–inflation trade-off is

supported by the data once endogeneity of unemployment is accounted for via the use of IV.
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Figure 4.1: LS estimates of γt and αt based on bandwidths selected by CV, WB and DWB (λ = 68).

76



1960 1970 1980 1990 2000 2010 2020
0.1

0.2

0.3

0.4

0.5

0.6

Time

γ
γ CV

γ WB

γ DWB(λ = 68)

γ upper bound

γ lower bound

γ upper bound

γ lower bound

γ upper bound

γ lower bound

1960 1970 1980 1990 2000 2010 2020

−1.5

−1

−0.5

0

Time

α

α CV

α WB

α DWB(λ = 68)

α upper bound

α lower bound

α upper bound

α lower bound

α upper bound

α lower bound

Figure 4.2: IV estimates of γt and αt based on bandwidths selected by CV, WB and DWB (λ = 68).

6 Conclusion

In this paper, we have considered data-driven methods for selecting the smoothing parameter for kernel IV

and LS estimators of stochastically time-varying coefficients in linear models with explanatory variables that

may endogenous. Our simulation findings have revealed that CV and DWB are effective automated methods,

selecting bandwidths which are close to the optimal values and yielding coefficient estimators with minimal

average estimation errors. What is more, DWB and, perhaps surprisingly, ordinary CV work equally well

in models with hererogeneously distributed or serially correlated errors as they do in models with identically

distributed and independent errors. Our results provide valuable insights into the effectiveness of different

data-driven methods for bandwidth selection and can be used to address an obvious hurdle in the practical

application of kernel estimators of time-varying coefficients in a rich class of models.

A finding that should not be ignored is that, regardless of the data-driven bandwidth selector used, pointwise
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confidence intervals for time-varying coefficients appear to have coverage rates which are generally lower than

the nominal target value, a difficulty that also arises when bandwidth values that are optimal (in the sense

of minimizing the average absolute or quadratic estimation error) are used. It would be useful, therefore, to

consider data-driven selectors which produce bandwidth choices that control effectively the error in coverage

rates of pointwise confidence intervals, or of simultaneous confidence regions, for time-varying coefficients. The

possibility of constructing such confidence intervals/regions using appropriate bootstrap approximations to the

sampling distributions of kernel IV and LS estimators, instead of the asymptotic normal approximations, would

also be worth exploring. These problems will be considered in detail elsewhere.
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Chapter 5

Conclusions

The work in this thesis has focused on several problems relating to diagnostic tests for non-linear dependencies,

to tests for endogeneity in the presence of parameter instability of general unspecified forms, and to the selection

of smoothing parameters for non-parametric inference in models with stochastically or deterministically time-

varying parameters. These are problems of considerable interest in econometrics given the pervasive nature of

non-linearity, endogeneity, structural change and parameter instability in relationships among economic and

financial variables.

In Chapter 2, we introduced a data-driven approach for a portmanteau test based on the autocorrelations of a

squared time series or the autocorrelations of squared residuals from a fitted model. The selection of the number

of sample autocorrelations to be used is data-dependent. The data is also allowed to select whether the choice

of the number of autocorrelations is based on Akaike’s information criterion or on the Bayesian information

criterion. The proposed automatic test is easy to implement, has a chi-square asymptotic null distribution

and, most importantly, properly controls the finite-sample probability of Type I error whilst providing higher

power than the conventional portmanteau test based on a pre-specified number of autocorrelations. Moreover,

if deviations from the assumption of independent and identically distributed errors in a time series model are

viewed as evidence of non-linear behaviour, the automatic portmanteau test can also be used as a linearity test.

In Chapter 3, we investigated bootstrap versions of a time-varying Hausman test for exogeneity. The test com-

pares kernel-based least squares and instrumental variables estimators of stochastic time-varying coefficients,

allowing for possible changes in the endogeneity status of the regressors over time. However, when asymptotic

critical values are used in the construction of the test, the latter exhibits size distortions and low power. To

address these limitations, we considered using fixed-design wild bootstrap to obtain a more accurate approxi-

mation to the null sampling distribution of the test statistic. The resulting bootstrap-based test has accurate

size and higher power than the asymptotic test in exactly identified models, and its size remains reasonably

close to the nominal value in overidentified models. More remarkably, the size and power of the bootstrap test
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are insensitive with respect to the choice of the bandwidth parameters used to construct kernel estimators. This

is particularly important since applied researchers usually employ a variety of ad-hoc approaches to bandwidth

selection which are typically based on minimising objective functions that address estimation concerns rather

than test accuracy.

In Chapter 4, we focused on the problem of selecting the bandwidth parameter for kernel least squares and

instrumental variables estimators of stochastically time-varying coefficients in regression models with exogenous

or endogenous regressors. We considered data-driven bandwidth selectors based on cross-validation, Akaike’s

information criterion, and wild bootstrap and dependent wild bootstrap procedures. Monte Carlo simulations

showed that cross-validation and wild dependent bootstrap techniques perform well, yielding estimated band-

widths that are close to the optimal values. Data-driven bandwidth methods are also useful in the construction

of pointwise confidence intervals for time-varying coefficients, although the coverage rates of confidence intervals

based on an asymptotic normal approximation appear to be universally low.
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Pérez, A. and Ruiz, E. (2003). Properties of the sample autocorrelations of nonlinear transformations in long-

memory stochastic volatility models. Journal of Financial Econometrics, 1(3):420–444.

Politis, D. N. (2003). The impact of bootstrap methods on time series analysis. Statistical Science, 18(2):219 –

230.

Politis, D. N. and Romano, J. P. (1991). A circular block-resampling procedure for stationary data. Purdue

University. Department of Statistics.

Psaradakis, Z. and Vávra, M. (2019). Portmanteau tests for linearity of stationary time series. Econometric

Reviews, 38(2):248–262.

Robinson, P. M. (1989). Nonparametric estimation of time-varying parameters. Springer.

Robinson, P. M. (1991). Time-varying nonlinear regression. In Economic Structural Change: Analysis and

Forecasting, pages 179–190. Springer.

Romano, J. P. and Thombs, L. A. (1996). Inference for autocorrelations under weak assumptions. Journal of

the American Statistical Association.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, pages 461–464.

Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Association, 105(489):218–

235.

Shao, X. and Politis, D. N. (2013). Fixed b subsampling and the block bootstrap: improved confidence sets based

on p-value calibration. Journal of the Royal Statistical Society Series B: Statistical Methodology, 75(1):161–

184.

85



Terasvirta, T. (1998). Modelling economic relationships with smooth transition regressions. Handbook of Applied

Economic Statistics, pages 507–552.

White, H. (2014). Asymptotic theory for econometricians. Academic press.

Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Annals of

Statistics, 14(4):1261–1295.

Zhang, C., Osborn, D. R., and Kim, D. H. (2008). The new keynesian phillips curve: From sticky inflation to

sticky prices. Journal of Money, Credit and Banking, 40(4):667–699.

Zhang, T. and Wu, W. B. (2012). Inference of time-varying regression models. Annals of Statistics, 40(3):1376–

1402.

86


	Introduction
	An Automatic Portmanteau Test for Nonlinear Dependence
	Introduction
	The McLeod and Li Portmanteau Test
	Preliminaries
	Automatic Portmanteau Test
	Residual Portmanteau Test
	Linearity Test

	Simulation Results
	Choice of q
	Level and Power of Tests based on Residuals

	Summary and Conclusion
	Appendix
	Additional Simulation Results For Raw Data
	Proofs


	Testing For Time-Varying Exogeneity: A Bootstrap Approach
	Introduction
	Theory
	The Bootstrap
	Simulation Results
	Empirical Application
	Conclusion
	Appendix
	Robustness Analysis
	Proofs


	Bandwidth Selection for Estimators of Time-Varying Stochastic Coefficient Models
	Introduction
	Model and Estimation
	Data-Driven Bandwidth Selection
	Cross-Validation
	Information Criterion
	Bootstrap

	Monte Carlo Simulations
	Independent, Identically Distributed Errors
	Heteroskedasticity and Serial Correlation
	Overidentification

	Empirical Application
	Conclusion

	Conclusions
	Bibliography

