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Abstract: To improve the accuracy of color image completion with missing entries, we present a
recovery method based on generalized higher-order scalars. We extend the traditional second-order
matrix model to a more comprehensive higher-order matrix equivalent, called the “t-matrix” model,
which incorporates a pixel neighborhood expansion strategy to characterize the local pixel constraints.
This “t-matrix” model is then used to extend some commonly used matrix and tensor completion
algorithms to their higher-order versions. We perform extensive experiments on various algorithms
using simulated data and publicly available images. The results show that our generalized matrix
completion model and the corresponding algorithm compare favorably with their lower-order tensor
and conventional matrix counterparts.

Keywords: higher-order tensor completion; pixel neighborhood strategy; generalized matrix model;
low rank; finite-dimensional algebra; convex optimization

MSC: 15A83; 26B25; 47A75; 47L55

1. Introduction
1.1. Background and Related Works

Vectors and matrices are fundamental to data analysis and processing, but it is often a
struggle to encapsulate the complex, higher-order structures found in data such as color
images, video sequences, and hyperspectral images. These multilinear data structures defy
satisfactory representation by traditional vectors and matrices, prompting the use of tensors,
i.e., higher-order extensions of vectors and matrices, for more accurate representation.

In real-world scenarios, it is common to find that high dimensional data often have low
intrinsic dimensions. This property facilitates several advanced techniques and applications.
For example, Floryan et al. [1] reduce data to their intrinsic dimensions, allowing more
accurate and low-dimensional dynamical models to capture the essential behavior of
high-dimensional systems with low-dimensional features. Li et al. [2] achieve efficiency
and robustness by training deep neural networks in low-dimensional spaces without
sacrificing performance. Chen et al. [3] use deep learning networks for nonparametric
regression on low-dimensional manifolds, emphasizing the adaptability of the networks to
low-dimensional geometric structures in data. Xu et al. [4] propose a method that improves
high-dimensional data classification through efficient feature extraction and diverse feature
fusion, outperforming mainstream ensemble methods.

This notion of a low intrinsic dimension often applies when the data are represented
as matrices or tensors. Several methods take advantage of this property. Fu et al. [5] de-
velop a low-rank tensor approximation model for multiview intrinsic subspace clustering
that effectively reduces view-specific constraints and improves optimization, with notable
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success on real-world datasets. Wang et al.’s [6] tensor low-rank and sparse representation
method skillfully preserves intrinsic 3D structures in hyperspectral anomaly detection. In
addition, Liu et al. [7] comprehensively survey low-rank tensor approximation for hyper-
spectral image restoration, highlighting state-of-the-art techniques and current challenges
in the field. This collective body of work underscores the flexibility and potential of using
low-rank approximations to manage and interpret complex, high-dimensional data.

The collection of high-dimensional data can result in the loss of some elements. Low-
rank tensor completion (LRTC) addresses this problem by reconstructing the missing
components from known data elements. Unlike low-rank matrix completion (LRMC),
which relies solely on second-order information, LRTC exploits higher-order information,
making the study of low-rank tensor completion techniques an important frontier in
many fields.

For example, Liu et al. [8] introduced the Sum of Matricization-based Nuclear Norms
(SMNN), which is based on the Tucker rank of the tensor, and formulated three optimization
algorithms for tensor completion via SMNN minimization, successfully applying them to
visual data completion. Zhang et al. [9,10] developed the tubal nuclear norm (tubal-NN)
approach based on the tubal-rank tensor, and designed an algorithm that uses tensor nuclear
norm penalization for tensor completion. The algorithm is effective in video recovery and
denoising. Lu et al. [11] constructed a tensor completion model using the tensor nuclear
norm (TNN). They showed that the TNN is a specific atomic norm, and established a bound
for guaranteed low-tubal-rank tensor recovery, thus providing recovery guarantees for
tensor completion. Xue et al. [12] extended the tensor completion model to include the
tensor truncated nuclear norm (T-TNN), thereby improving its effectiveness in real-world
video and image processing.

In addition to these newly defined tensor norms, researchers are now developing
other techniques that extend traditional concepts to new applications in tensor completion.
For example, Zeng et al. [13] introduced a multimodal nuclear tensor factorization tech-
nique, which incorporates low-rank insights and an efficient block successive upper-bound
minimization algorithm. The method was applied to tasks such as hyperspectral images,
video, and MRI completion, with experimental results confirming its superior performance.
Similarly, Wu et al. [14] presented the tensor wheel decomposition method, which charac-
terizes complex interactions with only a few hyperparameters, improving performance on
both synthetic and real data. Zhao et al. [15] presented a nonconvex model with a proximal
majorization–minimization algorithm for robust low-rank tensor completion, providing
theoretical guarantees and demonstrating high efficiency on visual data, including color
and multispectral images.

In recommendation systems, Deng et al. [16] applied a meta-learning strategy with
low-rank tensor completion for hyperparameter optimization and demonstrated its effec-
tiveness. Nguyen [17] developed a consistency-based framework that emphasizes unit-scale
consistency for matrix and tensor completion, with attributes such as fairness and the ability
to exploit high-dimensional relationships. Hui et al. [18] integrated social–spatial context
into tensor completion for time-aware point-of-interest recommendations, outperforming
existing methods.

Tensor completion has also contributed to advance in data mining. Song et al. [19]
reviewed recent tensor completion algorithms, examining four perspectives and various
applications in data mining. Wu et al. [20] introduced a multiattentional tensor completion
network for handling missing entries in road sensor data, demonstrating improved perfor-
mance. Lee et al.’s [21] sign representable tensor model addresses both low and high rank
signals for tensor completion, improving performance on human brain connectivity and
topic data mining datasets.

1.2. Contributions and Organization of This Paper

Building on the success of low-rank tensor completion (LRTC) as compared with
low-rank matrix completion (LRMC), this paper takes a leap forward by employing a
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higher-order t-matrix model with high-order circular convolution. This novel method
forms a specific generalization of LRMC tailored to multi-way image recovery, including
the completion of RGB images with missing entries.

Our model is inspired by the well-regarded completion algorithm proposed by Lu
et al. [11]. Our model extends Lu et al.’s algorithm by incorporating a high-order methodol-
ogy for high-dimensional data. Evaluations of our approach demonstrate competitive recov-
ery performance, with favorable recovery performance compared to existing algorithms.

The practical implications of this work are multifaceted, providing solutions that
not only improve visual data completion, but also offer broader applications in areas
such as video recovery, data mining, and medical imaging. By integrating our higher-
order generalization into existing systems, it is possible to create more efficient and robust
mechanisms for handling high-order, high-dimensional data.

The contributions of this research are summarized as follows.

• This research presents a t-matrix model that can extend traditional matrix methods to a
higher order. The higher-order algorithm, termed “Higher-Order TNN”, is designed to
exploit intricate structures in high-dimensional data and refines classical lower-order
algorithms for missing entry recovery of RGB images. Compared to its predecessors,
Higher-Order TNN offers significantly improved recovery performance.

• Using the t-matrix model over a finite-dimensional algebra, several image analysis
algorithms are extended to a higher order using a novel pixel neighborhood strategy.

• Many constructions in matrix and vector analysis are extended to the t-matrix model.
Examples include rank, norm, and inner product. In addition, t-matrix versions of
Lagrange multipliers are defined.

The rest of the paper is organized as follows: Section 2 introduces t-matrices, outlining
their structure, representation, and possible extension. Section 3 describes the low-rank
matrix completion (LRMC) methodology and its higher-order counterparts, explaining
the use of t-scalars and t-matrices. Section 4 provides an in-depth exploration of rank
considerations, presenting different notions of rank and the concept of higher-order rank.
Section 5 details experimental validation and performance analysis, using both simulated
random data and real-world datasets such as the Berkeley Segmentation Dataset. Section 6
summarizes the content of this paper and its implications. Appendix A provides further
mathematical justification, explaining the mechanism of t-scalars and t-matrices from a
unique matrix perspective of representation and operator theory, along with an exploration
of the Lagrange multiplier with t-matrix variables.

2. T-Matrices

A t-matrix is a rectangular array composed of elements called t-scalars [22]. Since
a t-scalar forms an array in CI1×···×IN , a t-matrix with D1 rows and D2 columns can be
represented by a multiway complex array inCI1×···×IN×D1×D2 . While various authors [23,24],
including Kilmer et al. [10], categorize these t-matrices as tensors, we use the term “t-matrix
over t-scalars”. The t-matrix model is used to extend many existing matrix algorithms.

2.1. T-Scalars

A complex array of order N is by definition an element of the set C, where C ≡
CI1×···×IN . Similarly, a real array of order N is an element of the set R, where R ≡ RI1×···×IN .
The sets R and C share a commutative ring structure, in which the multiplication is defined
by a circular convolution of order N and the addition is entry-wise. Elements of C and R are
called t-scalars. In this paper, we focus primarily on C, since R is a subset of C. By further
defining the multiplication of a t-scalar with a complex number by conventional scalar
multiplication, we can elevate the ring C to a finite dimensional commutative algebra.

Using t-scalars not only allows us to construct novel matrices, but also allows the
extension of many classical matrix algorithms into the realm of t-matrix algorithms.

We adopt the notions described by Liao and Maybank [22]. For example, the following
definitions are given for t-scalars.
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Definition 1 (Addition of T-scalars [22]). Consider two t-scalars ẋ, ẏ ∈ CI1×···×IN as order-N
arrays of size I1 × · · · × IN . The sum, ċ = ẋ + ẏ, with ċ ∈ CI1×···×IN , is calculated element-wise,

(ċ)i1,...,iN = (ẋ)i1,...,iN + (ẏ)i1,...,iN ∀i1, . . . , iN .

Definition 2 (Multiplication of T-scalars [22]). Let ẋ, ẏ ∈ CI1×···×IN be two t-scalars of size
I1 × · · · × IN . Their product is defined as ċ = ẋ ◦ ẏ, where ċ results from the order-N circular
convolution of ẋ and ẏ. Specifically, we have

(ċ)i1,...,iN = ∑
(k1,...,kN)∈[I1]×···×[IN ]

(ẋ)k1,...,kN · (ẏ)k′1,...,k′N
, ∀i1, . . . , iN

where k′n = mod(in − kn, In) + 1, for all n ∈ [N] .

Although order-two t-scalars share the data structure of order-two numerical arrays,
they differ from matrices in that their multiplication is commutative. Nevertheless, when a
linear transformation, such as the Fourier transform, is applied to a t-scalar, it is convenient
to think of the underlying order-two arrays of t-scalars as matrices. This principle extends
to higher-order t-scalars as well. When a multilinear transformation is applied to a higher-
order t-scalar, the underlying higher-order array of the t-scalar can be treated as a tensor.

We use the notation tensor(ẋ) to elevate the underlying order-N array of ẋ to a
conventional tensor of identical size and entries. With tensor(ẋ) as the conventional tensor,
the multiplication of two t-scalars is given in the Fourier domain by the following theorem.

Theorem 1 (Fourier Transform). Let ẋ, ẏ ∈ C be two t-scalars with the product ċ = ẋ ◦
ẏ ∈ C. Define x̃ = F(ẋ), ỹ = F(ẏ), and c̃ .

= F(ċ) as their respective multilinear Fourier
transforms. For any t-scalar ẋ ∈ C, its multilinear Fourier transform is given by the following multi-
mode multiplication:

F(ẋ) .
= tensor(ẋ)×1 W1 · · · ×n Wn · · · ×N WN (1)

where Wn denotes the In × In Fourier matrix such that the following equation holds for all
k1, k2 ∈ [In],

(Wn)k1,k2 = exp
[
−2π I−1

n
√
−1(k1 − 1)(k2 − 1)

]
.

Consequently, the following Hadamard product holds for all i1, . . . , iN :

(c̃)i1,...,iN = (x̃)i1,...,iN · (ỹ)i1,...,iN .

Definitions 1 and 2 qualify all t-scalars as elements of a commutative ring C. An
essential operation in C is the multiplication of elements of C with a scalar. This leads to
the following definition.

Definition 3 (Scalar Multiplication [22]). Let ẋ ∈ C ≡ CI1×···×IN be a t-scalar and λ a complex
number. Their multiplication, denoted as ẏ .

= λ · ẋ ∈ C, is defined for all i1, . . . , iN as follows:

(ẏ)i1,...,iN = λ · (ẋ)i1,...,iN .

With the above definitions as a basis, we have the following proposition about the
identity and zero t-scalars in the algebra C.

Proposition 1 (Identity T-scalar and Zero T-scalar [22]). Consider a t-scalar ė ∈ CI1×···×IN .
In this case, (ė)i1,...,iN = 1 if i1 = · · · = iN = 1, and (ė)i1,...,iN = 0 otherwise. Alternatively, if
every entry of ẋ is 0, we have this t-scalar as the zero t-scalar ż. Note that each entry of the identity
t-scalar is 1 in the Fourier domain, while the zero t-scalar remains unchanged in the Fourier domain.
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2.2. T-Scalars as Finite-Dimensional Linear Operators

Since every t-scalar in the algebra C defines a commutative finite dimensional linear
operator, operator theory allows us to determine the spectrum of any t-scalar ẋ ∈ C. The
spectrum, or the set of complex eigenvalues of ẋ, corresponds to the K entries of the Fourier
transform x̃ (where K .

= I1 · I2 · · · IN), taking multiplicity into account.
The eigenvalues, i.e., Fourier entries, of a t-scalar help to define concepts such as trace,

Schatten norm, and singular values of a t-scalar. The following definitions are presented
first, before a more detailed exploration of the above concepts later in this paper.

Definition 4 (Conjugate [22]). A unique t-scalar ẏ in C is the conjugate of a t-scalar ẋ in C if
each eigenvalue of ẏ is the complex conjugate of the corresponding eigenvalue of ẋ. The conjugate is
denoted by ẋ∗.

Definition 5 (Non-negativity [22]). A t-scalar ẋ is said to be non-negative if and only if all of its
complex eigenvalues (i.e., Fourier entries) are non-negative real numbers.

Definition 5 is crucial because it facilitates the generalization of various concepts of non-
negativity, including matrix rank, space dimension, norm, and distance, to non-negative
elements in C. We explore these generalizations below, as needed.

Consider any two non-negative t-scalars ẋ, ẏ. Their difference is self-conjugate because
(ẋ− ẏ)∗ = ẋ− ẏ holds invariably. The element ż ∈ C is the smallest non-negative element.
If ẋ− ẏ is non-negative, a partial order ẋ ≥ ẏ ≥ ż is defined. If neither ẋ− ẏ nor ẏ− ẋ is
non-negative, ẋ and ẏ are said to be incomparable.

2.3. T-Matrices

A t-matrix is a rectangular container of t-scalars. Since the underlying data forms
of t-scalars are arrays in CI1×···×IN , it is logical to represent the underlying data form of
a t-matrix in CD1×D2 as a higher-order array in CI1×···×IN×D1×D2 . We refer to this higher-
order array format as the little-endian representation of a t-matrix. Conversely, some
authors may arrange a t-matrix in CD1×D2 as an array in CD1×D2×I1×···×IN rather than in
CI1×···×IN×D1×D2 . We call this form the big-endian representation. It is used by Kilmer
et al. [10] in their paper. The conversion between the little-endian and big-endian protocols
is straightforward. Because of the underlying multiway array structure of t-matrices, some
authors refer to these t-matrices as tensors [25], although they differ from the tensors
defined in other areas [26].

The operations on t-matrices are analogous to those on traditional matrices. Specif-
ically, if we have a t-matrix in CD1×D2 ≡ CI1×···×IN×D1×D2 and another in CD2×D3 ≡
CI1×···×IN×D2×D3 , their multiplication yields a t-matrix in CD1×D3 ≡ CI1×···×IN×D1×D3 .
Similarly, constructs such as the conjugate transpose and the diagonal matrix can be de-
fined analogously. For a more detailed discussion of these concepts, see [22].

2.4. Singular Value Decomposition of a T-Matrix

To exploit the structure of a t-matrix, it is often decomposed into a product of simpler
matrices. In detail, the TSVD (Tensorial SVD) of a t-matrix Ẋ ∈ CD1×D2 is given by

Ẋ = U̇ ◦ Ṡ ◦ V̇∗ (2)

where U̇ ∈ CD1×D, Ṡ ∈ CD×D, and V̇ ∈ CD2×D, where D .
= min(D1, D2). The symbol V̇∗

denotes the conjugate transpose of the t-matrix V̇, and Ṡ .
= diag(σ̇1, . . . , σ̇D) is a diagonal

t-matrix with non-negative t-scalars as its diagonal entries in non-increasing partial order
σ̇1 ≥ · · · ≥ σ̇D ≥ ż.

In addition, the following generalized orthogonal constraints are available:

U̇∗ ◦ U̇ = V̇∗ ◦ V̇ = İ .
= diag(ė, . . . , ė) ∈ CD×D ≡ CI1×···×IN×D×D (3)
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Here, İ denotes the identity t-matrix, which has diagonal entries of ė and off-diagonal
entries of ż.

Equation (2) defines the tensorial singular value decomposition (TSVD) of a t-matrix.
Numerous methods expound on the computational and operational aspects of TSVD.
Among these, one particularly practical method employs the mechanism of spectral slices.

Given a t-matrix Ẋ ∈ CD1×D2 , represented as a little-endian complex array in
CI1×···×IN×D1×D2 , let Ẋ 7→ tensor(Ẋ) map this underlying array into a conventional tensor
with identical size and entries. Complying with Equation (1), the Fourier transform of Ẋ is
expressed as the following multi-mode multiplication:

X̃ .
= F(Ẋ) = tensor(Ẋ)×1 W1 · · · ×n Wn · · · ×N WN (4)

Since all operations on t-scalars in the Fourier domain are Fourier-entry-wise, the
following definition can be used to decompose t-matrices in the Fourier domain and to
establish further constructs.

Definition 6 (Spectral Slice [22]). For any t-matrix Ẋ ∈ CD1×D2 ≡ CI1×···×IN×D1×D2 , its
Fourier transform X̃ ∈ CI1×···×IN×D1×D2 , as defined in Equation (4), can be partitioned into K
spectral slices (where K = I1 · I2 · · · IN). Each spectral slice, indexed by (i1, . . . , iN), is a conven-
tional complex matrix denoted by X̃(i1, . . . , iN) ∈ CD1×D2 . The matrix satisfies the following
equation for all i1, . . . , iN and d1, d2:(

X̃(i1, . . . , iN)
)

d1,d2
= (X̃)i1,...,iN ,d1,d2 . (5)

Using spectral slices, various constructs can be introduced. For example, the Tensor
Singular Value Decomposition (TSVD) of a t-matrix is obtained by Algorithm 1.

Algorithm 1 Tensorial Singular Value Decomposition via Spectral Slices

1: procedure [U̇, Ṡ, V̇] = TSVD(Ẋ)
2: Apply Equation (4) to compute the transform X̃ from Ẋ.
3: for (i1, . . . , iN) ∈ [I1]× · · · × [IN ] do
4: Compute the compact SVD of each spectral slice X̃(i1, . . . , iN) = U · S ·VH .
5: Store the resulting U, S, and V in Ũ(i1, . . . , iN), S̃(i1, . . . , iN), and Ṽ(i1, . . . , iN).
6: end for
7: Apply the inverse transform F−1 to each of Ũ, S̃, and Ṽ to obtain U̇, Ṡ, and V̇,

respectively.
8: end procedure

Note that Algorithm 1 computes the compact TSVD of a tensor Ẋ ∈ CD1×D2 . In this
decomposition, Ẋ = U̇ ◦ Ṡ ◦ V̇∗, where U̇ ∈ CD1×D, Ṡ ∈ CD×D, and V̇ ∈ CD2×D, where
D .

= min(D1, D2).
Spectral slices facilitate the extension of many conventional algorithms, including the

acclaimed Singular Value Thresholding (SVT) algorithm [27,28], which is an integral part of
low-rank matrix completion (LRMC) problems. The implementation of Tensorial Singular
Value Thresholding on a t-matrix is presented in Algorithm 2.
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Algorithm 2 Tensorial Singular Value Thresholding via Spectral Slices

1: procedure Ẏ = TSVT(Ẋ, τ) where τ is a small positive constant
2: Apply Equation (4) to compute the transform X̃ of Ẋ.
3: for (i1, . . . , iN) ∈ [I1]× · · · × [IN ] do
4: Compute the compact SVD on each spectral slice X̃(i1, . . . , iN) = U · S ·VH .
5: Store the result of the singular value thresholding U ·Cτ(S) ·VH in Ỹ(i1, . . . , iN).
6: end for
7: Apply the inverse transform F−1 to Ỹ to obtain Ẏ, the approximation of Ẋ.
8: end procedure

In Algorithm 2, lines 4 and 5, VH represents the conjugate transpose of V, while Cτ(S)
denotes the soft thresholding of S = diag(σ1, . . . , σD). The threshold parameter τ is applied
as Cτ(S) = diag(σ′1, . . . , σ′D) where σ′d = max(0, σd − τ) for d ∈ [D].

3. Low-rank matrix completion and Its Generalizations

Besides the generalization of SVD to its higher-order counterpart TSVD, many other
matrix algorithms and approaches can be extended analogously over t-scalars. One of them
is the so-called low-rank matrix completion (LRMC).

3.1. Low-Rank Matrix Completion

A variant of the matrix completion problem is to determine the minimum rank matrix
X ∈ RD1×D2 that matches the desired matrix M for all observed entries within the index
set Ω [28]. This problem can be expressed mathematically as

minimize
X

rank(X) subject to (X)i,j = (M)i,j ∀(i, j) ∈ Ω. (6)

Given the NP-hard nature of the above minimization problem, in most practical
scenarios the solution to Equation (6) can most likely be reformulated as the solution to the
following convex optimization problem:

minimize
X, E

‖X‖∗ subject to X + E = M, GΩ(E) = array of zeros (7)

where ‖X‖∗ denotes the nuclear norm of X and GΩ : RD1×D2 → RD1×D2 is a linear operator,
which preserves entries within the set Ω and sets entries outside of Ω to zero.

The augmented Lagrange multiplier function for the minimization problem is formal-
ized as follows [28].

L(X, E, Y, τ) = ‖X‖∗ + 〈Y, M− X− E〉+ 1
2τ
‖M− X− E‖2

F (8)

where Y is the dual variable matrix, τ > 0, and 〈Y, M− X− E〉 is the inner product of the
matrices Y and M− X− E.

The Alternating Direction Method of Multipliers (ADMM) [29,30] can be used to
iteratively refine the optimization variables X and E, as described in Algorithm 3. Here,
M ∈ RD1×D2 , and Ω represents a random non-empty proper subset of the Cartesian
product [D1]× [D2]. Furthermore, Dτ in line 5 denotes the SVT operator with threshold τ.

3.2. Generalization of Matrix Completion over Higher-Order T-Scalars

Following the application of ADMM to the optimization of Equation (7), many authors
have proposed methods to extend the completion process to third-order arrays. For
example, using Kilmer et al.’s [10,25] “t-product” model, Lu et al. [11] extend the above
completion approach to third-order tensors.
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Algorithm 3 ADMM for solving Equation (7)

1: procedure XCOMP = MATRIXCOMPLETION(M, Ω)
2: Initialization: k← 0, Y0 = E0 ← array of zeros, α← 0.9, τ0 ← 104, τmin ← 10−6

3: Set the missing entries of M, i.e., (i, j) ∈ Ωc, to zero
4: while neither convergence nor predefined maximum iterations achieved do

5: Xk+1 ← argmin
X
‖X‖∗ + 1

2τk
‖X + Ek −M− τk ·Yk‖2

F ≡ Dτk (M− Ek + τk ·Yk)

6: Ek+1 ← GΩ̄(M− Xk+1 + τk ·Yk)

7: Yk+1 ← Yk +
1
τk
· (M− Xk+1 − Ek+1)

8: τk+1 ← max
(
α · τk, τmin

)
and k← k + 1

9: end while
10: XCOMP ← Xk
11: end procedure

Although they are called tensor algorithms, Lu et al.’s [11] approach and other vari-
ants [9,12,31] are essentially matrix completion algorithms operating on first-order t-scalars.
However, as noted above, t-scalers can be defined for any order. Since higher-order arrays
encapsulate more structural information than their lower-order counterparts in real-world
scenarios, we exploit this aspect by increasing the order of the arrays via a pixel neighbor-
hood strategy originally introduced in [32].

Specifically, Figure 1 shows the application of a “3× 3 pixel neighborhood” strategy
to increase the order of a 4× 4 pixel grayscale image. Note that the figure represents the
result of the order-four array as a two-dimensional array of two-dimensional blocks.
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Figure 1. Elevating a 4 × 4 grayscale image to a fourth-order array using a central 3 × 3 pixel
neighborhood strategy.

The use of this pixel neighborhood strategy results in a fourth-order array of size
3× 3× 4× 4, which is interpreted as a 4× 4 matrix with t-scalars of size 3× 3.

Note also that the underlying array format can be chosen in the form of 4× 4× 3× 3
instead of 3× 3× 4× 4. We call the 3× 3× 4× 4 construct the little-endian array format of
t-matrices, and the other the big-endian format of t-matrices.
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The endian protocol is not an integral part of the algebraic definitions of t-matrices.
Several array programming languages, including MATLAB and Python (NumPy), provide
convenient tools to facilitate conversion between endian protocols. While Kilmer et al.’s [10,25]
“t-product” model uses big-endian, we use little-endian, which has the advantage of aligning
the multimode multiplication formulation of the Fourier transform of t-matrices (as in
Equation (4)) with that of t-scalars (as in Equation (1)).

Since each pixel value can be elevated to a t-scalar, allowing the conversion of a
traditional matrix into a generalized one with higher-order fixed-size arrays as entries, the
extension of Algorithm 3 to t-matrix completion is straightforward. The generalization of
line 5 in Algorithm 3 can be achieved using TSVD, as described in Algorithm 2. Meanwhile,
line 6 in Algorithm 3 is extended by the function GΘ̄, which preserves entries within the
enhanced set Θ̄ and sets those outside Θ̄ to the zero t-scalar ż.

We propose a t-matrix completion algorithm for recovering multispectral images
with missing values, as described in Algorithm 4, where M ∈ RD1×D2×D3 , Ω represents a
random non-empty proper subset of the Cartesian product [D1]× [D2]× [D3]. The result Θ
is a proper subset of [I1]× [I2]× [D3]× [D1]× [D2], and the size of t-scalars is I1 × I2 ×D3,
where I1, I2 are both odd numbers.

Algorithm 4 Higher-Order TNN: ADMM for recovering an image with missing values

1: procedure XCOMP = SPECTRALIMAGECOMPLETION(M, Ω)
2: Assign the label −1 to the missing entries indexed by Ω.
3: Construct M1, M2, . . . , MD3 ∈ RI1×I2×D1×D2 using the I1 × I2 neighborhood strat-

egy for every frontal slice of M.
4: Construct MUP ∈ RI1×I2×D1×D2×D3 by aligning M1, M2, . . . , MD3 along the mode-5
5: Convert MUP into a t-matrix Ṁ ∈ CD1×D2 ≡ RI1×I2×D3×D1×D2 by

permuting the indices of array.
6: Store the positions of the entries “−1” of Ṁ within Θ.
7: Initialization: k← 0, Ẏ0 ← array of zeros, Ė0 ← array of zeros, α← 0.9,

τmin ← 10−6

8: while neither convergence nor predefined maximum iterations reached do
9: Ẋk+1 ← TSVT(Ṁ− Ėk + τk · Ẏk, τk)

10: Ėk+1 ← GΘ̄(Ṁ− Ẋk+1 + τk · Ẏk)

11: Ẏk+1 ← Yk +
1
τk

(Ṁ− Ẋk+1 − Ėk+1)

12: τk+1 ← max
(
α · τk, τmin

)
and k← k + 1

13: end while
14: Use the row-index-first (MATLAB compliant) protocol to reshape Ẋk into an

I1 I2 × D3D1D2 matrix, extract the central row, and subsequently reshape it with
the row-index-first protocal into an array XDOWN ∈ RD3×D1×D2 .

15: Permute the indices of XDOWN to convert it into an array inRD1×D2×D3 .
16: Adjust the entries of XDOWN to non-negative integers and store the adjusted

array XDOWN as XCOMP, as the recovered multispectral image.
17: end procedure

The lines 3, 4, and 5 of the proposed algorithm up-convert the input multispectral
image M, an initial array D1 × D2 × D3, into a D1 × D2 t-matrix MUP, with t-scalars of size
I1 × I2 × D3. Conversely, line 14 down-converts the optimal t-matrix Ẋk into a third-order
array XDOWN.

Algorithm 4 is based on the tensor completion algorithm of Lu et al. [11]. Section 5 of
this paper focuses on its empirical validation.
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3.3. Computational Complexity

A t-matrix algorithm can be implemented using spectral slices of t-matrices. The
number of spectral slices is equal to the dimension of the t-algebra, resulting in a compu-
tational complexity that is linearly proportional to the dimension. As a result, t-matrix
algorithms often have an increased computational cost. However, each spectral slice op-
erates independently, allowing efficient parallel processing of t-matrix algorithms. This
data independence in the Fourier domain facilitates the use of array programming, which
is compatible with many programming languages such as MATLAB, R, NumPy, Julia,
and Fortran.

4. Rank Considerations

Matrix completion is the recovery of a low-rank matrix given a version of the matrix
with some missing entries. Its generalization aims to recover an analogous higher-order
t-matrix. However, the rank of a t-matrix is not yet specified, so let us look at some novel
rank notions defined for higher-order arrays.

4.1. Tubal Rank and Average Rank

An RGB image consists of three monochromatic channels. Each channel in RGB images
from the real world can be adequately approximated by low-rank matrices. However, when
viewed as a third-order tensor, the canonical rank of an RGB image, which is defined by
the minimal set of rank-one tensor addends, becomes computationally intractable.

Kilmer et al.’s approach is to introduce a novel rank concept, called tubal rank, for a
third-order array. Specifically, for a given third-order array Ẋ, with its TSVD defined as
Ẋ = U̇ ◦ Ṡ ◦ V̇∗, the tubal rank of Ẋ corresponds to the number of non-zero (i.e., not equal
to ż) diagonal t-scalars in Ṡ. Nevertheless, by this definition, a t-matrix of full tubal rank
can consist of a full-rank matrix as one of its spectral slices, with all other spectral slices
being zero matrices.

To address this problem, Lu et al. [31] define the average of all spectral slice ranks as
the “average rank” of a t-matrix. This “average rank” definition is more appropriate than
the tubal rank. However, this term is only used for Lu et al.’s generalization of robust com-
ponent analysis [31], not for the higher-order array recovery problem presented in [11]. The
mathematical justification for using this average rank has not been adequately addressed.

4.2. Higher-Order Rank and Its Trace Variant

In addition to the tubal rank of Kilmer et al. and the average rank of Lu et al., another
relevant concept is the higher-order rank introduced by Liao and Maybank [22]. Specifically,
given a t-matrix Ẋ with its tensor singular value decomposition (TSVD) Ẋ = U̇ ◦ Ṡ ◦ V̇∗, the
higher-order rank of Ẋ is a non-negative t-scalar given by the sum of the diagonal entries
of the product Ṡ† ◦ Ṡ, where Ṡ† denotes the pseudoinverse of Ṡ.

This rank generalizes the definition of rank for traditional matrices. The pseudo-
inverse of a t-matrix can be computed using spectral slices, similar to Algorithms 1 and 2.
Specifically, the pseudo-inverse Ẋ† of a t-matrix is defined by assigning the pseudo-inverse
of each spectral slice to its corresponding slice in the result. It is not difficult to verify
that the pseudo-inverse Ẋ† defined above is equal to the product V̇ ◦ Ṡ† ◦ U̇∗. That is, the
equation Ẋ† = V̇ ◦ Ṡ† ◦ U̇∗ holds for any t-matrix Ẋ.

From the previous definition, it is easy to see that the higher-order rank of any t-matrix
is a non-negative t-scalar. It can be sorted alongside comparable non-negative counterparts
using the partial order introduced in Section 2.2. However, sometimes we prefer a more
efficient rank notion similar to the fully ordered ones proposed by Kilmer et al. and Lu et al.
as opposed to the partially ordered higher order rank. Reassuringly, the Szpilrajn extension
theorem asserts that the partially ordered rank system proposed in [22] can always be
extended to a fully ordered rank system.

There are several strategies for transforming the higher-order rank system into its
fully ordered counterparts. Considering any higher-order rank of a t-matrix Ẋ, each of
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its eigenvalues, (i.e., Fourier entries,) is non-negative and the traditional matrix rank of
the corresponding spectral slice of Ẋ. Consequently, Kilmer et al.’s tubal rank denotes the
maximum value among these spectral points, while Lu et al.’s average rank is equal to their
arithmetic mean.

Typically, in most scenarios, the average rank of Lu et al. is considered a superior
statistic for a higher-order rank. However, to avoid fractional rank values, we propose
using the sum, rather than the arithmetic mean, of the spectral points of a higher-order
rank to define its corresponding fully ordered rank. Furthermore, since every t-scalar
also functions as a finite-dimensional linear endomorphic operator, the previously defined
“sum rank” of a t-matrix is equivalent to the trace of the higher-order rank, so it would be
appropriate to formally label it as the “trace rank”.

The fairness of the above definitions can be given by using the representation theory
known in the mathematical community. We give a brief discussion of representation theory
with its application to justify the above definition in Appendix A.

5. Experiments

This part presents experimental validation and performance analysis of the algorithms.

5.1. Experiments on Simulated Random Data

To evaluate the completion capability of the proposed Higher-Order TNN algorithm,
we use simulated random t-matrices. Specifically, we generate two random t-matrices
Ṗ ∈ CD×r and Q̇ ∈ Cr×D, which are represented as arrays inRI1×I2×I3×D×r andRI1×I2×I3×r×D,
where I1 × I2 × I3 = 3× 3× 3 and r < D. The parameter r is (with high probability) the
tubal rank as defined by Kilmer et al. [10,25]. The real numbers in the underlying arrays of
Ṗ and Q̇ are independently sampled from the Gaussian distribution N (0, 1).

The product Ẏ = Ṗ · Q̇ gives a random t-matrix in CD×D ≡ RI1×I2×I3×D×D. The
trace rank of Ẏ is, with high probability, ranktrace Ẏ = I1 I2 I3 · r. From the underlying array
of Ẏ, we randomly and uniformly select entries to simulate missing data. The resulting
incomplete Ẏ, with a varying percentage of missing entries, and a rank parameter r for Ẏ,
serve as inputs to the Higher-Order TNN algorithm.

The Higher-Order TNN algorithm produces a t-matrix Ẋ ∈ CD×D ≡ RI1×I2×I3×D×D,
which is an estimate of Ẏ. Let ‖ · ‖F be the Frobenius norm. If the Relative Standard Error

RSE .
= ‖ tensor(Ẏ)− tensor(Ẋ)‖F/‖ tensor(Ẏ)‖F

is less than a threshold, the completion by the Higher-Order TNN algorithm is considered
successful.

Figure 2 illustrates the RSE distributions and phase transitions for fifth-order array
completions using the proposed Higher-Order TNN. Figure 2a shows the RSE distribu-
tion with the parameter D = 40. Figure 2b shows a phase transition corresponding to
D = 50, where the white and black dots represent successful (RSE < 1× 10−2) and failed
completions, respectively. Figure 2a,c show the RSE distributions with D = 40 and D = 50
Figure 2b,d shows the phase transitions associated with D = 40 and D = 50, respectively.
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Figure 2. RSE distributions and phase transitions (threshold RSE = 1× 10−2 ) of Higher-Order TNN,
with D = 40 and 50. (a) RSE distribution, D = 40. (b) phase transition, D = 40. (c) RSE distribution,
D = 50. (d) phase transition, D = 50.

5.2. Experiments on BSD Color Images

In the following experiments, we use the Berkeley Segmentation Dataset as a bench-
mark to compare the performance of four related algorithms: tubal-TNN [9], T-TNN [12],
TNN [11], and our Higher-Order TNN. Three RGB images, namely “Resort”, “Insect”,
and “Seagulls”, are selected for the first experiment. These images are represented as
321× 481× 3 unsigned integer arrays.

To compare the completion performance, we randomly select 70% of the pixel values
of each image as “missing” entries. The incomplete images, with missing values set to zero,
provide a visual representation in Figure 3, which shows the original complete images
alongside their incomplete versions.
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(a)

(b)

Figure 3. Three original and observed images: “Resort”, “Insect”, and “Seagulls” from the Berkeley
Segmentation Dataset. (a) Original images. (b) Observed images with missing 70% entries.

We use the three competing algorithms and our Higher-Order TNN, described in
Algorithm 4, to obtain a complete RGB image of equal size. The quality of the image
completion is quantified by the Peak Signal to Noise Ratio (PSNR), defined as

PSNR = 10 · log10
D1 · D2 · D3

‖XCOMP −M‖2
F

(9)

where D1 · D2 · D3 is the number of entries in the RGB image. Note that the entries of
XCOMP and M are scaled such that the largest entry value in each scaled array is 1.

Figure 4 presents visual and quantitative comparisons of the performance of four
competing algorithms in completing the observed images: “Resort”, “Insect”, and “Seagulls”
from the Berkeley Segmentation Dataset. The proposed Higher-Order TNN outperforms
its competitors in terms of PSNRs by at least 1 dB, 1.4 dB, and 1.6 dB, respectively.

(a)

Figure 4. Cont.
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(b)

(c)

(d)

PSNR comparison of four competing algorithms
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Figure 4. Visual and quantitative comparisons of the performance of four related algorithms in com-
pleting the images “Resort”, “Insect”, and “Seagulls”. (a) Tubal-NN [9]. (b) T-TNN [12]. (c) TNN [11].
(d) Higher-Order TNN (ours).

In our second experiment, we use three different images—“Temple”, “Chapel”, and
“Grass-flower”, each with 50% entries randomly missing, to perform completions analogous
to the first experiment on the Berkeley images, each with 70% entries randomly missing.
Figure 5 shows the original images along with their incomplete versions.

Figure 6 shows the visual and quantitative comparisons of the four related image
completion algorithms. Consistent with the results of the first experiment, the Higher-Order
TNN significantly outperforms the other algorithms, achieving gains of at least 1.5 dB,
1.2 dB, and 2.2 dB, respectively.
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(a)

(b)

Figure 5. Three original and observed images: “Temple”, “Chapel”, and “Grass-flower” from the
Berkeley Segmentation Dataset. (a) Orignal images. (b) Observed images with 50% entries missing.

(a)

(b)

(c)

Figure 6. Cont.
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(d)

33

37

41

45

33.9

38.9
36.6

34.2

39.3
37.3

34.7
35.9

37.7
36.2

40.5 39.9

P
S
N
R

(d
B
)

Tubal-NN T-TNN

TNN Higher-order TNN (ours)

Temple Chapel Grass-flower

Figure 6. Visual and quantitative comparisons of the performance of four related algorithms in
completing the images “Temple”, “Chapel”, and “Grass-flower”. (a) Tubal-NN [9]. (b) T-TNN [12].
(c) TNN [11]. (d) Higher-Order TNN (ours).

After experiments on 6 RGB images, our research now includes 10 randomly selected
RGB images from the Berkeley Segmentation Dataset, with the percentage of missing
entries set to increments within 10%, 20%, . . . , 90%.

Figure 7 shows the 10 randomly selected RGB images used for the experiments.
Figure 8 shows the PSNR heatmaps for four relevant algorithms: Tubal-NN [9], T-TNN [12],
TNN [11], and our newly developed Higher-Order TNN on the images shown in Figure 7.

These results demonstrate the superior performance of the Higher-Order TNN, as it
outperforms its counterparts in terms of PSNR.

Figure 7. 10 random RGB images selected from the Berkeley Segmentation Dataset.
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Figure 8. PSNR heatmaps of four algorithms with different percentages of missing entries on 10 RGB
images. (a) Tubal-NN [9]. (b) T-TNN [12]. (c) TNN [11]. (d) Higher-Order TNN (ours).

For a clearer demonstration, Figure 9 shows the PSNR gains of our Higher-Order TNN
over tubal-NN, T-TNN, and TNN. It shows that the PSNR gains of Higher-Order TNN
over its counterparts are predominantly positive.
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Figure 9. Higher-Order TNN’s PSNR gains over its competitors. (a) PSNR gain over tubal-TNN.
(b) PSNR gain over T-TNN. (c) PSNR gain over TNN.

6. Conclusions

In this paper, we consider the problem of higher-order array completion using the
higher-order t-matrix model. By adopting a consistent solution, we generalize low-rank
matrix completion for the recovery of RGB images with missing entries. Our proposed
“Higher-Order TNN” method outperforms competitors such as tubal-TNN, T-TNN, and
TNN in terms of recovery performance, demonstrating the ability to exploit higher-order
relationships within high-dimensional data and showing advantages.

Our solution not only improves visual data completion, but also paves the way for
broader applications. Integrating higher-order generalization into existing systems lays
the foundation for more robust and efficient handling of high-order, high-dimensional
data. Furthermore, any t-matrix algorithm based on spectral slices of t-matrices has a
computational complexity linear in the dimension of the t-algebra. Its independent spectral
slices enable faster parallel computation using array programming techniques supported
by many programming languages.

We demonstrate this with a generalization of Lu et al.’s [11] tensor completion algo-
rithm to its higher-order version by formulating its matrix model over a finite-dimensional
algebra. This is achieved through a novel pixel neighborhood strategy.

The study also provides a consistent methodology for exploring various properties
of the t-matrix model, including the notions of rank, norm, and inner product. Compared
to the existing “t-product” model, our approach offers new insights into t-scalars and
t-matrices from a fresh perspective of representation and operator theory. Moreover, the
higher-order Lagrange multiplier with t-matrix variables adds to our contributions.

The inclusion of the novel “trace rank”, nuclear norm, Schatten p-norm, and the
adaptation of the recent tensor completion algorithm by Lu et al. for higher-order scenarios
highlight our results. The experiments emphasize the competitive advantage of our higher-
order matrix completion algorithm in RGB image recovery.
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Appendix A. A Mathematical Justification

The ADMM optimization for low-rank matrix completion described in Algorithm 3
relies on the Lagrange multiplier given in Equation (8). However, the generalized ADMM
optimization presented in Algorithm 4 currently lacks a corresponding Lagrange multiplier.
To construct a valid Lagrange multiplier, we define a new nuclear norm, a real-valued inner
product, and a Frobenius-like norm.

Appendix A.1. Matrix Representation for T-Scalars and Higher-Order Measures

A representation of an algebra C requires a vector space V and a homomorphism from
C into End(V), the endomorphism algebra of V.

Each t-scalar in C is represented by a diagonal complex matrix. The diagonal entries
of the matrix are the Fourier entries of the t-scalar, resulting in the following mapping for
all ẋ ∈ C:

ẋ 7→ M(ẋ) .
= diag

{
F1(ẋ), . . . , FK(ẋ)

}
. (A1)

Here, F1(ẋ), . . . , FK(ẋ) represent the Fourier entries of F(ẋ).
It is obvious that F1(ẋ), . . . , FK(ẋ) are eigenvalues of both the t-scalar ẋ and the matrix

M(ẋ). The conjugate ẋ∗ maps to the conjugate transpose M(ẋ)H of M(ẋ). The following
mapping is one-to-one.

ẋ∗ 7→ M(ẋ)H = diag
{

F1(ẋ), . . . , FK(ẋ)
}

. (A2)

Since any t-scalar ẋ is a normal operator, i.e., ẋ∗ ◦ ẋ = ẋ ◦ ẋ∗, there exists a unique
non-negative square root |ẋ| .

=
√

ẋ∗ ◦ ẋ, which leads to the following one-to-one mapping:

|ẋ| 7→ diag{|F1(ẋ)|, . . . , |FK(ẋ)|}. (A3)

In operator theory, such a non-negative square root is called a positive operator,
alternatively a “non-negative operator”, by Definition 5, despite its less common usage.
This non-negative operator (t-scalar) can appropriately be called the higher-order absolute
value of ẋ.

In addition, a t-scalar behaves as an endomorphism within the finite-dimensional
algebra C and as such has a trace. The trace of any given t-scalar ẋ can be computed via

trace(ẋ) = F1(ẋ) + · · ·+ FK(ẋ) . (A4)

This trace, when pertaining to a non-negative t-scalar (a non-negative operator), is a
non-negative real number. This property elevates the partial order of non-negative t-scalars
to a total order. Therefore, the trace of the higher-order absolute value

√
ẋ∗ ◦ ẋ, or the trace

norm of ẋ ∈ C, can be determined.
The trace norm of a t-scalar is the nuclear norm of its matrix representation. For any

t-scalar ẋ, this relation can be expressed as

trace |ẋ| .
= trace M(|ẋ|) = ‖M(ẋ)‖∗, ∀ẋ ∈ C. (A5)

Equation (A5) implies that the norm of M(ẋ) serves as a real-valued, totally ordered
amplitude of ẋ. Together with ‖M(ẋ)‖∗, the Schatten 2-norm ‖M(ẋ)‖2 is also a valid norm
of ẋ. However, due to the non-isometric nature of the Fourier transform, ‖M(ẋ)‖2 is not
equal to the Frobenius norm ‖ tensor(ẋ)‖F.
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The non-negative t-scalar |ẋ| .
=
√

ẋ∗ ◦ ẋ fully encompasses the amplitude information
of the t-scalar ẋ. Both the Schatten 2-norm and the Frobenius norm of the underlying tensor
of ẋ can be derived from |ẋ| as follows:

‖M(ẋ)‖2 =
√

K · ‖ tensor(ẋ)‖F =
√

trace |ẋ| . (A6)

where K is the dimension of the algebra C.

Appendix A.2. A Representation Model for T-Matrices and Higher-Order Measures

Consider a t-matrix Ẋ ∈ CD1×D2 , characterized by its higher-order singular values
σ̇1 ≥ σ̇2 ≥ . . . ≥ σ̇n ≥ . . . ≥ ż. The higher order Schatten p-norm of Ẋ is defined by

Np(Ẋ) =

(
∑
n

σ̇
p
n

)1/p

≥ ż . (A7)

A t-matrix Ẋ ∈ CD1×D2 can be represented by placing the diagonal matrix of each
corresponding t-scalar into its respective block in the final matrix. If the diagonal matrix
size of a t-scalar is K× K, then the matrix representation of Ẋ is CKD1×KD2 , as shown by
Liao et al. [33].

However, matrix representations are not unique. In addition to the above format, a
more convenient representation uses the direct sum of matrices, also known as the block
diagonal sum. This operation combines several matrices into a larger one, where the
summand matrices are arranged along the main diagonal and off-diagonal blocks are filled
with zeros. In this appendix, we stick to this representation in the direct sum of matrices.

Given a t-matrix Ẋ ∈ CD1×D2 with spectral slices denoted by X̃1, . . . , X̃K, the direct
sum representation of Ẋ is established via a bijective mapping:

Ẋ 7→ M(Ẋ)
.
= X̃1 ⊕ X̃2 · · · ⊕ X̃K

.
=


X̃1 0 · · · 0
0 X̃2 · · · 0
...

...
. . .

...
0 0 · · · X̃K

 . (A8)

This mapping extends the bijective mapping for t-scalars given in Equation (A1).
Kilmer et al. [10,25] proposed the first version of this mapping for the analysis of t-matrices
with order-one entries.

It is easy to see that Ẋ∗ 7→ M(Ẋ)H = ⊕K
k=1X̃H

k . Furthermore, given the one-to-one
nature of the mapping, we can define the rank of Ẋ by the rank of M(Ẋ), which leads to
the following equation:

rank Ẋ .
= rank M(Ẋ) =

K

∑
k=1

rank X̃k . (A9)

This definition corresponds to the “trace rank” discussed in Section 4.2. The direct
sum representation also provides a mathematical justification for Algorithm 1. In particular,
if the singular value decomposition of the summand X̃k is X̃k = Uk · Sk ·VH

k , the following
equation of direct sums holds for all Ẋ,

⊕K
k=1X̃k = ⊕K

k=1Uk · Sk ·VH
k = ⊕K

k=1Uk · ⊕K
k=1Sk · ⊕K

k=1VH
k . (A10)

In addition, the following equation is obtained from the TSVD of Ẋ:

Ẋ = M−1
(
⊕K

k=1Uk

)
◦M−1

(
⊕K

k=1Sk

)
◦M−∗

(
⊕K

k=1Vk

)
(A11)

where M−∗(·) is a shorthand for (M−1(·))∗.
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Appendix A.3. Lagrange Multiplier with T-Matrix Variables

The direct sum properties also validate the spectral-slice-wise mechanism exhibited in
Algorithms 2–4. We present a generalized version of Equation (8). The Lagrange multiplier
with t-matrix variables has the following form:

L(Ẋ, Ė, Ẏ, τ) = ‖Ẋ‖∗ + 〈Ẏ, Ṁ− Ẋ− Ė〉+ 1
2τ
‖Ṁ− Ẋ− Ė‖2

2 . (A12)

The real-valued Schatten 2-norm ‖Ẋ‖2 can also be derived from the higher-order
Schatten 2-norm Np(Ẋ) given in Equation (A7). Consequently, for all t-matrices Ẋ, the
following equation holds:

‖Ẋ‖2
.
= ‖M(Ẋ)‖2 =

√
trace

(
N2(Ẋ)2

)
> 0 . (A13)

It is important to note that ‖Ẋ‖2 is measured by spectral slices and the Fourier trans-
form is not isometric. Therefore, unlike the case for conventional matrices, the Schatten
2-norm ‖Ẋ‖2 and the Frobenius norm ‖ tensor(Ẋ)‖F are different. For any t-matrix Ẋ, the
equality ‖Ẋ‖2 =

√
K · ‖ tensor(Ẋ)‖F holds.

Similarly, the nuclear norm of any t-matrix Ẋ is defined by the nuclear norm of M(Ẋ).
As with the Schatten 2-norm, the real-valued nuclear norm ‖Ẋ‖∗ can be derived from its
higher-order counterpart N1(Ẋ) as follows:

‖Ẋ‖∗ .
= ‖M(Ẋ)‖∗ = trace

(
N1(Ẋ)

)
. (A14)

Currently, a real inner product 〈Ẋ, Ẏ〉 of a pair of t-matrices Ẋ, Ẏ is required to have
the full Lagrange multiplier as in Equation (A12). However, if the inner product 〈Ẋ, Ẏ〉 is
defined as trace

(
M(Ẋ)H M(Ẏ)

)
, it will be complex.

To ensure a real-valued inner product instead of a complex-valued one, a feasible
strategy is to map M(Ẋ) to a real matrix for any t-matrix Ẋ.

According to representation theory, any complex number a+ b
√
−1 can be represented

as a 2× 2 real matrix using the following mapping:

a + b
√
−1 7→

[
a −b
b a

]
. (A15)

By replacing each complex entry of M(Ẋ) ∈ CKD1×KD2 with its 2 × 2 real matrix
equivalent, the complex matrix M(Ẋ) ∈ CKD1×KD2 can be isomorphically transformed into
a real matrix R(Ẋ) ∈ R2KD1×2KD2 . Thus, the real inner product for any pair of t-matrices Ẋ
and Ẏ can be defined as

〈Ẋ, Ẏ〉 .
= (1/2) · trace

(
R(Ẋ)T R(Ẏ)

)
. (A16)

The coefficient (1/2) is essential to account for the doubling of absolute values in the
real representation.

The following required investigation is standard in convex analysis with the Lagrange
multiplier given by Equation (A12) and has been studied extensively by previous authors.
Therefore, it is beyond the scope of this appendix.
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