
BIROn - Birkbeck Institutional Research Online

Bei, H. and Wang, Q. and Wang, Y. and Wang, W. and Murcio
Villanueva, Roberto (2023) Optimal reinsurance–investment strategy based
on stochastic volatility and the Stochastic Interest Rate Model. Axioms , ISSN
2075-1680.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/52172/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/52172/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Citation: Bei, H.; Wang, Q.; Wang, Y.;

Wang, W.; Murcio, R. Optimal

Reinsurance–Investment Strategy

Based on Stochastic Volatility and the

Stochastic Interest Rate Model.

Axioms 2023, 12, 736. https://

doi.org/10.3390/axioms12080736

Academic Editors: Miljan Kovačević
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Abstract: This paper studies insurance companies’ optimal reinsurance–investment strategy under
the stochastic interest rate and stochastic volatility model, taking the HARA utility function as
the optimal criterion. It uses arithmetic Brownian motion as a diffusion approximation of the
insurer’s surplus process and the variance premium principle to calculate premiums. In this paper,
we assume that insurance companies can invest in risk-free assets, risky assets, and zero-coupon
bonds, where the Cox–Ingersoll–Ross model describes the dynamic change in stochastic interest
rates and the Heston model describes the price process of risky assets. The analytic solution of
the optimal reinsurance–investment strategy is deduced by employing related methods from the
stochastic optimal control theory, the stochastic analysis theory, and the dynamic programming
principle. Finally, the influence of model parameters on the optimal reinsurance–investment strategy
is illustrated using numerical examples.

Keywords: Cox–Ingersoll–Ross model; Heston model; variance premium principle; HARA utility

1. Introduction

Insurance companies face significant risks in the financial market due to the high
volume of insurance claims. Consequently, risk avoidance and management become
paramount for these companies. Recently, reinsurance has emerged as an effective tool
for risk management, garnering considerable attention in the insurance industry. When
confronted with overwhelming claims, insurance companies transfer a portion of the risk
to a reinsurer, relieving their burden. Simultaneously, they invest the premiums received to
enhance their ability to make repayments, ensuring the smooth operation of their insurance
business. This strategic approach significantly boosts their net profit while maintaining
a delicate balance between profitability and risk. Therefore, the selection of an optimal
reinsurance–investment strategy holds immense importance for insurance companies.

Several examples of the results of stochastic differential equations are applied to
optimal control problems. Święch [1] proved the optimality inequalities of dynamic pro-
gramming for viscosity sub- and super-solutions of the associated Bellman–Isaacs equations,
where the value functions are the unique viscosity solutions of the Bellman–Isaacs equa-
tions and satisfy the principle of dynamic programming. Soner and Touzi [2] introduced
a new dynamic programming principle for optimal stochastic control problems. They
proved that the value function of the stochastic target problem is a discontinuous viscos-
ity solution of the associated dynamic programming equation, proposing that financial
mathematics should be the main application. Rami et al. [3] introduced the generalized
(differential) Riccati equation, a new type of differential Riccati equation to both solve the
algebraic equality/inequality constraints and matrix pseudoinverse, and to also prove
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that the solution to such an equation can identify all optimal controls. In recent years,
some achievements have been made in applying the stochastic models: Zhu and Li [4]
studied relevant questions by modeling interest rates in the market using the Vasicek model.
They derived equilibrium reinsurance–investment strategies and value functions using
a comprehensive dynamic programming approach. Ali and Khan [5] used an automatic
procedure to solve the resultant algebraic equation after the discretization of the stochastic
Lotka–Volterra operator and the proposed scheme was applied to the equivalent integral
form of stochastic fractional differential equations under consideration. Their numerical
simulations further demonstrate the effectiveness that the fractional Atangana–Baleanu
operator approach produces.

Notably, the issue of investment and reinsurance of insurance companies has received
much attention in recent decades. For example, Browne [6] considered a diffusion risk
model and studied the optimal investment strategy to maximize the exponential util-
ity function of terminal wealth and minimize the probability of bankruptcy. Yang and
Zhang [7] studied the optimal investment strategy of an insurance company with a jump
–diffusion risk process to minimize the ruin probability. Hipp and Plum [8] developed a
compound Poisson risk model to determine the optimal investment strategy by minimizing
the bankruptcy probability and the capital market index. For the reinsurance problem,
Promisslow and Young [9] extended Browne’s work by considering investing in risky
assets and purchasing proportional reinsurance. They obtained the minimum bankruptcy
probability and the optimal reinsurance–investment strategy. Bai and Zhang [10] studied
the optimal ratio reinsurance and investment strategies in the classical and diffusion risk
models because short-selling is prohibited. Ramadan et al. [11] came up with a new distribu-
tion method considering the appropriate transformation for half-logistic geometric (HLG)
distribution and introduced an application in the insurance field to show its flexibility.

In addition, the logarithmic utility function, exponential utility function (CARA), and
power utility function (CRRA) [12] commonly used in the field of actuarial insurance
are exceptional cases of the hyperbolic absolute risk utility function (HARA). Therefore,
the HARA utility function is more representative and has a more general mathematical
structure and a more comprehensive range of applications. However, because the structure
of the HARA utility function is more complex than the logarithmic utility, exponential utility,
and power utility functions, there are few studies on the optimal reinsurance–investment
strategy of insurance companies under the HARA utility function. Representative studies
include the following: Jung and Kim [13] used the Legendre dual transformation method
under the CEV model to solve the optimal investment problem under the HARA utility
criterion and obtained a definitive solution. Chang and Chang [14] studied the consumption
and investment problem under the HARA utility function when the interest rate was the
same as the Vasicek stochastic interest rate model and obtained the explicit solution of
the optimal strategy. Zhang and Zhao [15] studied the optimal reinsurance–investment
problem related to sparse risk based on the HARA utility function, in which the CEV model
drove the price of risky assets, and they obtained the closed-form expression of the optimal
strategy. Zhang [16] studied the optimal asset–liability management problem under the
framework of maximizing the expected utility, taking a variety of stochastic volatility
models as a particular case and using the backward stochastic differential equation (BSDE)
method to derive closed-form expressions for optimal investment strategy and optimal
value function. Through the research literature, it was found that the HARA utility function
was more widely used than the logarithmic utility function, exponential utility function,
and power utility function. Regarding consumption investment and optimal asset–liability
management, few studies in the literature have been applied towards studying the optimal
portfolio strategies of insurance companies.

Although optimal reinsurance–investment strategies under the HARA utility criterion
have been studied extensively, two aspects still require further exploration. First, most of
the literature mentioned was studied with the precondition of constant or deterministic
volatility, which differs from the facts observed in financial markets, such as volatility
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smiles and clustering. Therefore, in recent years, many studies have proposed various local
volatility models and stochastic volatility models to serve as extensions of the deterministic
volatility models, such as the CEV model [17], the Stein–Stein model [18], and the Heston
model [19]. For example, Gu et al. [20] assumed that the insurance company’s earnings
process approximates the Brownian motion with drift and studied the optimal excess-of-
loss reinsurance and investment strategy under the CEV model. Wang et al. [21] derived
time-consistent reinsurance strategies before and after default using a game-theoretic
framework that considers the strategy feedback time lag and the stock price following the
CEV model. Huang et al. [22] studied the robust optimal investment and proportional
reinsurance problems of general insurance companies, including insurers and reinsurers,
under the Heston model. Zhu et al. [23] considered the relative performance problem. They
derived the equilibrium investment reinsurance strategy’s closed-form expression and
corresponding value function based on the Heston model by applying the stochastic control
theory. Zhang et al. [24] applied the Legendre transformation and stochastic control theory
to obtain the optimal excess-of-loss reinsurance and investment strategy with dependent
claims under the Heston model. Yan and Wong [25] first applied the open-loop LQ control
framework to the reinsurance investment problem in general SV incomplete markets,
deriving explicit solutions for the Hull–White SV model, the unleveraged Heston model,
and the unleveraged 3/2 SV models, and gave uniqueness conditions for all of the above
equilibrium controls that allow straightforward solutions.

Most of the above literature assumes that the interest rate was constant or determinis-
tic, which ignores the application of some specific interest rate models in actual situations,
such as the Vasicek model and the CIR model. Many scholars have studied the optimal
reinsurance–investment problem with stochastic interest rates: Sheng [26] considered
the reserve process with dynamic returns to study the reinsurance—investment prob-
lem of insurance companies under the Vasicek stochastic interest rate model; Zhang and
Zheng [27] studied the optimal reinsurance—investment strategy of insurance companies
under the Ho–Lee and Vasicek models, respectively, and explained the impact of two differ-
ent stochastic interest rate models on the optimal decision-making of insurance companies.
Yuan et al. [28] used the linear quadratic optimal control theory and the corresponding
Hamilton–Jacobi–Bellman (HJB) equation to study the optimality of the interest rate subject
to the Vasicek stochastic interest rate model in case the bond and stock processes are fully
correlated. On investment and reinsurance issues, Guo and Zhuo [29] assumed that the
extended CIR model described domestic and foreign nominal interest rates. They used
dynamic programming principles to study the optimal reinsurance–investment strategy
of insurance companies investing in domestic and foreign markets. Sun and Guo [30]
studied insurance companies’ optimal investment and reinsurance problems under the
mean–variance criterion by applying reverse stochastic differential equations where the
stock prices obey the Cox–Ingersoll–Ross (CIR) process.

In most of the literature reviewed on optimal reinsurance investments, only a random
factor was considered. However, in real-world financial markets, it is better to consider
the optimal reinsurance–investment strategy with random volatility and random interest
rates. For example, Wang et al. [31] studied the time-consistent open-loop equilibrium
reinsurance–investment strategy of insurance companies under Vasicek’s stochastic interest
rate model and Heston’s stochastic volatility model. Guan et al. [32] introduced an inflation
index and studied the robust optimal reinsurance and investment problem of fuzzy risk-
averse insurance companies, where the stock prices are described using Heston’s stochastic
volatility model and the interest rates are described via Vasicek’s model. Zhang et al. [33]
introduced stochastic interest rates and stochastic volatility into optimal proportional rein-
surance and investment strategies based on insurers’ CRRA utility criterion and reinsurers’
CARA utility criterion.

There are scattered results on the optimal reinsurance–investment strategy based on
the HARA utility function in the stochastic financial market. To our knowledge, no research
has yet been conducted on the optimal reinsurance–investment strategy under the HARA
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utility criterion, considering both the risk assets subject to the Heston model and the interest
rates subject to the CIR model. The multiple stochastic factors and the variance premium
principle are considered more practical and valuable for research. Here, we explore the
optimal proportional reinsurance problem under a diffusion approximation claims model
based on the stochastic factors, maximizing the HARA utility of the terminal wealth value.

We studied the optimal reinsurance–investment problem for insurers considering
stochastic volatility and stochastic interest rates under the HARA utility function criterion.
We use the arithmetic Brownian motion as a diffusion approximation to the insurer’s
surplus process. We assume that the financial market comprises risk-free assets, risky assets,
and zero-coupon bonds. The insurance company can purchase proportional reinsurance
and invest its surplus in a financial market of risk-free assets, risky assets, and zero-coupon
bonds to maximize the expected ultimate return. The Heston model describes the price of
this risky asset while the CIR model describes the risk-free rate. In addition, we assume
that the proportion of reinsurance purchases must be non-negative and that there are
no borrowing and short-selling constraints in the trading of financial assets. The HJB
equation for the wealth process is established using dynamic programming principles. The
nonlinear partial differential equation is solved using the Legendre transformations and
pairwise theory. This ultimately leads to an optimal reinsurance–investment strategy for
the insurance company and an analytical expression for the value function.

The rest of the paper is organized as follows: Section 2 establishes the model and gives
the optimal reinsurance–investment problem of the insurance company in the stochastic
financial market. Section 3 obtains the optimal reinsurance–investment strategy of the
insurance company. In Section 4, several numerical examples are provided to illustrate our
results. Finally, in Section 5, we present our conclusions.

2. The Model

In this section, we investigate the problem of optimal reinsurance–investment strate-
gies with CIR rates under the Heston model from the perspective of insurance companies,
using the HARA utility function as the criterion. The model in this section consists of
equities S1, zero-coupon bonds B, and risk-free assets S0. Assuming that the price of
risky assets follows the Heston stochastic volatility model and the stochastic interest rate
meets the CIR interest rate model, and to maximize the HARA utility function of terminal
wealth, the corresponding HJB equation was solved by applying the dynamic program-
ming principle and employing both the Lejeune transformation and pairwise theory to
solve the corresponding HJB equation, to obtain the analytical expressions for the optimal
reinsurance–investment strategy and value function of the insurance company.

2.1. Surplus Process

Let
(
Ω,F , {Ft}0≤t≤T ,P

)
be a complete probability space, with Ft the total amount

of information flow held by the insurance company up to time t. We assume that all
stochastic processes are adapted processes in this probability space. The expression
F = {F (t)|t ∈ [0, T]} is the natural information flow generated using the n+ 1 dimensional
Brownian motion

{
(W0(t), W1(t), . . . , Wn(t))

T
∣∣∣t ∈ [0, T]

}
, with W(t) and Wi(t) indepen-

dent of each other, i ∈ {1, 2}. In the classical risk model, the earnings process of insurance
companies can be described using the following classical Cramér–Lundberg model:

C(t) = u + ct− S(t) = u + ct +
Nt

∑
i=1

Ci. (1)

where u ≥ 0. is the initial capital of the company, c is the premium rate, and the claim
number process {Nt, t ≥ 0} is a time-homogeneous Poisson counting process with a density
parameter of λ ≥ 0, a positive random variable sequence with mutual independent
and identically distributed random variables, and where {Yi, i = 1, 2, . . .} represents the
amount of each claim and is also independent of the Poisson point process {Nt, t ≥ 0}. For
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simplicity, let Y be a general random variable with the same distribution function as Yi.
The first and second moments of Y are µ1 = EY and µ2 = E

[
Y2], respectively, and the

generating function of the moment is recorded as MY(ρ) = E
(
eρY). Suppose there is a

constant 0 < ζ ≤ +∞, and for 0 < ρ < ζ, we have E
(
YeρY) = M′Y(ρ) and E

(
YeρY) = ∞.

According to Grandell [34], the claim process can be approximated using the diffusion of
the Brownian motion with drift. That is, the diffusion claim model can be calculated using
the following equation:

dC(t) = h0dt− σ0dW0(t). (2)

where W0(t) is a standard Brownian motion, h0 is the claim rate; σ0
2 is the volatility of

the insurance company’s claim process; h0 = λµ1, σ0
2 = λµ2; and µ1 and µ2 are the

first and second moments of Y, respectively. Assuming that the premium is paid at the
interest rate c = (1 + θ1)µ0, µ0 is the premium return rate, θ1 > 0 is the safe load of the
insurance company, and θ2 > 0 is the safe load of the reinsurance company. When there is
no reinsurance or investment, the surplus process of the insurance company is

δ(q(t)) = θ2σ0
2(1− q(t))2 + (1− q(t))h0, (3)

and the earning process becomes

dRq(t) = [c− δ(q(t))]dt− h0q(t)dt + σ0q(t)dW0(t). (4)

2.2. Financial Market

To enrich the financial markets, we assume that they consist of risk-free assets, equities,
and zero-coupon bonds.

For a risk-free asset, we set S0(t) as the price at the moment of t, t ∈ [0, T] to satisfy
the following differential equation{

dS0(t) = r(t)S0(t)dt, 0 ≤ t ≤ T,

S0(0) = s0 > 0.
(5)

The CIR model describes short-term interest rates:

dr(t) = (ϕr − κrr(t))dt + σr
√

r(t)dWr(t), (6)

where initial values are r0 ∈ R+, κr is the average regression velocity, ϕr
κr
∈ R+ is the mean

of the previous period, σr ∈ R+ is the interest rate volatility and 2ϕr ≥ σ2
r .

For a risky asset, we denote the price at the moment of t as S1(t), satisfying the Heston
stochastic volatility model:

dS1(t) = S1(t)[(r(t) + ξsV(t) + ξvµsξrr(t))dt +
√

V(t)dWs(t)

+ξvσr
√

r(t)dWr(t)],

dV(t) = κv(ξ1 −V(t))dt + µv
√

V(t)dWv(t),

(7)

where S1(0) = s0 > 0, V(t) = s0 > 0, parameters ξv, κv, ξr, µv, ξs, and ξ1 are all positive
numbers, and 2κv ≥ µ2

v.
For a zero-coupon bond, we assume that the expiration date is T and the price at t is

noted as B(t, T), which satisfies the following differential equation
dB(t,T)
B(t,T) = (r(t) + σb(t)ξrµsr(t))dt + σb(t)σr

√
r(t)dWr(t),

B(T, T) = 1, (8)
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where

σb(t) =
2(em(T−t) − 1)

m− (κr −
√

σrξr) + em(T−t)(m + κr −
√

σrξr)
, (9)

m =

√
(κr −

√
σrξr)

2
+ 2
√

σr. (10)

2.3. Wealth Process

The insurance company purchases proportional reinsurance and invests in a financial
market of equities, risk-free assets, and zero-coupon bonds. The reinsurance–investment
strategy iis Π(t) = {q(t), πs(t), πb(t) : t ∈ [0, T]}; then, we set X(t) as the wealth process of
the insurer at the time of t. Assuming that the amount invested in risky assets is πs(t) and
the amount invested in zero-coupon bonds is denoted as πb(t), then the amount invested
in risk-free assets is X(t)− πs(t)− πb(t). The wealth process X(t) of the insurer under the
strategy Π(t) satisfies the following differential equation:

dX(t) = dRq(t) + πs(t)
dS1(t)
S1(t)

+ πb(t)
dB(t,T)
B(t,T)

+(X(t)− πs(t)− πb(t))
dS0(t)
S0(t)

.
(11)

Substituting the differential equations of (6), (7) and (8) into the wealth process (11) above
gives the following equation:

X(t) = [c− θ2σ2
0 q2(t) + 2θ2σ2

0 q(t)− h0 − θ2σ2
0

+πs(t)(ξsV(t) + ξvµsξrr(t)) + πb(t)σb(t)ξrµsr(t)

+X(t)r(t)]dt + σ0q(t)dW0(t) + πs(t)
√

V(t)dWs(t)

+
[
πs(t)ξvσr

√
r(t) + πb(t)σb(t)σr

√
r(t)

]
dWr(t),

(12)

where the initial wealth X(t) = x0 > 0.

Definition 1. (Allowable strategy) The reinsurance–investment strategy Π(t) = {q(t), πs(t), πb(t)}
is defined as an allowable strategy if t ∈ [0, T]meets the following conditions:

(i) q(t), πs(t) and πb(t) are F-measurable, E
[∫ T

0 q2(t)dt
]
< +∞, E

[∫ T
0 πs

2(t)dt
]
< +∞;

(ii) E
[∫ T

0 σ2
0 q2(t)dt +

∫ T
0 π2

s (t)V(t)dt +
∫ T

0 r(t)(πs(t)ξvσr + πb(t)σb(t)σr)
2dt
]
< ∞;

(iii) ∀Π(t) = {q(t), πs(t), πb(t) : t ∈ [0, T]}, the stochastic Equation (12) has a unique
solution.

Let L be the space of all acceptable reinsurance–investment strategies. Assuming the
optimal strategy Π(t) = (q(t), πs(t), πb(t)) ∈ L, the insurer expects to find the optimal
reinsurance–investment strategy Π(t) that maximizes the expected utility of its terminal
wealth, i.e.,

max
Π(t)∈L

E[U(X(T))], (13)

where U(·) is the utility function of the insurance company.

3. Optimization Problem and the Optimal Strategy

The optimization problem is considered in this section and the corresponding optimal
strategy is derived. We examine the optimal reinsurance strategy of an insurer under the
HARA utility function

U(x) = U(γ, m, n, x) =
1− n
mn

(
m

1− n
x + γ

)n
, (14)
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where m > 0, n < 1, γ 6= 0.
At time t, we define the value functions for instantaneous volatility v, instantaneous

interest rate r, and wealth x as

Jπ(t, v, r, x) = E[U(X(T))|X(t) = x, V(t) = v, r(t) = r], (15)

and then, the optimal value function can be expressed as

J(t, v, r, x) = sup
Π(t)∈L

Jπ(t, v, r, x), (16)

where the boundary conditions meet

J(T, v, r, x) = U(x). (17)

The arbitrary value function J(t, v, r, x) ∈ C1,2,2,2([0, T]× R+ × R+ × R+) defines the
variational operator as

Lπ J(t, v, r, x) = Jt + [c− θ2σ2
0 q2 + 2θ2σ2

0 q− h0 − θ2σ2
0 + πs(ξsv + ξvµsξrr)

+πbσbξrµsr + rx]Jx + (ϕr − κrr)Jr + κv(ξ1 − v)Jv +
1
2 µ2

vvJvv

+ 1
2 σ2

r rJrr + πsµvvJxv + σ2
r r(πsξv + πbσb)Jxr

+ 1
2

[
σ2

r r(πsξv + πbσb)
2 + π2

s v + σ2
0 q2
]

Jxx,

(18)

where Jt, Jx, Jr, Jv, Jvv, Jrr, Jxx, Jxv, Jxr represent the first- and second-order partial derivatives
with respect to the corresponding variables. The value function L(t, v, r, x) is a convex func-
tion, given z > 0 as the dyadic variable of the vvariable x, and its Legendre transformation
is defined as follows:

L̂(t, v, r, x) = sup
x>0
{L(t, v, r, x)− zx}. (19)

Denote l(t, v, r, x) as the optimal value of the variable x and 0 < t < T, assuming that
l(t, v, r, x) satisfies the following equation

l(t, v, r, x) = inf
x>0

{
x
∣∣L(t, v, r, x) ≥ zx + L̂(t, v, r, x)

}
,

with the boundary condition

l(T, v, r, z) =
(
U′
)−1

(z), (20)

where we then obtain the relation between l(t, v, r, x) and L̂(t, v, r, x):

l(t, v, r, x) = −L̂(t, v, r, x). (21)

Therefore l(t, v, r, x) and L̂(t, v, r, x) are both pairwise functions of the value function
L(t, v, r, x). In solving the optimal reinsurance strategy, the function l(t, v, r, x) is easier to
calculate numerically, so the function l(t, v, r, x) is chosen for this study.

Theorem 1. When an insurance company adopts the HARA utility function as the optimal criterion,
the reinsurance–investment problem (13) under the Heston model considering stochastic interest
rates has the following optimal reinsurance–investment strategy:

q∗(t) = θ2Lx
θ2Lx−Lxx

=
1−n+θ2(x+ 1−n

m γg(t,v,r)−G(t,v,r))
θ2(x+ 1−n

m γg(t,v,r)−G(t,v,r))
,
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π∗s (t) = −ξs
Lx
Lxx
− µv

Lxv
Lxx

=
(

ξs
1−n − µv

)
1−n

m γg(t, v, r) +
(

ξs
1−n − µv

)
x

−
(

ξs
1−n + µv

fv
f (t,v,r)

)
G(t, v, r)− 1−n

m γgv,

π∗b (t) =
ξsξv−ξr

σb

Lx
Lxx

+ µvξv−ξr
σb

Lxv
Lxx

+ v
σb

Lxr
Lxx

=
(

x + 1−n
m γg(t, v, r)− G(t, v, r)

)[
ξr−ξsξv
(1−n)σb

− v
σb

fr
f (t,v,r) −

µvξv−ξr
σb

fv
f (t,v,r)

]
+ 1−n

m γ
(

µvξv−ξr
σb

gv +
v
σb

gr

)
.

Proof. See Appendix A. �

To verify that the result mentioned in Theorem 1 is the optimal reinsurance–investment
strategy for the insurance company, we introduce the following verification theorem (Yong
and Zhou [35]).

Theorem 2. (Verification theorem) Suppose that L∗HARA(t, v, r, x) ∈ C1,2,2,2([0, T]× R+ × R+ × R+)

given in Equation (A57) is a solution of the HJB Equation (A1); then, for any allowable strategy
Π(t) = {q(t), πs(t), πb(t) : t ∈ [0, T]}, there is L(t, v, r, x) ≤ L∗HARA(t, v, r, x), and

(q(t), πs(t), πb(t)) ∈ sup
Π(t)∈L

Lπ,q(t, v, r, x),

When Π(t) = Π∗(t), we have

L(t, v, r, x) = L∗HARA(t, v, r, x).

4. Sensitivity Analyses and Numerical Experiments

In this section, we conduct a sensitivity analysis of the parameters related to the
optimal reinsurance–investment strategy and match it with the reality in the financial
market. The optimal reinsurance–investment strategy obtained in the previous section will
be analyzed through numerical calculation experiments to obtain the parameter changes
related to the reinsurance ratio, stochastic volatility, stochastic interest rate, and their
dynamic impact on the optimal strategy.

The model parameter settings in this section refer to the work of Deelstra et al.
(2003) [36], Guan and Liang (2014) [37], and Chang and Chang (2017), and the param-
eter values are shown in Table 1. Without loss of generality, we take t = 0 and only discuss
the impact of model parameters on the optimal strategy at the initial moment, as shown in
the figures below.

Table 1. Parameter values.

Parameters Values Parameters Values

σ0 1.5 ξ1 0.6
ϕr 1.8 h0 5
κr 0.23 κv 0.2
ξs 0.6 θ2 0.2
ξv 1.7 σr 0.083
µv 0.4 m 0.05

X(0) 100 n −2
T 1 r(0) 0.05
ξr 0.8 γ 0.4
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In Figure 1, the parameter n is used to measure the degree of risk aversion of an
insurance company, that is, the trade-off between the rate of return and the risk it requires
when facing the same risk. Specifically, the larger n is, the smaller the absolute risk aversion
of the insurance company. Figure 1 shows that the insurance company’s reinsurance
retention share usually increases when the risk aversion factor rises because the insurance
company’s aversion to risk decreases and its tolerance to risk increases, so it can reduce
reinsurance protection and improve its retained share.
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Figure 1. The influence of parameter n on the optimal reinsurance strategy.

Conversely, when n decreases, its reinsurance retention generally decreases. When an
insurance company’s risk aversion increases, it requires a higher rate of return for the same
risk. Therefore, it requires more reinsurance protection to reduce the risk it faces, thereby
reducing its retained share.

Figure 2 indicates that the insurance company’s optimal retention ratio decreases with
the parameter’s increase m. The larger m is, the greater the risk aversion of the insurance
company. Therefore, if the insurance company chooses to bear less compensation risk, the
reinsurance ratio grows and the insurance payment risk the reinsurer bears increases.
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In Figure 3, the parameter κr represents the average reversion speed of interest rates,
which refers to the speed at which market interest rates return from past highs or lows
to their long-run average. Typically, the faster interest rates revert to the mean, the more
volatile the market. The figure above shows that the optimal retention ratio rises as
the parameter κr increases. Under the safety load factor condition θ2 = 0.2, insurance
companies may worry that changes in market interest rates will harm their reinsurance
asset management and may choose to improve the reinsurance retained share to reduce the
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risk of their reinsurance asset management. In this case, with faster returns in the interest
rate to the average, the insurance company may choose to increase the reinsurance retained
share to reduce the risk of its reinsurance asset management.
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In practice, insurance companies usually take some measures to reduce the impact
of changes in market interest rates on their reinsurance asset and liability management.
For example, insurers can balance interest rate risks between their reinsurance assets and
liabilities by holding the assets for longer durations until maturity or by matching liabilities
with assets. In addition, insurance companies can also use instruments such as interest rate
derivatives to hedge the interest rate risk between their reinsurance assets and liabilities.

In Figure 4, the parameter σr represents the interest rate fluctuation. When the param-
eter σr increases, the risk caused by the interest rate fluctuation also grows. The reinsurance
strategy of the insurance company is usually more conservative, that is, retaining less
self-retained shares and sharing more reinsurance to reduce the impact of interest rate
fluctuations on its financial position.
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Since high-interest rate volatility means that the cash flow risk of insurance companies
is more remarkable (unacceptable for insurance companies with a high degree of risk
aversion), the insurance company will increase the proportion of reinsurance to reduce its
retention and cash flow risk, thereby protecting its financial position. On the other hand,
when interest rate volatility is low, insurers typically opt for less reinsurance to obtain a
higher rate of return. Low-interest rate volatility means that insurance companies have
less of a cash flow risk. Currently, insurance companies can take higher risks in pursuit of
higher returns.
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Figure 5 gives that as κr increases, strategies investing in risky assets πs(t) and strate-
gies πs(t) in risk-free assets grow, while strategies πb(t) in zero-coupon bonds decrease.
The high regression speed of the stochastic interest rate in the CIR model means that
interest rates change faster, so insurance companies need to adjust their asset allocation
more frequently to adapt to changes in the market.
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Figure 5. The influence of parameter κr on the optimal investment strategy.

In this case, the insurance company will increase its investment in risky assets since
they usually have higher yields, which can help improve its return on the investment. At
the same time, insurance companies also add their investments in risk-free assets to protect
their portfolios from price fluctuations in risky assets.

Instead, insurers reduce their exposure to zero-coupon bonds because these bonds
typically have lower yields and their prices are affected by the fluctuations in interest rates.
As a result, insurers typically reduce their exposure to zero-coupon bonds to reduce their
exposure and raise their returns when the rate of reversion increases.

Figure 6 shows that the optimal investment strategies πs(t) and π0(t) are monoton-
ically decreasing functions of the parameter, while πb(t) is a monotonically increasing
function concerning the parameter σr. The parameter M determines the volatility of ran-
dom interest rates. When the volatility of interest rates increases, the uncertainty of risk
assets will also improve, making insurance companies invest in risk assets more cautiously.
Therefore, in such a situation, insurers may reduce their exposure to risky assets while
increasing their exposure to zero-coupon bonds for a more stable return. In addition, since
risk-free assets are usually related to interest rates, in the event of increased interest rate
volatility, insurance companies may reduce their investment in risk-free assets to avoid the
disproportionate impact of interest rate fluctuations on their investments.
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Figure 7 shows that as the parameter ξr increases, investment π0(t) in risk-free assets
decreases, investment πb(t) in zero-coupon bonds goes up, and investment πs(t) in risky
assets changes by a small amount. As the parameter ξr increases, the market price of
random interest rates grows, increasing the uncertainty in future interest rate changes
and, in turn, may result in insurance companies reducing their investments in risk-free
assets due to the fixed return on such assets yielding lower returns compared to other
options when market interest rates rise. Conversely, investments in zero-coupon bonds
may increase as they can offer higher returns and serve as a hedge against rising interest
rates. Investments in risky assets may change less as insurers strive to achieve higher
returns by investing in risky assets to compensate for the reduced returns on risk-free assets
and zero-coupon bonds. However, with the increase in stochastic interest rates, the price
volatility of risky assets may also increase, leading insurance companies to moderate their
investments in risky assets.
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In Figure 8, the optimal strategy πs(t) and zero-coupon bond πb(t) decrease as the
parameter κv increases, while π0(t) increases. When the average regression speed of risky
asset price volatility rises, risky asset price volatility will become more unstable, increasing
the risk aversion of insurance companies and leading insurance companies to reduce their
investment in risky assets. At the same time, since the price of zero-coupon bonds has
an inverse relationship with interest rates, in the event of increased interest rate volatility,
insurance companies may reduce their investment in zero-coupon bonds to avoid price
falls and losses. On the contrary, risk-free assets like treasury bonds have a lower volatility
and more stable returns. Therefore, when the average regression speed of risky asset price
volatility goes up, insurance companies may increase investment in these assets.
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Figure 9 indicates that the insurance company’s investment πs(t) in risky assets and
investment π0(t) in risk-free assets increases as the parameter n goes up. In contrast,
its investment πb(t) in zero-coupon bonds decreases as the parameter n increases. The
parameter n characterizes the risk aversion factor in the HARA utility function, representing
the absolute risk aversion coefficient (ASAC). That is, the larger the value of the parameter,
the smaller the absolute risk aversion coefficient.
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Figure 9. The influence of parameter n on the optimal investment strategy.

Figure 10 shows that investments in a risky asset and a zero-coupon bond decrease as
the parameter increases. In contrast, investment in a risk-free asset grows as the parameter
m increases because as the parameter goes up, the ASAC also grows. Insurance companies
become more risk-averse and invest more in risk-free assets and zero-coupon bonds,
reducing investment in risky assets.
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We can infer that when risk aversion increases, insurance companies are more inclined
to take negligible risks, reducing their investment in risky assets to reduce the risk of
their portfolios. In addition, insurers’ investments in zero-coupon bonds are usually a
good match to their liabilities, thus ensuring sufficient cash flow to cover claims and
interest expenses, even at lower yields. With less exposure to risky assets and zero-coupon
bonds, insurers may increase exposure to risk-free assets to ensure portfolio liquidity
and soundness.

5. Conclusions

In this work, we studied the optimal reinsurance–investment strategy of insurance
companies under a stochastic interest rate and stochastic volatility model with the HARA
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utility function as the criterion. Reinsurance–investment strategies under stochastic volatil-
ity models have recently become a hot topic. Assuming that the surplus process of insurance
companies obeys the Brownian motion with drift, insurance companies can invest in bank
accounts and risky assets by purchasing proportional reinsurance or new business. This
paper applied the CIR model to describe the stochastic interest rate, and the Heston model
to describe the price process of risky assets. The Legendre transformation and pairwise
theory solve the corresponding HJB equations to obtain the analytical expressions for the
insurance company’s optimal reinsurance–investment strategy and value function. Later,
we investigated some sensitivities of the optimal investment strategy. Our results from the
numerical example are as follows: the parameters of the financial market in the stochastic
interest rate model have an essential impact on the optimal reinsurance strategy; investing
in non-performing risky assets with high volatility and low appreciation rates increases the
overall risk.

The main contributions of our model are as follows: (1) The risk model considers
both insurance and investment risks, and reinsurance is an effective risk management
method. (2) We added the random fluctuations of risky and risk-free assets. The premium
calculation adopts the variance premium principle, so the random investment of insurance
companies is closer to the real financial market than the general geometric model. (3) This
work assumes the HARA utility function as the optimal criterion, which has a more general
mathematical structure and a broader application.

The modeling framework in this paper is worth extending to other optimal control
problems in insurance, such as asset–liability management, optimal pension funds, and
optimal life insurance purchases. Further discussions on the reinsurance–investment
problem of insurance companies could be made, such as studying the optimal reinsurance–
investment problem of investing in multiple risk assets and solving the optimal control
problem under different constraints.
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Appendix A

Proof of Theorem 2.1. According to the standard stochastic optimal control theory, the HJB
equation is satisfied by the value function J(t, v, r, x):

sup
Π(t)∈L

{
Jt + [c− θ2σ2

0 q2 + 2θ2σ2
0 q− h0 − θ2σ2

0 + πs(ξsv + ξvµsξrr)

+πbσbξrµsr + rx]Jx + (ϕr − κrr)Jr + κv(ξ1 − v)Jv +
1
2 µ2

vvJvv

+ 1
2 σ2

r rJrr + πsµvvJxv + σ2
r r(πsξv + πbσb)Jxr

+ 1
2 [σ

2
r r(πsξv + πbσb)

2 + π2
s v + σ2

0 q2]Jxx

}
= 0.

(A1)
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Assume that L(t, v, r, x) ∈ C1,2,2,2([0, T]× R+ × R+ × R+) is a solution to the HJB
Equation (A1); according to the first-order condition for extremes, look for the derivatives
of the HJB equation in Equation (A1) q(t), πs(t) and πb(t); and let the derivatives be zero.
Then, the optimal solution can be found as follows:

q∗(t) = θ2Lx
θ2Lx−Lxx

, (A2)

π∗s (t) = −ξs
Lx

Lxx
− µv

Lxv

Lxx
, (A3)

π∗b (t) =
ξsξv − ξr

σb

Lx

Lxx
+

µvξv − ξr

σb

Lxv

Lxx
+

v
σb

Lxr

Lxx
. (A4)

Combining (A2), (A3), and (A4) into the HJB equation, gives

Lt +
(
c− h0 − θ2σ2

0 + rx
)

Lx + (ϕr − κrr)Lr + κv(ξ1 − v)Lv +
1
2 µ2

vvLvv

+ 1
2 σ2

r rLrr +
θ2

2σ2
0 L2

x
θ2Lx−Lxx

− σ2
r r (Lxr−ξr Lx)

2

2Lxx
− v (ξs Lx+µv Lxv)

2

2Lxx
= 0.

(A5)

Equation (A5) is a second-order nonlinear partial differential equation and the form
of the solution to Equation (A5) cannot be directly guessed due to the complexity of the
HARA utility function and its boundary conditions.

We apply the methods and techniques of the Legendre transformation and pairwise
theory to transform Equation (A5) into a second-order linear partial differential equation
and ultimately find its shown solution.

Definition A1. Let f : Rn → R be a convex function for z > 0. Define the Legendre transforma-
tion of f as follows:

L(z) = max
x
{ f (x)− zx}, (A6)

which is called the Legendre dual function of function f (x).

If f (x) is a strictly convex function, then there is a unique maximum point in (A6) and
its maximum value is marked as x0, according to the first-order condition

d f (x)
dx

− z = 0,

where the unique solution can be obtained as follows:

L(z) = f (x0)− zx0.

According to Gao [38], with the definitions of (A6) and the convexity of the value
function L(t, v, r, x), the Legendre transformation is defined as follows:

L̂(t, v, r, x) = sup
x>0
{L(t, v, r, x)− zx}. (A7)

Upon denoting l(t, v, r, x) as the optimal value of the variable x and 0 < t < T, we
assume that l(t, v, r, x) satisfies the following equation:

l(t, v, r, x) = inf
x>0

{
x
∣∣L(t, v, r, x) ≥ zx + L̂(t, v, r, x)

}
,

where we then obtain the relation between l(t, v, r, x) and L̂(t, v, r, x)

l(t, v, r, x) = −L̂(t, v, r, x), (A8)
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Therefore l(t, v, r, x) and L̂(t, v, r, x) are both pairwise functions of the value function
L(t, v, r, x). In solving the optimal reinsurance strategy, the function l(t, v, r, x) is more
straightforward to calculate numerically, so the function l(t, v, r, x) is chosen for the study.
Further calculation gives

Lx = z, (A9)

l(t, v, r, z) = x, (A10)

L̂(t, v, r, z) = L(t, v, r, l)− zl. (A11)

For Equation (A11), calculating the partial derivatives of each other with respect to
(t, v, r, z) gives

Lt = L̂t, Lxr = − L̂rz
L̂zz

,

Lxr = z, Lxx = − 1
L̂zz

,

Lr = L̂r, Lrr = L̂rr − L̂2
rz

L̂zz
,

Lv = L̂v, Lvv = L̂vv − L̂2
vz

L̂zz
,

Lxv = − L̂vz
L̂zz

, Lvr = L̂vr − L̂rz L̂vz
L̂zz

.

(A12)

Then, at the terminal moment T, define

L̂(T, v, r, z) = sup
x>0
{L(T, v, r, x)− zx},

l(T, v, r, z) = inf
x>0

{
x
∣∣L(T, v, r, x) ≥ zx + L̂(T, v, r, z)

}
,

where we then have
l(T, v, r, z) =

(
U′
)−1

(z),

where (U′)−1(z) is the inverse of marginal utility.
Substituting (A12) into (A5) with respect to the value function gives the dyadic function L̂:

L̂t +
(
c− h0 − θ2σ2

0 + rl
)
z + (ϕr − κrr)L̂r + κv(ξ1 − v)L̂v

+ 1
2 µ2

vv
(

L̂vv − L̂2
vz

L̂zz

)
+ 1

2 σ2
r r
(

L̂rr − L̂2
rz

L̂zz

)
+

θ2
2σ2

0 z2 L̂zz

L̂zzθ2z+1

+σ2
r r L̂zz(z−ξrz)2

2 + v (
zL̂zzξs+µv L̂vz)

2

2L̂zz
= 0,

and further simplification gives

L̂t + cz− h0z− θ2σ2
0 z + rlz + (ϕr − κrr)L̂r + κv(ξ1 − v)L̂v

+ 1
2 µ2

vvL̂vv +
1
2 σ2

r rL̂rr − 1
2 σ2

r r L̂2
rz

L̂zz
+ 1

2 vz2 L̂zzξ2
s

+z2 L̂zz

(
θ2

2σ2
0

L̂zzθ2z+1
+ σ2

r r (1−ξr)
2

2

)
+ vzξsµv L̂vz = 0.

(A13)

Differentiating z on both sides of Equation (A13) simultaneously yields

L̂tz + c− h0 − θ2σ2
0 + rl + rlzz + (ϕr − κrr)L̂rz + κv(ξ1 − v)L̂vz

+ 1
2 µ2

vvL̂vvz − 1
2 σ2

r r (
2L̂rz L̂rzz L̂zz+L̂2

rz L̂zzz)
L̂2

zz

+ 1
2 σ2

r rL̂rrz + zL̂zz

(
2θ2

2σ2
0

L̂zzθ2z+1
+ σ2

r r(1− ξr)
2
)

+z2 L̂zzz

(
θ2

2σ2
0

L̂zzθ2z+1
+ σ2

r r(1−ξr)
2

2

)
+ z2 L̂zz

θ2
2σ2

0 (L̂zzθ2+L̂zzzθ2z)

(L̂zzθ2z+1)
2

+vξsµv L̂vz + vzξsµv L̂vzz + vzL̂zzξ2
s +

1
2 vz2 L̂zzzξ2

s = 0.
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Combining Equation (21) yields a linear differential equation for the dyadic function l:

lt − c + h0 + θ2σ2
0 − rl − rlzz + (ϕr − κrr)lr + κv(ξ1 − v)lv

+ 1
2 µ2

vvlvv − 1
2 σ2

r r (
2lr lrz lz+l2

r lzz)
l2
z

+ 1
2 σ2

r rlrr

+zlz

(
2θ2

2σ2
0

1−lzθ2z + σ2
r r(1− ξr)

2
)
+ z2lzz

(
θ2

2σ2
0

1−lzθ2z +
σ2

r r(1−ξr)
2

2

)
−z2lz

θ2
2σ2

0 (lzθ2+lzzθ2z)
(1−lzθ2z)2 + vξsµvlv + vzξsµvlvz

+vzlzξ2
s +

1
2 vz2lzzξ2

s = 0.

(A14)

The quadratic nonlinear partial differential Equation (21) is transformed into a second-
order linear partial differential Equation (A14) utilizing the Legendre transform and the
pairwise theory.

By solving Equation (A14), we can obtain the optimal reinsurance–investment strategy
for the insurance company. Using the HARA utility as a criterion and using the boundary
conditions yields

l(T, v, r, z) =
(
U′
)−1

(z) =
1− n

m

(
z

1
n−1 − γ

)
. (A15)

Based on the idea of equality, it can be conjectured that the solution of Equation (A14)
has the following structure:

l(t, v, r, x) =
1− n

m
z

1
n−1 f (t, v, r)− 1− n

m
γg(t, v, r) + G(t, v, r), (A16)

where the boundary conditions are f (T, v, r) = 1, g(t, v, r) = 1, G(t, v, r) = 0.
Calculating the partial derivative for Equation (A16) gives

lt = 1−n
m z

1
n−1 ft − 1−n

m γgt + Gt, lr = 1−n
m z

1
n−1 fr − 1−n

m γgr + Gr,

lrr =
1−n

m z
1

n−1 frr − 1−n
m γgrr + Grr, lz = 1−n

m
1

n−1 z
1

n−1−1 f ,

lzz =
1−n

m
2−n

(n−1)2 z
1

n−1−2 f , lrz =
1−n

m
1

n−1 z
1

n−1−1 fr,

lv = 1−n
m z

1
n−1 fv − 1−n

m γgv + Gv, lvv = 1−n
m z

1
n−1 fvv − 1−n

m γgvv + Gvv ,

lvz =
1−n

m
1

n−1 z
1

n−1−1 fv.

(A17)

Substituting Equations (A16) and (A17) into Equation (A14) and simplifying gives

1−n
m z

1
n−1 [ ft − n

n−1 r f + (ϕr − κrr) fr + κv(ξ1 − v) fv +
1
2 µ2

vv fvv +
1
2 σ2

r r frr

+ n
n−1 vξsµv fv +

2−n
2(n−1)2 f (vξ2

s +
2θ2

2σ2
0

v2 + σ2
r r(1− ξr)

2)]

+ 1−n
m γ[−gt + rg− (ϕr − κrr)gr − κv(ξ1 − v)gv − 1

2 µ2
vvgvv

− 1
2 σ2

r rgrr − vξsµv] + Gt − c + h0 + θ2σ2
0 − rG− (ϕr − κrr)Gr

+κv(ξ1 − v)Gv + vξsµvGv +
1
2 µ2

vvGvv +
1
2 σ2

r rGrr = 0.

(A18)

By eliminating the dependence on z and γ in (A18), Equation (A18) can be divided
into three parts concerning f , g, and G, where we let each be equal to zero and obtain the
following three equations:

ft − n
n−1 r f + (ϕr − κrr) fr + κv(ξ1 − v) fv +

1
2 µ2

vv fvv +
1
2 σ2

r r frr

+ n
n−1 vξsµv fv +

2−n
2(n−1)2 f

(
vξ2

s +
2θ2

2σ2
0

v2 + σ2
r r(1− ξr)

2
)
= 0,

f (T, v, r) = 1;

(A19)
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−gt + rg− (ϕr − κrr)gr − κv(ξ1 − v)gv − 1

2 µ2
vvgvv − 1

2 σ2
r rgrr

−vξsµvgv = 0,

g(T, v, r) = 1;

(A20)


Gt − c + h0 + θ2σ2

0 − rG− (ϕr − κrr)Gr

+κv(ξ1 − v)Gv + vξsµvGv +
1
2 µ2

vvGvv +
1
2 σ2

r rGrr = 0.

G(T, v, r) = 0.

(A21)

Equations (A19)–(A21) will be separately solved below.
Firstly, for the differential Equation (A19), assume that the solution has the following

structure
f (t, v, r) = eA1(t)+A2(t)v+A3(t)r, (A22)

where the boundary condition is A1(T) = A2(T) = A3(T) = 0.
Taking the higher-order partial derivatives of each end of Equation (A22) for t, v, and

r yields
ft = f (t, v, r)

(
A′1(t) + A′2(t)v + A′3(t)r

)
,

fv = f (t, v, r)A2(t), fvv = f (t, v, r)A2
2(t),

fr = f (t, v, r)A3(t), frr = f (t, v, r)A2
3(t).

(A23)

Substituting the above partial derivative result (A23) into Equation (A19) gives

f
[

A′1(t) + ϕr A3(t) + κvξ1 A2(t) + 1
2 σ2

r rA2
3(t) +

2−n
2(n−1)2

2θ2
2σ2

0
v2

]
+ f v

[
A′2(t)− κv A2(t) + 1

2 µ2
v A2

2(t) +
n

n−1 ξsµv A2(t) + 2−n
2(n−1)2 ξ2

s

]
+ f r

[
A′3(t)− n

n−1 − κr A3(t) + 1
2 σ2

r rA2
3(t) +

2−n
2(n−1)2 σ2

r (1− ξr)
2
]
= 0.

Eliminating the dependence on v and r in the above equation gives the following three
differential equations:

A′1(t) + ϕr A3(t) + κvξ1 A2(t) + 1
2 σ2

r rA2
3(t) +

2−n
2(n−1)2 (ξ

2
s

+
2θ2

2σ2
0

v2 + σ2
r r(1− ξr)

2) = 0,
(A24)

A′2(t) +
(

n
n− 1

ξsµv − κv

)
A2(t) +

1
2

µ2
v A2

2(t) +
2− n

2(n− 1)2 ξ2
s = 0, (A25)

A′3(t) +
2− n

2(n− 1)2 σ2
r (1− ξr)

2 − n
n− 1

− κr A3(t) +
1
2

σ2
r rA2

3(t) = 0. (A26)

Equations (A25) and (A26) are equations A2(t) and A3(t), respectively, that can be
solved directly, while Equation (A24) is the equation on A1(t), A2(t) and A3(t). So, we can
solve A1(t), A2(t) and A3(t) as follows:

Since Equation (A25) is a Riccati equation, first find the quadratic equation in Equation
(A25) for A2(t) as follows:

1
2

µ2
v A2

2(t) +
(

n
n− 1

ξsµv − κv

)
A2(t) +

2− n

2(n− 1)2 ξ2
s = 0. (A27)

To simplify our calculation later, we can state that

a1 =
1
2

µ2
v, b1 =

n
n− 1

ξsµv − κv, c1 =
2− n

2(n− 1)2 ξ2
s , (A28)
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and the discriminant can be obtained as follows:

∆1 = b2
1 − 4a1c1 =

(
n

n− 1
ξsµv − κv

)2
− µ2

v
2− n

(n− 1)2 ξ2
s . (A29)

Suppose that ∆1 > 0; then, Equation (A29) has two distinct roots at this point, denoted
as x1 and x2 and

x1 =
−b1 +

√
∆1

2a1
, x2 =

−b1 −
√

∆1

2a1
.

Then, Equation (A25) can be written in the following form:

a1(A2(t)− x1)(A2(t)− x2) = −A′2(t).

Separating the variables in the above equation and integrating both sides at the same
time gives

−a1(T − t) =
1

x1 − x2

∫ T

t

(
1

A2(t)− x1
− 1

A2(t)− x2

)
dA2(t). (A30)

Integrating the two ends of Equation (A25) gives

A2(t) =
x1x2

[
1− e−a1(x1−x2)(T−t)

]
x1 − x2e−a1(x1−x2)(T−t)

. (A31)

The procedure for solving Equation (A25) is similar to that described above. Finding
Equation (A25) about A3(t) of the quadratic equation is as follows:

1
2

σ2
r rA2

3(t)− κr A3(t) +
2− n

2(n− 1)2 σ2
r (1− ξr)

2 − n
n− 1

= 0. (A32)

Again, for simplifying purposes, we can have

a2 =
1
2

σ2
r r, b2 = −κr, c2 =

2− n

2(n− 1)2 σ2
r (1− ξr)

2 − n
n− 1

, (A33)

then, the discriminant becomes

∆2 = b2
2 − 4a2c2 = κ2

r − σ2
r r

(
2− n

(n− 1)2 σ2
r (1− ξr)

2 − 2n
n− 1

)
. (A34)

Suppose that ∆2 > 0; then, the equation has two distinct roots at this point, denoted
as x3 and x4 respectively, and

x3 =
−b2 +

√
∆2

2a2
, x4 =

−b2 −
√

∆2

2a2
.

Then, Equation (A26) can be noted in the following form:

a2(A3(t)− x3)(A3(t)− x4) = −A′3(t). (A35)

Separating the variables in this equation and integrating both sides at the same
time gives

−a2(T − t) = 1
x3−x4

∫ T
t

(
1

A3(t)−x3
− 1

A3(t)−x4

)
dA3(t).
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Solving this integral equation yields

A3(t) =
x3x4

[
1− e−a2(x3−x4)(T−t)

]
x3 − x4e−a2(x3−x4)(T−t)

.

To solve A1(t), note Equation (A24) in the following form:

A′1(t) = A′3(t)− (ϕr + κr)A3(t)− 2−n
2(n−1)2

(
ξ2

s +
2θ2

2σ2
0

v2

)
− n

n−1 − κvξ1 A2(t).
(A36)

Integrating both ends of the above equation from t to T, solves the differential equation
and gives A1(t):

A1(t) = A3(t) + (ϕr + κr)
∫ T

t A3(s)ds + κvξ1
∫ T

t A2(s)ds

+

[
2−n

2(n−1)2

(
ξ2

s +
2θ2

2σ2
0

v2

)
+ n

n−1

]
(T − t).

(A37)

At this point, we have obtained the expression in Equation (A37) as

f (t, v, r) = eA1(t)+A2(t)v+A3(t)r,

where the solutions of A1(t), A2(t) and A3(t) are given using (A31), (A36), and (A37),
respectively.

Then, we solve Equation (A20), assuming that the solutions have the following struc-
ture, where

g(t, v, r) = eA4(t)+A5(t)v+A6(t)r, (A38)

and taking the high-order partial derivatives of each end of Equation (A38) with respect to
t, v, r gives the following:

gt = g(t, v, r)
(

A′4(t) + A′5(t)v + A′6(t)r
)
,

gv = g(t, v, r)A5(t), gvv = g(t, v, r)A2
5(t),

gr = g(t, v, r)A6(t), grr = g(t, v, r)A2
6(t).

(A39)

Substituting the partial derivative results into Equation (A20) and simplifying gives

g
(
−A′4(t)− ϕr A6(t)− κvξ1 A5(t)

)
+ gv[−A′5(t) + (κv − ξsµv)A5(t)

− 1
2 µ2

v A2
5(t)] + gr

[
−A′6(t) + 1 + κr A6(t)− 1

2 σ2
r A2

6(t)
]
= 0.

(A40)

Eliminating the dependence on v and r in the above equation, we obtained the follow-
ing three differential equations:

−A′4(t)− ϕr A6(t)− κvξ1 A5(t) = 0, (A41)

−A′5(t) + (κv − ξsµv)A5(t)−
1
2

µ2
v A2

5(t) = 0, (A42)

−A′6(t) + 1 + κr A6(t)−
1
2

σ2
r A2

6(t) = 0. (A43)

where the boundary condition is A4(T) = A5(T) = A6(T) = 0.
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First, we solve A5(t). Equation (A42) is a simple first-order linear differential equation,
the solution of which can be obtained as follows:

A5(t) =
ξs

2µv

(
1− e(κv−ξsµv)(T−t)

)
. (A44)

Second, we solve Equation (A43), which is a Riccati equation. We first solve the
quadratic equation in (A43) with respect to A6(t):

−1
2

σ2
r A2

6(t) + κr A6(t) + 1 = 0. (A45)

For simplification of subsequent calculations, we note

a3 = −1
2

σ2
r , b3 = κr, c3 = 1,

and the discriminant is obtained as

∆3 = b2
3 − 4a3c3 = κ2

r + 2σ2
r > 0, (A46)

where its two dissimilar roots are as follows:

x6 =
−b3 +

√
∆3

2a3
, x7 =

−b3 −
√

∆3

2a3
.

Then, Equation (A43) can be written in the following form:

a3(A6(t)− x6)(A6(t)− x7) = A′6(t).

Separating the variables in the above equation and integrating both sides at the same
time gives the following:

a3(T − t) = 1
x6−x7

∫ T
t

(
1

A6(s)−x6
− 1

A6(s)−x7

)
dA6(t).

Solving this integral equation yields A6(t), as follows:

A6(t) =
x6x7

[
1− ea3(x6−x7)(T−t)

]
x6 − x7ea3(x6−x7)(T−t)

. (A47)

Finally, to calculate A4(t), integrate both ends of Equation (A41):

A4(t) =
∫ T

t
ϕr A6(s) + κvξ1 A5(s)ds. (A48)

At this point, we obtain the formulation in Equation (A38) as

g(t, v, r) = eA4(t)+A5(t)v+A6(t)r,

where the solutions of A4(t), A5(t) and A6(t) are given using Equations (A44), (A47) and
(A48), respectively.

Then, we solve Equation (A21), introducing the following variational operator for the
arbitrary function G(t, v, r):

∇ G(t, v, r) = −rG− (ϕr − κrr)Gr + κv(ξ1 − v)Gv

+vξsµvGv +
1
2 µ2

vvGvv +
1
2 σ2

r rGrr.
(A49)
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Then, the differential Equation (A21) can be rewritten as follows:{
Gt +∇ G(t, v, r)− c + h0 + θ2σ2

0 = 0,

G(T, v, r) = 0.
(A50)

On the other hand, the calculation leads to the following:

Gt =
(
−c + h0 + θ2σ2

0
)(∫ T

t Ĝsds− Ĝ(T, v, r)
)

,

∇ G(t, v, r) =
(
−c + h0 + θ2σ2

0
) ∫ T

t ∇Ĝ(T, v, r)ds.
(A51)

Substituting the above equation into Equation (A50) and simplifying it gives(
−c + h0 + θ2σ2

0

)(∫ T

t
(Ĝs +∇G(t, v, r)

)
ds− Ĝ(t, v, r) + 1) = 0, (A52)

G(t, v, r) =
(
−c + h0 + θ2σ2

0

) ∫ T

t
Ĝ(t, v, r)ds, (A53)

and Ĝ(t, v, r) meets the following partial differential equation:
Ĝt − c + h0 + θ2σ2

0 − rĜ− (ϕr − κrr)Ĝr

+κv(ξ1 − v)Ĝv + vξsµvĜv +
1
2 µ2

vvĜvv +
1
2 σ2

r rĜrr = 0,

Ĝ(T, v, r) = 0.

(A54)

In summary, we solve for L(t, v, r, x):

Lx
Lxx

= −zL̂zz = zlz = 1−n
m

2−n
(n−1)2 z

1
n−1−1 f ,

= − 1
1−n

(
x + 1−n

m γg(t, v, r)− G(t, v, r)
)

,
Lxr
Lxx

= L̂rz = −lr = − 1−n
m z

1
n−1 ft +

1−n
m γgt − Gt

= −
(

x + 1−n
m γg(t, v, r)− G(t, v, r)

)
fr

f (t,v,r) +
1−n

m γgr,

Lxv
Lxx

= L̂vz = −lv = − 1−n
m z

1
n−1 fv +

1−n
m γgv − Gv

= −
(

x + 1−n
m γg(t, v, r)− G(t, v, r)

)
fv

f (t,v,r) +
1−n

m γgv.

(A55)

On the other hand, considering l(t, v, r) = x and Equation (A16) leads to the following:

z =
m

1− n
x + γg(t, v, r)− m

1− n
G(t, v, r)n−1 f 1−n(t, v, r). (A56)

Since Lx = z, the optimal solution of the HJB Equation (A1) is obtained via integration,
as follows:

L∗HARA(t, v, r, x) =
1− n
mn

(
m

1− n
x + γg(t, v, r)− m

1− n
G(t, v, r)

)n
f 1−n(t, v, r). (A57)

In summary, we can obtain the optimal reinsurance–investment strategy under the
HARA utility function. The proof is completed.
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