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Colocations of spatial clusters 
among different industries
Ryo Inoue1   , Shino Shiode2    and Narushige Shiode3*    

Abstract 

Spatial colocation has been studied in many contexts including locations of urban facilities, industry entities and busi-
nesses. However, identifying colocations among a small number of facilities and establishments holds the risk of intro-
ducing false positive in that such a spatial arrangement may have occurred by chance. To account for the association 
between a group of facilities that frequently colocate with each other, this study proposes a two-step approach 
consisting of identifying statistically significant clusters of each facility type using the False Discovery Rate (FDR) 
controlling procedure, and subsequently measuring the colocation of those clusters with the frequent-pattern-
growth (FP-growth) algorithm. Empirical analysis of 6 million business and industrial establishments across Japan 
suggests that 10 out of 86 industry types form clear colocations and their colocations form a multi-layered, cascading 
structure. The number of layers in the multi-layered structure reflect the city size and the strength of the association 
between the colocated clusters of industries. These patterns illustrate the utility of detecting colocation of clusters 
towards understanding the agglomeration of different businesses. The proposed method can be applied to other 
contexts that would benefit from investigations into how different types of spatial features can be linked with each 
other and how they form colocations.

Keywords  Colocation, False discovery rate, Frequent-pattern growth, Industry agglomeration, Spatial clusters

1  Introduction
Detection of spatial clusters usually focuses on identi-
fying concentrations of a single type of spatial feature. 
As the pursuit of spatial clusters is extended to account 
for more than one type of spatial features in the cluster, 
its notion becomes close to that of spatial colocation. 
Huang et  al. (2004) define spatial colocation as “subsets 
of (Boolean) spatial features whose instances are often 
located in close geographic proximity” (Huang et al., 2004, 
p.1472). A typical example of colocation is symbiotic 

animal or plant species, where specific combination of 
species live together. A common framework of spatial 
colocation discovery methods was established in the 
early 2000s (Morimoto, 2001; Shekhar & Chawla, 2003; 
Shekhar & Huang, 2001; Yoo & Bow, 2012; Yoo & Shek-
har, 2004), mainly in the field of computer science, and 
a range of algorithms for extracting spatial colocations 
have been developed since then.

In an urban context, there are many instances where 
a specific group of businesses and industries are located 
close to each other and form a spatial agglomeration pat-
tern. A regular occurrence of the same combination of 
industries is often referred to as colocation and has long 
been studied in the domains of urban geography, eco-
nomic geography and data science. However, current 
definition of colocation allows inclusion of any number 
of facilities for each industry. This could potentially result 
in a situation where one or two cases of an industry that 
is prevalent across the urban space (e.g. a corner news 
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stand or a drug store) may have been frequently discov-
ered in close proximity of other types of facilities and, yet, 
it may be recognised as a case of colocation. Designing a 
framework to ensure the presence of a sufficient number 
of facilities from each industry will help us identify the 
spatial colocation among those industries and, thereby, 
eliminating instances where only few facilities exist in the 
same area as a cluster of another type of facility.

Methods for identifying clusters among multiple types 
of events or facilities have been also limited until recently, 
partly because of the conceptual and computational com-
plexity involved in designing such a method (Huang et al., 
2004; Shekhar & Huang, 2001). To establish a framework 
for extracting spatial colocations between sufficient num-
ber of events and facilities, this study proposes a com-
bined approach between spatial clustering (for amassing 
statistically significant concentration of certain facilities) 
and spatial colocation (that confirms the frequency of the 
colocation patterns between a group of facilities), in the 
hope of identifying the colocated clusters of facilities.

2 � Literature review
2.1 � Spatial cluster detection
Knox (1989) provided a geometrically explicit definition 
of spatial clusters as “a geographically bounded group 
of occurrences of sufficient size and concentration to be 
unlikely to have occurred by chance” (Knox, 1989, p.17). 
The question of whether spatial features are clustered 
in space has drawn a strong attention in many fields of 
research including epidemiology, criminology, geology 
and ecology. Spatial representation of socio-economic, 
physical or ecological phenomena can often be reduced 
to that of simple spatial features, and the interpretation 
of the way in which these features are dispersed or clus-
tered has been explored widely in those fields (Gatrell, 
2002; Lawson, 2006).

Methodologically, a range of cluster detection meth-
ods have been developed so far. The existing range of 
cluster detection techniques can be broadly divided 
into two categories: (1) those that confirm the presence 
of clusters and measure the degree of clustered-ness, 
and (2) those that identify the spatial extent of clusters. 
In other words, methods in the first category examine 
the global tendency to cluster, whereas those in the sec-
ond category exclusively search for the location of local 
clusters (Tango, 1999).

2.1.1 � Global tendency of clusters
The first category of methods can be further divided into 
two sub-groups: aggregate, area-based methods and dis-
aggregate, point-based methods. Aggregate methods 
use the feature counts or rates aggregated to either the 
same-sized area-based units called quadrats, or irregular 

spatial units such as administrative districts. The simplest 
form of areal-based methods is quadrat methods (Boots 
& Getis, 1988; Ripley, 1981) which apply statistical tests 
such as χ2 test to interpret the frequency distribution of 
crime counts. Another popular strand of aggregate meth-
ods is those that use spatial autocorrelation indices at a 
global scale. A range of statistical indices, such as Moran’s 
I, Geary’s C and Getis-Ord G (Getis & Ord, 1992; Moran, 
1948; Ord & Getis, 1995), have been designed to measure 
the level of spatial heterogeneity of an attribute value in 
the form of a correlation coefficient among neighbouring 
spatial units across the study area, thus providing a global 
tendency of a locally aggregated structure of the given 
distribution.

Disaggregate methods have also been well studied, 
especially in the field of point pattern analysis (PPA) 
(Boots & Getis, 1988; Diggle, 2003). PPA has been devel-
oped primarily for measuring the degree of spatial vari-
ation in the distribution of point objects, and also for 
investigating the presence of a statistical anomaly among 
them. A number of methods have been proposed for ana-
lysing such distributions, including distance-based meth-
ods that use the point-to-point distances as an index for 
measuring the degree of point dispersion. They range 
from the nearest-neighbour distance methods (Clark & 
Evans, 1954) and k-nearest neighbours (k-NN) method 
(Cuzick & Edwards, 1990) to Ripley’s K-function method 
(Ripley, 1976, 1981). In epidemiology, hypothesis testing 
for the absence of spatial disease clustering is carried out 
usually with aggregate data, adjusting for an inhomoge-
neous background population. Methods that are com-
monly employed in this process include Besag-Newell’s R 
statistic (Besag & Newell, 1991), the maximizing excess 
events test (Tango, 2000) and the Bonetti-Pagano M sta-
tistic (Bonetti & Pagano, 2005).

2.1.2 � Local clusters
The second category of methods are designed to iden-
tify the location and the extent of clusters themselves 
at a local scale. These methods maintain the capacity to 
provide more detailed information on the spatial char-
acteristics of a given distribution that would meet the 
demands for practical applications in a number of subject 
fields. A range of methods belong to this category includ-
ing the following three types of techniques.

The first strand of methods is characterised by the 
concept of local spatial autocorrelation. As stated ear-
lier, spatial autocorrelation statistics have initially been 
used for measuring the tendency of global clustering. 
However, these statistics were later extended to serve 
as an indicator of local clusters, from which a series of 
local statistical measures were developed. These include 
local Moran’s I (also called LISA – Local Indicators of 
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Spatial Association), local Geary’s C and local Getis-
Ord Gi* and Gi (Anselin, 1995; Getis & Ord, 1992; Ord 
& Getis, 1995), as well as their extension as AMOEBA, 
a method for finding clusters as flexibly combined 
neighbouring areas (Aldstadt & Getis, 2006). These 
statistics help find a set of adjacent areas with similar 
attribute values identified by a spatial correlation coef-
ficient. It shares the same principle with the global indi-
ces discussed earlier, except that the spatial correlation 
coefficient is calculated for each specific location which 
allows us to extract local clusters.

The second group of local cluster methods uses the 
concept of a search window which was originally devel-
oped in spatial epidemiology (Tango, 1999). A search 
window usually takes the form of a circle and is used for 
sweeping exhaustively across the study area to find an 
area with high concentration of events. It allows us to 
count the number of individual observations within the 
search window at each instance and compare them to 
the expected number of counts under the null model to 
find any unusual concentration of events (e.g. Besag & 
Newell, 1991; Diggle & Chetwynd, 1991; Rushton & Lolo-
nis, 1996; Turnbull et al., 1990). The spatial scan statistic 
(Kulldorff, 1997; Kulldorff & Nagarwalla, 1995) shares 
a similar concept, but it is much more widely used as it 
addresses most of the limitations from which the previ-
ous methods have suffered; namely it has (1) the capacity 
to detect cluster size continuously, rather than applying 
search windows of discrete sizes; and (2) offers a control 
for the multiple testing problem. More recently, the spa-
tial scan statistic was extended to the space-time dimen-
sion (Kulldorff et  al., 1998) and to different or more 
flexible shapes of search windows (e.g. Kulldorff, et  al., 
2006; Patil & Taillie, 2004; Shiode & Shiode, 2020, 2022; 
Takahashi et al., 2008; Tango & Takahashi, 2005).

The range of cluster-detection methods discussed so 
far focus on the concentration of a single, specific type 
of feature (e.g. patients of a particular disease; or a single 
species of plant). It is occasionally extended to address 
clusters of two types of features, but the range of meth-
ods for the pair-wise detection of two features are much 
limited than those for a single type of feature. One of 
those that can be extended to two features detection is 
the K-function discussed earlier. It has been extended 
in the form of cross-K-function, which investigates the 
proximity and association between two types of features 
in a cumulative fashion by increasing the search distance 
(Ripley, 1976). Similarly, Moran’s I and its local variant, 
local Moran’s I, are also capable of detecting concen-
trations of two types of features. These extensions are 
known as Bivariate Moran’s I and Bivariate Local Moran’s 
I (Bivariate LISA), and they have been applied in a variety 
of contexts (Anselin et  al., 2002). However, they can be 

only used for measuring the association of the degree of 
concentration between two types of features.

2.2 � Spatial colocation of clusters
Unlike the cluster-detection methods, spatial colocation 
methods are designed to extract a group of features that 
are repeatedly observed as a set across the study area, 
and there is usually no limit to the number of feature 
types they can extract as a unit of colocation. The extent 
of colocation is often represented in the form of an index 
that serves as a metric for quantifying the frequency of 
observing the same set of features. They can be consid-
ered as the colocation equivalent of the early phase in 
cluster detection (i.e. measuring the tendency to colocate 
and confirm the presence of colocated sets). For instance, 
in the field of economic geography, use of the employ-
ment statistics (or the number of employees) aggregated 
by the geographic regions (e.g. states and counties) could 
lead to an industry agglomeration index. It quantifies 
whether and to what extent a group of industries locate 
close to each other (Ellison et al., 2010; Ellison and Gla-
ser, 1997; Duranton & Overman, 2005).

In addition to assessing the overall level of colocation 
in the form of an index, colocation also refers to the iden-
tification of the specific combination of feature types 
that frequently form a colocation. This process requires 
a different strand of methods from those that measure 
the overall intensity of colocation, and they are often cat-
egorised into two classes; namely, the spatial statistics 
approach and the data mining approach (Huang et  al., 
2004). Spatial statistics approach uses spatial correlation 
to characterise the relationship between different types of 
spatial features. Measures of spatial correlation (between 
pairwise events) include the cross-K function used in 
cluster detection and the Pair Correlation Function 
(PCF) (Illian et al., 2008). In this sense, spatial correlation 
methods can be regarded as dual-purpose methods cater-
ing to the needs for spatial cluster detection and spatial 
colocation. Similarly, use of spatial modelling approaches 
for investigating spatial correlation is also considered as 
part of this strand. For instance, using logistic regression, 
Tonkin et al. (2011) investigated cross-crime association 
between a pair of crimes using the inter-crime distance 
and the temporal proximity.

Finding colocation patterns across a large number of 
features can be computationally expensive, and it was 
only in recent years that data mining approaches saw 
much development—specifically, their application to 
regional-level and larger datasets were only made pos-
sible after high computational power became affordable 
and suitable data-mining methods were developed. These 
approaches mainly consist of the area-based (aggre-
gate) approaches and the distance-based (disaggregate) 
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approaches. Here, we can draw parallels to the catego-
risation of the spatial clustering methods as discussed 
above. Majority of the methods belong to the distance-
based approaches, where two or more spatial objects are 
considered as neighbours if the distances between them 
are no greater than a given distance threshold. The effort 
to identify colocations using distance-based mining tech-
niques have been extended in several different directions 
including the space–time analysis of colocated features 
(Celik, 2015), colocation of fuzzy objects (Ouyang et al., 
2017; Wang et  al., 2022), and measurement of coloca-
tions using the network distance (Morioka et al., 2022a, 
2022b, 2022c). Others have also looked into changing 
the ways in which colocations are measured, and these 
include generalised methods with some of the paramet-
ric constraints in colocation detection being relaxed (Yoo 
& Bow, 2012), and local demarcation of the colocation 
regions or the colocation equivalent of the local cluster-
detection analysis (Deng et al., 2017).

The series of distance-based colocation methods that 
process disaggregate individual spatial features have 
also been met by some challenges: (1) They require a set 
of threshold distance to be determined a priori and this 
value often need to be identified in an exploratory fash-
ion; (2) the sheer computational load of colocation cal-
culation means that, usually, only a small sets of features 
are selected as a target colocation set; and (3) the risks 
of false positives and management of the random noise, 
where the algorithm may report colocations even if the 
features are randomly distributed (Barua & Sander, 2014).

To resolve the issues around scalability and to enable 
detection of large colocations (e.g. a colocation of 100 dif-
ferent feature types), several effective search algorithms 
have been proposed for rapidly reducing the number of 
candidate feature sets, e.g. frequent pattern (FP)-growth 
algorithm (Han et  al., 2000; Yoo & Shekhar, 2006; Xiao 
et al., 2008) and, more generally, to alleviate the exponen-
tial computational load from searching through larger 
datasets (Celik, 2015; Yoo & Bow, 2012).

These challenges bring us back to the point made earlier 
in that colocations do not always indicate concentrated fea-
tures (i.e. spatial clusters), as the focus of colocation analysis 

is on the combination and variety represented by the set of 
colocated features; whilst clustering analysis focuses on the 
degree of concentration of features. Figure  1 shows illus-
trative examples of colocations and clusters between two 
types of features. Figure  1(a) illustrates a scenario where 
two features form separate clusters respectively and these 
are not colocated, while Fig. 1(b) shows a case where colo-
cations are observed across the study area but no clusters 
exist, and Fig. 1(c) highlighting a case of colocated clusters. 
While it is useful to improve on the efficiency of algorithms 
for colocation detection, in terms of the utilities of coloca-
tion detection in the real-world context, we may encounter 
situations where we would like to find the type of coloca-
tions in Fig. 1(c); i.e. colocations of features, each of which 
has some concentrations.

These could range from the types and the volume 
of crimes recorded in heavily problematic areas (Shi-
ode et  al.,  2023), to areas in need of imminent medi-
cal attentions (e.g. areas suffering from outbreaks of 
several different types of epidemics). They require 
accurate detection of the types of features that are sit-
uated closely together and in mass to identify highly-
problematic situations. Areas in which a certain level of 
aggregations (i.e. clusters) are found, or where “group of 
occurrences of sufficient size and concentration” (Knox, 
1989) and “subsets of spatial events whose instances 
are often located in close geographic proximity” (Shek-
har & Huang, 2001) all refer to situations that demand 
the spatial colocation of clusters of features. To find 
such colocations, we will take an area-based data min-
ing method, rather than a distance-based method, as it 
helps relieve the computational cost issues by sparing 
the process of searching across each individual point, 
and the random noise can be also controlled by aggre-
gating everything into areal units.

Given these backgrounds, this study will propose a 
method for detecting spatially colocated clusters that 
could fit many real-world applications. It proposes a 
method that comprises two steps: (1) spatial cluster 
detection of each type of features for detecting clusters 
or hotspots of the respective feature, and (2) coloca-
tion extraction for identifying the colocation between 

Fig. 1  Illustrative examples of spatial clusters and spatial colocations, (a) non-colocated clusters, (b) non-clustered colocation, (c) colocated clusters
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the clusters of different types of features. As detailed 
below, the first step (cluster detection) uses the False 
Discovery Rate (FDR)-controlling statistical test, which 
can alleviate multiple testing problems; and the second 
step (colocation searches) adopts frequent pattern (FP)-
growth algorithm (Han et  al., 2000), one of the fastest 
mining algorithms for frequent patterns. The choice of 
these methods was based on their overall performance 
and prevalence in their respective domain. Their perfor-
mance was not rigorously benchmarked and compared 
with alternative methods, as a number of existing studies 
have pursued the topic of efficiency already. They should 
still offer a sufficient level of efficiency that enables us to 
focus on the aim of our study, which is to derive coloca-
tions of clusters through the two-step approach.

3 � Methodology
3.1 � Spatial cluster detection using the False Discovery 

Rate (FDR) controlling method
The first step of the colocated clusters analysis is to 
detect spatial clusters. Of the two broad categories of 
cluster detection methods, it belongs to the second 
group of methods that seeks the location of local clus-
ters (i.e. a local method), as opposed to those that exam-
ine the global tendency to cluster (i.e. a global method). 
Within the group of local methods, arguably the most 
widely used strand of methods is the scan statistic-type 
approach, which was systematised by Kulldorff and 
Nagarwalla (1995) as a search-window-type method. It 
identifies statistically significant concentration of events 
by creating a search window around the centroid of each 
spatial region and changing the radius of the window 
continuously to take any value between zero and a prede-
termined upper limit (Duczmal & Assunção, 2004). Using 
the likelihood ratio test, the scan statistic detects spatial 
regions where the underlying event occurrence rates are 
significantly higher inside the window than those outside.

The spatial scan statistic and its variants are indeed 
widely used for cluster detection. However, there is a 
limitation against detecting multiple clusters, since the 
alternative hypothesis assumes the presence of a sin-
gle cluster. While it is technically possible to detect the 
secondary and other clusters by removing the clusters 
already detected, the limitation imposed on multiple 
cluster detection makes it difficult to use spatial scan 
statistic-based cluster detection for the situations of this 
study when simultaneous detection of a large number of 
clusters is expected.

To address this issue, two approaches have been pro-
posed: namely, (1) an extension of spatial scan statistic 
(Mori & Smith, 2010), and (2) a cluster detection method 
based on the FDR-controlling procedure (Benjamini 
& Hochberg, 1995; Brunsdon & Charlton, 2011). The 

former offers multiple cluster variants of the spatial scan 
statistic using the Bayesian Information Criterion (BIC) 
(Mori & Smith, 2010). This method formulates cluster 
schemes to identify multiple cluster candidates, estimate 
the density parameters for all candidates in each clus-
ter scheme based on the point distribution assumption, 
and calculate the BICs. After the cluster scheme with 
the maximum BIC is selected, its significance is tested 
through the Monte-Carlo simulation. While the model 
selection by the BIC accounts for multiple clusters and 
their locations, its search procedure is directly affected by 
the numbers of possible cluster schemes, and it may take 
long time to detect clusters in small area analysis.

The latter uses the FDR-controlling procedure for 
detecting clusters (Brunsdon & Charlton, 2011). First 
introduced to the geographic context by Caldas de Castro 
and Singer (2006), the FDR-controlling procedure offers 
a robust statistical method for detecting multiple clusters 
whilst avoiding multiple testing problems (Brunsdon & 
Charlton, 2011). It also holds a greater statistical power 
than the family-wise error rate controlling methods, 
namely the approaches traditionally used for multiple 
testing (e.g., Holm, 1979). The FDR-controlling proce-
dure may be summarized as follows. Let us consider the 
case where m hypotheses are tested, and R null hypoth-
eses are to be rejected (Table  1). The multiple testing 
increases the type I error occurrence (V) by chance. Ben-
jamini and Hochberg (1995) defined the FDR as an index 
of false discoveries as follows:

and proposed an FDR-controlling procedure that keeps 
the FDR less than a predetermined significance level α. 
The cluster detection method developed by Brunsdon 
and Charlton (2011) exploits the FDR-controlling proce-
dure for configuring a set of alternative hypotheses that 
each region is a cluster, and rejecting the null hypotheses. 
This study will adopt this procedure in the cluster detec-
tion stage of the analysis.

Suppose that features within each feature type can be 
treated as point objects and that the number of these 
features is aggregated by the regional area unit in which 
they are contained (e.g. census tracts). Then, the search 

(1)FDR = E(V /R), (FDR = 0, ifR = 0)

Table 1  m number of hypotheses tests

Rejected null 
hypothesis

Retained null 
hypothesis

Total

Null hypothesis is true V U m0

Alternative hypothesis is true S T m – m0

Total R m – R m
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for the clusters of each feature type would be conducted 
by counting these point data. Let G denote the entire 
study area and suppose that G consist of a finite number 
of subregions. Let Z denote one of the subregions in G, 
ZC a complement region of Z in G, nZ and nZC the count 
of point features in Z and ZC respectively; and aZ and 
aZC the size of Z and ZC, respectively. The sizes of regions 
could be defined by their respective areas or the number 
of features of all feature types in each region. Here, we 
assume that the spatial distributions of points in Z and 
ZC conform to the Poisson distributions in which the 
point counts within each region are proportional to the 
sizes of the regions. Then,

where �Z and �ZC are the parameters of the Poisson dis-
tributions in Z and ZC, respectively. The alternative 
hypothesis, which considers that points are clustered in 
Z, is

and its null hypothesis is

Suppose that the number of points observed in G 
was N. Then, nZ conforms to the following binomial 
distribution:

If the null hypothesis was true,

Then, the p-value of the null hypothesis of Z, pz is

The p-values of the null hypotheses of all subregions in 
G are calculated, and these hypotheses are tested by the 
B–H procedure (Benjamini & Hochberg, 1995), a statisti-
cal test based on the FDR-controlling procedure.

3.2 � Extracting colocation patterns
The second stage of our methodology focuses on the 
extraction of specific combinations of feature types that 
are forming spatial colocations across the study area. As 
described before, the analysis uses the locations of clus-
ters detected for each feature type to extract the combi-
nations of features. If the clusters of feature types A, B, 

(2)nZ/aZ ∼ Poisson(�Z), nZC /aZC ∼ Poisson(�ZC )

(3)H1|�Z > �ZC

(4)H0|�Z = �ZC

(5)nZ ∼ Bi N ,
aZ�Z

aZ�Z + aZC�ZC

(6)nZ ∼ Bi

(

N ,
aZ

aZ + aZC

)

(7)pZ =

N
∑

i=nz

(

N
i

)(

aZ

aZ + aZC

)i( aZC

aZ + aZC

)N−i

and C are colocated in many regions, this combination is 
considered as a colocation pattern. To extract such pat-
terns, this study uses a frequent-pattern-growth algorithm 
(Agrawal & Srikant, 1994; Han, et  al. 2000). The FP-
growth algorithm is run by constructing a frequent pat-
tern tree (FP-tree). The fact that the FP-tree can be built 
from a single scan of the data and can be also processed in 
parallel for improving the performance makes it particu-
larly efficient for mining frequent sets in large datasets. 
It is commonly applied in market research for analys-
ing the consumer purchase behaviour, namely exploring 
which combinations of items are bought together. Fre-
quent pattern mining distinguishes the frequent pattern 
by support, that is, the count of a combination of features. 
If the frequency of an observed combination of features 
reaches or exceed a predetermined threshold (hereafter 
called the minimum support) it will be extracted as one of 
the frequent patterns; i.e. a colocation.

Suppose that Table  2 represents results of cluster 
detection. Geographical clusters of four feature types, 
A, B, C and D, are located across Regions I-V. The sup-
port of feature type A is 60%, as clusters of feature type 
A are located in three regions, namely regions I, III, and 
V, whereas the total number of regions is five. Similarly, 
the support of pattern {A, B, C} is 40%, as it is found in 
regions III and V. When the minimum support is set to 
40%, nine patterns, {A}, {B}, {C}, {D}, {A, B}, {A, C}, {B, C}, 
{A, D}, {A, B, C}, are extracted from the spatial distribu-
tion of the clusters.

As the numbers of feature types and regions increase, 
the search for frequent patterns becomes time consum-
ing. Several algorithms have been proposed to overcome 
this problem, and this study utilises the FP-growth algo-
rithm (Han et al., 2000), which is one of the most efficient 
pattern-mining algorithms.

4 � Analysis
4.1 � Dataset
To test the proposed methodology and to gain insights 
into any hidden patterns of colocation, we used location 
data of industries and businesses in Japan as a case study. 
The study of the geographic concentration of industries 
has attracted many researchers in geography and spatial 

Table 2  Example of spatial distribution of clusters

Regions Clustered industries

I A, D

II B

III A, B, C

IV φ

V A, B, C, D
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economics. The colocation of specific combination of 
industry types, namely the phenomenon wherein offices 
and factories of related businesses are located near one 
another, is a key issue that could unravel the mechanisms 
of geographic concentration of industries. Various theo-
ries have been proposed to explain these mechanisms, 
demonstrated by relevant empirical studies (e.g., Ellison 
& Glaeser, 1999; Ellison et al., 2010).

The 2012 Economic Census for Business Frame of 
Japan is a statistical dataset that covers the entire records 
of establishments and enterprises in Japan. The small-
est spatial unit available for this data is a 500-m grid cell, 
which we will use as a unit of analysis in this study, i.e. 
the number of establishments of each industry type is 
aggregated by the 500-m grid cells. We adopt the small-
est available spatial unit, because certain types of retails 
and the service sector in Japan tend to show dense but 
compact concentrations around train stations and other 
points of interest, they cannot be detected clearly unless 
we apply a high resolution, or a sufficiently small spatial 
granularity. The industries are classified into 16 main cat-
egories, which are sub-divided into 86 sub-categories as 
per the Japan Standard Industrial Classification (please 
refer to the Appendix for a complete list of main catego-
ries and sub-categories). Although we need 1,515,129 of 
the 500-m grid cells to cover the entire extent of Japan, 
the dataset contains records from only 336,646 grid cells 
wherein at least one enterprise is located. It is important 
to note that this is a zero-truncated dataset. The numbers 
of establishments are 6,009,389. To confirm the valid-
ity of the method, a simulation test was conducted with 
this dataset whereby the same number of facilities for 
each respective industry were randomly reassigned to 
the 1.5 million grid cells and were tested for colocations. 
Results showed very few clustered colocations as would 
be expected from a randomised pattern.

4.2 � Detecting clusters of each industry
Cluster detection was carried out under the condition 
that the FDR value remains below the significance level 
α = 0.01. The analysis was carried out using our original 
code developed on a C +  + compiler platform. Clusters of 
each industry type were determined by the density of the 
respective establishments within each grid square. A total 
of 26,059 grid cells contained at least one industrial clus-
ter, amounting to 1.7% of the total grid cells in Japan and 
7.7% of grid cells with at least one industry. Table 3 shows 
the top ten industries that appeared most frequently as 
part of colocated clusters.

Looking across the main categories in Table 3, we see 
2 types of retail industries (I: Retail trades, and M: Res-
taurants/diner), which are subdivided further into 4 sub-
categories: I-57 – Retail Trade (dry goods, apparel); I-58 
– Retail trade (food, beverage); I-60 – Retail trade (mis-
cellaneous); and M-76 – Eating and drinking places). In 
fact, one of the defining characteristics of industrial colo-
cation in Japan is that they tend to form clusters of small 
retail stores, followed by laundry/dry cleaning and hair 
salon. In terms of public facilities, post offices and health 
clinics appeared frequently.

Figure  2 shows an example of detecting clusters of 
“Miscellaneous retail trade (code 60)” around the greater 
Tokyo region. We chose to illustrate this example, as 
they returned the highest number of detected clusters. 
Figure 2(a) shows the density of the miscellaneous retail 
trade establishments. Overall, it is very high in the Tokyo 
region with many areas hosting over 200 of miscellane-
ous retail trades (including furniture, books, drugs and 
cosmetics, stationery, tobacco, musical instruments, 
watches). Figure  2(b) shows the grid cells with clusters 
detected with the FDR. Clearly, areas with high-density 
of retail establishments are detected as clusters (around 
20% of the grids in the area).

Table 3  Top 10 industries whose clusters appear most frequently in areas of industry colocations

Main Categories Sub-Categories Categories of industries # Clusters in 
colocations

I 60 Miscellaneous retail trade 7,569

M 76 Eating and drinking places 7,563

N 78 Laundry, beauty, and bath services 7,431

I 58 Retail trade (food and beverage) 7,116

K 69 Real estate lessors and managers 5,452

P 83 Medical and other health services 4,423

H 49 Postal activities, including mail delivery 3,682

D 7 Construction work by specialist contractor, except equipment installation work 2,545

I 57 Retail trade (dry goods, apparel, and apparel accessories) 2,545

D 6 Construction work (general), including public and private construction work 2,441
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4.3 � Extracting colocation patterns of clusters of industries
Finally, we measured and extracted the colocation pat-
terns among the clusters of various retail and industry 
establishments using FP-growth algorithm. Colocation 
method was also developed as a C +  + programme and 
was executed in a C +  + compiler. The minimum sup-
port was set as 1% of the number of grid cells having 
at least one industrial cluster, namely 26,059 grid cells 
in this case. In other words, a series of combinations of 
industry clusters were extracted as colocated clusters 
if more than 260 instances of such combination were 
observed. The total number of extracted patterns of clus-
tered industry colocation was 24,870 cases. The sheer 
volume of colocation patterns detected made it difficult 
to add a meaningful interpretation for every combina-
tion of detected colocation of industry clusters. For this 
reason, we focused on the most frequent combinations 
that appeared at each colocation size. Table 4 shows the 
list of most frequently appearing combinations of indus-
try clusters by sub-categories for each respective size of 
colocation, ranging from the smallest possible combina-
tion between a pair of industry types to the largest com-
bination of 10 industry types. Highlighted industry types 
denote their first appearance in the table. The purpose 
of producing this table is to identify the most compre-
hensive set of colocated clusters by eliminating the less 
frequent duplicates of colocations from the entire set of 
colocations detected.

Of these colocations, Retail trade (food and beverage) 
(Code 58), Miscellaneous retail trade (Code 60), Eating 
and drinking places (Code 76), and Laundry, beauty and 
bath services (Code 78) came up as the industry types 
that form colocations of clusters most frequently. The 
first three are typical examples of the food services and 
retail industry which prevail across the greater Tokyo 
region. The fourth industry is a hair and beauty service 
that has some strong ties with the food services/retails. 
Given their frequent and tightly-knit colocation pattern, 
we will call the set of these four industry types the pri-
mary group of industries, in that they are closely related 
to people’s daily life regardless of the size of the city. The 
next layer of industries are perhaps less frequently colo-
cated but are nonetheless essential to our daily activities, 
and these include medical, health, and education related 
services. The tertiary layer industries include other retail, 
real estate agencies, amusement services, professional, 
technical and other miscellaneous services. Industries in 
this group may not be vital to maintaining our daily life 
but are frequently used and can be found in a medium-
sized or a larger town. Figure 3 summarises the multi-lay-
ered pattern between the primary, the secondary and the 
tertiary colocations of clusters of industries.

Comparing Tables 3 and 4 makes us aware that clusters 
tend to occur in some but not all areas, and they do not 
necessarily form colocations. These anomalies include 
construction companies (Codes 6 and 7), and the Postal 

(a) (b)
Fig. 2  Clusters of miscellaneous retail trade based on the number of establishments: (a) density of the facilities, and (b) detected clusters
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Services (Code 49). It shows that clusters are frequently 
formed in a range of places (Table  3), but they do not 
always colocate, which could mean that there are no 
tangible benefits for these facilities to agglomerate with 
other types of industry. The analysis also revealed that 
there are some industries that do not colocate with any 
other industries (Table 5). Most of them are in the man-
ufacturing domain (Main Category E), some of which 

require wide space to load and unload materials; and to 
establish an enterprise (Main Category R).

One of these non-colocating industries “Manufacture 
of food (Code 9)” is mapped in Fig.  4. The difference 
between this and “Miscellaneous retail trade (Code 60)” 
(Fig.  2) is obvious in that Manufacture of food shows 
clusters in a few specific places whereas miscellaneous 
retail trade is much more widely spread.

Table 4  The most representative colocations of industry clusters for each colocation size

Fig. 3  An illustrative diagram showing the multi-layered structure of industry cluster colocations

Table 5  Industries that do not colocate with other industries

Main category Sub-category Category of industries

E 9 Manufacture of food

E 13 Manufacture of furniture and fixtures

E 21 Manufacture of ceramic, stone and clay products

E 32 Miscellaneous manufacturing industries

H 43 Road passenger transport

H 48 Services incidental to transport

R 89 Automobile maintenance services

R 90 Machine, etc. repair services, except otherwise classified
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4.4 � Sensitivity of the clustered colocations
As with all statistical procedures, sensitivity of the cluster 
detection and the colocation frequency is determined by 
the significance level of the FDR-controlling procedure 
and the minimum support level of the frequent pattern-
ing mining. The above study was conducted with the con-
ditions that the FDR value remains below the significance 
level α = 0.01, and the minimum support at 1% of all grids 
that contain a valid cluster. To assess the sensitivity of the 
outcomes, we also carried out the same analysis using 
different combinations of the significance level and mini-
mum support, as illustrated in Table 6.

These results confirm that the overall results are stable. 
Change in the significance level of FDR generally affects 
the frequency of the largest set of colocated industries 
being detected (item b in Table 6). Interestingly, depend-
ing on the significance level of the FDR control, the com-
bination of industries comprising the most frequent, 
largest set varies slightly. This variation in the member-
ship of the colocation clusters is nonetheless minimum, 
and those omitted from the list tend to return as a com-
ponent of the second or the third most frequent set of 
the largest set of colocation (item d in Table 6 shows the 
number of different combinations of industries detected 
with the largest set of colocation for the respective min-
imum-support level). It shows that the outcomes remain 
robust, but they are also subject to the sensitivity of the 
significance level. Change in the minimum support of 

FP-growth truncates the largest colocated set (item a 
in Table 6, with the specific industries shown in item c). 
Naturally, a tighter constraint on the frequency would 
reduce the size of the largest set of colocated industries 
and, thereby, the results in extracting a subset of that set. 
Given these outcomes, the method can be considered to 
offer robust outcomes where the core set of colocations 
are consistent regardless of the threshold values for sig-
nificance, and the only variations arises when the most 
frequent combinations are extracted for different permu-
tation of the thresholds.

5 � Discussion
Outcomes from the analysis demonstrate that the pro-
posed method has the following advantages over its 
existing counterparts. First, it offers a much clearer rep-
resentation of colocation. As our method uses clusters 
of point features as the unit of colocation, rather than 
individual point features for identifying colocations, it 
prevents the detection of by-chance colocations whilst 
also facilitating clearer representation and interpretation 
of their colocation patterns. Empirical analysis investi-
gated over 6 million industry location data in Japan for 
the formation of clusters by 86 industry types aggre-
gated to 500  m-square grid units. Results suggest that 
part of the industry form clear cluster colocations that 
have a multi-layered structure (Fig.  3 and Table  4). The 
proximity between the colocated clusters of industries is 

(a) (b)
Fig. 4  Cluster mapping of Manufacture of food (Code 9): (a) clusters by the density distribution, and (b) detected clusters
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considered as a product of either some form of interac-
tion (cooperative or competitive) among them, a shared 
customer base, or a common underlying factor such as 
the need to service a small community in the area. The 
multi-layered structure of the industry colocated clus-
ters seems to reflect the scale and the structure of urban 
hierarchy in that small-sized colocations of the primary 
layer appear more frequently, including those embedded 
within small communities but they are likely to attract 
only local customers, whereas the larger-sized coloca-
tions across multi-layered structure would appeal to a 
larger community or a city and can be sustained by the 
larger customer base. Figure 5 compares the outcomes of 
cluster colocation analysis for different colocation sizes, 
ranging from a compact but frequent colocation between 
two types of industries to a larger but less common colo-
cations between 10 industries, which respectively reflect 
the different layers of urban hierarchical structure.

The multi-layered structure derived in this study, along 
with the specific combinations of industry types detected 
at different colocation size, offers interesting insights into 
the relationship between the industries in Japan that were 
identified as forming colocations with one another. At 
the same time, these insights could well be unique to the 
situation in Japan and findings may not be directly appli-
cable in the context of other countries and regions, as 
the local industry structures and urban dynamics tend to 
reflect their own economical, cultural and environmental 

conditions. While this presents a limitation of this study, 
the proposed methodology itself is transferrable and can 
be applied for discovering colocated clusters in other 
study areas. Most of the existing studies on spatial coloca-
tion focus on the algorithmic improvements, which is an 
important area of progress, but they tend not to investi-
gate the colocations discovered (e.g. look into their context 
or their geographical distributions). Such pursuit would 
give us a clue for a better understanding of the urban and 
regional structure, and characterisation of the areas. In 
this sense, this study not only proposed a method but also 
investigated what the discovered colocations tell us.

Another limitation is the arbitrary nature of the choice 
of the threshold value for assessing the frequency of 
colocation. While it may not cause a significant impact 
on the detection of highly frequent colocations, it could 
affect the detection of less frequent colocations. Too few 
detection would mean truncating too much information, 
while too many detection could mean that not all data is 
meaningful. The larger the dataset, the more difficult it 
becomes to interpret the less frequent patterns of colo-
cation. In other words, the method extracts the clustered 
colocations that are frequent and strong, while the ones 
that are eliminated in the process are less frequent and 
would not help interpret the association between the 
colocated industries.

Thirdly, our proposed method uses aggregated areal 
data, which is subject to the modifiable area unit 

Table 6  Sensitivity of cluster colocations

where

a: Number of industries in the most frequent, largest set of colocated industries,

b: Number of frequency for the most frequent, largest set of colocated industries,

c: The set of industries comprising the most frequent, largest set of colocated industries, and

d: Number of all observed combinations of the largest set of colocated industries
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problem. In other words, the results would be affected if 
we changed the areal units used for data aggregation. The 
outcome of the analysis would be determined by what 
spatial granularity was used. As the aim of this study 

was to investigate local colocation of clusters at the com-
munity level, the 500m grid mesh seemed to be a logical 
choice. However, depending on the scale of the analysis, 
another unit of analysis may suit better.

(a) (b)

(c) (d)
Fig. 5  Location of most frequently colocated clusters of industries between: (a) 2 types of industries; (b) 5 types of industries; (c) 7 types 
of industries, and (d) 10 types of industries
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Finally, this study does not account for the weight 
of individual facility and, instead, extracts the clus-
ters and colocations by the volume of facilities only. A 
non-weighted extraction is useful for processing a large 
volume of data with a range of possible combinations 
between different entities, it is ill suited for specific, unu-
sual cases where a single significant facility (e.g. a railway 
terminal station, a large football stadium or an upmar-
ket department store attracting food outlets, retail and 
service industry to its vicinity). While such a significant 
facility will likely attract multiple industry types and form 
a sufficient cluster colocation to be extracted with the 
current setting of our method, assigning a large weight 
value to a significant facility could help clarify the cause 
for multiple industries to concentrate. It would be one of 
our future research directions.

6 � Conclusion
This study proposed a new approach for identifying 
spatial colocations of the concentration of geographic 
features in the form of detecting the colocation of 
clusters (i.e. clusters of clusters) among point-type 
features. The proposed approach can (1) detect multi-
ple clusters whilst avoiding multiple testing problems; 
(2) detect colocation of clustered features, which 
would lead to a variety of applications in the real 
world; and (3) be applied to large data sets because of 
an area-based approach (rather than distance-based 
approach).

As discussed in the above, the empirical analysis 
encompassing over 6 million industry locations in Japan 
helped illustrate the formation of colocated clusters in 
a multi-layered structure (Fig.  3 and Table  4). To our 
knowledge, a systematic extraction of the association 
between colocated industry clusters remain understud-
ied. In this sense, we believe the diagram (Fig. 3) offers a 
novel contribution that captures the hierarchy of indus-
trial activities and their agglomeration, akin to the clas-
sic urban hierarchy of Christaller’s central place theory 
(Christaller, 1933; Openshaw & Veneris, 2003). It opens 
up an avenue for future research to establish a wider 
understanding on how different industries form colo-
cated clusters across different scales, and how that would 
link to the notion of urban hierarchies.

In terms the application in other contexts, the pro-
posed method may offer insights into the colocations of 
event-type features that change over time, rather than the 
static features such as the ones addressed in this study. 
This includes the colocation of crime incidents of differ-
ent types. It is known that some crime types are spatially 
associated with some other crime types. By having more 
detailed information on which combinations of crime 
types tend to form colocations, we can better understand 

the associations between different crime types. Another 
possible application is the colocation of diseases. Many 
studies investigate clusters of a single type of diseases, 
but many areas in the world may suffer from differ-
ent types of diseases. Colocation patterns that can be 
extracted from a large data set will give a wealth of new 
information that is otherwise difficult to obtain, includ-
ing the common underlying ground that causes a specific 
set of diseases, and it may help predict what kind of dis-
eases will likely happen (or their spatial diffusion in the 
future) in a specific area.

Finally, the methodology proposed here can also be 
used for comparative analysis of different colocation 
types across different regions and nations. The fun-
damental interest in such a study would be to unravel 
what makes difference in colocation patterns and more 
broadly how these colocations develop over time, and 
in this sense, this type of colocation study constitutes a 
background exploration on the areal structure. To gain a 
solid understanding on this point, the inquiries may ben-
efit from colocation pattern analysis from multiple time 
points.

Appendix
 The following list shows the main categories (denoted by 
the alphabets) and the sub-categories (denoted by numeric 
codes) of Japan Standard Industrial Classification.

	III.	 Mining and Quarrying of Stone and Gravel
	 5 Mining and quarrying of stone and gravel

	IV.	 Construction
	 6 Construction work, general including public and 

private construction work
	 7 Construction work by specialist contractor, except 

equipment installation work
	 8 Equipment installation work

	V.	 Manufacturing
	 9 Manufacture of food
	 10 Manufacture of beverages, tobacco and feed
	 11 Manufacture of textile mill products
	 12 Manufacture of lumber and wood products, 

except furniture
	 13 Manufacture of furniture and fixtures
	 14 Manufacture of pulp, paper and paper products
	 15 Printing and allied industries
	 16 Manufacture of chemical and allied products
	 17 Manufacture of petroleum and coal products
	 18 Manufacture of plastic products, except otherwise 

classified
	 19 Manufacture of rubber products
	 20 Manufacture of leather tanning, leather products 

and fur skins
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	 21 Manufacture of ceramic, stone and clay products
	 22 Manufacture of iron and steel
	 23 Manufacture of non-ferrous metals and products
	 24 Manufacture of fabricated metal products
	 25 Manufacture of general-purpose machinery
	 26 Manufacture of production machinery
	 27 Manufacture of business oriented machinery
	 28 Electronic parts, devices and electronic circuits
	 29 Manufacture of electrical machinery, equipment 

and supplies
	 30 Manufacture of information and communica-

tion electronics equipment
	 31 Manufacture of transportation equipment
	 32 Miscellaneous manufacturing industries

	VI.	 Electricity, Gas, Heat Supply and Water
	 33 Production, transmission and distribution of 

electricity
	 34 Production and distribution of gas
	 35 Heat supply
	 36 Collection, purification and distribution of water, 

and sewage collection, processing and disposal
	VII.	 Information and Communications

	 37 Communications
	 38 Broadcasting
	 39 Information services
	 40 Internet based services
	 41 Video picture, sound information, character 

information production and distribution
	VIII.	Transport and Postal Activities

	 42 Railway transport
	 43 Road passenger transport
	 44 Road freight transport
	 45 Water transport
	 46 Air transport
	 47 Warehousing
	 48 Services incidental to transport
	 49 Postal activities, including mail delivery

	IX.	 Wholesale and Retail Trade
	 50 Wholesale trade, general merchandise
	 51 Wholesale trade (textile and apparel)
	 52 Wholesale trade (food and beverages)
	 53 Wholesale trade (building materials, minerals 

and metals, etc)
	 54 Wholesale trade (machinery and equipment)
	 55 Miscellaneous wholesale trade
	 56 Retail trade, general merchandise
	 57 Retail trade (dry goods, apparel and apparel 

accessories)
	 58 Retail trade (food and beverage)
	 59 Machinery and equipment
	 60 Miscellaneous retail trade

	X.	 Finance and Insurance
	 62 Banking

	 63 Financial institutions for cooperative organiza-
tions

	XI.	 Real Estate and Goods Rental and Leasing
	 68 Real estate agencies
	 69 Real estate lessors and managers
	 70 Goods rental and leasing

	XII.	 Scientific Research, Professional and Technical Ser-
vices

	 71 Scientific research and development institutes
	 72 Professional services, n.e.c.
	 73 Advertising
	 74 Technical services, n.e.c.

	XIII.	Accommodations, Eating and Drinking Services
	 75 Accommodations
	 76 Eating and drinking places
	 77 Food tale out and delivery services

	XIV.	Living-Related and Personal Services and Amuse-
ment Services

	 78 Laundry, beauty and bath services
	 79 Miscellaneous living-related and personal services
	 80 Services for amusement and hobbies

	XV.	 Education, Learning Support
	 81 School education
	 82 Miscellaneous education, learning support

	XVI.	Medical, Health Care and Welfare
	 83 Medical and other health services
	 84 Public health and hygiene
	 85 Social insurance and social welfare

	XVII.	 Compound Services
	 86 Postal services
	 87 Cooperative associations, n.e.c.

	XVIII.	Services, n.e.c.
	 88 Waste disposal business
	 89 Automobile maintenance services
	 90 Machine, etc. repair services, except other-

wise classified
	 91 Employment and worker dispatching services
	 92 Miscellaneous business services
	 93 Political, business and cultural organizations
	 94 Religion
	 95 Miscellaneous services

The following main categories and sub-categories have 
been excluded from this list:

Main categories —“A. Agriculture and Forestry,”, “B. 
Fisheries,” “L. Scientific Research, Professional and Tech-
nical Services,” and “S. Government, Except Elsewhere 
Classified;” and

Sub-categories—“61. Nonstore retailers,” “64. Nonde-
posit money corporations, including lending and credit 
card business,” “65. Financial products transaction deal-
ers and futures commodity transaction dealers,” “66. 
Financial auxiliaries,” and “67. Insurance institutions, 
including insurance agents, brokers and services.”
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