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Abstract An activity constantly engaged by most programmers in coding is to search for appropriate

application programming interfaces (APIs). Contextual information is widely recognized to play a crucial

role in effective API recommendation, but it is largely overlooked in practice. In this paper, we propose

context-aware API recommendation using tensor factorization (CARTF), a novel API recommendation

approach in considering programmers’ working context. To this end, we use tensors to explicitly represent

the query-API-context triadic relation. When a new query is made, CARTF harnesses word embeddings

to retrieve similar user queries, based on which a third-order tensor is constructed. CARTE then applies

non-negative tensor factorization to complete missing values in the tensor and the Smith–Waterman algorithm

to identify the most matched context. Finally, the ranking of the candidate APIs can be derived based on

which API sequences are recommended. Our evaluation confirms the effectiveness of CARTF for class-level

and method-level API recommendations, outperforming state-of-the-art baseline approaches against a number

of performance metrics, including success rate, precision, and recall.

Keywords API recommendation, Tensor factorization, Context awareness, Word embedding, Intelligent

software development
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1 Introduction

Application programming interfaces (APIs) are encapsulated reusable software libraries, which are

essential building blocks of large scale software systems. To enable efficient software development, a variety

*Corresponding author (email: t.chen@bbk.ac.uk)
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of API recommendation approaches have been proposed to, for instance, recommend API sequences [1]

or API-related documents [2] for specific programming tasks [3]. In general, these API recommendation

approaches can, based on the inputs, be classified into two categories: recommendation with or without

explicit queries. The former recommendation methods require carefully designed queries to capture

programmers’ intentions. Typically, the problem is framed as an information retrieval task. Queries

are transformed into, e.g., word vectors, and then textual matching is conducted to identify the most

matched APIs [4]. To overcome the lexical gap between natural languages and code, additional artifacts

are usually leveraged. These artifacts may include API documentation [5], API invocation graphs [6],

library usage patterns [7], code surfing behaviors of the developers and API invocation chains [8], and posts

in Q&A websites [9, 10]. For the latter category, because there are no explicit queries as input, context

information is needed to infer the programmers’ intention. Typically, they may include surrounding code

snippets [11–13], API usage graph [14], or even ambient projects [15].

In practice, when programmers make queries, some part of the code is already available, so they

are looking for appropriate APIs that are consistent with the existing code snippet. As a motivating

example, imagine that a programmer is implementing a method to iterate a hashmap in Java. Listing 1

depicts the place where the developer gets stuck. In this case, the programmer may formulate the query

“hashmap key iteration.” Multiple candidate API sequences could be returned by an API recommender,

examples of which are shown in Listing 2 and Listing 3. Although both candidates are relevant to the

query, if ‘java.util.Map.entrySet’ is used in the next step, then the candidate shown in Listing 2 would

be favored over the one in Listing 3.

Listing 1 An example query with part of code

/**

* hashmap key iteration.

*/

public static void hashmapKeyIteration(){

Map<String, String> map = new HashMap<String, String>();

//get stuck here and issue the query "Hashmap key iteration in Java"

...

Listing 2 Candidate API sequence 1

for(Map.Entry<String, String> entry:map.entrySet()) {

System.out.println("key="+entry.getKey()+", value="+entry.getValue());

}

Listing 3 Candidate API sequence 2

for(String key : map.keySet()) {

System.out.println("key="+key+", value="+map.get(key));

}

From this example, one may argue that the context should be taken into account in conjunction with

the query when making API recommendations. Current API recommendation methods rely on either

the query or existing code fragment, but not both. For example, one state-of-the-art API recommender

BIKER [16] can only recommend “java.util.Map.keySet” for the aforementioned query, which is the third
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on the list of recommendations. A natural question arises: can we make the best of the two because

naturally, they both contribute valuable information for recommending APIs that the developer craves?

In this paper, we propose context-aware API recommendation using tensor factorization (CARTF) to

incorporate context information in query-based API recommendations. Unlike previous approaches that

simply leverage API information itself, CARTF regards the enclosing client code (in particular, the

statements for instantiating classes and statements for method invocation) as the context. In addition, it

uses enclosing control flow relevant information related to the two types of statements to enrich context

information. Undoubtedly, there are some technical challenges. A standard approach for query-based

recommendation is to utilize a binary, query-API relation, which can be captured by a matrix. However,

with the introduction of a context, a matrix would not be sufficient. Rather, we need to represent a triadic

query-API-context relation, for which an (order-3) tensor is needed. Furthermore, one of the greatest

difficulties in the standard query-based API recommendation lies in the sparsity of the available entries

in the query-API matrix, so matrix completion methods have to be utilized. This issue deteriorates in

the current setting as one more dimension (i.e., the context) has to be considered. To this end, CARTF

employs non-negative tensor factorization to approximate missing values in the tensor [17].

When putting CARTF into use, CARTF encodes the current context and uses the Smith–Waterman

algorithm [18] to identify the most similar context in the tensor, based on which a list of APIs is ranked.

Since tensor factorization is computation-intensive, to reduce the cost, CARTF first retrieves the most

similar historical queries from the code base and constructs the tensor. The intuition is that similar queries

are usually from similar programming tasks, and thus are more likely to have target APIs. To bridge the

lexical gap among the queries, CARTF uses the textual similarity metric introduced by Mihalcea et al. [19],

which performs well in measuring the semantic similarity of short texts. To improve the performance,

CARTF uses the measure of word semantic similarity based on word embedding technique [20] rather

than those shown in [19].

To evaluate the effectiveness of CARTF, we select two state-of-the-art query-based API recommenda-

tion approaches, namely, RACK [9] and BIKER [10], as baselines to demonstrate the performance. To con-

struct the query-APIs-context tuples, we resort to the popular Q&A website StackOverflow to extract useful

information as adopted by the two baseline approaches. Particularly, we reuse the Q&A data published

by the baselines, and manually collect 458 queries as the test dataset. We mimic the actual development

process by simulating the scenario that a developer is progressively completing a program. More concretely,

we consider 0%, 20%, 40%, 60%, and 80% of the program; each of these fragments provides growing context

information of the code snippet. The experiments show that, in general, CARTF outperforms RACK and

BIKER at different stages of the development process on a wide range of metrics, including the success rate,

precision, recall, mean reciprocal rank (MRR), mean average precision (MAP), and normalized discounted

cumulative gain (NDCG). In particular, for arguably the most interesting metric SuccessRate@1 (which

measures the success rate of the top recommendation), on average, CARTF achieves a relative 82% im-

provement over RACK for the class-level recommendation and a relative 35.25% improvement over BIKER

for the method-level recommendation. For the API recommendation example shown in Listing 1, CARTF

can recommend “java.util.Map.entrySet”, “java.util.Map.Entry.getValue”, “java.util.Map.Entry.getKey”,

“java.util.Map.keySet” on the top list. Moreover, when the next statement has been written in Listing 2,

CARTF recommends “java.util.Map.Entry.getValue” and “java.util.Map.Entry.getKey” in the first and

second positions of the recommendation list.

The main contributions of this paper are summarized as follows:
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Figure 1 Positive and negative training examples in the skip-gram model

1. We propose CARTF, a novel approach that explicitly models the context information of code

snippets as a tensor and harnesses it to improve query-based API recommendations. To the best of

our knowledge, this is the first time that context information is explicitly modeled and incorporated

into query-based API recommendations.

2. We perform an extensive, quantitative evaluation, where the experimental results confirm that

CARTF can recommend APIs more accurately against a comprehensive set of metrics, considerably

outperforming state-of-the-art baseline approaches.

3. We release the source code and dataset of our evaluation to help other researchers replicate and

extend our study1).

Structure of the paper. The remainder of this paper is organized as follows: Section 2 introduces the

background. Section 3 describes the technical details of our approach. Section 4 presents the experimental

results. Section 5 discusses threats to validity. Section 6 presents a discussion of the related work. Section

7 concludes the paper and outlines future research plans.

2 Background

2.1 Word Embedding

Word embedding is a neural network based approach designed to transform words in a sequence

into low-dimensional vectors [21], which has been successfully applied in a variety of natural language

processing (NLP) tasks [22–24]. Many models have been proposed to implement word embedding, e.g.,

continuous bag-of-words model [25], continues skip-gram model [21], etc. These models were shown to

significantly outperform more traditional count-based approaches in NLP [22,24]. It is reported that the

skip-gram model is usually more accurate [21], though at the expense of a longer training time.

The skip-gram model learns vector representations of words that are useful for predicting the

surrounding words in a sentence. Figure 1 illustrates the training procedure for the skip-gram model.

Here, we assume a binary logistic regression model

Pr(wk ∈ Ct | wt) = σ(wT
t wk) =

(
1 + exp(−wT

t wk)
)−1

where wk and wt are the vector representations of the words. The model is trained to predict the

probability of wk being in the context Ct of wt, by which the vector representation can then be extracted.

1) The replication package is available at https://github.com/yuierchen/CARTF.

https://github.com/yuierchen/CARTF
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If the word wk is in the context, it is considered to be a positive example (w+); any other word can serve

as a negative example (w−). The context Ct is usually defined as a fixed-size window centered at the

current word wt, whereas the set of negative examples Nt is constructed by randomly sampling from the

domain vocabulary. When trained on a sequence of T words, the skip-gram model uses the stochastic

gradient descent algorithm to minimize the negative of the log-likelihood objective J(w) as follows:

J(w) =

T∑
t=1

∑
w+∈Ct

(log σ(wT
t w+)) +

∑
w−∈Nt

log σ(−wT
t w−).

2.2 Tensor and Decomposition

An N -th order tensor A ∈ RI1×I2×···×In is of rank-1 if it can be written as the outer (aka. tensor)

product of N vectors, i.e., A = a(1) ◦a(2) ◦ · · · ◦a(N), where ◦ denotes the outer product and a(n) ∈ RIn for

n = 1, · · · , N is a vector. Meanwhile, each entry of the tensor A can be written as Ai1i2···iN = a
(1)
i1

· · · a(N)
iN

,

where a
(n)
in

is the in-th entry of the vector a(n) for 1 ⩽ n ⩽ N . The rank of tensor A, denoted by RA, is

defined as the minimum number of rank-1 tensors required to recover A by summing these rank-1 tensors

up.

The canonical polyadic (CP) decomposition (aka. tensor rank decomposition) decomposes a tensor

into the sum of a set of rank-1 tensors. For instance, given a 3rd order tensor A ∈ RI×J×K , the CP

decomposition can be expressed as:

A ≈ JU, S, T K :=
RA∑
r=1

ur ◦ sr ◦ tr

where ur ∈ RI , sr ∈ RJ , tr ∈ RK , r = 1, 2, . . . , RA. Note that U = [u1, u2, . . . , uRA ], S = [s1, s2, . . . , sRA ]

and T = [t1, t2, . . . , tRA ].

We further write the 3-mode of A as: A(1) ≈ U(T ⊙ S)T , A(2) ≈ S(T ⊙ U)T , A(3) ≈ T (S ⊙ U)T ,

where ⊙ denotes the Khatri-Rao product. The CP decomposition can be computed by, e.g., the alternative

least square (ALS) algorithm:

min
U,S,T

1

2
∥A − JU, S, T K∥2F ,

where ∥·∥F is the Frobenius norm. The algorithm updates each factor matrix using the following equations:

Û = A(1)(T ⊙ S)(TTT ∗ STS)†,

Ŝ = A(2)(T ⊙ U)(TTT ∗ UTU)†,

T̂ = A(3)(S ⊙ U)(STS ∗ UTU)†,

where ∗ denotes the Hadamard product of two matrices, and † denotes the Moore-Penrose pseudoinverse

of a matrix.

To avoid overfitting, regularization terms related to U , S and T can be introduced as follows:

min
U,S,T

1

2
∥A − JU, S, T K∥2F +

λ

2

(
∥U∥2F + ∥S∥2F + ∥T∥2F

)
,

where λ is the regularization parameter. The approximation of tensor A, i.e., Â, can be written as

Â = ∥Û , Ŝ, T̂∥ =

RA∑
r=1

ûr ◦ ŝr ◦ t̂r.
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As the tensors considered here are non-negative, it is reasonable to add the non-negative restriction

to the CP decomposition, giving rise to the non-negative CP decomposition (NNCP), i.e.,

min
Û,Ŝ,T̂⩾0

1

2
∥A − Â∥2F +

1

2

(
∥Û∥2F + ∥Ŝ∥2F + ∥T̂∥2F

)
,

where Û , Ŝ, T̂ ⩾ 0 stipulates that all entries of the matrices Û , Ŝ, T̂ are non-negative.

2.3 The Smith-Waterman algorithm

The Smith-Waterman algorithm [18] for local sequence alignment is to find highly similar fragments

in two sequences. Assume two sequences A = a1 . . . an and B = b1 . . . bm where n,m are the lengths of A

and B respectively. The similarity is based on two weight functions, i.e., s(ai, bj) and wk. The former

measures the degree of “similarity” between ai, bj , whereas the latter represents the penalty for a vacancy

of length k. These two functions are to be specified by the users according to concrete applications.

The Smith-Waterman algorithm creates a matrix SA[n][m] with SA[i, 0] = SA[0, j] = 0 for 0 ⩽ i ⩽

n, 0 ⩽ j ⩽ m, and proceeds as follows. For 1 ⩽ i ⩽ n, 1 ⩽ j ⩽ m, let

SA[i][j] = max


0, SA[i− 1][j − 1] + s(ai, bj),

maxk⩾1{SA[i− k][j]− wk},

maxl⩾1{SA[i][j − l]− wl}

 .

After computing the matrix SA[n][m], to find the optimal alignment the algorithm starts the backtrace

with the highest scoring cell in the matrix and expands by following the path through the maximum

scores back until 0 is reached. In the end, the best local alignment is generated.

3 The CARTF Approach

Figure 2 illustrates the overall framework of the CARTF approach. As the first step, CARTF conducts

data collecting and processing to extract useful information from StackOverflow (labeled by 1○ in Figure

2; cf. Section 3.1). When a user query is received, CARTF recommends APIs via three major steps:

Step I. Retrieve similar queries for the user query (labeled by 2○; cf. Section 3.2);

Step II. Assemble the retrieved queries, as well as the associated contexts and APIs, to form the tensor

and utilize the tensor factorization to fill in the missing values (labeled by 3○; cf. Section 3.3);

Step III. Apply the Smith-Waterman algorithm to identify the most similar context in the tensor, rank

the APIs accordingly based on the values of the entries in the tensor (labeled by 4○; cf. Section 3.4).

The main purpose of Step I is to narrow down the scale of the candidate APIs, under the assumption

that similar user queries tend to use similar APIs. In Step II, NTF is utilized to fill the empty values in the

Query-API-Context tensor due to the sparsity (tensor completion). In Step III, based on the completed

tensor, CARTF uses the Smith-Waterman algorithm to match the most similar context in the tensor. In

the sequel, we shall articulate the details of these steps.
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Figure 2 The overall framework of CARTF

3.1 Data Collecting and Processing

As the first step, we collect the original data from StackOverflow. We adopt the filtering method [16].

Namely, for each answer in the question, we extract a tuple ⟨query,APIs, context⟩ which will be the basis

of the tensor construction. To ensure the high quality of data, we only keep the answers which either have

positive scores or have been accepted. We now enunciate how the three components, i.e., query, APIs and

context, are obtained.

We extract the question’s title as the query. In addition, we extract the hyperlinks and the plain

text contained in every HTML tag <code> in the answer. To concretize the notion of context, we utilize

program analysis by concentrating on two types of statements, i.e., statements for instantiating a class

(e.g., new C(...), where C is a predefined class), and statements for method invocation. Intuitively,

these statements usually determine, or at least strongly influence, the APIs that will be subsequently

invoked. In addition, we include enclosed control flow relevant information related to these two types of

statements (such as reserved identifiers if, for, while, break, etc) since they signify the execution path

of the API sequences and enrich the context information.To encode the context, we design a mapping

shown in Table 1. In this way, the context is represented as a string. As an example illustrated in Listing

2, the context in the method body is encoded as a string “java.util.HashMap C java.util.Map.entrySet()

java.io.PrintStream.println() java.util.Map.Entry.getKey() java.util.Map.Entry.getValue() c”, where ‘C’

represents ‘ForStatement’ and ‘c’ represents the end of the ‘ForStatement’. Accordingly, we obtain the

API sequence by simply removing the tags, i.e., “java.util.Map.entrySet() java.io.PrintStream.println()

java.util.Map.Entry.getKey() java.util.Map.Entry.getValue()”. This is done by traversing the abstract

syntax trees (ASTs) built by Eclipse JDT2) for the plain text contained in each HTML tag <code> of

the answer.

2) By Eclipse JDT Core Component, http://www.eclipse.org/jdt/core/.

http://www.eclipse.org/jdt/core/
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Table 1 Defined mapping rules for the important AST node. Each element of AST control nodes corresponds to one

character. (An uppercase character represents the statement of a significant AST node and its lowercase counterpart

represents the end of the statement.)

AST Node Type Symbol AST Node Type Symbol

EnhancedForStatement A...a ThrowStatement H

IfStatement B...b SwitchStatement I...i

ForStatement C...c SynchronizedStatement J...j

ReturnStatement D AssertStatement K

BreakStatement E CatchClause L...l

WhileStatement F...f ContinueStatement M

TryStatement G...g DoStatement N...n

In order to detect the API in the answer more comprehensively, CARTF checks every hyperlink in the

answer and uses regular expressions to identify the full name of the corresponding API method. For exam-

ple, given the hyperlink https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#substring(int

beginIndex), it extracts the API method java.lang.String.substring. We use the API extracted from the

hyperlinks to expand the API extracted from the plain text contained in the HTML tag <code>.

To summarize, we collect the data and extract the ⟨query,APIs, context⟩ tuples from StackOverflow,

which forms the basis of tensor construction in Section 3.3.

3.2 Similar Queries Retrieval

To measure the similarity of two queries, we need to build a domain-specific language model. To this

end, we first tokenize the queries extracted from StackOverflow and perform stemming (i.e., transform

each word to its root form3)). We then train a word embedding model using word2vec [21] and build

the word IDF (inverse document frequency) vocabulary. IDF represents the inverse of the number of

queries that contain the word, and is used as a weight on top of the word embedding. Intuitively, the

more queries in which a word appears, the less likely the word carries important semantic information, so

the word would carry a low IDF value.

Given two bags of words T and Q, CARTF calculates the asymmetric similarity score as

sim(T −→ Q) =

∑
w∈T sim(w,Q) ∗ idf(w)∑

w∈T idf(w)

where sim(w,Q) is the maximum value of sim(w,w′) for each word w′ ∈ Q, and sim(w,w′) is the cosine

similarity of the word embedding vectors of w and w′. The asymmetric similarity sim(Q −→ T ) is

computed analogously. Intuitively, a word with lower IDF value would contribute less to the similarity

score. Finally, the similarity score between T and Q is computed as the harmonic mean of the two

asymmetric scores:

sim(T,Q) =
2 ∗ sim(T −→ Q) ∗ sim(Q −→ T )

sim(T −→ Q) + sim(Q −→ T )
.

3) By the NLTK package [26].
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3.3 Tensor Construction and Completion

Recall that, as per Section 3.1, the dataset is prepared as a collection of triplets ⟨query,API, context⟩.
Given a user query, CARTF aims to represent the relevant triadic Query-API-Context relation as a tensor.

To this end, CARTF first retrieves the top-k similar queries for a given user query from the dataset, where

the similarity is measured according to the approach discussed in Section 3.2. The reasons of focusing

on top-k similar queries are two-fold: first, for efficiency consideration, as tensor factorization is usually

computation-intensive; second, for precision consideration, as too many dissimilar queries could overshallow

the current query, resulting in inaccurate recommended results. In Section 4, we will empirically identify

the optimal hyper-parameter k, where we set k = 11 for class-level API recommendation and k = 7 for

method-level API recommendation. The obtained top-k similar queries give rise to a set Rsim of triples

⟨Query,API,Context⟩.
From Rsim, a binary third-order tensor Y ∈ RI×J×K can be constructed, where I, J,K are the

number of queries (tokenized and stemmed), APIs and contexts, respectively. Each entry of the tensor

has value 1 indicating an observed assignment and 0 to indicate a missing value:

yq,a,c :=

 1, if(q, a, c) ∈ Rsim

0, otherwise
(1)

We first load the data and create a matrix Q(1) for the first context according to Equation (1); we

then go through the context dimension to create matrices Q(1),Q(2), · · · ,Q(K) for K contexts in Rsim.

Afterwards, we construct the tensor Y ∈ RI×J×K , the slices of which are the matrices Q(1),Q(2), · · · ,Q(K).

After constructing the tensor, we use the NNCP Algorithm (cf. Section 2.2)4) to obtain the latent

factor matrices Q̂, Â, Ĉ, based on which the prediction value of API j from the query i at the context k

is given by

Ŷijk ≈
RY∑
r=1

q(i)r a(j)r c(k)r . (2)

Notice that a suitable RY is crucial: increasing the number of RY allows to represent more factor structures

so can avoid under-fitting, but a larger RY risks over-fitting. Empirically we set RY to be the half of the

minimum dimension of the Query, API, and Context.

3.4 Context Matching and Candidate API Ranking

From the current query (q) and the partially completed code snippet, we can obtain the context

(c) in exactly the way as what was described in Section 3.1. With the (tokenized and stemmed) query,

CARTF then obtains an API-Context matrix M where each entry Ma,c is indexed by API a and context

c from the tensor Ŷ.

CARTF then utilizes the Smith-Waterman algorithm (cf. Section 2.3) to compare the current context

c and the contexts in the API-Context matrix M , both of which are treated as sequences. To apply the

Smith-Waterman algorithm, we adopt the constant model of vacancy weights by setting wk = kw1, i.e.,

the penalty for a vacancy is directly proportional to the length of the vacancy (note that w1 is the penalty

4) https://github.com/Large-Scale-Tensor-Decomposition/tensorD.

https://github.com/Large-Scale-Tensor-Decomposition/tensorD
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for a single vacancy). As a result, the original Smith-Waterman algorithm can be simplified to

SA[i][j] = max

 0, SA[i− 1][j − 1] + s(ai, bj),

SA[i− 1][j]− w1, SA[i][j − 1]− w1

 .

The Smith-Waterman algorithm returns the maximum matching subsequence match(C,D) of two context

sequences C and D, based on which the similarity score between C and D can be computed as

sim(C,D) =
2 · |match(C,D)|

|C|+ |D|
,

where | · | returns the length of the sequence.

CARTF returns a vector of APIs from the API-context matrix M for the present context c. It then

ranks these APIs according to the tensor entry and recommends appropriate APIs to the users.

4 Evaluation

To investigate the effectiveness of CARTF, we perform an empirical study by simulating the behavior

of a developer working at different stages of a programming task on partially completed code snippets.

All the experiments were conducted on a workstation equipped with two 2.6 GHz Xeon E5-2640 v3 CPUs,

running Windows 10 OS.

We download the official data dump of StackOverflow (published in Dec. 9th, 2017) as BIKER did

for fair comparison. Since we focus on recommendations for Java APIs, we extract 1,347,908 questions

tagged with “java”. To keep the data consistent, we adopt the filtering method [16] by which we collect

125,847 questions. By the approach described in Section 3.1, we extract 62,067 tuples of the form

⟨query,APIs, context⟩. To evaluate the effectiveness of CARTF, we directly use the test dataset used

in BIKER [16]. To reflect context-aware API recommendation, the second author and the third author

independently program in the IDE to solve these questions. They write different method bodies when

there are multiple solutions to a programming task. Afterwards, the two programmers discuss and further

expand the method bodies for the questions. In this way, we collect 458 questions as the test dataset.

We simulate different stages of a development process to study whether CARTF is applicable in

real-world settings. To this end, some parts of the program are removed to mimic the real scenarios.

Particularly, we take respectively 0%, 20%, 40%, 60% and 80% of the length of each program (measured

in code lines) as context. Accordingly, the APIs used in the rest of the program are collected as the

ground-truth GT (q, c), where q is a query and c is the context information in the client code.

Overall, we collect 458, 453, 429, 375, 293 queries for class-level recommendation and 458, 455, 445,

412, 338 queries for method-level recommendation, corresponding to the 0%, 20%, 40%, 60%, 80% of the

program in length respectively. They constitute the test dataset.

Baseline approaches. We compare the performance of CARTF with two state-of-the-art baseline methods,

i.e., RACK [9] and BIKER [16].

RACK constructs a keyword-API mapping database where the keywords are extracted from Stack-

Overflow posts and the mapped APIs are collected from the corresponding accepted answers. Based on

the database, RACK recommends a ranked list of API classes for a given query expressed in natural

language. Since RACK recommends APIs at the class level, to make a fair comparison, we adapt CARTF

and only keep the class names from the recommended APIs.
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BIKER leverages StackOverflow posts to extract candidate APIs for a programming task, and ranks

the candidate APIs by considering the query’s similarity with both the StackOverflow posts and API

documentation. To bridge the lexical gap between the natural language description of the programming

task and the API description in documentation, BIKER exploits word embedding technique to calculate

the similarity scores.

4.1 Evaluation Metrics

We use REC(q, c) to denote the recommended list of APIs for query q and context information c

in the client code. Recall that GT (q, c) denotes the ground truth. To measure the performance of API

recommender systems, we consider five metrics, namely, success rate, accuracy, NDCG, MAP and MRR.

In particular, MRR and MAP are standard evaluation metrics in information retrieval [27], and success

rate, accuracy as well as NDCG are often used to evaluate recommendation [28,29]. Given a ranked list of

recommendations, a developer is typically interested in the top-N items only. Hence, in our evaluation,

success rate, accuracy (including precision and recall), MAP, MRR and NDCG are computed by some

pre-selected N . Typically, N is set to be 1, 3, 5, or 10. Namely, let RECN (q, c) be the set of top-N

recommended items, and matchN (q, c) = GT (q, c)∩RECN (q, c) be the set of items in the top-N list that

match those in the ground-truth data.

Success rate. Given a set R consisting of pairs of the form (q, c), this metric measures the rate at which

a recommendation engine returns at least one matched item among top-N recommended ones.

SuccessRate@N =
#(q,c)∈R(|matchN (q, c)| > 0)

|R|
× 100%

where #(φ) returns the number of times that φ evaluates true and |R| is the cardinality of R.

Accuracy. We mainly use standard precision and recall to measure accuracy [28]. Precision@N calculates

the proportion of the top-N recommended items in the ground-truth data set, viz.

Precision@N =
|matchN (q, c)|

N

and Recall@N calculates the proportion of the ground-truth items found in the top-N items, viz.

Recall@N =
|matchN (q, c)|

|GT (q, c)|

NDCG. Normalized Discounted Comulative Gain (NDCG) measures the quality of ranking by calculating

the gain of each result according to its position [29]. NDCG can be calculated as follows.

NDCG@N =
DCG@N

idealDCG@N
DCG@N =

N∑
i=1

2rel(i) − 1

log2(i+ 1)

where i is the rank; rel(i) is a binary function to check whether the API at rank i is correct. For example,

if the API at rank i is correct, rel(i) = 1; otherwise, rel(i) = 0.

MAP. Mean Average Precision (MAP) measures the quality of rank when a query may have multiple

correct answers [2, 30]. MAP is defined as the mean of the average precision values of all queries, and can

be calculated as follows.

MAP@N =
1

|R|
∑

(q,c)∈R

∑N
i=1(P (i)× rel(i))

|matchN (q, c)|

where P (i) = #correct answers in top i
i , i.e., the precision at a given cut-off rank i.
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MRR. Mean Reciprocal Rank (MRR) is another widely used evaluation metric to measure the quality of

the rank [2,30]. MRR is the average of the reciprocal ranks for all the queries. The reciprocal rank of a

single query is the multiplicative inverse of the first correct answer. Hence, MRR can be calculated as

follows.

MRR@N =
1

|R|
∑

(q,c)∈R

1

NRank(q,c)

where NRank(q,c) denotes the rank position of the first correct answer in the top-N recommended list for

(q, c).

4.2 Results

In our experiments, we primarily investigate the following three research questions (RQs).

RQ1. How effective is CARTF, i.e., how much improvement can it achieve over the baseline methods?

RQ2. How does the number of retrieved queries affect CARTF‘s performance?

RQ3. How efficient is CARTF for practical use?
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Figure 3 The performance of CARTF and RACK on Top1, Top3, Top5 and Top10 in the average metrics of MRR, MAP,

Success rate, Precision, Recall, NDCG at different stages of development process. (Cf. Table 3 and Table 4 for the raw

data.)

RQ1. To answer this research question, we use our test dataset to evaluate whether CARTF can outperform

RACK at class-level and BIKER at method-level with respect to different stages of development process.

Figure 3 compares CARTF and RACK against various metric measures on Top1, Top3, Top5 and

Top10 recommendations. We take the average measure of different stages of the development process, and

original statistical results of each stage of the development process are shown in Table 3 and Table 4. One

can easily observe that CARTF achieves substantially better results than RACK. The improvement is

usually at the range of 10% to 40%, but is over 45% for SuccessRate@1 and MRR@N and MAP@N for all

N = 1, 3, 5, 10. In particular, on Top 1 and Top 3 the improvements are more substantial, indicating that

CARTF can put more relevant APIs on the top of the recommendation list.

Figure 4 compares CARTF and BIKER against various metric measures on Top1, Top3, Top5 and

Top10 recommendations. One can observe that CARTF consistently outperforms BIKER. Table 5 and
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Figure 4 The performance of CARTF and BIKER on Top1, Top3, Top5 and Top10 in the average metrics of MRR, MAP,

Success rate, Precision, Recall, NDCG at different stages of development process. (Cf. Table 5 and Table 6 for the raw

data.)

Table 6 show the original statistical results of each stage of the development process. It is noteworthy that

CARTF achieves average SuccessRate@1 of 39.5% comparing with 30.0% of BIKER. Even in the setting

of 0% of the length of the context, CARTF achieves SuccessRate@1 of 47.3%, while BIKER 38.7%, which

indicates that our approach outperforms BIKER even when no context information is given. BIKER

considers the query’s similarity with both the SO posts and the candidate API’s official description. The

discrepancy between the query and the API description is usually quite large, which may degrade the

performance of BIKER. Instead, CARTF considers more relevant SO posts, and thus can mitigate the

noise.

To sum up, CARTF can perform well in both recommending class-level and method-level APIs.

RQ2. To answer this research question, we take a search-based approach by varying #number (i.e., the

number of retrieved queries) from 1 up to 150. Figure 5 and Figure 6 present the results where one can

observe a consistent trend across all the metrics. Overall, the effect of API recommendation increases

first and then decreases with the number of the retrieved queries. As the number of retrieved queries

increases, potentially irrelevant questions may be used to construct tensors. The noise may lead to a

decline in performance. As a result, the general trend is that recall increases first and then decreases with

the number of retrieved questions. The optimal number for the class-level recommendation appears in the

range of 11–13 and the optimal number for the method-level recommendation appears in the range of 7-9.

RQ3. To answer this research question, we record the time of CARTF and baselines in API recommendation

on the testing dataset. Note that word vectors are pre-trained off-line which is largely a one-off process,

so it is not the main focus of our evaluation. We are primarily concerned with recommendation time

cost. Table 2 presents the time of CARTF and baselines. For the average recommendation time, CARTF

achieves 67.94% and 8.44% less time than RACK and BIKER respectively. Compared with the baselines,

CARTF only uses SO posts, which reduces the dimensions of tensors and thus performs faster. This

means that CARTF can recommend more accurate results in a shorter time and thus is expected to be

favored by developers in practical scenarios.
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Figure 5 The performance of different numbers of retrieved queries on Top1, Top3, Top5 and Top10 in the average

metrics of MRR, MAP, SuccessRate, Precision, Recall, NDCG at different stages of development process in class-level API

recommendation

Table 2 Time cost comparison of CARTF and baselines

Class Level Recommendation

Time

CARTF RACK Overhead

5.92s 18.47s -67.94%

Method Level Recommendation

Time

CARTF BIKER Overhead

5.53s 6.04s -8.44%

5 Threats to Validity

Threats to internal validity are related to internal factors that could have influenced the results. The

main threat is related to the errors introduced during implementation. To minimize the threats of this

aspect, we double-checked and peer-reviewed our own code and reuse the implementation of the baseline

tools for a fair comparison.

Threats to external validity are concerned with whether the results can be generalized to the datasets

other than what were used in the experiments [31]. All APIs investigated in this paper are Java SE APIs

which may not represent APIs for other libraries and programming languages. However, we argue that

this is mostly an implementation limitation rather than a methodological threat. Our approach is easy to

be applied to the recommendation of other Java libraries when extracting the Java APIs of the respective

libraries. It would not be difficult to adapt CARTF to other programming languages, since many queries

invloving other programming languages exist and could be extracted from StackOverflow.
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Figure 6 The performance of different numbers of retrieved queries on Top1, Top3, Top5 and Top10 in the average

metrics of MRR, MAP, SuccessRate, Precision, Recall, NDCG at different stages of development process in method-level

API recommendation

6 Related Work

6.1 Textual Similarity in Software Engineering

Text retrieval techniques have been applied in various SE tasks [32]. However, system performance

is usually suboptimal due to the lexical gap between the natural language and code [33]. To bridge

this gap, several approaches have been recently proposed. Particularly for API recommendation, some

approaches [33–38] extract API entities from the code and use the corresponding API documentation to

enhance ranking results. Others [10,16, 39–47] exploit Q&A (e.g., StackOverflow) posts to suggest APIs

or code snippets.

Specifically, McMillan et al. [33] measured the lexical similarity between a user query and API entities

and then ranked higher the code that uses API entities with higher similarity scores. Bajracharya et

al. [34] augmented a code snippet with tokens from other code segments that use the same API entities.

Ye et al. [38] concatenated the descriptions of all API entities used in the code and directly measured

the lexical similarity between the query and concatenated document. Rahamn et al. proposed RACK,

which constructs a keyword–API mapping database where keywords are extracted from StackOverflow

questions and mapped APIs are collected from corresponding accepted answers. Based on this database,

RACK recommends a ranked list of API classes for a given natural language query. BIKER [16]

exploits StackOverflow posts to bridge the task–API knowledge gap and incorporates information from
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StackOverflow questions and API documentation to measure the relevance of an API to the programming

task description. Zhou et al. [48, 49] integrated users’ feedback into recommendation loops and leverage

learning-to-rank and active learning techniques to boost recommendation performance.

However, the approaches mentioned above do not consider the client code, which usually contains rich

information for a recommendation. Some of them need well-prepared search queries that must contain

keywords similar to the API names. Moreover, as a programming task description usually needs more

than one API to complete, the calculation of the similarity between the programming task and one

API document is not reliable, risking the overemphasis of the importance of API documentation. In

CARTF, we propose to calculate the similarity between the descriptions of queries and incorporate context

information into query-based API recommendations.

6.2 Recommending API Usage Patterns

Acharya et al. [50] presented a framework to extract API patterns as partial orders from client code.

To this aim, control flow-sensitive static API traces are extracted from source code, and sequential patterns

are computed. However, although this approach proposes a representation for API patterns, suggestions

regarding API usage are still missing.

MAPO (mining API usage patterns from open source repositories) is a tool that mines API usage

patterns from client projects [51]. The system analyzes source files to obtain API usage information and

groups API methods into clusters. It then mines API usage patterns from clusters, which are ranked

according to their similarity to the current development context, and recommends code snippets. Similarly,

UP-Miner [52] mines API usage patterns by relying on SeqSim, a clustering strategy that reduces patterns

redundancy and improves coverage. UP-Miner employs the BIDE algorithm [53] to mine API frequent

closed call sequences.

Strathcona [54] mainly utilizes the structural context of existing code to retrieve similar code snippets

in the repository and recommends them to developers. Different from our approach, it does not require

the input of user queries. Moreover, its main purpose is to recommend similar code examples to the code

under development.

Fowkes et al. introduced Probabilistic API Miner (PAM), a parameter-free probabilistic approach to

mine API usage patterns [55]. PAM uses the structural expectation-maximization (EM) algorithm to infer

the most probable API patterns from code. Niu et al. extracted API usage patterns using an API class or

method names as queries [56]. They rely on the concept of object usage (method invocations on a given

API class) to extract patterns.

NCBUP-miner (non client-based usage patterns) [57] is a technique that identifies unordered API

usage patterns from the API source code, based on structural (methods that modify the same object) and

semantic (methods that have the same vocabulary) relations. The same authors also propose MLUP [58],

which is based on vector representation and clustering, and considers the client code.

DeepAPI [59] is a deep-learning based method to generate API usage sequences given a query in

the natural language. The learning problem is cast as a machine translation problem, where queries

are considered the source language and API sequences as the target language. GAPI [60] uses graph

neural networks to capture the high order collaborative signals from API invocations. Moreover, the work

adopts context information, such as integrating structures of projects into graphs and incorporating text

attributes in networks. However, the work does not consider user queries and makes recommendations

solely based on the code information.
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Focus [15] mines open-source project repositories to recommend API invocations and usage patterns

using collaborative filtering techniques to analyze how APIs are used in projects that are similar to the

current one. RecRank [61] applies a ranking-based discriminative approach leveraging API usage path

features to improve the top-1 API recommendation.

Compared to these approaches, CARTF uses word-embedding techniques to retrieve similar queries

and narrow down the search space of candidate APIs and considers the client code by constructing a

tensor representing query-API-context triadic relations to rank and recommend APIs, which can cater for

the needs of the developers better.

7 Conclusions

In this paper, we propose CARTF, a novel approach to incorporate context information into query-

based API recommendations. One of our major contributions is to provide a feasible way to utilize context

information to make recommendations more precise and cater better to the needs of the programmer.

Our experiments have confirmed, empirically, that CARTF can substantially improve state-of-the-art

query-based API recommendation approaches—at class and method levels—with an acceptable overhead,

showcasing the usefulness of context information and the effectiveness of our approach.

For future work, we shall consider other forms of context information and investigate whether they

could (and in the affirmative case, how to) improve the API recommendation. On the practical side, we

will provide full-fledged tool support (e.g., a plugin in IDE) to facilitate developers using CARTF for their

programming.
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Table 3 MRR, MAP, SuccessRate, Precision, Recall, NDCG for class-level API recommendation

Top-1 Top-3
Context Metric

CARTF RACK Improvement CARTF RACK Improvement

MRR 0.589 0.366 60.93% 0.678 0.484 40.08%

MAP 0.379 0.246 54.07% 0.530 0.355 49.30%

SuccessRate 0.589 0.366 60.93% 0.794 0.628 26.43%

Precision 0.589 0.366 60.93% 0.345 0.242 42.56%

Recall 0.379 0.246 54.07% 0.624 0.458 36.24%

0%

NDCG 0.589 0.366 60.93% 0.706 0.519 36.03%

MRR 0.549 0.353 55.52% 0.657 0.465 41.29%

MAP 0.362 0.246 47.15% 0.531 0.351 51.28%

SuccessRate 0.549 0.353 55.52% 0.794 0.604 31.46%

Precision 0.549 0.353 55.52% 0.342 0.228 50.00%

Recall 0.362 0.246 47.15% 0.640 0.454 40.97%

20%

NDCG 0.549 0.353 55.52% 0.691 0.499 38.48%

MRR 0.496 0.293 69.28% 0.588 0.395 48.86%

MAP 0.379 0.236 60.59% 0.500 0.328 52.44%

SuccessRate 0.496 0.293 69.28% 0.701 0.526 33.27%

Precision 0.496 0.293 69.28% 0.275 0.188 46.28%

Recall 0.379 0.236 60.59% 0.592 0.437 35.47%

40%

NDCG 0.496 0.293 69.28% 0.615 0.428 43.69%

MRR 0.450 0.210 114.29% 0.539 0.304 77.30%

MAP 0.391 0.190 105.79% 0.493 0.278 77.34%

SuccessRate 0.450 0.210 114.29% 0.648 0.424 52.83%

Precision 0.391 0.210 86.19% 0.238 0.146 63.01%

Recall 0.391 0.190 105.79% 0.590 0.385 53.25%

60%

NDCG 0.450 0.210 114.29% 0.565 0.335 68.66%

MRR 0.378 0.180 110.00% 0.470 0.261 80.08%

MAP 0.368 0.177 107.91% 0.461 0.257 79.38%

SuccessRate 0.378 0.180 110.00% 0.587 0.365 60.82%

Precision 0.378 0.180 110.00% 0.197 0.121 62.81%

Recall 0.368 0.177 107.91% 0.575 0.360 59.72%

80%

NDCG 0.378 0.180 110.00% 0.500 0.288 73.61%

MRR 0.492 0.280 82.00% 0.586 0.382 57.52%

MAP 0.376 0.219 75.10% 0.503 0.314 61.95%

SuccessRate 0.492 0.280 82.00% 0.705 0.509 40.96%

Precision 0.481 0.280 76.39% 0.279 0.185 52.93%

Recall 0.376 0.219 75.10% 0.604 0.419 45.13%

Average

NDCG 0.492 0.280 82.00% 0.615 0.414 52.09%
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Table 4 MRR, MAP, SuccessRate, Precision, Recall, NDCG for class-level API recommendation

Top-5 Top-10
Context Metric

CARTF RACK Improvement CARTF RACK Improvement

MRR 0.695 0.515 34.95% 0.706 0.528 33.71%

MAP 0.563 0.392 43.62% 0.589 0.417 41.25%

SuccessRate 0.871 0.762 14.30% 0.947 0.849 11.54%

Precision 0.245 0.189 29.63% 0.146 0.118 23.73%

Recall 0.719 0.586 22.70% 0.824 0.697 18.22%

0%

NDCG 0.729 0.571 27.67% 0.747 0.595 25.55%

MRR 0.671 0.495 35.56% 0.682 0.508 34.25%

MAP 0.560 0.385 45.45% 0.582 0.409 42.30%

SuccessRate 0.854 0.735 16.19% 0.938 0.827 13.42%

Precision 0.237 0.176 34.66% 0.139 0.110 26.36%

Recall 0.720 0.578 24.57% 0.825 0.689 19.74%

20%

NDCG 0.713 0.549 29.87% 0.733 0.575 27.48%

MRR 0.611 0.425 43.76% 0.622 0.441 41.04%

MAP 0.529 0.361 46.54% 0.551 0.382 44.24%

SuccessRate 0.801 0.659 21.55% 0.885 0.773 14.49%

Precision 0.196 0.147 33.33% 0.115 0.092 25.00%

Recall 0.695 0.564 23.23% 0.804 0.680 18.24%

40%

NDCG 0.655 0.482 35.89% 0.678 0.517 31.14%

MRR 0.559 0.337 65.88% 0.570 0.358 59.22%

MAP 0.520 0.312 66.67% 0.534 0.332 60.84%

SuccessRate 0.738 0.570 29.47% 0.821 0.717 14.50%

Precision 0.169 0.121 39.67% 0.095 0.077 23.70%

Recall 0.694 0.528 31.44% 0.780 0.664 17.47%

60%

NDCG 0.601 0.396 51.77% 0.627 0.444 41.22%

MRR 0.497 0.300 65.67% 0.510 0.320 59.38%

MAP 0.488 0.294 65.99% 0.503 0.315 59.68%

SuccessRate 0.703 0.532 32.14% 0.798 0.679 17.53%

Precision 0.142 0.106 33.96% 0.081 0.068 19.12%

Recall 0.691 0.520 32.88% 0.788 0.667 18.14%

80%

NDCG 0.547 0.357 53.22% 0.579 0.406 42.61%

MRR 0.607 0.414 49.16% 0.618 0.431 45.52%

MAP 0.532 0.349 53.65% 0.552 0.371 49.66%

SuccessRate 0.793 0.652 22.73% 0.878 0.769 14.30%

Precision 0.198 0.148 34.25% 0.115 0.093 23.58%

Recall 0.704 0.555 26.96% 0.804 0.679 18.36%

Average

NDCG 0.649 0.471 39.68% 0.673 0.507 33.60%



Yu Zhou, et al. Sci China Inf Sci 23

Table 5 MRR, MAP, SuccessRate, Precision, Recall, NDCG for method-level API recommendation

Top-1 Top-3
Context Metric

CARTF BIKER Improvement CARTF BIKER Improvement

MRR 0.473 0.386 22.54% 0.560 0.490 14.29%

MAP 0.267 0.241 10.79% 0.384 0.324 18.52%

SuccessRate 0.473 0.386 22.54% 0.672 0.620 8.39%

Precision 0.473 0.386 22.54% 0.299 0.232 28.88%

Recall 0.267 0.241 10.79% 0.460 0.403 14.14%

0%

NDCG 0.473 0.386 22.54% 0.587 0.521 12.67%

MRR 0.450 0.369 21.95% 0.536 0.472 13.56%

MAP 0.266 0.240 10.83% 0.384 0.322 19.25%

SuccessRate 0.450 0.369 21.95% 0.643 0.602 6.81%

Precision 0.450 0.369 21.95% 0.284 0.223 27.35%

Recall 0.266 0.240 10.83% 0.453 0.400 13.25%

20%

NDCG 0.450 0.369 21.95% 0.564 0.504 11.90%

MRR 0.413 0.319 29.47% 0.496 0.413 20.10%

MAP 0.273 0.232 17.67% 0.384 0.307 25.08%

SuccessRate 0.413 0.319 29.47% 0.604 0.532 13.53%

Precision 0.413 0.319 29.47% 0.248 0.188 31.91%

Recall 0.273 0.232 17.67% 0.466 0.387 20.41%

40%

NDCG 0.413 0.319 29.47% 0.523 0.443 18.06%

MRR 0.351 0.235 49.36% 0.423 0.309 36.89%

MAP 0.281 0.201 39.80% 0.370 0.262 41.22%

SuccessRate 0.351 0.235 49.36% 0.519 0.400 29.75%

Precision 0.351 0.235 49.36% 0.202 0.135 49.63%

Recall 0.281 0.201 39.80% 0.450 0.334 34.73%

60%

NDCG 0.351 0.235 49.36% 0.448 0.332 34.94%

MRR 0.289 0.189 52.91% 0.357 0.243 46.91%

MAP 0.265 0.181 46.41% 0.335 0.230 45.65%

SuccessRate 0.289 0.189 52.91% 0.440 0.310 41.94%

Precision 0.289 0.189 52.91% 0.154 0.103 49.51%

Recall 0.265 0.181 46.41% 0.411 0.290 41.72%

80%

NDCG 0.289 0.189 52.91% 0.378 0.260 45.38%

MRR 0.395 0.300 35.25% 0.474 0.385 26.35%

MAP 0.270 0.219 25.10% 0.371 0.289 29.95%

SuccessRate 0.395 0.300 35.25% 0.576 0.493 20.08%

Precision 0.395 0.300 35.25% 0.237 0.176 37.46%

Recall 0.270 0.219 25.10% 0.448 0.363 24.85%

Average

NDCG 0.395 0.300 35.25% 0.500 0.412 24.59%
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Table 6 MRR, MAP, SuccessRate, Precision, Recall, NDCG for method-level API recommendation

Top-5 Top-10
Context Metric

CARTF BIKER Improvement CARTF BIKER Improvement

MRR 0.576 0.515 11.84% 0.588 0.526 11.79%

MAP 0.418 0.345 21.16% 0.438 0.362 20.99%

SuccessRate 0.744 0.727 2.34% 0.829 0.812 2.09%

Precision 0.223 0.168 32.74% 0.132 0.103 28.16%

Recall 0.546 0.479 13.99% 0.634 0.571 11.03%

0%

NDCG 0.613 0.565 8.50% 0.638 0.585 9.06%

MRR 0.558 0.497 12.27% 0.569 0.508 12.01%

MAP 0.421 0.341 23.46% 0.437 0.357 22.41%

SuccessRate 0.740 0.709 4.37% 0.824 0.791 4.17%

Precision 0.217 0.161 34.78% 0.126 0.097 29.90%

Recall 0.559 0.476 17.44% 0.637 0.564 12.94%

20%

NDCG 0.601 0.548 9.67% 0.627 0.567 10.58%

MRR 0.514 0.435 18.16% 0.528 0.447 18.12%

MAP 0.409 0.325 25.85% 0.425 0.338 25.74%

SuccessRate 0.683 0.626 9.11% 0.779 0.710 9.72%

Precision 0.179 0.134 33.58% 0.105 0.080 31.25%

Recall 0.545 0.458 19.00% 0.631 0.540 16.85%

40%

NDCG 0.554 0.481 15.18% 0.584 0.506 15.42%

MRR 0.440 0.327 34.56% 0.451 0.337 33.83%

MAP 0.392 0.278 41.01% 0.403 0.288 39.93%

SuccessRate 0.594 0.478 24.27% 0.672 0.553 21.52%

Precision 0.145 0.099 46.46% 0.083 0.058 43.10%

Recall 0.525 0.399 31.58% 0.594 0.467 27.19%

60%

NDCG 0.478 0.364 31.32% 0.504 0.387 30.23%

MRR 0.374 0.258 44.96% 0.388 0.267 45.32%

MAP 0.352 0.245 43.67% 0.366 0.255 43.53%

SuccessRate 0.517 0.375 37.87% 0.615 0.443 38.83%

Precision 0.109 0.075 45.33% 0.065 0.045 44.44%

Recall 0.488 0.354 37.85% 0.584 0.423 38.06%

80%

NDCG 0.410 0.287 42.86% 0.442 0.309 43.04%

MRR 0.492 0.406 24.36% 0.505 0.417 24.21%

MAP 0.398 0.307 31.03% 0.414 0.320 30.52%

SuccessRate 0.656 0.583 15.59% 0.744 0.662 15.27%

Precision 0.175 0.127 38.58% 0.102 0.077 35.37%

Recall 0.533 0.433 23.97% 0.616 0.513 21.22%

Average

NDCG 0.531 0.449 21.50% 0.559 0.471 21.67%
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