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Cortactin stabilizes actin branches by 
bridging activated Arp2/3 to its nucleated 
actin filament

Tianyang Liu    1, Luyan Cao    2, Miroslav Mladenov2, Antoine Jegou    3, 
Michael Way    2,4  & Carolyn A. Moores    1 

Regulation of the assembly and turnover of branched actin filament 
networks nucleated by the Arp2/3 complex is essential during many cellular 
processes, including cell migration and membrane trafficking. Cortactin is 
important for actin branch stabilization, but the mechanism by which this 
occurs is unclear. Given this, we determined the structure of vertebrate 
cortactin-stabilized Arp2/3 actin branches using cryogenic electron 
microscopy. We find that cortactin interacts with the new daughter filament 
nucleated by the Arp2/3 complex at the branch site, rather than the initial 
mother actin filament. Cortactin preferentially binds activated Arp3.  
It also stabilizes the F-actin-like interface of activated Arp3 with the first 
actin subunit of the new filament, and its central repeats extend along 
successive daughter-filament subunits. The preference of cortactin for 
activated Arp3 explains its retention at the actin branch and accounts for its 
synergy with other nucleation-promoting factors in regulating branched 
actin network dynamics.

The actin cytoskeleton can form many types of dynamic supramolecu-
lar array—from linear bundles to branched actin filament networks, 
which underlie its functional diversity and adaptability1–6. Distinct 
F-actin arrays are formed by the localized activities of specific actin 
nucleating factors, actin-binding proteins and myosin motors1,2,7.

Branched actin networks are generated when a new ‘daughter’ 
filament is nucleated from the side of a pre-existing ‘mother’ filament 
by the seven-subunit Arp2/3 complex that contains actin-related pro-
tein 2 (Arp2) and Arp3 (refs. 2,8,9). Activation of the Arp2/3 complex 
involves conformational rearrangement of the complex, resulting 
in the formation of a short-pitch helical F-actin-like template. The 
fast-growing barbed end of the daughter filament extends from this 
template10,11. Class 1 nucleation-promoting factors (NPFs), such as WAVE 
and WASP, activate Arp2/3 through their conserved carboxy-terminal 
VCA domain, consisting of one to three verprolin domains (also 
known as WASP-homology 2 domains) followed by central and acidic 

segments12–20. The VCA domains of class 1 NPFs also stimulate nuclea-
tion by recruiting actin subunits to the activated Arp2/3 complex, from 
which these NPFs are subsequently released (Extended Data Fig. 1a)21–23.

The correct functioning of Arp2/3-nucleated branched actin 
networks depends on not only their spatial and temporal assembly 
but also their stability and turnover24–28. The actin-binding protein 
cortactin, which is considered a class 2 NPF, plays a crucial part in 
stabilizing actin branches. It interacts with the Arp2/3 complex and 
actin filaments through its amino-terminal acidic domain (NtA) and 6.5 
central unstructured 37-amino-acid repeats, respectively29, although 
the molecular basis of these interactions is unclear (Fig. 1a)30–33. Fur-
thermore, although cortactin alone can weakly activate the Arp2/3 
complex, it synergizes with class 1 NPFs to further stimulate efficient 
Arp2/3-mediated formation of actin branches21,22,34. Given its central 
role in stabilizing branched actin networks, cortactin is important in 
many cellular processes such as epithelial integrity and intracellular 
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Fig. 4b–d). Overall, our structure shows that, rather than modifying the 
filaments at actin branches, cortactin branch stabilization is mediated 
by the protein–protein contacts that cortactin forms with the activated 
Arp2/3 complex and the daughter filament30–32.

Cortactin preferentially binds to activated Arp3
Cortactin NtA domain residues 21–79 form electrostatic and hydropho-
bic interactions with all four Arp3 subdomains, as well as contacting 
ArpC2 (Fig. 2a and Extended Data Fig. 5a–d). The cortactin D21-W22-E23 
motif, which is essential for the interaction with Arp2/3 (ref. 31), inserts 
into a positively charged pocket of Arp3, and residues 24–54 adopt a 
meandering trajectory across the Arp3 surface (Fig. 2a,b and Extended 
Data Fig. 5). At residue 55, the NtA domain turns by approximately 90° 
on the surface of Arp3 and forms an amphipathic α-helix (residues  
I55–T76), which binds in a hydrophobic cleft on Arp3 and points towards 
the daughter filament (Fig. 2a,c). This cortactin helix binds adjacent 
to the Arp3 hinge helix (residues 145–154), which is key in mediating 
inactive–active Arp2/3 complex structural transitions10,11,43.

The cortactin NtA α-helix stabilizes the Arp3 W-loop (residues 
180–187) in a conformation that has been previously observed only in 
activated Arp2/3 and is distinct from that seen in the inactivated Arp2/3 
complex10,20,46,47. Consequently, the structural groove at the barbed end 
of Arp3 is open, promoting interaction with DA1 of the new daughter 
filament (Fig. 2d). The contacts formed between activated Arp3 and DA1 
mimic the longitudinal contacts along F-actin10,11 and involve insertion 
of subdomain 2 of DA1—specifically its ‘D-loop’—in the barbed end of 
Arp3 (Fig. 2d). Further, the loop within Arp3 (residues 155–164) that 
follows the hinge helix—which we now term the cortactin loop—makes 
contacts with the cortactin NtA α-helix through a distinct conformation 
compared with branch structures in the absence of cortactin (Fig. 2e). 
The structure is consistent with a model in which the interaction of the 

trafficking, as well as a range of pathologies, including bacterial infec-
tion and cancer metastasis29,35–37. However, despite its functional impor-
tance, the precise mode of action of cortactin and its mechanism of 
synergy with class 1 NPFs remain unknown.

Results
Cortactin connects the Arp2/3 complex to its nucleated 
daughter filament
To maximize the number of branches in our sample, therefore 
increasing the possibility of visualizing the hitherto elusive binding 
site of cortactin, we used the most active isoform of human Arp2/3 
(Arp2/3-C1B-C5L33) and included capping protein in our sample to 
limit daughter-filament growth38–41. The resulting cryogenic electron 
microscopy (cryo-EM) structure of cortactin-stabilized Arp2/3 actin 
branches had an overall resolution of approximately 3.3 Å, allowing 
us to visualize cortactin (Fig. 1b, Table 1, Extended Data Figs. 1–3 and 
Supplementary Video 1). This structure showed that, unexpectedly, 
cortactin connects the activated Arp2/3 complex and the daughter fila-
ment, in contrast to previous proposals suggesting that cortactin binds 
to the mother filament (Fig. 1b)22,34. In the presence of cortactin, the 
overall conformation of the activated Arp2/3 complex at the junction 
of mother and daughter filaments is similar to that of previous cryo-EM 
structures10,42,43 (Extended Data Fig. 4a,b and Supplementary Video 1). 
The daughter filament consists of four subunits (DA1–DA4), each bound 
to ADP, and its barbed end is terminated by capping protein38–41. The 
cortactin density that extends along this short daughter filament corre-
sponds to the first cortactin repeat (Fig. 1b). No density corresponding 
to cortactin is observed on the ADP-bound mother filament (consisting 
of MA1–MA6 in our image-processing scheme; Extended Data Fig. 2). 
Both mother and daughter filaments adopt canonical ADP-F-actin 
structures44,45, and Arp2 and Arp3 are also bound to ADP (Extended Data 
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cortactin NtA domain with the activated Arp2/3 complex stabilizes the 
interface of Arp3 with DA1 of the daughter filament.

Cortactin central repeats extend across daughter filament 
subunits
The first cortactin central repeat (residues 80–116) extends longitudi-
nally by approximately 5.5 nm from the C terminus of the NtA α-helix 
on the daughter filament, bridging across the two successive subunits 
DA1 and DA3 (Fig. 3a). D116, the final residue of the first cortactin central 
repeat, is positioned on DA3 in a corresponding position to that of the 
first repeat residue (A80) on DA1 (Fig. 3a). Because of the short daughter 
filaments in our sample, we did not visualize more of the central repeats 
that were present in our full-length cortactin construct. However, on 
the basis of the cortactin F-actin interaction observed in our structure, 
we constructed a model illustrating how the cortactin central repeats 
would interact with a longer daughter filament. Our model shows that 
the second repeat would bind along the daughter filament in the same 

way as the first repeat does, bridging acoss DA3 and DA5 (Fig. 3b). Fur-
thermore, the model predicts that the cortactin repeats, including 
the C-terminal half repeat, would extend to the barbed end of DA13, 
a half-turn of the F-actin helix (Fig. 3c and Supplementary Video 2). 
The conservation of interacting residues within the cortactin repeats 
is also consistent with the repeating pattern of interactions with the 
hydrophobic and hydrophilic regions of the F-actin surface (Fig. 3d). 
Given the conserved amino acid distribution between all 6.5 repeats 
and the observed binding pattern of the first central repeat, it is likely 
that cortactin repeats act together to maximize branch stability. The 
binding of cortactin to actin is regulated by the acetylation of cortactin 
lysine residues, including K87 in repeat 1 (ref. 48). In our structure, K87 
points towards a negatively charged patch on DA1, and its acetylation is 
predicted to perturb this interaction (Extended Data Fig. 6). Our model 
thus shows how the conserved pattern of lysine acetylation in cortac-
tin central repeats (marked with an asterisk in Fig. 3d) would reduce 
binding activity between cortactin and F-actin and thereby impede cell 
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motility48. The observation that cortactin binds exclusively along the 
daughter filament also explains why cortactin stabilizes linear actin 
filaments nucleated by SPIN90–Arp2/3 complexes in the absence of a 
mother filament49.

Combined interaction of cortactin NtA and central repeat 
domain maximizes branch stabilization
Our data show that the daughter filament is stabilized directly by the 
cortactin repeats, which bind along the intra-strand subunits of the 
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shown in blue. c, Left, the 6.5 cortactin repeats are predicted to bind longitudinally 
along seven subunits of the daughter actin filament. The modeled cortactin central 
repeats are colored, from the N to C terminus, in purple, blue, cyan, green, yellow, 
orange and red. Right, amino acid sequence of the first repeat, and the consensus 
sequence of the 6.5 central repeats. Amino acid residues present in more than  
5 of the 6.5 repeats are included in the consensus sequence. Charged residues  
(K, H and R and D and E) are grouped together in the analysis. Conserved residues 
in green form potential electrostatic interactions with actin subunits. Conserved 

residues in yellow form potential hydrophobic interactions with actin subunits, as 
indicated in d. d, Top, the binding surface of DA1 actin and the cortactin first central 
repeat, colored by electrostatic potential and shown in open-book representation. 
Blue, positively charged; red, negatively charged. Conserved charged residues in 
cortactin are shown and colored according to the individual central repeat that 
they are in, as in c, with asterisks marking individual residues that are subject to 
acetylation, and the arrow and label Ac highlighting the conserved pattern of 
modification48; actin residues at the interface are listed on the left; residues within 
the same region are separated by ‘/’. Dotted lines indicate interaction regions in 
the assembly. Bottom, the binding surface of DA1 actin and the first central repeat 
of cortactin, colored by hydrophobicity and shown in open-book representation. 
Yellow, hydrophobic; cyan, hydrophilic. Conserved hydrophobic residues are 
shown and colored according to the individual central repeat that they are in, as 
in c. Actin residues at the interface are listed on the left; residues within the same 
region are separated by ‘/’; n.c., not conserved. Dotted lines indicate interaction 
regions in the assembly.
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daughter filament (Fig. 4a). In addition, they also reveal that the NtA 
indirectly stabilizes the branch by forming extensive interactions with 
activated Arp3 to promote DA1 D-loop insertion (Figs. 2a and 4a and 
Extended Data Fig. 5). The interactions between cortactin’s NtA and 
Arp3 are specific to the activated conformation of Arp3, as computa-
tional docking of our NtA structure onto the inactive Arp3 conforma-
tion generates structural clashes (Fig. 2a and Extended Data Fig. 5e). 
To assess whether NtA alone can stabilize actin branches because of 
its preference for activated Arp3, we tested whether cortactin NtA, 

in comparison to an actin-only control, could maintain branches in 
an in vitro debranching assay (Fig. 4b and Extended Data Fig. 7). NtA 
does provide protection. However, it was less effective than full-length 
cortactin, consistent with the notion that central-repeat binding maxi-
mizes branch stabilization.

Discussion
Several studies have demonstrated the substantially higher affinity of 
cortactin for branch junctions than for unbranched filaments22,50, but 
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Fig. 4 | The binding site of NtA cortactin on Arp3 explains its synergy 
with VCA domains. a, Schematic showing how cortactin stabilizes the actin 
branch junction. b, Left, the fraction of Arp2/3-mediated branches that survive 
over time. The dissociation of Arp2/3-mediated branches was observed and 
quantified in the presence of 0.1 µM full-length cortactin (olive green), or in 
the presence of 0.1 µM cortactin NtA (dark green for glutathione S-transferase 
(GST)-tagged NtA and light green for untagged NtA) or in the presence of 0.1 µM 
GST-N-WASP-CA (pink) in addition to 0.3 µM G-actin. The results of the control 
experiments with only 0.3 µM G-actin are shown in gray. Data for each curve 
were obtained from independent experiments. Right, schematic of actin-branch 
survival status in the assay (mother filament in dark gray, daughter filaments 
in light gray). c, Binding sites of cortactin NtA (left, green) and N-WASP-CA 

(right, pink) on active Arp3 (orange) or inactive Arp3 (gray). Arp3 subdomains 
are numbered. d, Overlapping binding sites of cortactin NtA and class 1 NPF CA 
domain on Arp3 indicate how these proteins would compete for Arp3 binding. 
Active and inactive Arp3 structures are superposed by alignment of subdomains 
3 and 4. Only a subset of Arp3 structural features are shown for clarity. e, Rotated 
view of overlaid active (orange) and inactive (gray) Arp3 structures with cortactin 
NtA and CA domain bound, as in d. Conformational differences of Arp3 α-helices 
at the cortactin NtA and CA binding sites in active or inactive Arp3 are indicated 
by an arrow and explain the sensitivities of these binding partners to the 
activation state of Arp3. The dashed lines in d and e indicate discontinuity in the 
N-WASP-CA domain structure.
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have not provided direct evidence of the model of branch stabiliza-
tion through mother-filament binding that is prevalent in the litera-
ture2,22,27,51. Structural cryo-EM is ideal for addressing this question, and 
has enabled us to visualize cortactin binding at the branch junction. 
Our data reveal exactly how cortactin supports Arp2/3-mediated sta-
bilization of the actin branch: by binding to the active conformation of 
Arp3 and bridging across the longitudinal subunit interactions along 
the daughter filament.

Our observation that cortactin stabilizes activated Arp3 contrasts 
with destabilizing activities of VCA-containing class 1 NPFs and has 
implications for the coordinated regulation of actin branches. Our 
structure shows how binding of cortactin NtA to Arp3 would sterically 
block VCA binding sites—particularly of its C helix— to compete for 
Arp3 binding (Fig. 4c,d). VCA binding to Arp3 has been observed only 
on the inactive complex17,20; it does not readily associate with activated 
Arp3 in molecular dynamics simulations52, and VCA binding would 
clash with the D-loops of incoming DA1 and DA2 (ref. 10). Consistent 
with a preference for inactivated Arp2/3, N-WASP-CA promotes branch 
destabilization in our debranching assay49 (Fig. 4b and Extended Data 
Fig. 7). The overlapping binding sites of the cortactin NtA helix and the 
VCA helix are centered at the junction of Arp3 subdomains 1 and 3; the 
relative positions of these subdomains change upon Arp2/3 activation, 
and each protein is sensitive to these alterations (Fig. 4d).

Furthermore, the preferential binding of VCA and cortactin to 
inactive and activated Arp3, respectively, provides a mechanistic basis 
for the previously described displacement models of the synergistic 
promotion of Arp2/3 actin nucleation by VCA and cortactin21,22,34. VCA 
release from nascent actin branches is a necessary and rate-limiting 
step for branch formation and is accelerated by cortactin21–23. Our 
structure, further supported by a recent, related study53, now shows 
that cortactin binding to Arp3 displaces the NPF CA domain, both by 
competition and because the activated Arp3 conformation favors NtA 
binding. The previously reported synergy of class 1 NPF VCA domains 
and cortactin at Arp2/3 branches therefore arises from VCA binding 
to and activating Arp2/3 followed by NtA accelerating VCA release and 
stabilizing the Arp2/3 activated state21,22,34. In addition, the observa-
tion that cortactin alone is only a weak activator of Arp2/3 nucleation 
has been puzzling and was thought to be because of its inability to 
recruit actin monomers to the nascent branch, which class 1 NPFs can 
do32,51. Our structure now shows that this weak stimulation of Arp2/3 
nucleation is also because of the preference of the cortactin NtA for 
activated Arp3. This notion is consistent with the effects of cellular 
cortactin depletion, which indicate that the main role of cortactin is 
to stabilize Arp2/3-nucleated filaments, rather than as an activator of 
the complex per se33,54.

It is also striking that our structure-based model reveals that 
the interaction mode of the 6.5 cortactin central repeats corre-
sponds precisely to a half-turn of the F-actin helix. By contrast, the 
hematopoietic-cell-specific cortactin paralogue HS1 has only 3.5 
repeats and would be predicted to interact only with DA1, DA3, DA5 
and DA7, consistent with its lower affinity for F-actin55. Thus, although 
synergy in promoting branch formation and stabilization between 
cortactin and its relatives with class 1 NPFs is predicted to be conserved 
through the NtA, variations in the number of actin-binding repeats 
indicate how their regulated expression in different tissues could tune 
the local dynamics of branched actin networks.

In the Arp2/3 complex, not only does Arp3 form the structural 
template for the nucleated daughter filament, but its conformation 
favors binding partners such as cortactin and may also communi-
cate to other cytoskeleton regulators, such as the debranching fac-
tor coronin, that the complex is activated33. Because actin-branch 
turnover is essential for the actin cytoskeleton to function normally, 
our visualization of cortactin has important implications for how it 
protects against debranching, whether through competition for Arp2/3 
binding, protection of the daughter-filament junction or both27,33,56–59. 

This in turn could determine the extent to which Arp2/3 complexes 
remain bound to mother filaments following debranching and are 
thus available for further rounds of nucleation60. Our discovery of an 
α-helix in the cortactin NtA and characterization of its binding site at 
the junction of Arp3 subdomains 1 and 3 highlights the equivalence of 
this binding site to the binding cleft on actin, where a large number of 
actin-binding proteins interact and which also mediates longitudinal 
contacts in F-actin44,45,61. This emphasizes the conserved nature of the 
conformational changes that both Arp3 and actin undergo during actin 
nucleation and polymerization, and the importance of this hotspot in 
both proteins for binding regulators.
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Methods
Protein purification
Full-length mouse cortactin (residues 1–546, UniProt Q60598), 
human SPIN90 C terminus (residues 267–715, UniProt Q9NZQ3) and 
GST-tagged human N-WASP-VVCA and N-WASP-CA (residues 392–505 
and 453–505, respectively, UniProt O00401) were purified following 
the protocol described by Cao et al.49. Cortactin NtA (residues 1–77) was 
purified using the same method as that used for full-length cortactin. 
Human Arp2/3 complex containing ArpC1B/C5L isoforms (UniProt 
P61160, P61158, O15143, O15144, O15145, P59998, Q9BPX5) was purified 
following the protocol described by Baldauf et al.64.

Mouse capping protein α1β2 (UniProt P47753 and P47757-2) was 
co-expressed in BL21 Star DE3 cells using a pRSFDuet-1 plasmid with 
an N-terminal 6×histidine (6×His) tag fused to the α1 subunit. Cells 
were grown at 37 °C, and protein expression was induced with 20 µM 
IPTG when the optical density reached 1.1. After the addition of IPTG, 
cells were grown overnight at 16 °C. The next day, cells were collected 
by centrifugation at 5,000g for 15 min, resuspended and lysed using 
a high-pressure homogenizer (Avesti Emulsiflex C3) in lysis buffer 
(50 mM Tris pH 8.0, 138 mM NaCl, 2.7 mM KCl with EDTA-free protease 
inhibitor (Roche)). The cell lysate was centrifuged at 49,500g for 30 min 
to remove cell debris. The supernatant was transferred to a column 
with Ni-NTA Resin (Merck) and incubated for 1 h at 4 °C. The column 
was washed with lysis buffer and His-tagged capping protein dimer was 
eluted from the column in elution buffer (50 mM Tris pH 8.0, 138 mM 
NaCl, 2.7 mM KCl with 250 mM Imidazole). The eluted proteins were 
concentrated to 0.5 ml using Amicon Ultra-4 ml Centrifugal Filters  
(Millipore) and loaded onto a gel filtration column (Superdex 200 
Increase 10/300 GL, GE Healthcare) on an ÅKTA system (GE Health-
care). The peak fractions containing capping protein were collected 
and buffer exchanged into a low-salt buffer (10 mM Tris pH 7.5,10 mM 
KCl and 1 mM DTT). Finally, the proteins were loaded onto a 1 ml HiTrap 
Q HP column (GE Healthcare). Capping protein heterodimers were 
separated from other minor protein contaminants by linear gradient 
elution. The linear gradient was generated by combining high-salt 
buffer (10 mM Tris pH 7.5, 400 mM KCl and 1 mM DTT) with low-salt 
buffer (10 mM Tris pH 7.5,10 mM KCl and 1 mM DTT). β/γ non-muscle 
actin from purified porcine brain was purchased from Hypermol (Cat 
8401-01) and reconstituted with 200 µl ultrapure water to obtain a 1 mg 
ml–1 solution in a buffer with 2 mM Tris-HCl pH 8.2, 2.0 mM ATP, 0.5 mM 
DTT, 0.1 mM CaCl2, 1 mM NaN3 and 0.2% disaccharides.

Cryo-EM sample preparation
Branch reconstitution conditions were adapted from reports in the 
literature describing reconstitution of Arp2/3-complex-bound actin 
filaments10,11,43. Protein concentrations were optimized to enhance 
short-actin-branch formation and to minimize the preferred orienta-
tion problem caused by the ‘Y’-shape of actin branches on the cryo-EM 
grid: (1) the actin concentration was kept low to prevent spontaneous 
nucleation and limit filament growth; (2) a high concentration of cap-
ping protein was added to limit daughter-filament growth. First, 1.7 µM 
Arp2/3, 1.7 µM VVCA, 16.1 µM SPIN90, 0.8 µM actin and 3.2 µM capping 
protein were mixed in 14.9 µl buffer containing 20 mM HEPES pH 7.5, 
50 mM KCl, 1 mM EGTA, 1 mM MgCl2, 0.2 mM ATP and 1 mM DTT and 
incubated at room temperature for 20 min. Then, 4.5 µl of 23.8 µM actin 
was added in nine separate additions, and the mixture was incubated 
at room temperature for 20 min; 1.2 µl of 80 µM capping protein was 
added in two separate additions with the third and seventh addition of 
actin. After the final addition of actin, 1.9 µM full-length cortactin was 
added, followed by another 20-min incubation. Finally, 10 µM phalloi-
din (Invitrogen) was added to stabilize the actin branches (summarized 
in Extended Data Fig. 1c).

Following incubation, 4 µl of the final reconstitution mix was 
applied to a glow-discharged C-flat 1.2/1.3 grid. The grid was plunge 
frozen using EM GP2 Automatic Plunge Freezer (Leica) with the 

following settings: sensor blotting, back blotting, additional move-
ment of 0.3 mm, blotting time of 5 s, humidity of 98% and temperature 
of 22 °C.

Cryo-EM data acquisition
Cryo-EM data (12,073 videos) were collected on a Titan Krios micro-
scope (Thermo Fisher Scientific) operated at an accelerating voltage 
of 300 kV with a nominal magnification of ×81,000 and a pixel size 
of 1.067 Å. The data were collected with a K3 detector operating in 
super-resolution mode (bin2) with a BioQuantum energy filter (Gatan). 
Fifty frames for each micrograph were collected using EPU software 
with 14.8 e− pixel–1 s–1 dose rate, an exposure time of 3.8 s, a total electron 
exposure dose of 49.4 e− per Å2 and a defocus range of −0.9 to −2.4 µm.

Cryo-EM data processing
Cryo-EM data were processed using CryoSPARC v3 (ref. 65). Movies 
were motion-corrected using Patch motion. Contrast transfer func-
tion (CTF) parameters were estimated using Patch CTF. We selected 
8,518 micrographs with CTF fit resolution < 6.4 Å and total full-frame 
motion distance < 50 pixels for further data processing. Blob picker 
with a minimum diameter of 150 Å and a maximum diameter of 200 Å 
was used for particle picking, followed by particle extraction with a 
box size of 368 pixels and a binning factor of 4; 2,001,580 extracted 
particles were subjected to multiple rounds of two-dimensional (2D) 
classification to remove contaminants, carbon and non-branched 
portions of actin filaments. Class averages featuring various views 
of the actin branch junction were selected as templates for template 
picking. Then, 3,247,396 template-picked particles were subjected 
to multiple rounds of 2D classification. The sets of particles selected 
from the blob picker (167,590 particles) and template picker (244,162 
particles) were subjected to ab initio reconstruction with two classes. 
After ab initio reconstruction, un-binned particles from these classes 
were re-extracted with a box size of 440, and each was subjected to 
homogeneous refinement with the best branch-like ab initio volume 
as the initial model. After homogeneous refinements and duplicate 
removal, the two stacks of particles were combined. The combined 
179,923 particles were then subjected to a first round of non-uniform 
(NU)-refinement, followed by heterogeneous refinement with three 
classes to further classify particles. The volume of class 1 exhibited 
additional density on one side of the mother filament, and these par-
ticles were discarded. The remaining 130,915 particles from class 2 
and class 3 were combined and subjected to a second round of NU 
refinement. Because all three classes differ only in the mother-filament 
region, we refer to the first NU-refinement reconstruction before het-
erogeneous refinement as the Arp2/3-daughter-filament consensus 
map. The second NU-refinement reconstruction is referred to as the 
mother-filament consensus map (Extended Data Fig. 2).

Local refinement with a mask around the mother filament 
on the mother-filament consensus map was used to improve the 
mother-filament density. Likewise, the Arp2/3-daughter filament con-
sensus map was divided into three overlapping segments (the Arp2/3 
complex, the daughter filament and the capping protein) and locally 
refined to improve the density of each segment. Before running local 
refinement on daughter filament and capping protein, the particles 
and consensus map were re-centered on DA3 using Volume Alignment 
Tools in cryoSPARC to improve the alignment because they are at the 
periphery of the consensus reconstruction. After local refinement 
on the daughter filament, the complete first cortactin F-actin repeat 
density was observed. After local refinement on the capping protein, 
the capping protein density was well resolved. Three-dimensional 
classification showed that the daughter-filament segments in all three 
classes shared an identical feature, containing only four actin subunits 
plus one capping protein heterodimer. A high molar ratio of capping 
protein to actin in our reaction mix contributes to the short daughter 
filament. The template picking and ab initio reconstruction step may 
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also introduce bias into the particle selection used in our reconstruc-
tion. Global resolution and local resolution of local refined maps were 
estimated in cryoSPARC (Extended Data Fig. 3).

Model building
The four locally refined reconstructions were used to model Arp2/3 
and cortactin NtA, the daughter filament and cortactin first central 
repeat, capping protein and the mother filament (Extended Data  
Figs. 2 and 3). Models of all seven Arp2/3 subunits, β-actin and capping 
protein created with the AlphaFold Monomer v2.0 pipeline were used 
initially62,63. They were rigidly fit into EM density using ChimeraX66, 
followed by molecular-dynamics flexible fitting using ISOLDE67. Nam-
dinator68 was used to optimize bond geometry, and ISOLDE and Coot69 
were used at the end of the model-building process to manually fix 
Ramachandran outliers, rotamer outliers and clashes. AlphaFold pre-
dicted the N terminus of cortactin with low confidence except for one 
six-turn α-helix, corresponding to the α-helix in our EM density. The 
AlphaFold-predicted α-helix (residue 55–76) was well fitted into the 
EM density, with bulky side chains on one side of the α-helix facilitat-
ing its positioning. After the positioning of the NtA helix, the flanking 
cortactin residues (residues 21–54 and 80–116) were manually built 
using Coot69.

Structural analysis and visualization
Figures and videos of structures were made with ChimeraX66. Rise and 
twist angles shown in Extended Data Fig. 4 were calculated in PyMOL 
Molecular Graphics System, Version 2.5.4 (Schrödinger). The distances 
between interacting atoms in Extended Data Fig. 5 were measured in 
ChimeraX.

Dissociation of branches by cortactin and CA motifs
Microfluidics experiments were conducted using poly-dimethyl- 
siloxane (PDMS, Sylgard) chambers with three inlets and one outlet, 
following the original protocol by Jegou et al.70. The microfluidic flows 
were monitored by a Microfluidic Flow Control System and Flow Units 
(Fluigent). Experiments were performed in buffer containing 5 mM 
Tris-HCl pH 7.0, 50 mM KCl, 1 mM MgCl2, 0.2 mM EGTA, 0.2 mM ATP, 
10 mM DTT, 1 mM DABCO and 0.1% BSA. The temperature was main-
tained at 25 °C by an objective heater (Oko-lab). Actin filaments were 
visualized using TIRF microscopy (Nikon TiE inverted microscope, 
iLAS2, Gataca Systems) equipped with a ×60 oil-immersion objective. 
Images were acquired using an Evolve EMCCD camera (Photomet-
rics), controlled with the Metamorph software (version 7.10.4, from 
Molecular Devices).

Pointed-end anchored mother filaments (15% labeled with Alexa 
Fluor 488) and their branches (15% labeled with Alexa Fluor 568) were 
generated in a microfluidics chamber with a height of 20 µm and width 
of 1,600 µm, as described by Cao et al.49. During the experiment, actin 
branches were exposed to 0.3 µM actin as a control, or with an addi-
tional 0.1 µM cortactin, GST-N-WASP-VVCA or their mutants. The flow 
rate was set as high as 16 µl min–1 while measurements were taken. The 
forces, ranging from 0.6 to 1 pN applied on the daughter filaments, 
were identical in each experiment. For each condition, the survival 
fraction of branches was quantified and plotted over time (Fig. 4b). 
For each condition, more than 40 branches were randomly chosen 
for further analysis, as previously reported by Cao et al.49. Each experi-
ment was repeated independently three times, and all the repetitions 
were successful. The time points when half of the actin branches dis-
appeared under different experimental conditions were plotted for 
comparison (Extended Data Fig. 7b). Fiji software was used to analyze 
images manually71.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The cryo-EM reconstructions are deposited in the Electron Microscopy 
Data Bank under the following accession codes: daughter filament 
consensus reconstruction, EMDB-17553; Arp2/3 complex and cort-
actin locally refined reconstruction, EMDB-17554; daughter filament 
and cortactin locally refined reconstruction, EMDB-17555; capping 
protein locally refined reconstruction, EMDB-17556; mother filament 
locally refined reconstruction, EMDB-17557; mother filament con-
sensus reconstruction, EMDB-17558. The corresponding composite 
structural model is deposited in the Worldwide Protein Data Bank 
under the accession code PDB 8P94. PDB models used for structure 
comparison and model building are PDB 8E9B and PDB 6UHC. Source 
data are provided with this paper.
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Extended Data Fig. 1 | Overview of actin branch formation, purified proteins 
used in actin branch reconstitution and exemplar cryo-EM data. a) Schematic 
of Arp2/3-mediated actin branch formation and role of Class 1 NPFs. When the 
Arp2/3 complex is activated by Class 1 NPFs, its Arp2 and Arp3 subunits rearrange 
into a short-pitch conformation, which acts as the template for daughter filament 
growth. The CA domain within the VCA domain of class 1 NPF interacts with 
Arp2/3 and V motif binds and recruits actin monomers. VCA must be released 
from the nascent branch junction prior to daughter filament elongation because 
it blocks the binding site for further daughter filament growth. b) SDS-PAGE 
gels showing purified proteins used in cryo-EM and microfluidics reconstitution 

experiments. Similar protein quantity and quality were obtained from at least 
2 independent purification batches. c) Flow chart showing how the cryo-EM 
sample was prepared. d) A representative cryo-EM image of cortactin stabilized 
Arp2/3-mediated actin branches showing ‘Christmas tree’-like mother filaments 
with multiple short daughter filaments extending from them. Scale bar = 50 nm. 
8518 micrographs with similar image quality and branch density were collected 
and processed. e) Representative 2D class averages of particles selected using 
CryoSPARC blob picker and subjected to 2D classification showing multiple 2D 
projection views, which are used as templates for template picking. Scale bar = 
10 nm.
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Nature Structural & Molecular Biology

Article https://doi.org/10.1038/s41594-023-01205-2

Extended Data Fig. 2 | Image processing workflow for cryo-EM reconstruction. The workflow used to generate the overlapping locally refined reconstructions of 
cortactin-bound Arp2/3 complex, daughter filament, capping protein and mother filament. Thresholds (THs) and global resolutions are indicated.

http://www.nature.com/nsmb
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Extended Data Fig. 3 | Cryo-EM data quality and validation of locally refined 
reconstructions. For each locally refined reconstruction shown in Extended 
Data Fig. 2., half-map and map-model Fourier Shell Correlation (FSC), the angular 
distribution of particles used for 3D refinement, the well-resolved density used 
to generate the composite map colored by local resolution and representative 
regions of the density map with the final model are shown. Thresholds (THs) are 

indicated. FSC Cut-off 0.143 was used for half-map resolution estimation. FSC 
Cut-off 0.5 was used for map-model resolution estimation and local resolution 
estimation. (a) Locally refined reconstruction of cortactin-bound Arp2/3 
complex. (b) Locally refined reconstruction of daughter filament. (c) Locally 
refined reconstruction of capping protein. (d) Locally refined reconstruction of 
mother filament.
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Extended Data Fig. 4 | The activated Arp2/3 complex and ADP-F-actin in our 
cortactin-bound actin branch junction adopt canonical conformations.  
a) Structural alignment of cortactin-bound activated human Arp2/3 complex 
(this manuscript, subunits coloured) with activated bovine Arp2/3 complex  
(PDB 7tpt, subunits in light gray). Structures were aligned on ArpC2 (AA1-253) 
and Arp3 (AA1-36, AA60-153 and AA375-409). b) Arp2 and Arp3 in the activated 
Arp2/3 complex act as the template for daughter filament elongation. The 

canonical rise and twist between daughter filament actin subunits (DA1 – DA4) 
and/or Arp subunits are indicated. c) The canonical rise and twist between 
mother filament actin subunits (MA1 – MA6) are indicated and show no evidence 
of distortion within the mother filament upon branch formation. d) Density 
(transparent) and models of ADPs (in stick representation) and Mg2+ (green dot) 
in Arp3, Arp2 and actin subunit DA1 in daughter and actin subunit MA3 in  
mother filament.
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Extended Data Fig. 5 | Interface details of the interactions between cortactin 
NtA and four subdomains of Arp3. a) Overview of the cortactin NtA-Arp3-
ARPC2 interface (similar to Fig. 2a). b) Details of the interaction between the 
cortactin NtA helix and Arp3 subdomain 3 (W loop and cortactin loop) of  
Arp3. c) Details of the interactions between NtA loop and subdomain 4.  
d) Details of the interaction between NtA loop and subdomain 1 and 2 of  

Arp3 and ArpC2. e) Computational docking of our NtA structure onto the inactive  
Arp3 conformation generates structural clashes. Inactive Arp3 (from PDB 6uhc) 
is positioned by aligning on subdomains 3 and 4 of our activated Arp3 structure. 
Atom pairs with van der Waals overlap ≥ 0.7 Å (after subtracting 0.4 Å for 
H-bonding) were classified as clashes.
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Extended Data Fig. 6 | Lysine 87 acetylation in the first central repeat of 
cortactin is predicted to affect electrostatic interactions with the first 
daughter filament actin subunit. Cortactin K87 is in close proximity to a 

negatively charged patch formed by E93 and D56 in DA1. K87 is shown as sphere 
representation. DA1 is shown in surface representation coloured by electrostatic 
potential.
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Extended Data Fig. 7 | Microfluidics-based debranching assay shows the 
role of cortactin NtA in branch stabilization. a) A microfluidics setup was 
used to study the stability of Arp2/3-mediated branches. Actin filaments were 
attached to the surface of coverslip via their pointed ends. Actin branches were 
generated on top of the pre-existing filament using differently labelled actin. 
The dissociation of actin branches under the experimental conditions were 

observed and quantified. b) The time point when half of the actin branches 
have dissociated under different experimental conditions, taken from the same 
experiments as depicted in Fig. 4b. Each point represents the half dissociation 
time in an independent experiment. Each experiment was repeated three times 
independently and all the repeats were successful. The p-value is estimated by 
two tailed unpaired t-test.
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