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Abstract

This dissertation offers some theoretical and practical contributions to the

relatively sparse literature on the bootstrap in state space models.

In the first chapter, we present the rationale for our research and offer an

overview of the structure of the document.

In Chapter 2, we introduce a gradient-based approach to the bootstrap

which can be applied to heteroskedastic state space models. To the best of our

knowledge, there is presently only one bootstrap technique available for models

in state space form and it is limited to homoskedastic models. We evaluate

the effectiveness of our methodology by analysing the coverage probabilities

of different bootstrap confidence intervals and we find that they perform

better than their asymptotic equivalents. We go on to use our methodology

to modify an existing bootstrap model selection criterion so that it can be

utilised with heteroskedastic state space models. Moreover, we introduce a

bootstrap procedure that is suitable for homoskedastic state space models,

providing an alternative to the current approach. Monte Carlo simulations

demonstrate that this new method is significantly faster than the existing

technique.

In Chapter 3, we apply an approximate bootstrap algorithm to state
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space models for the purpose of conducting hypothesis tests. We illustrate

the advantages of working within the state space framework by highlighting

how Kalman filter output can aid in the construction of certain chi-squared

test statistics. We then apply the approximate bootstrap approach to actual

data and reveal how, in small to moderately sized samples, bootstrap test

statistics can lead researchers to different conclusions than those drawn from

using standard asymptotic theory.

Chapter 4 focuses on the transformation of multilevel models into state

space form for the purpose of estimation. We show how the output from the

Kalman filter recursions can facilitate the parametric and residual bootstraps

in these models. In hierarchical settings, the full information maximum

likelihood estimates of the variance elements in the covariance matrix of the

vector of random effects are commonly biased downward in small samples. To

alleviate this problem, researchers generally use restricted maximum likelihood

estimation as it yields less biased estimates. However, we present an alternative

solution by employing the parametric and residual bootstraps to correct for

this bias in the estimates.
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Chapter 1

Introduction

The bootstrap is a resampling technique that can be applied to a wide variety

of problems including linear and nonlinear regressions, clustered data and time

series models. However, its application to models in state space form has not

been fully explored. A bootstrap for homoskedastic state space models was

developed by Stoffer and Wall (1991) but this method is not valid in models

with heteroskedastic errors. The goal of this research is to develop a bootstrap

for state space models that would be viable under both homoskedasticity and

heteroskedasticity. In this chapter we will first describe the general state space

model and briefly discuss the current approach to bootstrapping models in the

state space format. Next we will outline our objectives, explain the significance

of the research and, finally, note its limitations.

Kalman filtering and state space models are highly effective tools for

handling a wide range of data. Once a model has been cast in state space

form, the Kalman filter can be applied and used for prediction, smoothing

and likelihood evaluation. It effectively handles both stationary and non-

12



Introduction

stationary series, including those with missing observations. Additionally,

the state space framework accommodates fixed, systematically varying and

stochastically varying parameters (Harvey, 1990). The linear, Gaussian state

space model is given by:

αt+1 = Ttαt + ct + ηt, t = 1, . . . , T (1.1)

yt = Ztαt + dt + εt, t = 1, . . . , T (1.2)

where

εt ∼ N(0, Ht),

ηt ∼ N(0, Qt),

α0 ∼ N(a0, P0),

E(εtε
′

j) = Htδt−j, (1.3)

E(ηtη
′

j) = Qtδt−j,

E(εtη
′

j) = 0,

E(εtα
′

0) = E(ηtα
′

0) = 0.

Equation (1.1) is called the state equation and equation (1.2) is known as

the measurement equation. yt is an observed, noisy time series, αt is the

unobserved state vector, α0 is the initial value of the state vector, Zt, dt,

Tt, ct, Ht and Qt are time-varying system matrices and ηt and εt are the

measurement and state equation disturbances, respectively. δt is the Kronecker

delta function, that is, δt−j = 1 if t = j and δt−j = 0 otherwise.
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The model coefficients and covariance matrices are uniquely parameterised

by a vector of hyperparameters, ψ, and the parameterisation is such that the

model is completely identified (Durbin and Koopman, 2012):

Zt = Zt(ψ), Tt = Tt(ψ), Ht = Ht(ψ), Qt = Qt(ψ), ct = ct(ψ), dt = dt(ψ).

One of the primary functions of the Kalman filter is to estimate the

hidden state variables, αt, using noisy measurements, yt. Let at|t−1 and Pt|t−1

represent the estimate of the state and the covariance of the estimation error,

respectively, based on information up to time t− 1, that is,

at|t−1 = E(αt|yt−1, yt−2, . . . , y1)

Pt|t−1 = E
[
(αt − at|t−1)(αt − at|t−1)

′
]
.

Similarly, let at|t and Pt|t be the estimate of the state and the covariance

matrix of the estimation error given information up to time t, namely,

at|t = E(αt|yt, yt−1, . . . , y1)

Pt|t = E
[
(αt − at|t)(αt − at|t)

′] .
The discrete-time Kalman filter is given by:

νt = yt − Ztat|t−1 − dt (1.4)

Ft = ZtPt|t−1Z
′

t +Ht (1.5)

Kt = TtPt|t−1Z
′

tF
−1
t (1.6)
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at|t = at|t−1 + Pt|t−1Z
′

tF
−1
t (yt − Ztat|t−1 − dt)

Pt|t = Pt|t−1 − Pt|t−1Z
′

tF
−1
t ZtPt|t−1

 updating equations
(1.7)

(1.8)

at+1|t = Ttat|t + ct

Pt+1|t = TtPt|tT
′

t +Qt

 prediction equations.
(1.9)

(1.10)

The one-step-ahead forecast errors, νt, are sometimes referred to as prediction

errors or innovations. They are normally distributed with mean zero and

covariance, Ft. The matrixKt is known as the Kalman gain. In the calculation

of the updated state estimate, at|t, it is the weight given to the measurement,

yt, relative to the prior estimate of the state, at|t−1. Using the Kalman filter

outputs, we can construct the prediction error decomposition form of the

log-likelihood, L, for maximum likelihood estimation of the hyperparameters,

ψ:

lt = −1

2
log2π − 1

2
log |Ft(ψ)| −

1

2
v

′

t(ψ)F
−1
t (ψ)vt(ψ) (1.11)

L =
T∑
t=1

lt

L =
1

T

T∑
t=1

lt.

The likelihood in (1.11) is typically a highly nonlinear and complex function

of the unknown parameters. It is usually maximised using quasi-Newton

methods or the expectation maximisation algorithm. Under general conditions,

the parameter estimates are consistent and asymptotically normal(Ljung and

Caines, 1979). However, studies suggest that samples must be reasonably large
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before the asymptotic results can be credibly applied (Dent and Min, 1978;

Ansley and Newbold, 1980). Therefore, in the case of small to moderately

sized data sets, appealing to asymptotics is no longer a practical option. In

these cases, we find the bootstrap useful.

Bootstrapping is a technique for estimating the distribution of a test

statistic or an estimator by resampling, either from the original sample data

or from a model estimated from that data. The bootstrap can yield rejection

probabilities of hypothesis tests and coverage probabilities of confidence

intervals that are more accurate than the same measures calculated using

asymptotic distribution theory. Additionally, bootstrapping allows us to

make inferences in situations where finding the analytic approximation to a

distribution is complicated or infeasible. A bootstrap for linear Gaussian state

space models was developed by Stoffer and Wall (1991). In that study, the

authors used the following mathematically equivalent version of the model

described in (1.1) and (1.2), referred to as the innovations form representation:

at+1|t = Ttat|t−1 + ct +Ktνt (1.12)

yt = Ztat|t−1 + dt + νt.

In contrast to the standard model which has distinct errors, ηt and εt, in

the state and measurement equations, respectively, the innovations form

representation has the same error, νt, in both equations. Reframing the

standard model in this way is preferred since having only one error term

simplifies the bootstrap methodology. The simulations performed by Stoffer

andWall (1991) demonstrated that, in small and moderately sized samples, the

16



Introduction

bootstrap distributions of the parameter estimates more closely match their

true distributions than do the distributions predicted by standard asymptotic

theory. While ground-breaking, their technique is only valid for models in

which the state and measurement equation errors are both homoskedastic.

Since the seminal work by Stoffer and Wall (1991), to our knowledge, no

further bootstraps have been developed for models in state space form.

The aim of this study is to develop a bootstrap that is applicable to

heteroskedastic state space models. Currently, the most popular bootstrap

for use in the presence of heteroskedasticity is the wild bootstrap. This was

introduced into the literature by Liu et al. (1988) and is applicable in the

case of heteroskedastic linear models with fixed regressors. Kreiss (1997)

extended the work of Liu et al. (1988) and developed the fixed-design and

recursive-design wild bootstraps for autoregressive models with heterogeneous

errors. Another technique that can be used to address heteroskedasticity is

the pairwise bootstrap of Freedman (1981). This approach stands out from

the other methods because it resamples from the data, rather than from the

residuals, and it does not condition on the regressors.

Gonçalves and Kilian (2004) generalised the work of Kreiss (1997) for use

in autoregressive models with martingale difference errors and conditional

heteroskedasticity of unknown form. They also showed that the fixed-

design wild bootstrap, the recursive-design wild bootstrap and the pairwise

bootstrap all perform better in small samples than the traditional large-sample

approximations based on robust standard errors.

More recently, Kline and Santos (2012) introduced a bootstrap which

is based on perturbing the scores of M-estimators. This score bootstrap
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is applicable in the case of heteroskedastic, nonlinear models and is

computationally efficient as it avoids recomputing the estimator in each

bootstrap iteration. Our research builds on the methodology of Kline and

Santos (2012), making it applicable to state space models. In contrast

to the bootstrap of Stoffer and Wall (1991), our technique accommodates

independent but not necessarily identically distributed error terms. Notably,

the method will also work in homoskedastic models, providing an alternative

to the methodology of Stoffer and Wall (1991). We examine the accuracy of

our state space bootstrap by testing its performance in various models and

by employing a variety of statistical tests.

While many models exhibit heteroskedasticity, it is not uncommon

for researchers to assume homoskedasticity for convenience. However,

homogeneous errors do not necessarily reflect reality. Many types of data

exhibit heteroskedasticity and when samples are small to moderately-sized,

bootstrap methods can be useful for their analysis. This kind of data is

common in some areas of finance and economics. Examples include illiquid

bonds with limited trading volume, microcap stocks with restricted liquidity

and data availability, and data for newly issued securities such as initial

public offerings. Moreover, economic research frequently grapples with a lack

of historical indicators, especially when examining less developed countries or

earlier time periods. This research will fill a gap in the literature by enabling

practitioners to perform bootstrap inference in heteroskedastic state space

models. Also, while a method for bootstrapping homoskedastic state space

models already exists, the bootstrap developed herein will provide another,

potentially faster, technique.
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This study covers stationary state space models without missing

observations, though we hope to extend it in the future.

The dissertation is divided into four distinct sections. Chapter 2 develops

a bootstrap for heteroskedastic state space models. The performance of

the new methodology is tested by calculating coverage probabilities for a

selection of bootstrap confidence intervals. We show that they outperform the

associated asymptotic confidence intervals. Using our bootstrap technique, an

existing bootstrap model selection criterion is adjusted to make it applicable

to state space models with heterogeneous error terms. We find that, in small

samples, this bootstrap measure achieves better results than the standard

Akaike Information Criterion. Additionally, a bootstrap procedure for use in

homoskedastic state space models is developed, and proves to be faster than

the approach of Stoffer and Wall (1991).

In Chapter 3, we review the approximate bootstrap of Davidson and

MacKinnon (1999) and investigate its effectiveness in state space models

for the purpose of hypothesis testing. The k-step method was developed to

achieve the accuracy of a full bootstrap while reducing computational costs.

Our findings indicate that their method is well-suited for state space models

and that working in the state space framework has some advantages; Kalman

filter output facilitates the construction of the log-likelihood function for

estimation and enables the creation of certain chi-squared test statistics.

In Chapter 4, we emphasise the advantages of using the state space

representation for estimating multilevel models. We demonstrate how the

Kalman filter output can aid in performing residual and parametric bootstraps

in clustered data. Additionally, we illustrate how bootstrapping can be
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employed to mitigate the bias in the maximum likelihood estimates of the

components of the level-2 covariance matrices of the vector of random effects.

Chapter 5 summarises and concludes.
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Chapter 2

The State Space Model Bootstrap

2.1 Introduction

Kline and Santos (2012) proposed an alternative to the wild bootstrap of

Liu et al. (1988). Their score bootstrap was proven to be less costly to

implement than the conventional wild bootstrap because the procedure avoids

re-computation of the estimator in each bootstrap replication. Our state space

model bootstrap exploits the fact that the regression model considered in their

work can be cast in state space form for estimation, at which point a similar

gradient-based bootstrap can be applied, using the output of the Kalman filter.

One benefit of adopting the state space formulation is that it allows for the

inclusion of time-varying parameters. These stochastic parameter regression

models are widely used in the literature and it is therefore worthwhile to

extend the technique of Kline and Santos (2012) to include them. This research

attempts to do so.

The coefficients in linear regression models can be estimated in one step
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by means of ordinary least squares (OLS). However, in most cases, model

estimation entails a series of steps. Normally, when a nonlinear model is

bootstrapped, a multi-step optimisation procedure has to be undertaken in

every bootstrap iteration, which can be time-consuming. In the case of B

bootstrap replications, B + 1 nonlinear optimisations must be performed.

Davidson and MacKinnon (1999) developed a k-step process that reduces

the computational cost of bootstrap testing in nonlinear models. The authors

noted that while nonlinear estimation involves several iterations of a numerical

algorithm, it is often sufficient to replace them with a small number of Newton

or quasi-Newton steps. With their methodology, when performing B bootstrap

replications, it is only required that we carry out one nonlinear optimisation,

rather than B + 1; the additional B estimations can be replaced with kB

Newton steps where k is a small integer. In general, implementing the k-step

procedure is less costly than performing B + 1 nonlinear estimations. The

score bootstrap of Kline and Santos (2012) can be interpreted as a special

case of this k-step method when k = 1.

Inference in state space models is usually made tractable by appealing

to asymptotic theory. Under certain conditions, the parameter estimates

obtained by maximum likelihood (ML) are consistent and asymptotically

normal (Durbin and Koopman, 2012). However, as asymptotic approximation

to the distributions of ML estimators and related test statistics tend to

perform poorly in finite samples, researchers often opt for bootstrap techniques.

Stoffer and Wall (1991) applied the Monte Carlo bootstrap of Efron (1979) to

homoskedastic state space models. They showed that, in small and medium-

sized samples of 50 and 100 data points, respectively, their methodology
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produces results which are superior to those achieved by conventional

approaches. Specifically, Stoffer and Wall (1991) used Monte Carlo methods

to simulate the true small-sample distributions of the ML estimators of the

state space model parameters, focusing primarily on their means and standard

deviations. They determined that the corresponding bootstrap estimates for

these measures were closer to the true values than were the same quantities

acquired via standard large-sample theory.

Widespread application of the bootstrap of Stoffer and Wall (1991) has

partially been hindered by the fact that optimisation of the likelihood function

must be carried out in every bootstrap iteration, rendering this practice

computationally expensive, even with advancements in processor speeds.

While our research in this chapter is primarily concerned with heteroskedastic

models, we also derive a version of the state space model (SSM) bootstrap

that is valid in homoskedastic models and which is less computationally taxing

than the method introduced by Stoffer and Wall (1991).

The Akaike information criterion (AIC) is one of the most frequently used

tools for model selection. However, when sample sizes are small, the AIC will

overfit and favour models with a greater number of parameters. To account

for this, the AICc was developed by Sugiura (1978). This measure imposes

an extra penalty term for the number of parameters. Since the AICc was not

formulated for use in the state space environment, Cavanaugh and Shumway

(1997) devised a bootstrap-corrected version of the AIC, termed the AICb,

specifically for small-sample state space model selection. They considered

homoskedastic models and used the bootstrap procedure of Stoffer and Wall

(1991) to calculate their criterion. Notably, the authors generated realisations
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from an auto-regressive (AR) model and, for each realisation, AR models

of varying lag lengths were fitted to the data. The AICb was then used to

select the best candidate model. This experiment was repeated using the AIC

and other information criteria. In all of the scenarios considered, the AICb

outperformed the other measures. To examine the performance of the SSM

bootstrap in the context of model selection, our investigation proceeds along

the lines of Cavanaugh and Shumway (1997). We look at the effectiveness of

a gradient-based, bootstrap-corrected variant of the AIC, deemed the AICg.

Using this version of the bootstrap should allow us to extend the method

of Cavanaugh and Shumway (1997) to include heteroskedastic state space

models.

The study proceeds as follows: Section 2 reviews the score bootstrap of

Kline and Santos (2012); Section 3 describes the bootstrap technique of Stoffer

and Wall (1991); Section 4 introduces the methodology for the SSM bootstrap

while Section 5 addresses model selection; simulation studies are provided in

Section 6 and Section 7 concludes.

2.2 Review of the Score Bootstrap

Kline and Santos (2012) innovated a score based approach to the traditional

wild bootstrap. The authors examined the linear model,

yt = X ′
tβ + εt , (2.1)

where {yt, Xt}Tt=1 is an independent and identically distributed (iid) sequence
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of random variables with yt ∈ R and Xt ∈ Rm. They noted, from standard

OLS algebra, that

√
T
(
β̂ − β

)
= H−1

T

1√
T

T∑
t=1

Xtεt . (2.2)

Above, HT = 1
T

∑T
t=1XtX

′
t, and Xtεt is the tth score contribution. The

bootstrap equivalent of (2.2) is

√
T
(
β∗
j − β̂

)
= H−1

T

1√
T

T∑
t=1

Xtε
∗
t , (2.3)

where {ε∗t}
T
t=1 are the bootstrap errors and β∗

j is the estimate from the jth

bootstrap sample. The authors examined (2.2) and determined that since the

error terms only affect the limiting distribution of the OLS estimator through

the score contributions, Xtεt, a numerically equivalent way of executing the

wild bootstrap and estimating the distribution of β̂ would be to perturb the

score contributions directly and avoid having to continually re-estimate β∗
j .

For clarity, the algorithms for the wild and score bootstraps are outlined

below.

2.2.1 The Wild Bootstrap

The steps for the wild bootstrap of Liu et al. (1988) are as follows:

1. Estimate yt = X ′
tβ + εt by OLS to obtain β̂.

2. Find the residuals et = yt −X ′
tβ̂, t = 1, . . . , T.

3. Generate bootstrap errors of the form ε∗t = Wtet, where {Wt}Tt=1 is
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a randomly generated sequence that is independent of {yt,Xt}Tt=1 and

satisfies the conditions E (Wt) = 0 and E (W 2
t ) = 1.

4. Generate bootstrap replicates of the dependent variable y∗t = X ′
tβ̂ +

ε∗t , t = 1, . . . , T .

5. Perform OLS on the above to find β∗.

6. Monte Carlo approximation to the conditional distribution of β∗ is

obtained by repeating steps 3 to 5 B times.

7. Use the distribution of
√
T
(
β∗ − β̂

)
conditional on {yt, Xt} Tt=1 to

estimate the distribution of
√
T
(
β̂ − β

)
.

A number of distributions satisfy the requirements for generating the wild

weights, Wt. Among these, two of the most widely used are,

(a) The Rademacher distribution:

Wt =


−1, with probability 1

2
.

+1, with probability 1
2
.

Here, E[Wt] = 0, E[W 2
t ] = 1, E[W 3

t ] = 0 and E[W 4] = 1. Clearly,

when using Rademacher weights, if the distribution of the residuals

is symmetric, there will be agreement between the first four moments

of the distribution of the bootstrap errors and the distribution of the

residuals.
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(b) Mammen’s distribution:

Wt =


√
5+1
2
, with probability 1−

√
5+1
2
√
5
.

1−
√
5

2
, with probability

√
5+1
2
√
5
.

With these weights, E[Wt] = 0, E[W 2
t ] = 1, E[W 3

t ] = 1 and E[W 4
t ] = 2.

In this case, since E[W 3
t ] = 1, any skewness in the distribution of the

residuals is captured in the distribution of the bootstrap errors.

In our research, we opt primarily for Rademacher weights as previous studies

have demonstrated that they outperform Mammen’s skew-correcting weights,

even when the distribution of the residuals is skewed (Davidson and Flachaire

(2008), Davidson et al. (2007)).

Apart from the two-point distributions mentioned here, the standard

normal distribution also provides a viable alternative from which to draw wild

weights. Nonetheless, due to computational limitations, we did not investigate

additional distributions beyond the Rademacher distribution.

2.2.2 The Score Bootstrap

The methodology for the score bootstrap of Kline and Santos (2012) is

summarised below.

1. Estimate yt = X ′
tβ + εt by OLS to acquire β̂ and the residuals et =(

yt −X ′
tβ̂
)
, t = 1 . . . T.

2. Generate the fitted score contributions, Xtet, t = 1 . . . T .
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3. Use random weights Wt, with previously described properties, to

generate the perturbed score contributions
{
Xt

(
yt −X ′

tβ̂
)
Wt

}T
t=1

.

4. Multiply the perturbed score by H−1
T to obtain

√
T
(
β∗ − β̂

)
= H−1

T

1√
T

∑
t

{
Xt

(
yt −X ′

tβ̂
)
Wt

}
. (2.4)

5. Repeat steps 3 to 4 B times.

6. Use the distribution of
√
T
(
β∗ − β̂

)
conditional on {yt, Xt} Tt=1 to

estimate the distribution of
√
T
(
β̂ − β

)
.

In equation (2.2), when β̂ is regarded as the maximum likelihood estimator,

HT is the Hessian of the log-likelihood1 and 1
T

∑T
t=1Xtεt is the gradient

calculated at the true parameter β.

Kline and Santos (2012) applied this technique to non-linear models. In

contrast to the linear regression model where the Hessian matrix is always

1
T

∑
tX

′X in every bootstrap replication, in non-linear estimation, the Hessian

will be different in each bootstrap round. To address this, the authors fix

the Hessian at HT , the matrix of second derivatives evaluated at the ML

estimate, β̂, and proceed with the algorithm as described. For this reason,

their technique bears some similarity to the fixed-design wild bootstrap of

Kreiss (1997) which holds all regressors constant in every bootstrap iteration.

The score bootstrap was developed for heteroskedastic models. However,

in the presence of iid errors, a residual-type bootstrap can also be used with

the score-based approach. While this was not addressed by Kline and Santos

1HT = 1
T

∑T
t=1

δ2lt
δβkδβj

, where lt = log p(yt|yt−1, yt−2, . . . , y1)
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(2012), a similar gradient-based technique can be performed in homoskedastic

models. First, consider the standard linear regression model,

yt = X
′

tβ + εt, t = 1, . . . , T. (2.5)

The algorithm for the standard residual bootstrap is,

1. Estimate (2.5) by OLS and find β̂.

2. Calculate et = yt −X
′
t β̂, t = 1, . . . , T .

3. Find {ε∗t}Tt=1 by resampling T times from {et}Tt=1, with replacement.

4. Generate y∗t = X
′
t β̂ + ε∗t , t = 1, . . . , T .

5. Regress y∗t on Xt and estimate β∗.

6. Repeat steps 3 to 5 B times to obtain {β∗
j }Bj=1.

In the same way that Kline and Santos (2012) calculated the perturbed score

using wild bootstrap weights, if the errors are iid, we can also work directly

with the score contributions using resampled residuals. That algorithm would

proceed in the following manner:

1. Estimate (2.5) by OLS to find β̂ and the residuals, {et}Tt=1.

2. Resample {et}Tt=1 T times with replacement to generate the bootstrap

errors, {ε∗t}
T
t=1.

3. Generate the new score contributions, {Xtε
∗
t}
T
t=1.

29



The State Space Model Bootstrap

4. Multiply the perturbed score by H−1
T to obtain

√
T
(
β∗ − β̂

)
= H−1

T

1√
T

∑
t

{Xtε
∗
t} . (2.6)

5. Repeat steps 2 to 4 B times to generate
{
β∗
j ; 1 ≤ j ≤ B

}
.

6. Use the distribution of
√
T
(
β∗ − β̂

)
conditional on {yt, Xt} Tt=1 to

estimate the distribution of
√
T
(
β̂ − β

)
.

Some care must be taken when using the gradient-based approach with the

residual-type bootstrap. In the heteroskedastic case considered by Kline and

Santos (2012), wild weights were applied directly to the score contributions,

{Xtet}Tt=1. However, in the homoskedastic case, we do not resample the score

contributions. We first resample the residuals, {et}Tt=1, with replacement, to

acquire {ε∗t}Tt=1. Then, we construct {Xtε
∗
t}Tt=1. If we resampled the Xtet’s,

not only would the Xt’s be shuffled along with the et’s, but it is unlikely that

all of the Xt’s would appear in the perturbed score since some of them might

not be chosen in the resampling process.

Many non-linear models have extremely complex score functions. Another,

and many times simpler, way of forming the perturbed score is via the

bootstrap data generating process. Assume we have a model,

yt = f(Xt, β, εt). (2.7)

We can estimate this model to obtain β̂ and the residuals {et}Tt=1. Now,
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calculate {ε∗t}Tt=1 and generate the bootstrap model

y∗t = f(Xt, β̂, ε
∗
t ). (2.8)

The perturbed score can be found numerically from the log-likelihood of y∗t

by using finite differences.

2.3 The Bootstrap of Stoffer and Wall

Consider the general state space model introduced in (1.1) and (1.2) but with

homoskedastic errors, that is,

αt+1 = Ttαt + ct + ηt, t = 1, . . . , T

yt = Ztαt + dt + εt, t = 1, . . . , T,

where ηt ∼ N(0, Q) and εt ∼ N(0, H). Let ψ be the parameter vector to be

estimated. The algorithm for the bootstrap of Stoffer and Wall (1991) can be

summarised as follows:

1. Maximise the log-likelihood of the state space model to obtain ψ̂.

Estimation can be accomplished using a variety of methods such as

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) or Davidon-Fletcher-

Powell algorithms (DFP).

2. Run the Kalman filter with ψ = ψ̂. The output of the filter includes

the estimate of the state given information up to time t − 1, at|t−1,

the Kalman gain, Kt, the prediction errors, νt, and the prediction error

31



The State Space Model Bootstrap

covariance, Ft. Recall the innovations form representation, introduced

in Chapter 1,2

at+1|t = Ttat|t−1 + ct +Ktνt (2.9)

yt = Ztat|t−1 + dt + νt.

3. Generate bootstrap innovations, {ν∗}Tt=1, by drawing with replacement

from the innovations, {νt}Tt=1.

4. Using the innovations form of the model, construct the bootstrap data

set, {y∗t }Tt=1. Note that the parameter vector remains fixed at ψ̂. In the

bootstrap data generating process, the estimate of the state is calculated

recursively and is initialised by setting a∗1|0 = a1|0.

a∗t+1|t = Tt(ψ̂)a
∗
t|t−1 + ct(ψ̂) +Ktv

∗
t (2.10)

y∗t = Zt(ψ̂)a
∗
t|t−1 + dt(ψ̂) + v∗t

5. Estimate (2.10) to find ψ∗.

6. Repeat steps 3 through 5 B times, generating {ψ∗
j ;1 ≤ j ≤ B}.

The Kalman filter should be initialised with the same values in each

bootstrap iteration.

7. Use the conditional distribution of
√
T (ψ∗ − ψ̂) to estimate the

distribution of
√
T (ψ̂ − ψ0).

2See Anderson and Moore (2012) for the derivation of the innovations form
representation from Kalman filter output.
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This process requires that (2.10) be estimated B times.

2.4 Deriving the State Space Model Bootstrap

We consider a model similar to the one used by Stoffer and Wall (1991) but

we allow for heteroskedasticity in the state and measurement equation errors.

In particular, we look at

αt+1 = Ttαt + ct + ηt, t = 1, . . . , T (2.11)

yt = Ztαt + dt + εt, t = 1, . . . , T, (2.12)

where ηt ∼ N(0, Qt) and εt ∼ N(0, Ht). Let ψ be the vector of parameters to

be estimated.

Recall the prediction error decomposition form of the log-likelihood that

is constructed using the output from the Kalman filter:

lt = −1

2
log2π − 1

2
log |Ft(ψ)| −

1

2
v

′

t(ψ)F
−1
t (ψ)vt(ψ). (2.13)

We can define the average log-likelihood as,

L(yt;ψ) =
1

T

T∑
t=1

lt(yt;ψ). (2.14)

If (2.14) is differentiable and ψ̂ is an interior point, then the first order

condition for L(ψ) will be satisfied:

1

T

T∑
t=1

∇ψlt(yt; ψ̂) = 0. (2.15)
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Above, ∇ψlt(yt; ψ̂) is the derivative of lt with respect to ψ, evaluated at ψ̂.

Assuming that (2.14) is twice continuously differentiable, we can perform the

following analysis:

Applying a Taylor expansion to (2.15) around the true parameter value ψ0

gives3,

1

T

T∑
t=1

∇ψlt(yt; ψ̂) =
1

T

T∑
t=1

∇ψlt(yt;ψ0)

+
1

T

[
T∑
t=1

∇ψψlt(yt;ψ0)

]
(ψ̂ − ψ0) +R1 = 0 , (2.16)

where 1
T

∑T
t=1∇ψψlt(yt;ψ) is the Hessian matrix of second derivatives of

L(yt;ψ) with respect to ψ and R1 is the Taylor remainder term. In linear

regression models such as (2.1), the third and higher derivatives of the log-

likelihood with respect to ψ are zero. So, from (2.16),

√
T (ψ̂ − ψ0) = −

[
1

T

T∑
t=1

∇ψψlt(yt;ψ0)

]−1

1√
T

T∑
t=1

∇ψlt(yt;ψ0) . (2.17)

This product of the inverse of the Hessian times the score is comparable to

(2.2), the equation for the distribution of the OLS estimator. Along the lines of

Kline and Santos (2012), we can construct an equation analogous to (2.17) in

which we use perturbed score contributions, {∇ψlt(y
∗
t ; ψ̂)}Tt=1, to estimate the

3When ψ̂ is a vector, the Taylor expansion applies to each individual element in the
partial derivatives.
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conditional distribution of ψ∗ without carrying out any further optimisation.

√
T (ψ∗ − ψ̂) = −


1

T

T∑
t=1

∇ψψlt(yt; ψ̂)︸ ︷︷ ︸
↓

Hessian


−1

1√
T

T∑
t=1

∇ψlt(y
∗
t ; ψ̂)︸ ︷︷ ︸

↓
Score

(2.18)

Full details of the algorithm appear in the next section.

Observe from (2.18) that the bootstrap estimate, ψ∗, can be recovered

from the maximum likelihood estimate, ψ̂, as shown below:

ψ∗ = ψ̂ −

[
T∑
t=1

∇ψψlt(yt; ψ̂)

]−1 T∑
t=1

∇ψl
∗
t (yt; ψ̂) . (2.19)

Equation (2.19) is one iteration of the familiar Newton-Raphson method.

Since the first order conditions are linear in the parameters for models like

(2.1), the algorithm will converge in just one Newton step. In non-linear

estimation however, the remainder term in (2.16) only vanishes asymptotically

so the relationship in (2.19) just holds approximately:

ψ∗ ≈ ψ̂ −

[
T∑
t=1

∇ψψlt(yt; ψ̂)

]−1 T∑
t=1

∇ψlt(y
∗
t ; ψ̂) (2.20)

2.4.1 The Wild State Space Model Bootstrap

When the error terms of the state space model exhibit heteroskedasticity, the

bootstrap can be carried out in this manner:

1. Maximise the log-likelihood in (2.14) to find ψ̂ = arg maxψL(yt;ψ)

using the preferred Newton procedure. The optimisation routine will
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also provide an estimate of the Hessian, HT .

2. Run the Kalman filter with ψ = ψ̂ to obtain the innovations, νt, and

their covariances, Ft.

3. Using weights, Wt, with previously described properties, perturb the

innovations,

ν∗t = νt ∗Wt, ∀t. (2.21)

4. Create the bootstrap data set, {y∗t }Tt=1, according to step 4 of the Stoffer

and Wall (1991) algorithm given in section 2.3.

5. Construct the bootstrap log-likelihood, lt(y
∗
t ; ψ̂),

lt(y
∗
t ; ψ̂) = −1

2
log2π − 1

2
log|Ft| −

1

2
ν∗t F

−1
t ν∗t . (2.22)

6. Calculate the bootstrap score contributions, ∇ψlt(y
∗
t ; ψ̂).

7. Find ψ∗ using

√
T (ψ∗ − ψ̂) = −H−1

T

1√
T

T∑
t=1

∇ψlt(y
∗
t ; ψ̂) . (2.23)

8. Repeat steps 3 to 7 B times to generate {ψ∗
j ; 1 ≤ j ≤ B}.

9. Use the empirical distribution of
√
T (ψ∗

j−ψ̂) to estimate the distribution

of
√
T (ψ̂ − ψ0).
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2.4.2 The Residual State Space Model Bootstrap

If the error terms of the state space model are homoskedastic, the bootstrap

is executed as shown below:

1. Maximise the log-likelihood in (2.14) to find ψ̂ = arg maxψL(yt;ψ) and

the Hessian, HT .

2. Run the Kalman filter with ψ = ψ̂ to obtain νt and Ft, t = 1, . . . , T .

3. Standardise the innovations, νt, so that the first two moments of all

innovations are the same:

νst = F
− 1

2
t νt. (2.24)

4. Resample with replacement from the standardised innovations, νst , to

generate νrt .

5. Reinflate νrt to create the bootstrap innovations, ν∗t ,

ν∗t = F
1
2
t ∗ νrt . (2.25)

6. Generate the bootstrap data set, {y∗t }Tt=1, as outlined in step 4 of the

Stoffer and Wall (1991) algorithm presented in section 2.3.

7. Construct the bootstrap log-likelihood, lt(y
∗
t ; ψ̂),

lt(y
∗
t ; ψ̂) = −1

2
log2π − 1

2
log|Ft| −

1

2
ν∗t F

−1
t ν∗t . (2.26)
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8. Compute the bootstrap score contributions, ∇ψlt(y
∗
t ; ψ̂).

9. Calculate ψ∗ from

√
T (ψ∗ − ψ̂) = −H−1

T

1√
T

T∑
t=1

∇ψlt(y
∗
t ; ψ̂) . (2.27)

10. Repeat steps 4 to 9 B times to generate {ψ∗
j ; 1 ≤ j ≤ B}.

11. Use the empirical distribution of
√
T (ψ∗

j − ψ̂) to approximate the

distribution of
√
T (ψ̂ − ψ0).

In both algorithms, we can calculate the bootstrap score from the log-

likelihood either numerically or analytically. The ith element of the score vector

for the prediction error decomposition form of the average log-likelihood in

(2.14) is shown below.4

∂logL
∂ψi

= − 1

2T

∑
t

{
tr

[[
F−1
t

∂Ft
∂ψi

]
(I − F−1

t νtν
′

t)

]
+ 2

∂ν
′
t

∂ψi
F−1
t νt

}
, i = 1, . . . , k. (2.28)

Like the score bootstrap of Kline and Santos (2012), the wild state space

model (WSSM) and residual state space model (RSSM) bootstrap approaches

are different from more conventional bootstraps as they require that ψ̂ be

evaluated only once. This significantly increases the computational efficiency

of the bootstrapping process.

The methodologies for both SSM bootstraps were developed using

Gaussian errors. However, the techniques are robust to other types of errors.

4The recursions to calculate the exact score are given in Harvey (1990).
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If the distribution of the error terms is known, then one can proceed with

maximum likelihood estimation and the bootstrap procedures remain valid.

The challenge arises when the model may be misspecified and it is unknown,

a priori, whether or not the quasi-maximum likelihood estimates of the

parameters of interest will be consistent. In these instances, we can appeal to

the 2-step methodology of White (1982). In particular, we first employ the

Information Matrix test to assess whether the model is misspecified. If it is

not, we can confidently use maximum likelihood techniques and bootstrap

inference as usual. On the other hand, if the model is determined to be

misspecified, we conduct either a Hausman Test or a Gradient Test to evaluate

whether this misspecification will lead to inconsistent parameter estimates. If

the parameter estimates are deemed consistent, we can proceed as planned.

However, if they are found to be inconsistent, the bootstrap methodologies

will be invalid.5

2.5 Model Selection

The Akaike information criterion (AIC) is a well-known statistical measure

for evaluating which model fits best for a given data set. The AIC function

is,

AIC = −2logL(ψ̂|YT ) + 2k, (2.29)

where k is the number of parameters to be estimated, ψ̂ is the ML estimate

of the true parameter ψ, L is the likelihood function and YT represents the

5Details of the Information Matrix, Hausman and Gradient tests are given in White
(1982).
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observed data up to time T , that is, YT = (y1, . . . , yT ). One drawback of

the AIC is its tendency to favour high-dimensional models when the sample

size is small. To address this shortcoming, Cavanaugh and Shumway (1997)

developed the AICb as a model selection criterion for use in small samples:

AICb = −2logL(ψ̂|YT ) + 2

{
1

B

B∑
j=1

−2log
L(ψ∗(j)|YT )
L(ψ̂|YT )

}
. (2.30)

In (2.30), ψ∗ is the bootstrap estimate of ψ and B is the number of

bootstrap replications. They considered univariate, stationary, autoregressive

(AR) models with and without observation noise. The models with noise were

labelled as ARN models. Specifically, the authors examined the following

processes of order p, i)

zt = ϕ1zt−1 + ϕ2zt−2 + ...+ ϕpzt−p + ηt, ηt ∼ iid(0, σ2
Q), (2.31)

and ii)

yt = zt + εt, εt ∼ iid(0, σ2
R) (2.32)

zt = ϕ1zt−1 + ϕ2zt−2 + ...+ ϕpzt−p + ϵt, ϵt ∼ iid(0, σ2
Q).
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They cast the ARN model in (2.32) in state space form as shown below:

yt = (1, 0, . . . , 0)



zt

zt−1

...

zt−p+1


+ εt (2.33)



zt

zt−1

...

zt−p+1


=



ϕ1 ϕ2 . . . ϕp−1 ϕp

1 0 . . . 0 0

0 1 . . . 0 0

...
...

...
...

...

0 0 . . . 1 0





zt−1

zt−2

...

zt−p


+



ηt

0

...

0


. (2.34)

The state space representation for the AR(p) model is similar; the state

equation (2.34) is the same as in the ARN(p) case but there is no error term,

εt, in the observation equation (2.33).

The parameter vectors for the AR(p) and ARN(p) are given by ψ =

(ϕ1, . . . , ϕp, σ
2
Q) and ψ = (ϕ1, . . . , ϕp, σ

2
R, σ

2
Q), respectively. In order to evaluate

ψ∗ the authors made use of the bootstrap of Stoffer and Wall (1991), which

is applicable in the case of homoskedastic models. Of course, if either of the

errors in a state space model is heteroskedastic, this bootstrap cannot be

applied. Under this scenario, we propose the use of the WSSM bootstrap to

calculate ψ∗ instead. The formula for the new information criterion based on

the WSSM bootstrap is the same as for the AICb but now ψ∗ is calculated

using our gradient-based approach. This new measure is titled the AICg.
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2.6 Simulations

2.6.1 Simulation I

The workhorse linear regression model (2.1) lends itself easily to the

application of the score bootstrap. However, models with time-varying

parameters have also been extensively studied in the literature, for example,

yt = X
′

0,tβ0 +X
′

1,tβ1,t + εt, εt ∼ N(0, σ2
ε) . (2.35)

Such models can be estimated by rolling regressions, that is, by computing

OLS estimates for sliding windows of a specified width, but this would greatly

complicate the application of the score bootstrap. Fortunately, these models

can be conveniently estimated and analysed using state space methods. For

instance, (2.35) may be expressed as,

yt = X
′

0,tβ0 +X
′

1,tβ1,t + εt, εt ∼ N(0, σ2
ε) (2.36)

β1,t+1 = γβ1,t + ηt, ηt ∼ N(0, σ2
η) ,

where the time-varying parameter evolves according to a Markov process. By

way of illustration, in the unobserved components Phillips curve6, a random

walk is used to capture inflation persistence.

πt = µt + βxt + εt, εt ∼ N(0, σ2
ε) (2.37)

µt = µt−1 + ηt, ηt ∼ N(0, σ2
η)

6See Harvey (2014)
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In (2.37), πt and xt represent inflation and the output gap, respectively.

Appealing to the state space formulation allows us to handle both the

estimation of the stochastic parameters and the application of the bootstrap

to the fixed parameters under investigation. In other words, the presence of

time-varying parameters in no way hinders the execution of the bootstrap.

It is acknowledged that the errors in many regression models exhibit

heteroskedasticity. However, for expedience, it is common to assume that

they are iid. We estimate the linear, time-varying heteroskedastic model in

(2.36) by Gaussian maximum likelihood, under the incorrect assumption of

homogeneous errors. We then employ the WSSM bootstrap and compare the

coverage probabilities of various confidence intervals constructed for β0.

Equation (2.36) is simulated with X0 ∼ U(0, 1)7, β0 = 3, X1 ∼ U(0, 1),

εt ∼ N(0, σ2
t ) with σt = .3Xt, ηt ∼ N(0, 1) and β1,t+1 = 0.9β1,t + ηt where

β1,1 = 0. Rademacher weights are applied in the WSSM bootstrap procedure.8

Coverage is calculated for the following regularly used confidence intervals.

A nominal coverage of 95% provides the benchmark.

Standard normal confidence interval:

β̂0 ± 1.96s∞

β̂0 is the maximum likelihood estimate of β0 and s∞ is the corresponding

asymptotic standard error.

7U represents the uniform distribution.
8Mammen weights produced similar results.
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Normal bootstrap confidence interval:

β̂0 ± 1.96s∗

s∗ is the bootstrap estimate of the coefficient standard error.

Simple percentile confidence interval:

The bootstrap estimates, {β∗
0,b}Bb=1, are sorted in ascending order. The

confidence limits are the .025 and the .975 quantiles of the ranked statistics.

Bootstrap-t confidence interval:

For each of the B bootstrap samples, β∗
0,b, the bootstrap estimate of β0,

and its corresponding standard error, s∗b , are calculated. We compute s∗b

by performing a second round of bootstrapping, employing the fast double

bootstrap proposed by Ouysse (2013). We then construct,

z∗b =
β∗
0,b − β̂0

s∗b
, b = 1, . . . , B.

In addition, s∗, the standard deviation of {β∗
0,b}Bb=1, is evaluated. The αth

percentile of {z∗b}Bb=1 is estimated by t̂α where

1

B

B∑
b=1

I(z∗b ≤ t̂α) = α.

A 95% confidence interval for β0 is given by

(β̂0 − t̂.975s
∗, β̂0 − t̂.025s

∗).

One thousand Monte Carlo simulations are performed, each using 999
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bootstrap replications. The coverage probability is determined as the

proportion of the time the true parameter value, β0, falls into the relevant

confidence interval. The lengths of the confidence intervals are also examined.

Note that, according to MacKinnon (2006) a minimum of B=999

bootstrap replications will usually suffice in practice. However, when the

bootstrap iterations are nested within a Monte Carlo simulation, a minimum

of B=399 is sufficient since the randomness due to B being small tends to

average out across Monte Carlo rounds. These numbers guide our choice

of B throughout the dissertation. The only exceptions occur when we are

reproducing or making a direct comparison to another author’s methodology;

naturally, in those instances, we adhere to that author’s choice for B.

2.6.2 Simulation I: Results and Discussion

The purpose of simulation I was to compare the performance of Gaussian ML,

under the false but frequently invoked assumption of homoskedasticity, with

that of the WSSM bootstrap in a stochastic parameter regression model.

The data in Table 2.1 indicates that, for all sample sizes, the confidence

intervals generated using the WSSM bootstrap outperformed the normal

confidence intervals which are based on asymptotic standard errors. The

latter consistently under-covered and this outturn did not improve with

increasing sample size. The poor coverage is consistent with the shorter

standard normal confidence intervals that we see in Table 2.2. These results are

in keeping with the literature; for linear models like (2.36), in the presence

of heteroskedasticity, the maximum likelihood estimator remains unbiased
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but the conventional covariance matrix estimator is inconsistent. In this case,

the estimate of the standard error is biased downward, leading to tighter

confidence intervals.

Figure 1 highlights the relative functionality of the confidence intervals

under study. In general, the normal bootstrap confidence intervals, which rely

on the use of bootstrap standard errors, performed marginally better than

the simple percentile intervals. Overall, the bootstrap-t intervals were the

most accurate. Unlike the other confidence intervals, they over-rejected for

all sample sizes under consideration. However, the coverage of the bootstrap-

t intervals was closer to the nominal level of .95 than was the coverage of

the other confidence intervals under investigation. This outcome was to be

expected given the results of Hall (2013) which states that, while bootstrap-t

intervals can be computationally intensive, they tend to be more accurate

than most other confidence intervals, particularly in small samples.

2.6.3 Simulation II

Newton’s method used for the maximisation of linear regression models

converges in 1 step. However, in nonlinear estimation, multiple iterations

are generally required to meet the convergence criterion of the optimisation

routine. Using a gradient-based approach to the bootstrap, which requires

numerical optimisation to be carried out only once, can result in considerable

time savings. To investigate these efficiency gains, we consider the model,
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αt+1 =

 ψ1 1

0 0

αt +
 1

ψ2

 ηt, ηt ∼ N(0, 1) (2.38)

yt =

[
1 0

]
αt,

with ψ1 = 0.7 and ψ2 = 0.8. The parameter estimates and their standard

errors are evaluated using the following methods:

1. Gaussian maximum likelihood. ψ̂1 and ψ̂2 are the ML estimates of

ψ1 and ψ2, respectively, while std(ψ̂1) and std(ψ̂2) are their associated

standard errors.

2. The bootstrap of Stoffer and Wall (1991) introduced in Section 2.3. We

generated B bootstrap samples and computed the maximum likelihood

estimates, {ψ∗b
1 } and {ψ∗b

2 }, for b = 1, ..., B, of each sample. ψ1,stoffer wall

and ψ2,stoffer wall are the arithmetic means of {ψ∗b
1 } and {ψ∗b

2 }, for b =

1, ..., B, respectively, while std(ψ1,stoffer wall) and std(ψ2,stoffer wall) are the

corresponding standard deviations. These estimates are approximations

of the means and standard deviations of the true sampling distributions

of the maximum likelihood estimators, ψ̂1 and ψ̂2.

3. The RSSM bootstrap developed in subsection 2.4.2. We generated B

bootstrap samples and calculated {ψ∗b
1,R} and {ψ∗b

2,R}, for b = 1, . . . B, for

each sample. The values ψ1,RSSM and ψ2,RSSM are the averages of {ψ∗b
1,R}

and {ψ∗b
2,R}, for b = 1, . . . B, whereas std(ψ1,RSSM) and std(ψ2,RSSM)

denote the respective standard deviations.
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B = 999 bootstrap iterations are used in the investigation and all estimates are

averaged over 1000 Monte Carlo replications. The results are compared with

the means and standard deviations of the “true” finite-sample distributions of

ψ̂1 and ψ̂2. To generate the true distributions, we employ the same approach

as Stoffer and Wall (1991), that is, equation (2.38) is simulated 1000 times

with ψ1 = 0.7 and ψ2 = 0.8, and each of these Monte Carlo rounds is estimated

by maximum likelihood; the results are used to approximate the distributions

of ψ̂1 and ψ̂2. The means of these true sampling distributions of ψ̂1 and

ψ̂2 are ψ1,true and ψ2,true, respectively, and their corresponding, respective

standard deviations are std( ψ1,true) and std(ψ2,true). The execution time for

the two bootstrap methodologies is recorded and contrasted. All simulations

are carried out on the same 16-core computer cluster.

2.6.4 Simulation II: Results and Discussion

For the model in (2.38), we simulated the true small sample distributions of

the ML estimators of ψ1 and ψ2. We approximated these distributions using

the bootstrap of Stoffer and Wall (1991), the RSSM bootstrap and standard

asymptotic theory. Overall, both the bootstrap of Stoffer and Wall (1991)

and the RSSM bootstrap improved upon ML estimation in the sense that

the standard deviations of the bootstrap distributions were closer to the true

values determined by Monte Carlo simulation. The disparity in the dispersion

estimates produced by the different methodologies was more pronounced

in smaller samples, particularly for T = 50. (See Table 2.3). However, the

differences between the ML and bootstrap results narrowed as the sample
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size increased. By T = 200, the ML estimates were almost on par with those

from the other two methods. This outcome suggests that utilising bootstrap

standard errors, from either of the bootstrap methodologies, would be more

reliable than employing asymptotic theory when dealing with limited sample

sizes.

The bootstrap of Stoffer and Wall (1991) performed marginally better

than the RSSM bootstrap when T = 50. However, as seen in Table 2.3, the

time saved by adopting the latter is considerable. At small sample sizes, there

may be a slight trade-off between speed and accuracy when it comes to these

two bootstrap algorithms.

At T = 50, the absolute difference between std(ψ1,true) and std(ψ1,stoffer wall)

is 0.0137. By comparison, the absolute difference between std(ψ1,true) and

the RSSM bootstrap estimate, std(ψ1,RSSM), is 0.0171. So, we see that

std(ψ1,stoffer wall) is closer to std(ψ1,true) than is std(ψ1,RSSM). Similar results

hold for ψ2, namely, |std(ψ2,true) - std(ψ2,stoffer wall)| = 0.0141, while |std(ψ2,true)

- std(ψ2,RSSM)| = 0.0181. However, when we consider T > 50, the estimates

for both bootstrap methods are comparable. For the periods T = 100, T = 150

and T = 200, when considering ψ1, the average absolute differences for

the 2 bootstrap techniques are
∑

T

∣∣∣ std(ψ1,true)−std(ψ1,stoffer wall)

3

∣∣∣ = 0.0036 and∑
T

∣∣∣ std(ψ1,true)−std(ψ1,RSSM )

3

∣∣∣ = 0.00127. Additionally, with regard to ψ2, the

average absolute differences are
∑

T

∣∣∣ std(ψ2,true)−std(ψ2,stoffer wall)

3

∣∣∣ = 0.0039 and∑
T

∣∣∣ std(ψ2,true)−std(ψ2,RSSM )|
3

∣∣∣ = 0.0052. These differences are an order of

magnitude smaller than the differences at T = 50 and can be considered

minor.

When sample sizes are small, it is possible that a procedure which utilises
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k Newton steps, where k is a small integer, may perform better than our 1-step

RSSM bootstrap. This idea will be explored further in the next chapter.

2.6.5 Simulation III

The aim of this investigation is to test the efficacy of the SSM bootstrap in

the context of model selection. We compare the performance of the standard

AIC with that of the AICg in state space models with heterogeneous errors.

Recall,

AICg = −2logL(ψ̂|YT ) + 2

{
1

B

B∑
j=1

−2log
L(ψ∗(j)|YT )
L(ψ̂|YT )

}
, (2.39)

where the terms are as defined in section (2.5). Here, ψ∗, the bootstrap

estimate of the true parameter vector, ψ, is found by implementing the WSSM

bootstrap. We consider the following distributed lag model:

yt = µt + 0.9Xt + 0.7Xt−1 + 1.3Xt−2 + ϵt, ϵt ∼ N(0, 0.04Xt)

µt+1 = 0.6µt + ηt, ηt ∼ N(0, 0.01),

(2.40)

where, Xt ∼ U(0, 1). One hundred realisations of the true model (2.40) are

generated and candidate models, with lag lengths on the exogenous variable

ranging from 1 to 12, are fit to the data. Namely, we fit,

yt = µt + β0Xt + β1Xt−1 + . . .+ βpXt−p + ϵt, ϵt ∼ N(0, σ2
ϵt)

µt+1 = γµt + ηt, ηt ∼ N(0, σ2
η),

(2.41)
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where 1 ≤ p ≤ 12. The sample size considered in this scenario is T = 20.

For every realisation, the AIC and AICg are calculated for each candidate

model. In implementing the bootstrap, 250 replications are performed and

the weights, Wt, are drawn from the Rademacher distribution. The selection

results are recorded for the 100 realisations and presented in table 2.4. The

choice of sample size and the number of bootstrap iterations was guided by

those used in Cavanaugh and Shumway (1997).

To observe the performance of both selection criteria in large samples, the

analysis was repeated for T = 200.

2.6.6 Simulation III: Results and Discussion

We compared the performance of the AIC and the AICg under 2 different

scenarios. When T = 20, it can be seen from Table 2.4 that the AIC, which is

known to choose high-dimensional models in small samples, tended to overfit

and select models with more parameters. By comparison, the AICg obtained

a much greater number of correct order selections.

When T = 200, it is apparent from Table 2.5 that the AICg and the

traditional AIC perform similarly. This is in accordance with established

research regarding the favourable large-sample properties of the AIC

(Cavanaugh and Neath, 2019). Naturally, we would not use the AICg when

the computationally more efficient AIC would suffice. However, when sample

sizes are small, the AICg is more successful at choosing the correct model

dimension.

Overall, these results are similar to the outcomes observed in Cavanaugh
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and Shumway (1997) where homoskedastic state space models were considered

and the bootstrap of Stoffer andWall (1991) was employed. The present results

are significant in one respect. Since the approach of Stoffer and Wall (1991)

cannot be used in heteroskedastic models, the WSSM bootstrap, via the AICg,

could be a useful tool for model selection when working with smaller sample

sizes in state space models with heterogeneous error terms.

2.7 Concluding Remarks

The primary aim of this investigation was to formulate a bootstrap that

was applicable to heteroskedastic state space models. To this end, we

advanced the work of Kline and Santos (2012) and developed the wild

state space model bootstrap. We discovered that, when we improperly

assumed homoskedasticity, the bootstrap confidence intervals constructed

using the WSSM bootstrap estimates of the standard error outperformed

intervals constructed from standard errors that were based on asymptotic

theory. Additionally, in model selection, the AICg measure, which uses WSSM

bootstrap estimates, had a greater hit ratio than the AIC in small samples. We

also devised the residual state space model bootstrap for use in homoskedastic

state space models. While a bootstrap methodology for homoskedastic state

space models already exists, the RSSM bootstrap was shown to be more

computationally efficient.
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2.8 Tables and Graphs

Table 2.1: Coverage Probabilities for Simulation I

T Standard Normal Normal Bootstrap Simple Percentile Bootstrap t

50 0.748 0.841 0.835 0.979

75 0.788 0.882 0.873 0.987

100 0.836 0.901 0.896 0.980

125 0.811 0.897 0.891 0.983

150 0.768 0.898 0.898 0.980

175 0.758 0.911 0.910 0.981

200 0.824 0.909 0.905 0.982

225 0.796 0.913 0.912 0.977

250 0.804 0.911 0.905 0.973

275 0.813 0.907 0.908 0.986

300 0.811 0.913 0.910 0.982
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Figure 2.1: Coverage Probabilities for Simulation I
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Table 2.4: Model Selections for Simulation III, T = 20.

Lags AIC AICg

1 0 8
2 6 78
3 7 2
4 9 6
5 20 2
6 9 0
7 18 0
8 9 0

9 to 12 22 4

Table 2.5: Model Selections for Simulation III, T = 200.

Lags AIC AICg

1 0 0
2 80 80
3 8 14
4 2 2
5 0 0
6 4 2
7 2 2
8 0 0

9 to 12 4 0
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Chapter 3

The k-Step Bootstrap In State

Space Models

3.1 Introduction

In the previous chapter we developed a gradient-based bootstrap for use

in state space models. However, the performance of the state space model

bootstrap in small samples (n ≤ 50) may be improved if we take more than

one Newton step during the optimisation procedure. The main objective of

this chapter is to assess the effectiveness of the k-step bootstrap introduced

by Davidson and MacKinnon (1999), DM hereafter, when it is applied

to models in state space form. Bootstrapping nonlinear models tends to

be computationally expensive. DM proposed an approximate bootstrap

methodology which attains the accuracy of standard bootstrap inference

without requiring repeated nonlinear optimisation. The authors noted that

bootstrap tests are, in general, not exact and that they make an error which
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is proportional to the sample size raised to some negative power. Since the

bootstrap test is already in error by a certain amount, it suffices to calculate

the bootstrap test statistic to an order that is equal to the error made by

the bootstrap test. This is achieved by taking k Newton or quasi-Newton

steps toward the optimum, where k is a small integer. Therefore, rather

than executing B + 1 nonlinear estimations as in the case of the traditional

bootstrap, where B is the number of bootstrap iterations, it is enough to

perform one nonlinear optimisation along with kB Newton or quasi-Newton

steps. This can significantly reduce computational costs.

This study also highlights the benefits of casting models in state space

form for estimation and testing. The output of the Kalman filter can be used

for likelihood evaluation, the construction of the score vector, the creation

of the outer-product-of-the-gradient (OPG) form of the covariance matrix of

parameter estimates and consequently for the development of several test

statistics. The fact that these quantities can all be formulated by using

output from the filter makes working in the state space framework extremely

convenient.

The chapter is organised in the following way: Section 2 reviews the

methodology of DM; Section 3 formulates the Score, Likelihood Ratio and

Wald statistics using Kalman filter output; Section 4 investigates the accuracy

of the k-step bootstrap applied to state space models and Section 5 concludes.
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3.2 Summary of the k-Step Bootstrap

Let fn(θ) be a random criterion function, such as a log-likelihood function,

which is based on a sample of size n. Let θ̂ be the maximum likelihood estimate

of θ. DM derived equations for the rate of convergence of both Newton and

quasi-Newton optimisation algorithms1. Let the initial estimate of θ be θ(0)

and assume that (θ(0) − θ̂) = Op(n
− 1

2 ). Recall that one Newton step is given

by

θ(1) = θ(0) −
[
Hn(θ(0))

]−1
gn(θ(0)), (3.1)

where Hn(θ) and gn(θ) are the Hessian matrix and score vector of fn(θ),

respectively. Let θ(i) denote the estimate of θ after i iterations of Newton’s

formula. The authors demonstrated that, under certain regularity conditions,2

θ(i) − θ̂ = Op(n
−2i−1

). (3.2)

Replacing Hn(θ) in (3.1) with an approximation to the Hessian represents

one quasi-Newton step. After i quasi-Newton iterations, DM found that,

θ(i) − θ̂ = Op

(
n− i+1

2

)
. (3.3)

3.2.1 The Conventional Bootstrap

What follows is the typical procedure for the bootstrap method in the context

of hypothesis testing. We partition θ, the m-vector of parameters, into θ =

1These derivations were based on earlier work done by Robinson (1988).
2The regularity conditions are outlined in Robinson (1991) and Davidson and

MacKinnon (1999).
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[θ1
... θ2] where θ1 is an m1-vector, θ2 is an m2-vector and m1 + m2 = m.

Without any loss of generality, we can test the null hypothesis that θ2 = 0

and reject the null hypothesis for large values of a test statistic, τ̂ , where τ̂

is, for example, a Likelihood ratio, Score or Wald statistic. The steps to be

undertaken are:

1. Compute the test statistic, τ̂ , for the original data set and calculate

a vector of parameter estimates, θ̃ = [θ̃1
... 0], which satisfy the null

hypothesis.

2. Use θ̃ in the bootstrap data generating process (DGP) to produce B

bootstrap samples.

3. For the jth bootstrap sample, calculate the bootstrap test statistic, τ̂ ∗j ,

in the same way that τ̂ was computed.

4. Estimate the bootstrap p-value as the proportion of bootstrap samples

for which τ̂ ∗j exceeds τ̂ .

3.2.2 The Approximate Bootstrap

The above technique requires that optimisation be carried out B+1 times,

once when we calculate τ̂ and B times when we calculate τ̂ ∗j . The high cost of

nonlinear estimation can prove to be an obstacle when applying the bootstrap.

DM proposed replacing the nonlinear optimisation in each bootstrap sample

with a small number, k, of Newton or quasi-Newton steps. This is referred

to as the k-step or approximate bootstrap. Performing kB steps is typically

faster than conducting B nonlinear optimisations.
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Maximum likelihood estimation of state space models is customarily

carried out using quasi-Newton methods such as the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) and the Davidon-Fletcher-Powell (DFP)

optimisation routines. These approaches are preferred to Newton’s

technique because they do not require the computation of the Hessian.

In state space models, the analytic expression for the Hessian is complex.

Moreover, Newton’s procedure requires that the Hessian be inverted at

each step. In contrast, quasi-Newton methods use an approximation to the

Hessian which does not involve second derivatives and whose inverse is

updated directly, rather than by solving a system of equations as is the case

with Newton’s approach. For these reasons, only quasi-Newton algorithms

are considered in this paper.

The Score Test

Let the criterion function under consideration be the log-likelihood, L(θ). The

Score test statistic, Ts, is given by

Ts(θ̃) = g′(θ̃)I−1(θ̃)g(θ̃). (3.4)

In equation (3.4), g(θ̃) is the gradient of L(θ) and I(θ̃) is a consistent estimate

of the information matrix of L(θ), evaluated at the restricted parameter vector,

θ̃.

DM remarked that bootstrap tests are ordinarily not exact, and that it is

normally possible to find an integer, l, so that the rejection probability for

the bootstrap test at a nominal level α differs from α by an amount that is
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O(n− l
2 ). Notably, the same order of accuracy can be realised if there is an

error that is Op(n
− l

2 ) in the evaluation of the bootstrap p-values.

The bootstrap data is generated using the restricted estimates θ̃ = [θ̃1
... 0].

By construction,
(
θ̃∗1 − θ̃1

)
= Op(n

− 1
2 ), where θ̃∗1 is the restricted estimate

from a bootstrap sample. Consequently, θ̃1 is a suitable starting point for

the quasi-Newton algorithm applied to the bootstrap model under the null

restriction. DM found that

θ̃∗1(i) − θ̃∗1 = Op

(
n− (i+1)

2

)
. (3.5)

In (3.5), θ̃∗1(i) is the parameter estimate from the restricted bootstrap model

after i iterations of the quasi-Newton routine. Sequential approximations to

the Score statistic are given by

Ts(θ̃∗(i)) = g′(θ̃∗(i))I−1(θ̃∗(i))g(θ̃
∗
(i)). (3.6)

The authors go on to show that

Ts(θ̃∗(i)) = Ts(θ̃∗) + n
1
2Op(θ̃

∗
(i) − θ̃∗). (3.7)

From (3.5) and (3.7), it is clear that the difference between Ts(θ̃∗(i)) and Ts(θ̃∗)

is on the order of n− i
2 . Assume the bootstrap p-values are in error at order

n− l
2 . Then, the number of steps, k, needed to achieve at least the same order

of accuracy as the bootstrap, should be chosen so that n− k
2 ≤ n− l

2 , that is,

so that k ≥ l. Therefore, for l = 3, we would need to take at least three

quasi-Newton steps. The approximate bootstrap procedure of DM for the

63



The k-Step Bootstrap In State Space Models

Score test is therefore:

1. Calculate Ts(θ̃) using the original data set.

2. Generate B bootstrap samples of size n using the bootstrap DGP

characterised by θ̃.

3. Choose the number of steps k ≥ l.

4. Initialise the system with θ̃∗1(0) = θ̃1. For each bootstrap sample perform

k steps of the quasi-Newton algorithm on the restricted model in order

to obtain the iterated estimates θ̃∗1(k).

5. Compute Ts(θ̃∗(k)) using equation (3.6).

The Likelihood Ratio Test

The likelihood ratio (LR) statistic, TLR, is defined as,

TLR(θ̂, θ̃) = 2
[
L(θ̂)− L(θ̃)

]
,

where L(θ̂) and L(θ̃) are the unrestricted and restricted log-likelihoods,

respectively. DM found that, if a quasi-Newton method is employed,

L(θ̂∗)− L(θ̂∗(i)) = Op(n
−i). (3.8)

Similarly,

L(θ̃∗)− L(θ̃∗(i)) = Op(n
−i). (3.9)

They demonstrate that k ≥ l
2
steps are required to guarantee that the error
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in the LR statistic is at most on the order of n− l
2 . Therefore, for l = 4, we

should choose k to be at least 2.

The algorithm for the approximate bootstrap LR test is:

1. Construct TLR using the initial data set.

2. Generate B bootstrap samples under the null hypothesis.

3. Determine the number of steps k ≥ l
2
.

4. For each bootstrap sample,

(a) Starting at θ̂∗(0) = θ̂, perform k quasi-Newton steps on the

unrestricted model to obtain θ̂∗(k).

(b) Beginning at θ̃∗1(0) = θ̃1, perform k quasi-Newton steps on the

restricted model to obtain θ̃∗1(k) and construct θ̃∗(k) = [θ̃∗1(k)
... 0].

5. Calculate TLR(θ̂∗(k), θ̃∗(k)) = 2
[
L(θ̂∗(k))− L(θ̃∗(k))

]
.

The Wald Test

The formula for the Wald statistic, Tw, is

Tw(θ̂) = (n
1
2 θ̂2)

′
V̂ −1(n

1
2 θ̂2). (3.10)

where V̂ is a consistent estimate of the asymptotic covariance matrix of n
1
2 θ̂2.

The approximation error was shown to be

Tw(θ̂∗(i))− Tw(θ̂∗) = n
1
2Op(θ̂

∗
(i) − θ̂∗).
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As in the case of the score test, k ≥ l steps are needed to ensure that the

error in Tw(θ̂∗(i)) is at most n− l
2 .

The procedure for the approximate bootstrap Wald test is:

1. Compute Tw(θ̂) from the primary data set.

2. Generate B bootstrap samples under the null hypothesis.

3. Choose the number of steps k ≥ l.

4. For each bootstrap sample, perform k quasi-Newton steps on the

unrestricted model, starting from θ̂∗(0) = θ̂.

5. Compute Tw(θ̂∗(k)) =
(
n

1
2 θ̂∗2(k)

)′ [
V̂ (θ̂∗2(k))

]−1 (
n

1
2 θ̂∗2(k)

)
.

If we know the order of the error that a bootstrap test will make a priori,

then determining k is straightforward and proceeds as previously described.

However, when we have no prior information, we take the most conservative

approach to its calculation. The rejection probability of a bootstrap test

should never, under normal circumstances, be in error by more than O(n−1)

(Davidson and MacKinnon, 1999). So, when we have no information regarding

the error in rejection probability, we use O(n−1) to derive k.

3.3 Constructing Test Statistics Using Kalman

Filter Output

We now discuss how to construct the three classical test statistics using

output from the Kalman filter. As in the previous section, we consider the

null hypothesis that θ2 = 0.
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Recall, from Chapter 1, the prediction error decomposition form of the

log-likelihood (1.11),

lt = −1

2
log2π − 1

2
log|Ft| −

1

2
ν ′tF

−1
t νt, (3.11)

L(θ) =
n∑
t=1

lt, (3.12)

where lt is the log-likelihood of observation t. The prediction error, νt, and

its covariance, Ft, are functions of the model parameters, θ.

The likelihood ratio statistic, TLR, can be constructed by evaluating L(θ)

under the null and alternative hypotheses,

TLR = 2[L(θ̂)− L(θ̃)]. (3.13)

The exact gradient can also be derived from the Kalman filter equations.3

Consider the partial derivative of lt with respect to θi. The (m× n) matrix

G(y, θ) has typical element

Gti(θ) =
∂lt
∂θi

= −1

2

[
tr

[
F−1
t

∂Ft
∂θi

] [
I − F−1

t νtν
−1
t

]]
−
(
∂νt
∂θi

)′

F−1
t νt, i = 1, . . . ,m. (3.14)

3Recursions for the gradient can be found in Harvey (1990).
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The (m× 1) gradient vector, g(θ), has typical element,

gi(θ) =
∂L

∂θi
= −1

2

∑
t

{
tr

[[
F−1
t

∂Ft
∂θi

] (
I − F−1

t νtν
−1
t

)]

+ 2

(
∂νt
∂θi

)′

F−1
t νt

}
, i = 1, . . . ,m, (3.15)

where each element of the gradient vector is the sum of the elements of one

of the rows of the matrix G(y, θ).

The outer product of the gradient (OPG) form of the Fisher information

is defined as

I(θ) = Eθ

[
G(θ)G

′
(θ)

]
, (3.16)

and we can estimate n−1I(θ̂) consistently by n−1G(θ̂)G
′
(θ̂). The OPG

estimator of the covariance matrix of
√
nθ̂ is,

V̂ arOPG(
√
nθ̂) =

(
nG(θ̂)G

′
(θ̂)

)−1

. (3.17)

Using (3.14) and (3.15), the Score statistic, Ts(θ̃), can therefore be entirely

constructed from Kalman filter output:

Ts(θ̃) = g′(θ̃)
[
G(θ̃)G

′
(θ̃)

]−1

g(θ̃).

Also, using (3.14), the Wald statistic can be expressed as

Tw(θ̂) = (
√
nθ̂2)

′
[
nG(θ̂2)G

′
(θ̂2)

]−1

(
√
nθ̂2).
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3.4 Simulations

3.4.1 Simulation I

In Simulation II of Chapter 2 we considered the model,

αt+1 =

 ψ1 1

0 0

αt +
 1

ψ2

 ηt, ηt ∼ N(0, 1) (3.18)

yt =

[
1 0

]
αt.

To approximate the distributions of the maximum likelihood estimators,

ψ̂1 and ψ̂2, we employed the bootstrap of Stoffer and Wall (1991), normal

asymptotic theory and the 1-step RSSM bootstrap. In addition, the “true”

small sample distributions of the parameter estimates were simulated using

Monte Carlo methods. In the current analysis, we compare the results of the

previous chapter to the ones we get from implementing the k-step bootstrap of

DM. We use k=2 and k=3 quasi-Newton steps in our approximate bootstraps.

The estimates are averaged over 1000 Monte Carlo rounds and the time taken

for the various bootstrap procedures is recorded. Optimisation is carried out

using the BFGS algorithm. B = 999 bootstrap iterations are used in the

study.

3.4.2 Simulation I: Results and Discussion

Simulation I contrasted the performances of the 2-step and 3-step bootstraps

with those of the RSSM bootstrap and the bootstrap of Stoffer and Wall

(1991). Table 3.1 presents the results.
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ψ1,true and ψ2,true were calculated from Monte Carlo simulations. One

thousand data sets were generated from model (3.18), using the true

parameters, ψ1 = 0.7 and ψ2 = 0.8. Each data set was then estimated by

maximum likelihood to provide {ψ̂1,i}1000i=1 and {ψ̂2,i}1000i=1 . In Table 3.1, the

values ψ1,true and ψ2,true are the arithmetic means of {ψ̂1,i}1000i=1 and {ψ̂2,i}1000i=1 ,

respectively. The estimates std(ψ1,true) and std(ψ2,true) are the standard

deviations of {ψ̂1,i}1000i=1 and {ψ̂2,i}1000i=1 , respectively. The means and standard

deviations of {ψ̂1,i}1000i=1 and {ψ̂2,i}1000i=1 represent the means and standard

deviations of the true sampling distributions of the maximum likelihood

estimators.

ψ̂1,ML and ψ̂2,ML are the maximum likelihood estimates of the model

in (3.18), while std(ψ̂1,ML) and std(ψ̂2,ML) are their respective asymptotic

standard errors.

When we executed the bootstrap of Stoffer and Wall (1991), we produced

B bootstrap samples. We obtained the maximum likelihood estimates, {ψ∗b
1 }

and {ψ∗b
2 }, for b = 1, . . . , B, of each sample. In Table 3.1, ψ1,stoffer wall and

ψ2,stoffer wall are the arithmetic means of {ψ∗b
1 } and {ψ∗b

2 }, for b = 1, . . . , B,

respectively, while std(ψ1,stoffer wall) and std(ψ2,stoffer wall) are the associated

standard deviations. These estimates approximate of the means and standard

deviations of the true sampling distributions of the maximum likelihood

estimators, ψ̂1 and ψ̂2.

The estimates based on the RSSM bootstrap were calculated in Simulation

II of the previous chapter and are reproduced in the Table 3.1. These 1-step

estimates of the means of the true distributions of the maximum likelihood

estimators are denoted by ψ1,RSSM and ψ2,RSSM . Their standard deviations
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are given by std(ψ1,RSSM) and std(ψ2,RSSM), respectively.

When we applied the approximate bootstrap of DM to the model in (3.18),

we first generated B bootstrap samples. For each of the B samples, we found

the estimates {ψ∗b
1,k=2} and {ψ∗b

2,k=2}, for b = 1, . . . , B, by implementing 2

steps of the BFGS quasi-Newton algorithm. In Table 3.1, ψ∗
1,k=2 and ψ∗

2,k=2

are the averages of {ψ∗b
1,k=2} and {ψ∗b

2,k=2}, for b = 1, . . . , B, respectively, while

std(ψ∗
1,k=2) and std(ψ∗

2,k=2) are the respective standard deviations. These are

the 2-step estimates of the means and standard deviations of the true small

sample distributions of the maximum likelihood estimators, ψ̂1 and ψ̂2. We

also calculated these estimates for k = 3 steps. They appear in Table 3.1 as

ψ∗
1,k=3, ψ

∗
2,k=3, std(ψ

∗
1,k=3) and std(ψ∗

2,k=3).

The entries are colour-coded for easy interpretation. Specifically, the

estimates of ψ1 obtained via the various methodologies are shaded in a

light blue colour, facilitating comparison across different techniques. The

corresponding standard errors for these estimates are shaded in a darker blue.

Similarly, the estimates of ψ2 are shaded in a light purple colour, while the

corresponding standard errors are shaded in a darker purple.

In Simulation II of the previous chapter, we noted that when n = 50,

the bootstrap of Stoffer and Wall (1991) performed slightly better than the

RSSM bootstrap. In particular, we found that |std(ψ1,true) - std(ψ1,stoffer wall)|

= 0.0137 while |std(ψ1,true) - std(ψ1,RSSM)| = 0.0171. When we examine

Table 3.1, we see that, for k=3, |std(ψ1,true) - std(ψ1,k=3)| = 0.0147, that

is, std(ψ1,k=3) is closer to std(ψ1,true) than is std(ψ1,RSSM). Conversely,

|std(ψ2,true) - std(ψ2,k=3)| = 0.0203, compared to a difference of 0.0181 for

|std(ψ2,true) - std(ψ2,RSSM)|. So, in the case of ψ2, the 3-step estimate is further
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away from the true value than is the RSSM estimate. Therefore, the findings

when k = 3 are ambiguous.4 The values of k were chosen to be in line with

the work of DM. However, we know that, as k increases, the k-step bootstrap

estimates will eventually converge to those of the full bootstrap of Stoffer

and Wall (1991) . Therefore, it is reasonable to expect that if we continue to

increase k, we will eventually reach a point where the approximate bootstrap

definitively outperforms the RSSM bootstrap. In this model, that scenario

occurs when k = 6. Specifically, for k = 6, the standard errors of ψ1 and ψ2

are 0.1025 and 0.919, respectively, values which are closer to the true standard

errors than are the standard errors calculated from the RSSM bootstrap.

It is worth noting that the k-step bootstrap approximations to

the distributions of the maximum likelihood estimators outmatched the

corresponding asymptotic approximations based on large-sample results. The

time required to complete the 3-step bootstrap differed significantly from

that of the bootstrap proposed by Stoffer and Wall (1991). On average, the

3-step bootstrap was 25% faster than the full bootstrap. Convergence of the

optimisation algorithm required an average of eight steps in this relatively

simple model. However, when dealing with larger and more complex state

space models, employing the approximate bootstrap method instead of Stoffer

and Wall’s approach could result in substantial time savings.

4The analysis for k = 2 produces similar results.
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3.4.3 Simulation II

The tests considered in this section concern the transition matrix, T , in the

state equation of the following state space model:

yt = Zαt + d+ εt, εt ∼ N(0, H) (3.19)

(αt+1 − a) = T (αt − a) + ηt, ηt ∼ N(0, Q).

Equation (3.19) is simulated with T = 0, Z = 2, d = -0.5, a = 0.85, H =

0.13, and Q = 0.15. For simplicity we assume that Z, H and Q are known

and we estimate d, T , and a. The aim is to test the hypothesis,

H0 :T = 0

HA :T ̸= 0.

θ = [d, a
... T ] is the vector of parameters to be estimated. We first employ

maximum likelihood to calculate the vector of unrestricted estimates, θ̂ =

[d̂, â
... T̂ ]. Next, we impose H0 and find the restricted estimates, θ̃ = [d̃, ã

... 0].

Optimisation is undertaken using the BFGS algorithm. After estimation, the

Kalman filter is applied to each of the fitted models. The LR, Wald and Score

statistics are formulated from the output of the filter as outlined in Section

3.3.

Rejection frequencies at a nominal level of 0.05 are calculated for the

asymptotic tests, as well as for their bootstrap and approximate bootstrap

analogues. Namely, we employ the bootstrap of Stoffer and Wall (1991) and

the k-step bootstrap of DM with k = 3,4,5 and 8 steps and we compute
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the bootstrap LR, Wald and Score statistics. The experiments are carried

out using 399 bootstrap iterations and 10 000 Monte Carlo replications.

Additionally, for select sample sizes, the absolute difference is calculated

between the p-value associated with the Stoffer and Wall (1991) method

(p̂∗) and the p-value calculated from the k-step bootstrap (p̌∗).

3.4.4 Simulation II: Results and Discussion

The primary purpose of simulation II was to calculate the rejection

probabilities for the classical LR, Wald and Score tests, as well as for their

bootstrap equivalents. We were particularly interested in the adequacy of

the k-step bootstraps relative to that of the full bootstrap of Stoffer and

Wall (1991). Figures 3.1, 3.2 and 3.3 depict the rejection frequencies for the

asymptotic and bootstrap tests.

(i) The LR test:

As shown in Figure 3.1, the classical LR test markedly over-rejects when

compared to the bootstrap tests. This effect is much more pronounced in

small samples (n < 50). Overall, as the number of steps, k, increases, the

performance of the k-step bootstrap becomes closer to that of the Stoffer

and Wall bootstrap. Although it outperforms the asymptotic test, the 3-step

bootstrap still functions relatively poorly when compared to the other

approximate bootstraps. By n = 90, all of the approximate bootstraps, with

the exception of k = 3, have almost achieved the nominal rejection rate of

5 percent. While the rejection probability of the standard LR test clearly
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improves as the series gets longer, this progress occurs considerably more

slowly than for most of the bootstrap tests. At n = 90 the LR test is still

rejecting at around 9 percent, about 3 percentage points higher than most of

the bootstrap tests.

(ii) The Wald test:

From the graph in Figure 3.2, we see that the outcome for the Wald test

is similar to that of the LR test in that it over-rejects considerably in small

samples. The performance of the associated bootstrap tests surpasses that of

the asymptotic test for all sample sizes under consideration. Not surprisingly,

in the case of the approximate bootstraps, the results improve as k increases.

Much like in the LR scenario, the rejection probability of the classical Wald

test approaches the nominal rejection frequency more slowly than those of

the corresponding bootstrap tests. By n = 90, all of the bootstrap tests are

rejecting at rates close to 0.05, in contrast to a rejection frequency of almost

0.20 exhibited by the standard Wald test.

(iii) The Score test:

Looking at Figure 3.3, what stands out is that, in contrast to the LR and

Wald tests, the Score test under-rejects in small samples. However, as in the

previous two cases, the error in rejection probability improves as the sample

size grows. The bootstrap tests outperformed the asymptotic test but the

rejection frequencies were, in comparison with the LR and Wald simulations,

surprisingly erratic. We know, however, that the Score test is very sensitive
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to the way in which the Fisher information is estimated5. It is plausible

that alternative formulations of the Score statistic which are not based on

the OPG estimate of the Fisher information could yield improved results.

Also, it is possible that additional bootstrap and/or Monte Carlo iterations

could potentially achieve a smoother series. However, limitations imposed by

technological constraints prevented the exploration of increased replications.

We calculated the absolute differences between the p-values for the full

bootstrap of Stoffer and Wall (p̂∗) and p-values from the k-step bootstrap

(p̌∗). Our findings exhibited some similarities with those of DM. In their study,

they utilised a Tobit model to test the null hypothesis that a specific slope

coefficient was zero against the alternative hypothesis that it was nonzero.

They applied their k-step bootstrap to the LR, Score, and Wald statistics,

among others, and determined that k=2 steps were sufficient to replace a full

bootstrap in the case of the LR tests, while two, three, or four steps were

needed for the Score and Wald tests.

Table 3.2 displays the average absolute differences between p̂∗ and p̌∗.

According to DM, an average absolute difference of around 0.001 can be

considered negligibly small. In our case, it can be seen from the table

that the Score and LR tests necessitate a minimum of three or four steps

of the approximate bootstrap to replace the full bootstrap. However, the

approximate bootstrap did not perform as well for the Wald statistic and

eight steps were needed in this instance.

It is worth noting that in the Tobit model examined by DM, when

performing the full bootstrap, the maximum number of steps required for the

5See Godfrey (1988).
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optimisation algorithm to converge was, on average, 4.06 for the unrestricted

estimates and 3.87 for restricted estimates. Therefore, taking k = 2, k = 3, or

k = 4 steps resulted in only modest computational savings. In contrast, for

our state space model, the maximum number of steps needed for convergence

in the case of the unrestricted estimates was 12.03, while for the restricted

estimates, it was 10.37.

3.5 Empirical Study

Newbold and Bos (1985) investigated the relationship between the 3-month

treasury bill rate (Rt) and quarterly inflation (It) in the United States. They

utilised maximum likelihood to estimate the stochastic parameter regression

model,

It = α + βtRt + vt

(βt − β) = φ(βt−1 − β) + wt, (3.20)

where vt ∼ iid(0, σ2
v) and wt ∼ iid(0, σ2

w). Stoffer and Wall (1991) reproduced

the work of Newbold and Bos (1985) for the period 1953/1 to 1965/2.6

However, in addition to estimating (3.20) by maximum likelihood, they also

used their methodology to calculate bootstrap sample means and bootstrap

sample standard deviations, which they used to approximate the means and

standard deviations of the sampling distributions of the maximum likelihood

estimators.

619xx/y denotes year 19xx, quarter y.
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Newbold and Bos (1985) went on to test the hypothesis of a random

coefficient model against the hypothesis of a stationary stochastic parameter

regression model by applying the LR test, that is, for model (3.20) they tested,

H0 : φ = 0 (3.21)

H1 : φ ̸= 0. (3.22)

They considered 6 subperiods of varying lengths between 1953/1 and 1980/2

and they tested the hypothesis for each period. Significance levels were set at

5%.

The goal of our experiment is to continue the investigation of Newbold

and Bos (1985) by bootstrapping the LR statistics, repeating the hypothesis

tests and noting whether we arrive at the same conclusions as they did. First,

we perform maximum likelihood estimation of (3.20). We then apply the

bootstrap of Stoffer and Wall (1991) and determine the means and standard

deviations of the bootstrap distributions; we use these results to approximate

the means and standard errors of the distributions of the ML estimators.

These two steps are undertaken to ensure that we can reproduce the results

of those authors. Next, we evaluate the bootstrap LR statistics using the

methodology of Stoffer and Wall (1991), and find the corresponding p-values.

We then go on to calculate the approximate bootstrap LR statistics and

their related p-values by employing the k-step bootstrap of DM; we utilise

k = 3, k = 4, k = 6, k = 8 and k = 10 steps. Our analysis uses 999 bootstrap

replications and a p-value less than 0.05 is considered significant.

78



The k-Step Bootstrap In State Space Models

3.5.1 Empirical Study: Results and Discussion

We replicated the ML estimation of (3.20) that was first performed by Newbold

and Bos (1985) and later by Stoffer andWall (1991). The time series considered

covered the period 1953/1 to 1965/2. All three sets of results appear in Table

3.3 and are notably similar. Differences in the numerical optimisation routines

employed can account for the minor discrepancies among the outcomes.7

The bootstrap estimates for (3.20) are presented in Table 3.4. Our

findings are consistent with those of Stoffer and Wall (1991). The asymptotic

standard errors are biased downwards in three of the five parameters under

consideration when compared to the corresponding bootstrap values. In

particular, for the estimates of the transition matrix, φ, and the standard

deviations of the noise processes, σw and σv, the asymptotic standard errors

are 60% to 70% the size of the bootstrap standard errors. Additionally, the

maximum likelihood estimate of φ is noticeably higher (0.8414) than our

bootstrap estimate (0.6034) and the bootstrap estimate of Stoffer and Wall

(0.5897). Regarding the estimates of the constants α and β, the asymptotic

and bootstrap standard errors are comparable. These results highlight the

widely-known fact that while asymptotic approximations are frequently used

in statistical inference due to their simplicity, they may not always accurately

represent the behaviour of estimators in finite samples. In this instance, the

maximum likelihood estimation was performed using 50 data points.

Table 3.5 presents the LR statistics from Newbold and Bos (1985), along

with their related p-values. Our bootstrap p-values, in conjunction with the

7In Table 3.3, σw and σv are the square roots of the corresponding variances calculated
by Newbold and Bos (1985)
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k-step bootstrap p-values, are also reported. The notation p∗k represents the

p-value associated with the k-step bootstrap. We see from the column headed

pVal, which contains the asymptotic p-values, that the LR test does not reject

the null hypothesis for the first period ( 1953/1 to 1965/2) but rejects it from

there onward. In comparison, the results in the column labelled p∗, which

contains the full bootstrap p-values, indicate that the bootstrap LR test does

not reject the null for the first two periods under consideration but rejects

it thereafter. So, for the period 1953/1 to 1968/2, inferences based on the

asymptotic and bootstrap p-values diverge. This result seems to support the

literature which indicates that the finite sample distribution of the LR and

other test statistics may differ somewhat from the chi-squared distribution

that is usually employed 8. The bootstrap distribution of a statistic is usually

closer to its true small sample distribution than is the statistic’s asymptotic

distribution (Stoffer and Wall, 2004). This makes bootstrap inference in small

samples more reliable than inference based on asymptotic theory.

In Table 3.5, columns 5 through 9 indicate that the k-step and standard

bootstrap LR tests give rise to the same conclusions. For the time periods

1953/1 to 1965/2 and 1953/1 to 1968/2, when k =4, p∗4 differs from p∗ by

a maximum of 0.024. This suggests that when n = 50 and n = 62, taking

only 4 steps may be inadequate. At least six steps seem to be required for

satisfactory results; when k = 6, for the aforementioned time periods, p∗6

diverges from p∗ by at most 0.004. After 10 steps, the approximate bootstrap

p-values deviate from the conventional ones by no more than 0.002, an amount

which is, acceptably small. From the period 1953/1 to 1974/2 onward, that

8See Mittelhammer et al. (2000) for details.
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is, for longer series, it is sufficient to take 3 steps. From column (3) we see

that the average number of steps required for the convergence of the BFGS

algorithm varies from 20 to 25 as the sample length increases from n = 50 to

n = 110. So, even if the approximate bootstrap is implemented with k =10,

it is still possible to cut the number of steps taken during optimisation by at

least fifty percent.

.

3.6 Concluding Remarks

This study set out to evaluate the effectiveness of the approximate bootstrap

when it is applied to models in state space form. In addition, the paper

argued that it is more expedient to work within the state space framework

since the Kalman filter enables likelihood function evaluation via prediction

error decomposition, facilitates estimation of any unknown parameters and

furnishes components which allow for statistical testing. The filter update and

prediction equations can be used to derive recursions for the exact gradient

and consequently provide an estimate for the OPG form of the covariance

matrix of parameter estimates. With all of this information, we are able to

derive test statistics based solely on the output of the Kalman filter.

The empirical findings of this study suggest that in some models, when

sample sizes are small, the approximate bootstrap with k = 3 steps performs

similarly to the RSSM bootstrap. Furthermore, regardless of the relatively

poor performance of some of the bootstrap tests, the asymptotic results

were even less satisfactory. Despite the limited number of models examined,

81



The k-Step Bootstrap In State Space Models

this observation can have significant practical implications. In the context

of bootstrapping in the state space setting, implementing a small number

of quasi-Newton steps can substantially reduce the computational cost

associated with repeated nonlinear optimisation. In addition, the results

are likely to be superior to those obtained via large-sample asymptotic

approximations, particularly when working with small samples.
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3.7 Tables and Figures

Table 3.1: Comparison of Asymptotic and Bootstrap Methods

n=50 n=100 n=150 n=200
ψ1,true 0.6698 0.6856 0.6928 0.6944

std(ψ1,true) 0.1168 0.0757 0.0620 0.0519
ψ2,true 0.8184 0.8126 0.8051 0.8040

std(ψ2,true) 0.1097 0.0706 0.0543 0.0459

ψ̂1,ML 0.7726 0.7260 0.6316 0.6888

std(ψ̂1,ML) 0.0546 0.0517 0.0743 0.0666

ψ̂2,ML 0.8901 0.8116 0.7733 0.7348

std(ψ̂2,ML) 0.0476 0.0526 0.0587 0.0627

ψ1, stoffer wall 0.7442 0.7076 0.6207 0.6828
std(ψ1, stoffer wall) 0.1031 0.0781 0.0664 0.0559
ψ2, stoffer wall 0.9022 0.8220 0.7791 0.7373

std(ψ2, stoffer wall) 0.0956 0.0702 0.0584 0.0531
timestoffer wall(hrs) 41.77 64.57 91.67 116.24

ψ1,RSSM 0.7512 0.7113 0.6231 0.6837
std(ψ1,RSSM) 0.0997 0.0753 0.0624 0.0549
ψ2,RSSM 0.8951 0.8170 0.7761 0.7360

std(ψ2,RSSM) 0.0916 0.0734 0.0600 0.0530
timeRSSM(hrs) 22.38 27.47 39.64 53.12

ψ∗
1,k=2 0.7458 0.7050 0.6214 0.6831

std(ψ∗
1,k=2) 0.1047 0.0747 0.0656 0.0554

ψ∗
2,k=2 0.9014 0.7143 0.7791 0.7372

std(ψ∗
2,k=2) 0.0891 0.0737 0.0574 0.0524

timek=2(hrs) 26.64 34.50 50.74 65.97

ψ∗
1,k=3 0.7452 0.7085 0.6208 0.6829

std(ψ∗
1,k=3) 0.1021 0.0778 0.0662 0.0558

ψ∗
2,k=3 0.9018 0.8219 0.7791 0.7373

std(ψ∗
2,k=3) 0.0894 0.0704 0.0584 0.0531

timek=3(hrs) 32.26 47.84 65.45 88.19
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Table 3.2: Average Absolute Differences Between p̂∗ and p̌∗

n k LR Wald Score
30 3 0.0165 0.0679 0.0017

4 0.0026 0.0418 0.0005
5 0.0011 0.0145 0.0001
8 0.0003 0.0022 0.0001

60 3 0.0315 0.0202 0.0003
4 0.0004 0.0017 0.0002
5 0.0011 0.0101 0.0001
8 0.0004 0.0004 0.0001

90 3 0.0233 0.0135 0.0003
4 0.0013 0.0009 0.0007
5 0.0009 0.0078 0.0001
8 0.0009 0.001 0.0000

Table 3.3: Maximum Likelihood Estimates of Stochastic Parameter
Regression Model (Equation 3.20), 1953/1 to 1965/2

Parameter Simulation III Stoffer and Wall Newbold and Bos

Estimate s.e.a Estimate s.e. Estimate s.e.

φ .8414 .2005 .8414 .1997 .8414 .2122

β .8584 .2784 .8584 .2776 .8584 .2591

α -.7714 .6466 -.7714 .6449 -.7715 .6033

σw .1269 .0923 .1269 .0924 .1268 NA

σv 1.1306 .1424 1.1306 .1419 1.1306 NA

aIn the table, s.e. represents the standard error.
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Chapter 4

Bootstrapping Multilevel Models: A

State Space Approach

4.1 Introduction

In the time series literature, casting models in state space form and employing

the Kalman filter is a well-known method of estimation. However, the

effectiveness of the state space approach has received little attention within

the context of clustered data. Multilevel models (MLMs) have applications

across a wide range of disciplines. They possess a hierarchical structure and

differ from standard regression models in that they allow for different error

terms at each tier in the hierarchy. MLMs are generally estimated either by

Full Information Maximum Likelihood (FIML) or by Restricted Maximum

Likelihood (REML). Since FIML estimation does not take into account

the loss in degrees of freedom which results from estimating the regression

parameters, estimates of the variance components in the covariance matrix
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of the vector of random effects tend to be biased downward. Some studies

suggest that 2-tiered models with fewer than 50 clusters are particularly

susceptible to these small-sample biases (McNeish, 2017). Conversely, in

the REML approach, estimates of the variance components are calculated

after the fixed effects have been removed and, therefore, suffer from less bias

(Patterson and Thompson, 1971). Regardless, FIML estimation is still widely

used since chi-squared difference tests can be employed to compare nested

models with differing numbers of regression or variance parameters. With

REML estimation, only differences in the variance entries can be compared.

In this chapter, FIML estimation will be the maximum likelihood approach

that is primarily employed; when REML estimation is used, it will be stated

explicitly.

A few authors have explored the use of bootstrap methods in multilevel

models. As the hierarchical structure of the data must be considered,

resampling procedures for these models require modifications to the classic

bootstrap techniques. Van der Leeden et al. (2008) and Goldstein (2011)

discussed the extension of the parametric bootstrap and the residual bootstrap

for use in multilevel analysis. Additionally, Modugno and Giannerini (2015)

proposed a method for implementing the wild bootstrap in multilevel data

sets. Our research showcases how employing the output of the Kalman filter

can assist in facilitating the parametric and residual bootstrap procedures

once the MLM has been converted into state space form.

State space models are powerful devices that allow for a multitude of

operations within a unified framework. Gu et al. (2014) argued that estimating

multilevel models in their state space configuration can offer computational
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efficiency compared to alternative methods. Traditional FIML and REML

approaches often require complex matrix operations at the cluster level,

making the estimation process time-consuming. However, this is not the case

when using the Kalman filter to perform optimisation. Despite these potential

benefits, state space modelling for MLMs has not been widely embraced. This

research aims to demonstrate the practicality of employing the state space

formulation in hierarchical models.

The chapter proceeds as follows: Section 2 reviews the implementation of

the bootstrap in MLMs; Section 3 illustrates how MLMs can be converted

into state space format; Section 4 describes how Kalman filter output can be

used in bootstrapping routines; a simulation is carried out in Section 5; an

empirical study is undertaken in Section 6 and Section 7 concludes.

4.2 The Bootstrap in Multilevel Models

When applying the bootstrap in MLMs, it is necessary to adapt traditional

procedures to account for the hierarchical structure. Following, we provide a

comprehensive review of the residual and parametric bootstraps within the

multilevel setting.

Consider the 2-level model,

yij = β0j + β1jvij + eij (4.1)

β0j = γ00 + γ01w1j + η0j (4.2)

β1j = γ10 + γ11w1j + η1j, (4.3)
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for i = 1, . . . , N , j = 1, . . . , J , eij ∼ N(0, σ2
e) and ηj =

 η0j

η1j

 ∼ N(0,Ψ).

The subscript j indicates a level-2 unit, that is, a cluster or group, and i

represents a level-1 unit, namely one of the individual observations which are

categorised into clusters. The model consists of J clusters, each containing nj

elements. There are N individual observations in total. yij is the dependent

variable corresponding to the ith element within the jth group. vij and w1j

are level-1 and level-2 regressors, respectively. The random effects, ηj, and

the level-1 errors, eij, are independent.

Variables at any given level are uncorrelated with error terms at the

same level. Additionally, variables at a particular level are uncorrelated with

the error terms on other levels. For example, the level-1 predictors, vij, are

uncorrelated with the random effects, ηj, that is, E(vijηj) = 0.

Substituting (4.2) and (4.3) into (4.1) gives,

yij = γ00 + γ01w1j + η0j + γ10vij + γ11w1jvij + η1jvij + eij (4.4)

=

[
1 w1j vij w1jvij

]


γ00

γ01

γ10

γ11


+

[
1 vij

] η0j

η1j

+ eij. (4.5)

Expressing (4.5) in the standard mixed model format produces,

yij = xijβ + zijηj + eij, (4.6)
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where xij =

[
1 w1j vij w1jvij

]
, β =



γ00

γ01

γ10

γ11


and zij =

[
1 vij

]
. xij is

associated with the vector of fixed coefficients, β, and zij is connected to the

random effects, ηj. We can also express the model in matrix form for each

cluster, j:

Yj = Xjβ + Zjηj + ej. (4.7)

Here ej ∼ N(0, σ2
eInj

), where Inj
is the nj × nj identity matrix and ηj ∼

N(0,Ψ). Also, Yj, Xj and Zj are matrices formed from vertically stacking the

rows of yij, xij and zij, for i = 1, . . . , nj. Define,

Vj = V ar(Yj|Xjβ) = ZjΨZ
′
j + σ2

eInj
. (4.8)

Multilevel models can be estimated by full information maximum

likelihood. If we assume that the residuals follow normal distributions, we

can obtain the FIML estimates by maximising the log-likelihood function,

L = −
∑
j

[
nj
2
log(2π) +

1

2
log |Vj|+

1

2
(Yj −Xjβ)

′V −1
j (Yj −Xjβ)

]
, (4.9)

with respect to all model parameters. Details of this method can be found

in Van der Leeden et al. (1997). When the data is normally distributed and

there are no missing observations, iterative generalised least squares (IGLS)

and FIML estimation produce identical results.

MLMs are essentially extensions of random effects panel data models to
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cases where there can be any number of levels in the data hierarchy (Rice et al.,

2002). This enables the application of the methods discussed herein to random

effects panels. It is worth noting, however, that these techniques are not

suitable for fixed effects panels due to the correlation of the level-1 regressors

with the random effects; this violates the assumption of uncorrelatedness

discussed earlier in this chapter.

4.2.1 The Residual Bootstrap

The residual bootstrap for MLMs was introduced into the literature by

Carpenter et al. (2003). There are no distributional assumptions on the error

terms but the homogeneity of variances across groups is assumed.

In hierarchical models, both the level-1 and level-2 residuals can be biased.

This means that empirical estimates of the variance, calculated from the raw

residuals, do not line up with those estimated via full information maximum

likelihood. To account for this, Carpenter et al. (2003) centres the residuals

and multiplies them by the ratio of their estimated and empirical covariances.

This adjustment results in estimates of the variance parameters that are

numerically identical to the FIML estimates.

Consider the model described in equations (4.1) to (4.3). The methodology

for transforming the level-2 residuals is as follows.

1. Use FIML estimation to find Ψ̂, V̂j and β̂ and calculate the level-2

residuals, η̂j, j = 1, . . . , J :1

η̂j = Ψ̂Z
′

jV̂
−1
j (Yj −Xjβ̂), ∀j. (4.10)

1See Jiang (1997) for the derivation of the formula for η̂j .
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2. Centre the residuals: η̃j = η̂j − η̄j, where η̄j is the arithmetic mean of

η̂j.

3. Assume that each ηj is of dimension (q × 1). Create a J × q matrix,

Υ̂ , from the J sets of centred residuals and calculate the empirical

covariance matrix, S = Υ̂
′
Υ̂
J
.

4. Let Ψ̂ be the FIML estimate of the covariance matrix of ηj, j = 1, . . . J .

5. Find a transformation of the form Υ̂ † = Υ̂A such that Υ̂ †′ Υ̂ †

J
= A

′
Υ̂

′
Υ̂A

J
=

A
′
SA = Ψ̂. In essence, we want to rescale the residuals so that the

transformed residuals have an empirical variance that is equal to the

variance estimate obtained via FIML estimation. To construct A, we

make use of the Cholesky decompositions of S and Ψ̂:

S = LSL
′

S

Ψ̂ = LΨ̂L
′

Ψ̂
,

where LS and LΨ̂ are lower triangular matrices. We note that

LΨ̂L
−1
S Υ̂

′
Υ̂ (LΨ̂L

−1
S )

′

J
= LΨ̂L

−1
S SL−1′

S L
′

Ψ̂
= LΨ̂L

′

Ψ̂
= Ψ̂.

Hence we can choose A = (LΨ̂L
−1
S )

′
.

6. Construct Υ̂ † = Υ̂A, the rows of which are the J sets of centred, rescaled

level-2 residuals,
{
η̂†j

}J
j=1

.

An analogous procedure can be implemented for the level-1 residuals, êij.

Note that êij = yij−xijβ̂−zij η̂j. The vector {êij}Ni=1 can then be centred and
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rescaled by the factor A = σ̂e
sd(êij)

where σ̂e is the estimated standard error

and sd(êij) is the empirical standard deviation. So,
{
ê†ij

}N
i=1

=
{
êijA

}N
i=1

.

The bootstrap proceeds as follows:

1. Estimate the model in equations (4.1) to (4.3) and find
{
β̂, Ψ̂, σ̂2

e

}
.

2. Resample N times, with replacement, from
{
ê†ij

}N
i=1

to form
{
e∗ij

}N
i=1

,

the bootstrap sample of level-1 residuals.

3. Resample J times, with replacement, from the rows of Υ̂ † to form the

bootstrap sample of level-2 residuals,
{
η∗j
}J
j=1

.

4. Generate the bootstrap data set y∗ij = xijβ̂ + zijη
∗
j + e∗ij, ∀i, j and use

it to obtain bootstrap analogues, {β∗,Ψ∗, σ2∗
e }, of the FIML estimates

in Step 1.

5. Repeat steps 2 to 4 B times.

6. The estimates, {β∗,Ψ∗, σ2∗
e }Bb=1, can be used to provide approximations

for various measures such as bias, standard errors and confidence

intervals.

4.2.2 The Parametric Bootstrap

Again, consider the model outlined in equations (4.1) to (4.3). The parametric

bootstrap requires that both the model and the distributions of the error terms

be correct. The bootstrap resamples are generated as follows:

1. Estimate the model to find
{
β̂, Ψ̂, σ̂2

e

}
.
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2. Generate N level-1 bootstrap errors, e∗ij, by drawing, with replacement,

from the distribution, f̂e ∼ N(0, σ̂2
e).

3. Generate J level-2 bootstrap errors, η∗j , by drawing, with replacement,

from the distribution, f̂η ∼ N(0, Ψ̂).

4. Construct the bootstrap sample y∗ij = xijβ̂ + zijη
∗
j + e∗ij,∀i, j, and

estimate it to obtain {β∗,Ψ∗, σ2∗
e }, the bootstrap counterparts of the

FIML estimates in Step 1.

5. Repeat steps 2 to 4 B times.

6. The estimates, {β∗,Ψ∗, σ2∗
e }Bb=1, can now be used for statistical inference.

4.3 State Space Models

4.3.1 Kalman Filter Equations for Multilevel Models

When dealing with MLMs in state space form, a second index, j, must be

added to the state and measurement equations to account for the different

clusters. The general state space format for handling hierarchical models is, 2

yij = Zijαij +Bijuij + eij ∀i, j (4.11)

αij = Tijαi−1,j + Cijuij + ξij. ∀i, j (4.12)

2In previous chapters, we employed a state space model which is mathematically
equivalent to the one presented here. The reason for adopting this particular format was
to align with the work of Gu et al. (2014), which served as a key reference for this paper.
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where eij ∼ N(0, Hij) and ξij ∼ N(0, Qij).
3 Also,

1. The initial state vector for each cluster j, α0j, is distributed such that

E(α0j) = a0|0,j and Var(α0j) = P0|0,j.

2. The error terms eij and ξij are uncorrelated with each other, i.e,

E(eijξ
′
sk) = 0,∀i, s and ∀j, k.

3. The error terms eij and ξij are uncorrelated with the initial state, so

E(eijα
′
0j) = 0 and E(ξijα

′
0j) = 0,∀i, j.

Likewise, another index is included in the Kalman Filter equations:

vij = yij − Zijai|i−1,j −Bijuij (4.13)

Fij = ZijPi|i−1,jZ
′

ij +Hij (4.14)

ai|i−1,j = Tijai−1,j + Cijuij

Pi|i−1,j = TijPi−1,jT
′
ij +Qij

 = prediction equations (4.15)

ai|i,j = ai|i−1,j + Pi|i−1,jZ
′
ijF

−1
ij vij

Pi|i,j = Pi|i−1,j − Pi|i−1,jZ
′
ijF

−1
ij ZijPi|i−1,j

 = updating equations.4 (4.16)

3The exact relationship between the quantities that appear in (4.11) and (4.12) and the
quantities that appear in the general MLM in (4.1) are given in subsection 4.3.3.

4A word on notation: Generally, with two subscripts, we use kij to refer to the i
th element

in the jth block. However, when the subscripts are more complex, as in the case of ki−1,j ,
we use a comma between the two subscripts for clarity. Also, for improved readability,
terms of the form Xi−1|i−1,j will be expressed as Xi−1,j .
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4.3.2 Parameter Estimation

For each cluster, j, the Kalman filter is initialised with the mean and variance

of the initial state vector, a0|0,j and P0|0,j, respectively
5, and then executed.

The output of the filter is used to construct the prediction error decomposition

(p.e.d) form of the log-likelihood. In MLMs, this is obtained by summing the

individual log-likelihoods over the J clusters,

Lmlm(θ) =
J∑
j=1

nj∑
i=1

[
−nj

2
log2π − 1

2

nj∑
i=1

{
log|Fij(θ)|+ v

′

ij(θ)F
−1
ij (θ)vij(θ)

}]
.

(4.17)

This function can then be maximised using the preferred optimisation

procedure. Recall that nj represents the number of elements in each cluster

j and that N =
∑J

j=1 nj is the total number of elements in the model.

4.3.3 Casting Multilevel Models In State Space Form

Consider the following random intercept/random slope model,

yij = β0j + β1jxij + eij (4.18)

β0j = γ00 + γ01w1j + η0j

β1j = γ10 + γ11w1j + η1j, ∀i, j,

where eij ∼ N(0, σ2
e) and ηj =

 η0j

η1j

 ∼ N


 0

0

 ,
 τ00 τ01

τ01 τ11


.

5See Durbin and Koopman (2012) for details.
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Substitute β0j and β1j into yij to get,

yij = [γ00 + γ01w1j + γ10xij + γ11w1jxij] + [η0j + η1jxij] + eij (4.19)

Separate the right hand side of (4.19) into the fixed and random effects, along

with their coefficient matrices.

yij =

[
γ00 γ01 γ10 γ11

]


1

w1j

xij

w1jxij


+

[
η0j η1j

] 1

xij

 (4.20)

Now, rearrange the terms in (4.20) to match the format of the measurement

equation, (4.11). That is,

yij =

[
1 xij

] η0j

η1j

+

[
γ00 γ01 γ10 γ11

]


1

w1j

xij

w1jxij


+ eij. (4.21)

Since the random effects,

 η0j

η1j

, do not change within a given group j, the

state equation (4.12) is given by,

 η0j

η1j

 =

 1 0

0 1


 η0j

η1j

 (4.22)

101



Bootstrapping Multilevel Models: A State Space Approach

Referring to equations (4.11) and (4.12), the matrices are: Zij =

[
1 xij

]
,

αij =

 η0j

η1j

, Bij =

[
γ00 γ01 γ10 γ11

]
, uij =



1

w1j

xij

w1jxij


, Tij =

 1 0

0 1

, Cij =
 0 0 0 0

0 0 0 0

, Qij =

 0 0

0 0

 and Hij = σ2
e .

Given that the Kalman filter is initialised using the mean and variance of

the initial state vectors, we start the recursion with, a0|0,j =

 0

0

 and

P0|0,j =

 τ00 τ01

τ01 τ11

 ,∀j.
4.3.4 Example 1

Consider the random intercept/random slope model,

yij = β0j + β1jxij + ϵij (4.23)

β0j = γ0 + η0j

β1j = γ10 + γ11w1j + η1j.

Here, i = 1, . . . , N , j = 1, . . . , J , ϵij ∼ N(0, σ2
ϵ ) and

 η0j

η1j

 ∼
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N


 0

0

 ,
 τ00 τ01

τ01 τ11


. Substituting β0j and β1j into yij gives,

yij = (γ0 + η0j) + (γ10 + γ11w1j + η1j)xij + ϵij. (4.24)

Expressing (4.24) in state space form yields the following:

yij =

[
1 xij

] η0j

η1j

+

[
γ0 γ10 γ11

]
1

xij

w1jxij

+ ϵij (4.25)

 η0j

η1j

 =

 1 0

0 1


 η0j

η1j

 (4.26)

So, Zij =

[
1 xij

]
, αij =

 η0j

η1j

 , Bij =

[
γ0 γ10 γ11

]
, uij =


1

xij

w1jxij

 , Tij =

 1 0

0 1

 , Cij =

 0 0 0

0 0 0

 , Qij =

 0 0

0 0

 , eij =

ϵij, Hij = σ2
ϵ , a0|0,j =

 0

0

 and P0|0,j =

 τ00 τ01

τ01 τ11

.
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4.4 Bootstrapping MLMs in State Space Form

4.4.1 Residual Bootstrap

Consider the MLM in equation (4.18). Let θ = [σ2
e , γ0, γ10, γ11, τ00, τ01, τ11]

be the vector of parameters to be estimated. The steps for performing the

residual bootstrap in the state space framework are outlined below:

1. Cast the MLM in state space form and initialise the Kalman filter as

illustrated in the previous section.

2. Use an optimisation algorithm to maximise the log-likelihood (4.17)

and find θ̂ = arg maxθLmlm(θ). Run the Kalman filter with θ = θ̂.

3. Obtain the level-2 residuals, {η̂j}Jj=1. These can conveniently be

procured from the Kalman filter output. In the previous section we

saw that the random effects are modelled as the random state vector in

the Kalman filter equations. Recall that there are nj elements in each of

the J blocks. The estimate of the random effect (η̂j) for each block j is

the filtered state estimate, anj |nj ,j. Specifically, the entries in each block

are numbered from 1 to nj, for j = 1, . . . , J . The random effect for block

j is estimated at the terminal element in that block, nj, because that

estimate is based on all of the data points in the block. For example,

assume that the first cluster has 50 elements, i.e, j = 1 and n1 = 50. The

estimate of the associated random effect, η̂1, is given by an1|n1,1 = a50|50,1.

Figure 4.1 demonstrates how the filtered state estimates (shown in bold)

for each block are collected to form the vector of level-2 residuals. Notice
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that these values are automatically produced by the updating equations

(4.16) so no additional calculations are required.

4. Rescale the level-2 residuals acquired in step 3 as described in subsection

(4.2.1) to find
{
η̂†j

}J
j=1

.

5. Recover the level-1 residuals, êij = yij −Zij η̂j − B̂ijuj, ∀i, j, and rescale

them as demonstrated in subsection (4.2.1) to produce
{
ê†ij

}N
i=1

6. Resample J times from the rescaled level-2 residuals, with replacement,

to generate the level-2 bootstrap errors, {η∗j}Jj=1.

7. Resample N times from the rescaled level-1 residuals, with replacement,

to generate the level-1 bootstrap errors, {e∗ij}Ni=1.

8. Create the bootstrap sample y∗ij = Zijη
∗
j + B̂ijuj + e∗ij.

9. Compute θ∗b by applying the definition of θ̂ to the bth bootstrap dataset,

in place of the original data.

10. Repeat steps 6 to 9 B times.

These estimates, {θ∗b}Bb=1, can be used to approximate standard errors, biases,

confidence intervals, and so on.

4.4.2 Parametric Bootstrap

Again, consider the model in equation (4.18) and let θ =

[σ2
e , γ0, γ10, γ11, τ00, τ01, τ11] be the vector of parameters to be estimated. To

implement the parametric bootstrap we,
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Figure 4.1: Estimates of the Random Effects

a1|1,1, a2|2,1, . . . ,an1|n1,1 η̂1

a1|1,2, a2|2,2, . . . ,an2|n2,2 η̂2

...
...

a1|1,j, a2|2,j, . . . ,anj|nj,j η̂j

...
...

a1|1,J , a2|2,J , . . . ,anJ|nJ,J η̂J

an1|n1,1

an2|n2,2

anj |nj ,j

anJ |nJ ,J

1. Express the model in its state space format then initialise and run the

Kalman filter.

2. Construct the p.e.d form of the log-likelihood, (4.17), and obtain the

estimate, θ̂ = [σ̂2
e , γ̂0, γ̂10, γ̂11, τ̂00, τ̂01, τ̂11].

3. Draw a sample, {η∗j}Jj=1, from a multivariate normal distribution with

mean zero and covariance matrix Ψ̂ =

 τ̂00 τ̂01

τ̂01 τ̂11

.
4. Draw a sample, {e∗ij}Ni=1, from a normal distribution with mean zero

and variance Ĥij = σ̂2
e .

5. Generate the bootstrap responses, y∗ij = Zijη
∗
j + B̂ijuj + e∗ij, ∀i, j.

6. Compute θ∗b , the FIML estimate of θ, based on the bth bootstrap sample.

7. Repeat steps 3 to 6 B times to obtain {θ∗b}Bb=1, which can be used to

facilitate statistical inference.
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Bootstrapping within the state space environment is very efficient. Both

FIML and IGLS require the inversion of Vj, which is an nj×nj matrix6. With

the standard Kalman filter we only need to invert Fij whose dimensions are

Π×Π, where Π is the number of dependent variables in the model7. Typically,

nj is substantially larger than Π. Notice that Fij is independent of nj while

Vj is not. Therefore, increases in nj, the number of entries per cluster, will

rapidly increase the dimension of Vj, making the matrix inversion in FIML and

IGLS more burdensome and time-consuming. More specifically, the standard

matrix inversion algorithm has a time complexity of O(r3), where r is the

dimension of the matrix being inverted. This means that the computation

time increases rapidly with the size of the matrix, growing cubically with the

number of components. For example, in a MLM with one dependent variable

and ten elements per cluster, the time required for matrix inversion using

state space estimation is O(1), whereas the time for matrix inversion using

IGLS is O(1000). Given that bootstrapping generally involves hundreds of

matrix inversions, opting for the state space approach can markedly reduce

computational costs.

4.5 Bootstrap Bias-Correction

4.5.1 Simulation

The objective of this exercise is to apply the bootstrap methodologies

developed in section 4.4 and bias-correct the FIML estimates of the variance

6See equation (4.8).
7See equation (4.14).
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components of a multilevel model.

Consider the following model:

yij = β0j + β1jxij + eij

β0j = γ00 + γ01w1j + η0j (4.27)

β1j = γ10 + γ11w1j + η1j, ∀i, j,

where eij ∼ N(0, σ2
e) and ηj =

 η0j

η1j

 ∼ N


 0

0

 ,
 τ00 τ01

τ01 τ11


.

The model is expressed in state space form as shown in (4.28).

yij =

[
1 xij

] η0j

η1j

+

[
γ00 γ01 γ10 γ11

]


1

w1j

xij

w1jxij


+ eij

(4.28) η0j

η1j

 =

 1 0

0 1


 η0j

η1j

 .
The filter is initialised with

a0|0,j =

 0

0

 , for j = 1, . . . J (4.29)
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P0|0,j =

 τ00 τ01

τ01 τ11

 , for j = 1, . . . , J. (4.30)

Let θ = [γ00, γ01, γ10, γ11, σ
2
e , τ00, τ01, τ11] be the vector of parameters to

be estimated. We use the BFGS algorithm to maximise the log-likelihood

in equation (4.17) and find θ̂. As was mentioned in the introduction of

this chapter, FIML estimates of the variance components tend to be biased

downward in small samples. After estimating τ00, τ01 and τ11, we use the

residual and parametric bootstraps to help correct for this bias. The bias-

corrected FIML estimates are then compared with the true parameter values.

Additionally, REML8 estimates are evaluated for comparison since they are

less susceptible to severe bias.

The model is simulated with γ00 = 3, γ01 = 4.8, γ10 = 5.0, γ11 = 5.2,

σ2
e = 2, τ00 = 2, τ01 = 0.5 and τ11 = 2. The elements xij and wij are the ijth

entries in N × 1 and J × 1 vectors of standard normal variables, respectively.

Simulations are carried out for varying numbers of groups, J , all with group

size nj = 100. Specifically, the number of groups we analyse are:

J nj N=J × nj

10 100 1000

15 100 1500

20 100 2000

In hierarchical models, it is the level-2 sample size (J) that is generally

responsible for determining whether the model will suffer from small-sample

8All REML estimates in this document are evaluated using restricted iterative
generalised least squares (RIGLS). See Goldstein (1989).
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problems and it is recommended that J be larger than 20 in order to

have relatively unbiased estimates (Snijders and Bosker, 1993). Additionally,

Snijders and Bosker (2011) advises against using MLMs if J is smaller than

10. These two sources informed our choices for J . In this simulation, despite

the fact that there are nj = 100 elements in each block, there are relatively

few blocks, with J ranging from only J = 10 to J = 20. These data sets

would therefore be considered small. B = 999 bootstraps are used in this

analysis. One thousand Monte Carlo rounds are conducted and the averages

of the parameter estimates are calculated. The results are reported in Tables

4.1 through 4.6.

4.5.2 Simulation: Results and Discussion

In tables 4.1 through 4.6, from left to right, the columns display the Monte

Carlo averages of the REML estimates (θ̂REML), the FIML estimates (θ̂FIML),

the bootstrap estimates (θ∗), the bias-corrected FIML estimates (θ̂FIML BC),

the proportional bias of the FIML estimates and the proportional bias of the

bias-corrected FIML estimates.

The bias of the FIML estimator is given by,

Biastrue = E
[
θ̂FIML

]
− θ0,

where θ0 is the underlying true parameter value. The corresponding bootstrap

bias is given by

Biasboot = θ̄∗ − θ̂FIML,
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where θ̄∗ = 1
B

∑B
b=1 θ

∗
b and θ∗b is the estimate of θ from the bth bootstrap

sample. The bias-corrected FIML estimator is

θ̂FIML BC = θ̂FIML − Biasboot (4.31)

= 2θ̂FIML − θ̄∗.

The results of the study highlight that the bias in the FIML estimates

shrinks as the number of clusters increases. Consider τ00, the first element on

the leading diagonal in the initial state covariance matrix in (4.30). When

J=10, the FIML estimate of τ00 is 1.546, 22.7% below its true value, as shown

in Table 4.1. However, at J = 20, the FIML estimate for τ00 is 1.818, which

is only 9.1% below the actual value, as seen in Table 4.3.

By comparison, for the parametric bootstrap, at J=10, the bias-corrected

FIML estimate of τ00 is 1.860, 7.0% below the true value (Table 4.1) and when

the number of clusters is increased to 20, the bias-corrected figure differs from

the real value by 0.1% (Table 4.3).

When we analyse the effectiveness of the residual bootstrap, we notice

that it closely mirrors the performance of the parametric bootstrap. Again,

consider τ00. For J=10 clusters, the residual bootstrap-bias-corrected FIML

estimate is 1.811, 9.5% lower than the true value of τ00 = 2, as depicted in

Table 4.4. By J=20, the bias-corrected estimate differs from the true value

by only 0.1%, as illustrated in Table 4.6.

For both bootstrap schemes, undertaking the same analysis for the

remaining parameters, τ01 and τ11, yields comparable findings.

Clearly, when level-2 sample sizes are small, bias-correction of the FIML
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outcomes can be helpful. When J = 20, the bias-corrected estimates are

virtually on par with the REML figures. However, in very small samples, as is

the case for J = 10, performing a single round of bias-correction still produces

estimates with greater biases than those observed with REML estimation.

In these instances, it is likely that the bias-correction could be improved

by implementing an iterative bootstrap procedure. For the interested reader,

many authors, including Martin (1992), Davidson and MacKinnon (2007) and

Ouysse (2013) describe, in detail, procedures for implementing the double

bootstrap. For the motivated researcher, Davidson and Trokić (2020) provides

a triple bootstrap technique.

4.6 Empirical Study

The present research builds upon the findings of Fears et al. (1996). Those

authors examined the estrone levels of 5 postmenopausal women. Sixteen

samples were taken from each participant and the estrone levels were recorded

for each sample. Table 4.7 contains that data. They estimated the model,

yij = β0j + εij

β0j = µ+ aj,

(4.32)

for i = 1, . . . , 16 and j = 1, . . . , 5. In (4.32), yij represents the logarithm (base

10) of the estrone measurement for the ith sample from the jth woman and µ is

the overall mean. The error terms, aj and εij, are assumed to be independent,

normally distributed random variables with zero means and with variances of

σ2
a and σ2

ε , respectively. Fears et al. (1996) estimated σ2
a and σ2

ε by employing
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the maximum likelihood option in the SAS procedure, VARCOMP, which

computes FIML estimates. They constructed a Wald statistic to test the

hypothesis:

H0 : σ
2
a = 0 (4.33)

HA : σ2
a > 0. (4.34)

The null hypothesis was not rejected, indicating homogeneity in estrone levels

among the study participants. Following this, the authors generated the

exact bootstrap distribution of σ̂2
a, the FIML estimator of the variance of

the random effects aj, and noted that the distribution deviated significantly

from normality.

In order to estimate it, we first transform the model of Fears et al. (1996)

into the state space format. We rewrite (4.32) as

yij =

[
1

]
aj + µ

[
1

]
+ εij

aj =

[
1

]
aj,

(4.35)

for i = 1, . . . , 16, j = 1, . . . , 5, εij∼N(0, σ2
ε) and aj∼N(0, σ2

a). In terms of the

matrices we defined in (4.11) and (4.12), Zij = 1, αij = aj, Bij = µ, uij =

1, Tij = 1, cij = 0, ξij = 0, Qij = 0, Hij = σ2
a and eij = εij. The Kalman filter

is initialised with a0|0,j = 0 and P0|0,j = σ2
a and we maximise the prediction

error decomposition form of the log-likelihood (4.17) to estimate µ, σ2
e and σ

2
a.

For completeness, the REML estimates of the variance parameters are also

evaluated.
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We compare the empirical distribution functions of the bootstrap replicates

of σ̂2
a obtained using the parametric bootstrap and the exact bootstrap of

Fears et al. (1996). Our bootstrap resampling process employs 599 bootstrap

replications.

We use equation (4.31) to bias-correct the FIML estimate, σ̂2
a. Additionally,

we bootstrap the Wald statistic using the method outlined in section 3.2.1 of

the previous chapter and we retest the null hypothesis (4.33).

4.6.1 Empirical Study: Results and Discussion

Our objective was to demonstrate that Kalman filter output could be used

to estimate and bootstrap the model of Fears et al. (1996).

Table 4.8 presents their FIML estimates for σ2
ε and σ

2
a. Additionally, Table

4.9 presents our FIML estimates for these error variances, acquired via BFGS

maximisation of the log-likelihood, along with the REML estimates.

When we compare the figures in Tables 4.8 and 4.9, we see that the

estimates found by Fears et al. (1996) are identical to the ones obtained using

the Kalman filter approach. Specifically, σ̂2
e = 0.00325 and σ̂2

a = 0.01395 in

both cases.

As we mentioned in Section 4.1, relative to the REML estimates, FIML

estimates of the level-2 variance terms tend to exhibit a downward bias in

small samples; this effect is evident from the data presented in Table 4.9.

In particular, the FIML estimate of σ2
a is 0.01395, compared to the REML

estimate of 0.01750.

An approximation to the finite sample CDF of σ̂2
a, based on the exact
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bootstrap, is shown in Figure 4.2. The exact bootstrap differs from other

resampling methods in that it uses the entire space of resamples. This means

that given a data set of n observations, we draw B = nn samples of size n,

with replacement. The probability of selecting a particular sample is therefore

n−n. With other resampling techniques, where we work with a subset of the

resample space, B is generally much smaller than nn. For the purpose of

comparison, the approximate CDF of σ̂2
a, based on the parametric bootstrap

procedure outlined in subsection 4.4.2, is overlaid on the same axes. Figure

4.2 reveals that the two distribution functions are remarkably similar.

The exact bootstrap distribution of σ2
a has a mean of 0.0111 and a standard

deviation of 0.0061, as reported in Fears et al. (1996). The parametric

bootstrap distribution provides an almost identical mean and standard

deviation of 0.0110 and 0.0061, respectively (Table 4.10). From these outcomes,

we see that, in this instance, the performance of the parametric bootstrap is

comparable to that of the exact bootstrap.

There are usually two sources of error in the bootstrapping process: the

error introduced by using a particular sample to represent the background

population and the error resulting from the failure to enumerate all possible

bootstrap resamples. Since the exact bootstrap involves the generation of all

possible resamples, this facilitates the calculation of every realisation of the

quantity of interest. So, the advantage of the exact bootstrap lies in the fact

that it avoids the latter cause of inaccuracy. Nevertheless, it rapidly becomes

intractable. Fears et al. (1996) employed 5 level-2 units (J = 5) and computed
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a total of 3125 resamples, out of which 126 were unique.9 It is important

to point out that 5 clusters represents an extremely small sample size. If J

is increased to 15, the number of unique resamples jumps to approximately

7.76×107. Clearly, even with advancements in computing speeds, the exact

bootstrap can quickly become cumbersome. Having a viable alternative, such

as the parametric bootstrap, can be helpful.

Since we know that the FIML estimates of the level-2 variances tend to

be biased downward, we employed the parametric bootstrap to bias-correct

σ̂2
a. The results are given in Table 4.11. To further refine our estimation, we

performed a second round of bootstrapping using a fast double bootstrap

(Ouysse, 2013). The results in Table 4.11 indicate that the double bootstrap

bias-corrected estimate of σ̂2
a is comparable to the REML estimate.

The Wald statistic in Fears et al. (1996), had a p-value of 0.1191. The

authors remarked that this outcome indicated there was no variation in estrone

levels among the subjects, which seemed improbable. They attributed this

to the small sample size and suggested that a larger sample could yield more

reliable outcomes. We bootstrapped the Wald statistic using the method

outlined in Section 3.2.1 of the preceding chapter. Namely, we generated

bootstrap samples under the null hypothesis, calculated the Wald statistic for

each sample, and determined the proportion of bootstrap samples for which

the Wald statistic exceeded the original Wald test statistic. The resulting

bootstrap p-value was 0.001. As a result, we rejected the null hypothesis of

9The total number of resamples is nn = 55 = 3125, in which some draws contain identical
elements. The number of distinct samples is found from the formula for a combination with

replacement, i.e., n+r−1Cr = (n+r−1)!
r!(n−1)! where n is the total number of objects in a set and

r is the number of items being selected. In the Fears et al. (1996) example with n = r = 5,
we find 9C5 = 126.
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homogeneity in estrone levels among the participants. This situation is similar

to that of Newbold and Bos (1985) in the previous chapter, where the use of

the bootstrap led to a different outcome of the hypothesis test.

4.7 Concluding Remarks

Multilevel models are typically not analysed using the state space format.

However, this chapter argued that casting multilevel models in state space

form may be advantageous for estimation. Output from the Kalman filter

recursions is valuable, not only for parameter estimation by seamlessly

facilitating the prediction error decomposition form of the log-likelihood,

but also for executing the parametric and residual bootstraps. On occasion,

researchers are faced with limited sample sizes. In these instances, bootstrap

bias-correction may be useful to provide improvements on the FIML estimates

of the variance elements in the covariance matrix of the vector of random

effects. Additionally, in extremely small samples like the ones considered in

our investigation, double bootstrap bias-correction may be required to bring

the FIML estimates in line with their REML counterparts.

In our empirical example, we observed, once again, that our hypothesis

test resulted in a different decision when we bootstrapped the test statistic.

This emphasises the fact that using bootstrap methods can be advantageous

over asymptotic approaches when dealing with small sample sizes. However,

it is important to note that a cluster size of 5, as utilised in Fears et al. (1996),

is atypical. Most researchers aim to work with at least 10 clusters, if at all

possible, to avoid the difficulties associated with small samples.
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The estimation and bootstrapping of the multilevel models in this paper

were successfully implemented using the state space representation. As

highlighted by Gu et al. (2014), estimating the state space formulation has

the additional advantage of being faster than traditional FIML estimation

in hierarchical models. This underscores the idea that working in the state

space framework offers a practical alternative to more conventional methods

when dealing with clustered data.
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4.8 Tables and Figures

4.8.1 Simulation: Tables

Parametric Bootstrap

Table 4.1: Estimates J = 10, n = 100

θ̂REML θ̂FIML θ∗ θ̂FIML BC
θ̂FIML−θ0

θ0

θ̂FIML BC−θ0
θ0

τ00 = 2.0 1.938 1.546 1.232 1.860 -0.227 -0.070

τ01 = 0.5 0.468 0.374 0.300 0.448 -0.252 -0.103

τ11 = 2.0 1.921 1.533 1.223 1.843 -0.234 -0.078

Table 4.2: Estimates J = 15, n = 100

θ̂REML θ̂FIML θ∗ θ̂FIML BC
θ̂FIML−θ0

θ0

θ̂FIML BC−θ0
θ0

τ00 = 2.0 2.005 1.735 1.501 1.969 -0.132 -0.015

τ01 = 0.5 0.515 0.446 0.387 0.506 -0.107 0.012

τ11 = 2.0 2.086 1.805 1.562 2.048 -0.097 0.024

Table 4.3: Estimates J = 20, n = 100

θ̂REML θ̂FIML θ∗ θ̂FIML BC
θ̂FIML−θ0

θ0

θ̂FIML BC−θ0
θ0

τ00 = 2.0 2.022 1.818 1.634 2.002 -0.091 0.001

τ01 = 0.5 0.490 0.441 0.397 0.485 -0.119 -0.031

τ11 = 2.0 2.025 1.820 1.636 2.005 -0.090 0.003
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Residual Bootstrap

Table 4.4: Estimates J = 10, n = 100

θ̂REML θ̂FIML θ∗ θ̂FIML BC
θ̂FIML−θ0

θ0

θ̂FIML BC−θ0
θ0

τ00 = 2.0 1.938 1.546 1.281 1.811 -0.227 -0.095

τ01 = 0.5 0.468 0.374 0.309 0.439 -0.252 -0.122

τ11 = 2.0 1.921 1.533 1.264 1.802 -0.234 -0.099

Table 4.5: Estimates J = 15, n = 100

θ̂REML θ̂FIML θ∗ θ̂FIML BC
θ̂FIML−θ0

θ0

θ̂FIML BC−θ0
θ0

τ00 = 2.0 2.005 1.735 1.579 1.891 -0.132 -0.055

τ01 = 0.5 0.515 0.446 0.371 0.521 -0.107 0.042

τ11 = 2.0 2.086 1.805 1.464 2.146 -0.097 0.073

Table 4.6: Estimates J = 20, n = 100

θ̂REML θ̂FIML θ∗ θ̂FIML BC
θ̂FIML−θ0

θ0

θ̂FIML BC−θ0
θ0

τ00 = 2.0 2.022 1.818 1.635 2.001 -0.091 0.001

τ01 = 0.5 0.490 0.441 0.394 0.488 -0.119 -0.024

τ11 = 2.0 2.025 1.820 1.583 2.057 -0.090 0.029
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4.8.2 Empirical Study: Tables

Table 4.7: Estrone Assay Measurements (pg/mL) of a Single Blood Sample
From Each of Five Postmenopausal Women

Individual

Sample P1 P2 P3 P4 P5

1 23 25 38 14 46

2 23 33 38 16 36

3 22 27 41 15 30

4 20 27 38 19 29

5 25 30 38 20 36

6 22 28 32 22 31

7 27 24 38 16 30

8 25 22 42 19 32

9 22 26 35 17 32

10 22 30 40 18 31

11 23 30 41 20 30

12 23 29 37 18 32

13 27 29 28 12 25

14 19 37 36 17 29

15 23 24 30 15 31

16 18 28 37 13 32
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a

Table 4.8: Variance Estimates for One-Way Random Effects Model using
VARCOMP

Parameter SAS Estimates

σ2
ε 0.00325

(0.00053)

σ2
a 0.01395

(0.00895)

Table 4.9: Variance Estimates for One-Way Random Effects Model Using
State Space Approach

Parameter Kalman Filter FIML Estimates REML Estimates

σ2
ε 0.00325 0.00325.

(0.00053) (0.00053)

σ2
a 0.01395 0.01750

(0.00895) (0.0090)

Table 4.10: Bootstrap Estimates of the Variance of the Random Effects

Estimates

Exact Bootstrap Parametric Bootstrap

σ2
a 0.0111 0.0110

(0.0061) (0.0061)

aIn the tables, the standard errors appear in parentheses.
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Table 4.11: Estimates of σ2
a

a

Estimate

σ̂2
a, FIML 0.0140

σ̂2
a, bc 0.0169

σ̂2
a, dbc 0.0176

σ̂2
a, REML 0.0175

aσ̂2
a, bc and σ̂2

a, dbc are the bootstrap and double bootstrap bias-corrected estimates of

σ̂2
a, FIML, respectively.
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Figure 4.2: Empirical Cumulative Distribution Functions
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Chapter 5

Conclusion

The primary objective of this study was to extend the research of Stoffer

and Wall (1991) by introducing a bootstrap technique that is applicable

in heteroskedastic state space models. To this end, we developed the state

space model (SSM) bootstrap which utilises a gradient-based approach to the

bootstrapping process. Our findings suggest that our bootstrap performs well

in a variety of situations. Furthermore, we aimed to illustrate that Kalman

filter output can be employed for both estimation and bootstrapping purposes

if the models are represented in their state space format.

Up to this point, as far as we know, the bootstrap of Stoffer andWall (1991)

was the only one developed for use in state space models. However, it has the

limitation of being created solely for homoskedastic models, along with being

computationally expensive. In Chapter 2, we crafted a bootstrap technique,

termed the wild state space model bootstrap (WSSM), specifically for state

space models with heterogeneous errors. We tested its efficacy by examining

the coverage probabilities of a variety of bootstrap confidence intervals and
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observed that they outperformed their asymptotic counterparts. Additionally,

we employed the WSSM bootstrap to develop the AICg, a bootstrap version

of the Akaike Information Criterion (AIC). When it came to model selection

in small samples, this bootstrap variant achieved greater success than the

conventional AIC. We also demonstrated that our bootstrap methodology

could be adjusted for use in homoskedastic models, providing an alternative

to the approach of Stoffer and Wall (1991).

Our bootstrap procedure bears some similarity to the k-step bootstrap of

Davidson and MacKinnon and, in Chapter 3, we examined the feasibility

of adopting their methodology for use in state space models. In smaller

samples, their approximate bootstrap yielded superior results when compared

to asymptotic methods. Additionally, working in the state space format for

bootstrap hypothesis testing conferred some advantages since the Kalman

filter output could be used to formulate the Score, Likelihood Ratio, and Wald

test statistics.

Although the state space format is not commonly used for analysing

multilevel models, we contended that employing this approach could offer

benefits for estimation and bootstrapping. In Chapter 4, we explored the use of

the residual and parametric bootstraps in multilevel models and investigated

how to implement them when those models were expressed in the state space

format.

It is well known that in clustered models, full information maximum

likelihood (FIML) estimates of the variance components in the covariance

matrix of the random effects vector tend to exhibit a downward bias. In

contrast, restricted maximum likelihood estimates (REML) are subject to
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less bias. Despite this, FIML estimation remains prevalent due to its ability

to use chi-squared difference tests in comparing nested models with varying

numbers of regression or variance parameters. On the other hand, REML

estimation only permits comparisons of variance entries. Our study explored

the potential for correcting the downward bias in FIML estimates through

the application of bootstrap methods. Our results revealed that employing

either single or double bootstrap bias-correction techniques effectively aligned

the FIML and REML estimates.

The development of the SSM bootstrap is significant as it addresses a

critical gap in the literature. Previously, the sole bootstrap technique for state

space models could only be applied when the error terms in both the state and

measurement equations were homoskedastic. Although it is not uncommon

for researchers to assume homoskedasticity for simplicity, this assumption can

sometimes be unrealistic. Therefore, our methodology offers the potential to

bootstrap a much wider range of state space models. In addition, while a

bootstrap version of the AIC is available, as it uses the bootstrap of Stoffer

and Wall (1991), it, too, can only be used for homoskedastic models. Our AICg

measure provides a means for model selection in heteroskedastic state space

models. Furthermore, although a method for bootstrapping homogeneous

state space models already exists, its execution can be time-consuming. Our

RSSM bootstrap offers a valuable alternative because it has been shown to

be notably faster than the method of Stoffer and Wall (1991), resulting in

significant time savings.

While our research offers some insights, there are also some limitations.

Firstly, our investigations only focused on stationary state space models. As
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a result, our technique is not applicable to non-stationary models such as

structural time series models; these are frequently used in the state space

literature but are typically non-stationary. Secondly, our SSM bootstrap relies

on one quasi-Newton step during implementation, which may not be sufficient

in very small samples. Thus, our methodology may be better suited to samples

of size 50 or more. Finally, due to limited access to computer cores, the

number of Monte Carlo simulations that could have been performed in each

investigation was restricted.

Looking ahead, there is ample opportunity to build on our work and

extend the application of our bootstrap methodology. In Chapter 2, when

we developed the SSM bootstrap, we worked with the perturbed score

contributions. One potential area for extending our research is to perturb

the Hessian as well, rather than working with a fixed Hessian. We suspect

that doing so could improve the performance of our bootstrap procedure.

Our work could also be extended to explore the application of the SSM

bootstrap to models with missing observations, an issue which presents a

common challenge in research. In this scenario, both the Kalman filter and

the Kalman smoother would be required to provide estimates for the missing

observations. Examining the effectiveness of the SSM bootstrap in this context

could be a valuable direction for future investigation.

Our study suggested that using our bootstrap technique could lead to

significant time savings. However, further analysis is needed to explore the

potential time savings that could result from variations in the form of the

Kalman filter itself. For instance, in the case of multilevel models with

a large number of clusters, using the sequential Kalman filter could be
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advantageous when bootstrapping. This variant of the Kalman filter, which is

mathematically equivalent to the forms used in our research, avoids any matrix

inversion during execution and could be particularly useful in situations where

computational time is a crucial factor. A comparative study between the

sequential and standard Kalman filters would provide useful insights into

potential time savings.
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