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Abstract

This thesis extends the monophonic probability model for music introduced by D. Mumford

and A. Desolneaux [Mumford and Desolneux, 2010] to polyphonic music. An algorithm

is described for finding the most likely interpretation of audio under this model, and the

effectiveness of this method is assessed through examples and discussion.

My algorithm combines dynamic programming, recursive grouping rules and Bayesian

inference. The underlying probability model combines older ideas from signal processing with

newer ideas coming out of Bayesian inference in the form of hyperpriors over the parameters

governing the audio generating process.

These techniques allow the model to adapt to novel audio sources (vocals, music instru-

ments, background noises, special effects) and thus is not easily fooled by out-of-sample audio

recordings. The reason for this is that the algorithm and model only relies on a small handful

of parameters. In particular, it does not rely on a training data-set of audio-transcription

pairs for the model to be learned. This is in contrast to the most popular methods em-

ployed today. Nevertheless the model is sufficiently rich to allow the transcribed audio to

be re-synthesised, thus allowing the user to readily assess the effectiveness of the inferred

representation.

Keywords

Gaussian processes, Poisson processes, dynamic programming, automatic music transcription,

circulant matrices, audio segmentation, Pattern Theory.
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1. Introduction

The objective of this thesis is to develop a probability model for polyphonic music based on

the techniques and philosophy of Pattern Theory as described in [Mumford and Desolneux, 2010].

The thesis splits into three chapters, the first chapter is introductory, providing a short

literature review and situates the present thesis within this context. The second chapter

then focuses on the monophonic model and ideas from [Mumford and Desolneux, 2010], and

discusses a number of elaborations on this model. The final chapter presents the extension

of these ideas to polyphonic music and discusses an algorithm for applying the model to real

music.

1.1. Thesis contributions. The novel contributions of the thesis centre mainly around

additions to the techniques and models developed in [Mumford and Desolneux, 2010]. Below

is a list of these original contributions and the location in the thesis where they can be found.

Proof for the exact determinant of the precision matrix of periodic white noise (2.1.1).

Definition of periodic Brownian motion and derivation of precision matrix and exact de-

terminant (2.2.1). Discovery of a Gaussian model for signals with missing even harmonics

(e.g. clarinet) (2.2.2). Sparse Gaussian treatment of the famous source-filter model for

speech, with closed form determinants and an algorithm (inc. demonstration) for performing

formant analysis with this model (2.2.3). Proposal of the compound Poisson process as a

model for musical note sequences (with discussion) (2.3.1). Proof for the exact determinant

of the weak string model (2.4.1). A probability model for chords with amplitudes which

vary over the course of the note, plus algorithm for parsing such a chord - identifying the

individual frequencies in the chord, along with a description of how the amplitude varied

(3.1.2). A probability model for random chord sequences with notes that can overlap in time

(3.2.3). The binding energy algorithm for segmenting a piece of polyphonic music under
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the combination of the above two models (3.2.3). Proposal to use spectral hyper-priors to

improve circulant Gaussian processes so they can handle complicated sounds (3.3).

By way of demonstration of the reasonableness of these ideas, I have provided example

audio clips (indian.wav, segovia.wav, bangbang.wav) along with their re-synthesis by the

model after inference. By comparing the original audio (which can be heard in the left audio

channel) with a synthesised version, inferred via the model from the original audio (presented

in the right channel), it is possible to build up a good impression of what the model can and

cannot do. The examples have been chosen to demonstrate some strength or weakness of

the methods and not as a representation of how the model performs in general.

As discussed in the review article [Benetos et al., 2019], there are many different ap-

proaches to modelling polyphonic music. These approaches compete with one another in

the annual MIREX competition. The model we present at the end of Chapter 3 ought to

be submitted and evaluated against these competitors. My impression is that it won’t be

competitive in specific domains, but it will give reasonable results over a very wide domain.

The reason for this is that the model does not use any training data, being based on very

simple and general stochastic models for audio. It does, however, require a small number of

tuning parameters and these parameters must be given reasonable values for the model to

succeed. Ideally I’d have found a way to set these parameters automatically from the current

input data, but such a method never materialised.

1.2. Literature review. Perhaps the closest model in the current literature to that pre-

sented in Chapter 3 is the factorial hidden Markov model developed in [Bach and Jordan, 2005].

This model supposes the polyphonic music sequence develops according to a series of par-

allel Markov chains and combines this with a model for the spectrum of a segment of the

windowed Fourier transformed audio. Inference with this model proceeds through dynamic
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programming combined with a search algorithm for deciding if a particular segment is

voiced/unvoiced and also what pitches (if any) are present. We borrow much from this

basic setup but also fix a number of weaknesses. Firstly, we do not pre-segment the time

domain before deciding what pitches are where, because it is impossible to separate the task

of identifying the pitches from identifying the location of the boundaries. We believe these

tasks should be solved together and doing so results in more accurate pitches and boundaries.

The reason for this is simply that if a segment contains the end of one note and the beginning

of another (something which unavoidably happens when the data a segmented prior to

classification) it is impossible to detect the true pitch. The algorithm presented in Chapter 3

builds larger segments1 out of smaller segments based on whether the amplitudes and pitches

in the adjacent smaller segments are sufficiently alike to warrant grouping. Likeness being

based on goodness-of-fit relative to an explicit stochastic model for sound waves with such

pitches and amplitudes. We do however utilise a similar search-based approach to finding

the best fitting pitches as used in [Bach and Jordan, 2005] and [Cemgil et al., 2006].

Another key difference of the model in Chapter 3 with that in [Bach and Jordan, 2005] is

that it utilises a model over audio not over spectra. This allows new audio to be synthesised,

and more importantly, lends itself to more robust modelling if there are features in the

audio not described by the spectral templates. This is a key aspect of the Pattern Theory

1By a segment we mean a contiguous section of the audio recording. A segment will have a start time and
an end time. Two adjacent segments (of any lengths) may thus be considered grouped into a third larger
segment which inherits its start time from the earlier of the two segments and its end time from the later of
the two segments. Starting from the smallest segments of a recording (the individual samples), through a
process of pairwise grouping, a segmentation of the entire recording emerges. This segmentation consists of
the segments which are not parts of a larger segment (i.e. have not themselves been paired and grouped).
The models in Chapter 2 of this thesis, only try to group adjacent segments when they are detected to have
the same period. Thus the final segmentation consists of a collection of non-overlapping segments which
cover the entire the recording, thus implicitly also yielding the boundaries in time across which the period of
the audio is perceived (by the computer) to have changed.
This is an unsatisfactory representation for most music as it doesn’t permit the end of one note to overlap
with the beginning of another note (a small instance of polyphony). Chapter 3 of this thesis is therefore
concerned with extending these pairwise grouping operations to allow the inference of overlapping sections.
This structure could be more precisely described using the concept of a parse tree (see Chapter 3 in
[Mumford and Desolneux, 2010] for an application of this logic to the segmentation of images).
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philosophy which is that the raw data should be directly modelled (and synthesised) rather

than transformed or otherwise simplified/reduced (such as is done when pre-processing by

windowed Fourier transform).

An important similarity with the model in [Bach and Jordan, 2005], is that we also

employ Bayesian spectral hyperpriors to allow for a wide domain of possible audio to be

accurately segmented and classified. It is impossible ahead of time to pre-judge what type of

instrument or sounds will be present in any audio and so this technique (we would argue) is

absolutely fundamental to the project of developing a fully general model for audio. The

hyperpriors we use in this thesis (log-Gaussian and Gamma) are quite different to the model

in [Bach and Jordan, 2005] and this is because I have chosen them specifically to work well

with circulant Gaussian processes. These priors allows the model to adapt to complex sound

effects and handle unique features such as missing fundamentals as commonly occur in piano

music. However, these priors are still far too generic. They have essentially been lifted out

of the statistical literature and applied here to audio (we believe for the first time). It would

be better if these hyperpriors can be made more specific to the problem of modelling audio.

A final weakness of [Bach and Jordan, 2005] which we have sought to remove, is the

dependency on large amounts of training data. Large data is a very common feature

of audio processing algorithms and is indeed the hallmark of the current state of the

art in this field which employs these big data-sets to tune neural network classifiers (see

[Hawthorne et al., 2017]). I do not believe these data sets to be necessary. In just the same

way that Newton’s laws of motion were not inferred through a data set containing the

trajectories of objects, resulting in a black-box which can predict the path of an object, but

can not state the equation that underlies all the paths, I believe it is possible to write down a

stochastic model for all audio (i.e. the Law for audio), which makes it clear how humans can
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understand such a diverse and varied set of audio inputs in totally novel and unpredictable

environments. I believe the work developed in [Mumford and Desolneux, 2010] shows that

this is not a pipe-dream and the extensions explicated in this thesis further support this

conjecture.

A key modelling tool in the thesis is the use of Gaussian processes to describe the

patterns found in audio waves. Our work builds on the basic circulant model presented

in [Mumford and Desolneux, 2010] (which we call later on periodic white noise), and this

thesis is unique in pushing the circulant model as far as possible in the space of audio

modelling. Other authors have sought to use Gaussian models to model audio. For example

in [Wilkinson et al., 2019] and [Alvarado and Stowell, 2016], covariance matrices specifically

designed to produce periodic signals with variable amplitudes are used to classify new audio.

The magic in their approach is that they can use these priors for audio to fill in missing

segments of an audio wave in the same way (perhaps) a human is able to fill in the gaps

in sound produced by interruptions. It’s quite remarkable that they are able to achieve

this with Gaussian models and this to my mind confirms the Gaussian model as the core

stochastic model for processing audio. However, working with the covariance matrix in the

way these authors do, is generally too inefficient for the task of large scale simultaneous

segmentation and classification. The reason for this is that to evaluate a Gaussian density

formulated in terms of a covariance matrix requires the covariance matrix to be inverted

and this is generally too slow given the variable lengths of the clips needing to be evaluated

and the number of times they need evaluating in order to search for a well fitting model.

The circulant approach taken in this thesis gets around this problem by formulating models

in terms of the precision matrix and further exploiting the intimate connection between

circulant matrices and the Fourier transform.
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This idea is of course not novel. Some of the most well known Gaussian processes (e.g.

Brownian motion) are most naturally written down in term of the precision rather than the

covariance. But it is not at all trivial to find new expressions for Gaussian processes in terms

of the precision matrix which model the thing you are interested in. For example, in the

present case of audio, the challenge is to capture the essence of an audio signal, complete

with random variations, with a simple closed form equation that can be rapidly evaluated

many thousands of times on the computer. The genius of D. Mumford and A. Desolneux

largely solved this with their model for a musical note. This model has an extremely simple

formula and works remarkably well. The details of this formula is the subject of the next

chapter. We first describe their model in full detail and then offer a number of elaborations

and refinements to the basic equation.

1.3. An introduction to Gaussian processes. All the Gaussian models discussed in this

report are examples of (or derivatives of) the circulant Gaussian model. What follows is a brief

review of this topic based on Chapter 2 of [Mumford and Desolneux, 2010]. Complementary

discussions can be found in [Grenander, 1952], where it is remarked that [Whittle, 1951]

pioneered the use of these models for time-series analysis.

1.3.1. Circulant Gaussian processes. A circulant Gaussian density p(s) is written

p(s) =

(
detQ(a)

(2π)N

) 1
2

e−(s−µ)TQ(a)(s−µ)/2, (s, µ ∈ RN ), (1)

where Es = µ and E(s−µ)(s−µ)T = Q(a)−1 and Q(a) is a symmetric circulant matrix with

top row a = (a0, . . . , aN−1) ∈ RN . The next couple of paragraphs review circulant matrices.

See [Davis, 2013] for more details.
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By definition, a circulant matrix M(a) (with top row a) is such that each row is a right-

shifted copy of the row above (with wrap-around). Therefore the top row a defines the entire

matrix M(a). It follows that if a circulant matrix is symmetric then a has the following

reflection property: ak = aN−k for k = 0, . . . N − 1. To see this, consider the following

decomposition of M(a) into a weighted sum of permutation matrices:

M(a) =

N−1∑
k=0

akπ
k, π ≡



0 1 0 . . . 0 0 0

0 0 1 0 . . . 0 0

0 0 0 1 0 . . . 0

...
...

...
...

...
...

...

. . . 0 0 0 0 1 0

0 . . . 0 0 0 0 1

1 0 . . . 0 0 0 0



. (2)

This decomposition is always available for circulant matrices. Then, by looking at π0 it is

clear that a0 determines the constant diagonal of M(a) = M . Furthermore π shows that a1

occupies both the second element of the top row and the first element of the bottom row of

M . Hence if M is symmetric, this also places a1 in the last position of the top row, which

by definition is occupied by aN−1, thus a1 = aN−1. Similar reasoning applies to π2 etc...

showing that ak = aN−k for all k when M is symmetric.

A computationally useful consequence of decomposition in Equation 2 is that circulant

matrices (both symmetric and non-symmetric) are diagonalised in the Fourier basis with

eigenvalues λk = pa
(
ωk
)
(for k = 0, . . . , N − 1), where ω ≡ e2πi/N and pa(x) ≡

∑N−1
k=0 akx

k.

Therefore when µ = 0, Equation 1 can be written in terms of an inner-product between

the square modulus of the Fourier transformed data |ŝk|2 and the spectrum E|ŝ|2 ∈ RN .

To see this, let F ∗k,j = 1√
N

(ωkj) (for k, j = 0, . . . , N − 1) be the inverse Fourier transform
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matrix and ∗ mean conjugate transpose. Then the quadratic form sTQ(a)s is equal to

(Fs)∗diag(λ0, . . . , λN−1)(Fs) which evaluates to
∑
k λk|ŝk|2. To show that E|ŝ|2 = λ−1 note

that since ŝ = Fs

E|ŝ|2 = diag (EFs(Fs)∗) = diag(FQ−1F ∗) = λ−1. (3)

Circulant Gaussian densities (Equation 1) are finite dimensional distributions of a class of

stochastic processes known as random Fourier expansions. A random Fourier expansion is a

stochastic function G(x) : R→ R of the form

G(x) =
∑
n∈Z

Ane
2πinx, (x ∈ R), (4)

where all Ān = A−n are independent mean 0 complex Gaussian variables, with variances

depending only on n ([Mumford and Desolneux, 2010], Page 354). Writing σ2
n = E|An|2, the

following useful facts hold.

• G is 1-periodic: G(x) = G(x+ 1) for all x.

• The covariance function is given by EG(x1)G(x2) =
∑
n σ

2
ne

2πin(x1−x2).

The connection with circulant Gaussian distributions is found by sampling G on an equal-

spaced grid s ≡ (G(0), G(1/N), . . . , G((N − 1)/N)T . It follows that s is a zero mean

Gaussian with circulant covariance matrix C(b) where bN−k =
∑
n σ

2
ne

2πin(N−k)/N =∑
n σ

2
ne
−2πink/N = bk. Thus the precision matrix Q(a) = C(b)−1 is also circulant with

pa(ωk) = pb(ω
k)−1 (by diagonalization).

1.3.2. Sparse Gaussian Processes. This section provides a definition of the term sparse in

the context of Gaussian processes as used in the present thesis. There are lots of different

meanings of the term sparse in mathematics, so to avoid any confusion here I make explicit
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what I mean, acknowledging that perhaps this is not standard and is not a term used in

[Mumford and Desolneux, 2010] either.

By a sparse Gaussian process, we shall mean that the number of non-zero elements in a

does not grow with N . When this holds, there is always an O(N) algorithm to evaluate p(s).

For example, assume a0 6= 0 and a1 = aN−1 6= 0 but that the rest of a is 0. Then inspection

of Equation 2 shows that the density p(s) only depends on the data s through two statistics

r0 = sT s and r1 = sTπs, which can be computed with cost O(N). The quadratic sTQ(a)s

is therefore simply a0r0 + 2a1r1. To calculate log detQ(a), first evaluate the eigenvalues

λk = a0 + 2a1 cos(2πk/N), k = 0, . . . N − 1,

and finally log detQ(a) =
∑
k log λk, both of which are O(N/2) since λk = λN−k. Non-sparse

circulant Gaussian densities p(s) (Equation 1) have an O(N logN) algorithm for density

evaluation based on
∑
k λk|ŝ|2 or else

∑
k akrk since rk = p|ŝ|2(ωk). A general Gaussian

density has O(N3) time complexity ([Wood, 2015]).

1.3.3. Simulating a Gaussian Process. It is often useful to be able to sample from a probability

model to find out what data the model assigns high probability. With this in mind, samplegau

is a function, written in the R programming language ([R Core Team, 2018]) which samples

from a Gaussian density with inverse spectrum λ = lambda (eigenvalues of Q(a)).

samplegau = function(lambda) {

N = length(lambda)

z = complex(N,rnorm(N),rnorm(N))/sqrt(lambda)

Re(fft(z))/sqrt(N)

}



16

To prove that this samples the correct model, we need to recall the following fact about

mean 0 complex random vectors z ∈ CN :

E<z<zT =
1

2
<
(
EzzT + Ezz̄T

)

In this equation, z̄ ∈ CN is the complex conjugate of z and <z ∈ RN is the real part of

z. The above function works by letting zk = (xk + iyk)/
√
λk where x and y are length N

independent, multivariate standard normal vectors and λk = pa(ω
k). It follows then that

Ezizj = 0 always and Eziz̄j = 2/λi if i = j and is otherwise 0. The real part of F ∗z thus

has covariance matrix

F ∗diag(λ0, . . . , λN−1)−1F = Q(a)−1.

The code evaluates <Fz in the last line, but since z̄ has the same distribution as z, <F z̄ =

<F̄ z and F̄ = F ∗, it follows that

E(<Fz)(<Fz)T = E(<F z̄)(<F z̄)T = E(<F ∗z)(<F ∗z)T .

1.3.4. The basic limitation of circulant processes. If s ∈ RN is a recorded sound wave, it

is natural to write ŝk = |ŝk|eiθk , for phases θk ∈ [−π, π] such that θk = −θN−k. Then it is

clear that the circulant Gaussian density is phase insensitive. This is because the circulant

density p is a function of the sound-wave s only through the statistics |ŝ|2:

p(s) ∝ e− 1
2

∑
k λk|ŝk|

2

.

A consequence of this is that one can take a short sound recording s, and sample a circulant

Gaussian density with the same spectrum as s, that is by using samplegau with λ = |ŝ|−2,

and quite often this produces something totally unlike s, because the recognisable content in
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s is contained in the phases. Furthermore, it is currently understood that phase is important

to accurate detection of note onsets, see [Benetos and Stylianou, 2010] for discussion. Better

models for sounds could be found by moving away from the Gaussian distribution and using

a measure on RN with density

p(s) ∝ e−
∑
k λk|ŝk|

2

f(θ0, . . . , θN−1)

for some function f ≥ 0. This idea is not explored in this essay and consequently when

analysing audio in the sequel it must be remembered that we have thrown away all information

contained in the phases.

2. Monophonic probability models

In this chapter the main idea is to define sparse Gaussian process models and then apply

them to the problem of analysing a sound-wave s ∈ RN by segmenting it into non-overlapping

regions according to the model which best describes the statistics of s restricted to that

region. Sparsity ensures density evaluation is O(N) and therefore this methodology results

in very fast analysis algorithms.

This chapter has four sections. The first section describes the foundational work of

[Mumford and Desolneux, 2010]. In that book the authors define a sparse Gaussian model

for approximately periodic sounds and then go on to show that a dynamic programming

algorithm can be used to extract and classify the notes appearing in a monophonic2 piece

of music. The way this works is to assume the notes break up the soundwave according to

a Poisson process and then within each region the periodic Gaussian model describes the

2Where only one sound can happen at a time.
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statistics of the sound of each note. The method is so elegant that it cries out for further

development.

The second section introduces new sparse models for audio. The main model combines

Brownian motion with the periodic model just described to produce a Gaussian density which

is sparse, smooth and approximately periodic. This smooth model is shown to be a more

accurate model for music sounds. Resonance is then added to the mix. Resonance is used

to classify vowel sounds in speech and also appears in music as well. We apply this model

to the problem of formant analysis - a sub-problem of the much larger speech recognition

problem. Also described in this section, is a model for musical sounds produced by tubes

which are open at one end and closed at the other (e.g. a clarinet) and also it is shown how

certain members of the popular ‘1/fα’ noise models can be given a sparse treatment. The

research project here is to generate a large family of these sparse Gaussian processes that

can then be applied wholesale to all one-dimensional signals.

In the third section of this chapter, we return to the problem of segmenting monophonic

signals and apply the periodic Brownian motion model to a piece of Indian classical music.

An important development is that it is possible to allow each note in a piece of music to

posses it’s own amplitude and estimate this amplitude at no additional computational cost

when transcribing music. This experiment is then followed by a discussion on the use of

compound Poisson processes as more realistic models for music (for certain Levy measures)

and a dynamic programming algorithm is derived for segmenting audio with these models.

For the final section, we shift gears somewhat and extend the models and methods to

cases where the mean of the process being modelled is not assumed 0. We develop marginal

maximum likelihood inference for a model which supposes the process has piecewise linear

means and restored Brownian motion errors. In the process of developing this algorithm



19

we derive closed form expressions for the determinant of restored Brownian motion where

previously only approximations have been known.

2.1. The Mumford-Desolneux model for music. Sounds produced by musical instru-

ments, such as a flute or an oboe, are characterised by being strongly periodic. What this

means is that if s ∈ Rn is a sound-wave with period j then sk ≈ sk+j for all k. One popular

approach to detecting this period automatically is based on looking for the j for which

the sum
∑
k(sk − sk+j)

2 is smallest ([De Cheveigné and Kawahara, 2002]). For example,

if ∆t gives the time (in seconds) between adjacent samples (sk, sk+1), then a period of j

samples corresponds to a frequency of 1/(j∆t) hertz. According to ISO 16:1975, the musical

note E4 has a frequency of about 329 hertz. Thus if 1/∆t = 44100, and s is an E4 then∑
k(sk − sk+j)

2 will have a local min at j ≈ 44100/329 ≈ 134.

In ([Mumford and Desolneux, 2010], Page 76) this idea is turned into a full probability

model over musical sounds by assuming a Gaussian model, with precision Qj defined by

pj(s) =

(
detQj
(2π)n

) 1
2

e−α
∑n−1
k=0 (sk−sk+j (mod n))

2/2−β
∑n−1
k=0 s

2
k/2, (s ∈ Rn). (5)

IdentifyingQj with the circulantQ(a), it is simple to read off the components of a: a0 = 2α+β,

aj = an−j and aj + an−j = −2α where α, β > 0 and the rest of a is 0. In what follows I will

refer to the stochastic process defined by this density as periodic white noise (the authors

did not give it a name). The name is appropriate because the magnitudes of α and β control

the amplitude of the signal and the strength of the periodicity. When α = 0, the process

reduces to white noise with variance (i.e. amplitude) proportional to 1/β. As α increases

away from 0, deviations away from periodicity (i.e. large values in the terms (sk − sk+j)
2)

reduce the density more intensely and thus the process takes on the characteristics of a noisy

periodic wave.
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The authors (ibid. Page 89) then generalise this model to melodies. A melody s =

(s1, . . . , sN ) ∈ RN contains some unknown number m of notes, concatenated, but with

varying duration {ni} = {n1, . . . , nm} such that
∑
i ni = N . Let {ti} denote the start times

1 = t1 < t2 < . . . tm ≤ N of the notes and let ji ∈ J denote the ith period. The full

probability model for a melody is written

p(s,m, {ni}, {ji}) =
θm−1e−θ(N−1)∆t

√∏m
i=1 detQji

|J |m(2π)N/2
e−(2α+β)sT s/2+α

∑m
i=1 s(i)

Tπjis(i), (6)

where s(i) = s[ti,ti+ni). Hence the start times {ti · ∆t} are a Poisson process with

rate θ > 0 and the the periods {ji} are distributed independent uniform over J . See

[Cox and Lewis, 1966] for a derivation of the density of an ordinary Poisson process. Note

that nm = N − tm + 1 is a lower bound on the last duration because the last event may

have extended beyond the duration of the recording. Solving a model like this amounts

to finding the best guesses for the note start times {ti} and periods {ji} given some fixed

input recording s = (s1, . . . , sN ). As proposed in [Mumford and Desolneux, 2010], and will

be shown later, this can be done via dynamic programming.

2.1.1. Exact and approximate determinants. In this section we effectively solve some exercises

in the Chapter 2 of the book [Mumford and Desolneux, 2010]. These exercises are offered

without solutions (of course) and we provide our solution to them here because I believe

they go beyond the requirements of the exercises. The exercises ask for various approximate

results about the determinants of certain circulant matrices, what follows are derivations of

the exact determinants.
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For computations with j−periodic white noise pj , we need the determinant of the matrix

Q defined by the quadratic form

(x0, . . . , xN−1) 7−→ (2α+ β)

N−1∑
k=0

x2
k − 2α

N−1∑
k=0

xkxk+j (mod N)

where α, β > 0. Looking at this equation, it is clear there are j chains of linked variables of

the form Dm = {m + kj (mod N) : k ∈ Z} for m = 0, . . . , j − 1. The index of every data

point is in at least one chain. Moreover, if Dm and Dn share at least one index then they

are identical. The determinant is a function of the size and number of distinct chains. For

example, when N = qj where q is some integer, then there are j distinct chains each of

length q. Hence detQ = (detCq)
j where

Cq =



2α+ β −α 0 . . . 0 −α

−α 2α+ β −α 0 . . . 0

0 −α 2α+ β −α 0 . . .

...
...

...
...

...
...

. . . 0 −α 2α+ β −α 0

0 . . . 0 −α 2α+ β −α

−α 0 . . . 0 −α 2α+ β



∈ Rq×q.

More generally, if N = qj + r (for r = 0, 1, . . . , j − 1) then the determinant becomes

detQ =
∏
k

detCmult(ck),

where (c1, c2, . . . ) are the cycles in the cyclic permutation that maps r to 0 and mult(ck) =

q|ck|+ |{i ∈ ck : i < r}|.
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In [Mumford and Desolneux, 2010] (103− 104) it is shown that

detCq ≈ q2βαq−1 ≈

(
2α+ β +

√
β2 + 4αβ

2

)q
(7)

when α� β > 0. But in fact the exact determinant of Cq can be found (in two very different

ways). Indeed, we will now derive a closed form formula for the determinant of a matrix C̃q

with same 0 elements as Cq but with x = 2|α|+ β on the main diagonal and y = α on the

non-zero off diagonals, where α, β ∈ R. (This matrix C̃q, is slightly more general than Cq

and it will crop up when we examine the case of open-closed tubes later on.) We shall show

that

det C̃q =

(
2|α|+ β +

√
β2 + 4|α|β

2

)q

+

(
2|α|+ β −

√
β2 + 4|α|β

2

)q

− 2(−α)q. (8)

The proof comes from noticing that C̃q is very nearly tri-diagonal. Then expanding along

the top row: det C̃n =

xdet



x y 0 . . . 0

y x y 0 . . .

...
...

...
...

...

. . . 0 y x y

0 . . . 0 y x


− y det



y y 0 . . . 0

0 x y 0 . . .

...
...

...
...

...

. . . 0 y x y

y . . . 0 y x


+ φny det



y x y 0 . . .

0 y x y . . .

...
...

...
...

...

0 . . . 0 y x

y 0 . . . 0 y


,

where φn = 1 when n is odd and −1 when n is even. The first matrix is tri-diagonal Tn−1.

The second matrix is tri-diagonal Tn−2 in the bottom right and lower triangular in the top

right. The third matrix is upper triangular in the top right and tri-diagonal Tn−2 in the

bottom right. Hence we have the following

det C̃n = xdetTn−1 − y(y detTn−2 + φn−1y
n−1) + φny(yn−1 + φn−1y detTn−2).
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It is well known that the determinant of a tri-diagonal matrix satisfies the following second

order recurrence relation

detTn+2 = x detTn+1 − y2 detTn (9)

with boundary conditions detT0 = 1 and detT1 = x. Hence the circulant determinant that

we are trying to calculate is more neatly expressed as

det C̃n =


detTn (n = 0, 1, 2),

detTn + 2φny
n − y2 detTn−2 (n > 2).

(10)

To solve Equation 9, we can use the standard method (as say described in [Grimmett and Welsh, 2014]).

First, the solutions of θ2 − xθ + y2 = 0 look like

θ1 =
x+

√
x2 − 4y2

2
, θ2 =

x−
√
x2 − 4y2

2
,

which are both real since since x2 − 4y2 = β2 + 4|α|β > 0. Secondly, we have that

detTn = c1θ
n
1 + c2θ

n
2 , where c1 + c2 = 1 and c1θ1 + c2θ2 = x from the boundary conditions.

Hence c1 = x−θ2
θ1−θ2 = θ1

θ1−θ2 and c2 = 1− c1. Thus

detTn =
θn+1

1 − θn+1
2

θ1 − θ2
=

n∑
k=0

θn−k1 θk2 .

Plugging this last expression into Equation 10 and noting that θ1θ2 = y2 gives det C̃n =

θn1 + θn2 + 2φny
n, completing the proof.
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An alternative approach to the problem of finding the determinant of Q is to re-parametrise

the matrix as follows. Let β0 > 0 and γ ∈ [0, 1) and define the quadratic form

xTQx = β0

∑
k

x2
k +

β0γ

(1− γ)2

∑
k

(xk − xk+j (mod N))
2

= β0
1 + γ2

(1− γ)2

∑
k

xk −
2β0γ

(1− γ)2

∑
k

xkxk+j (mod N)

=
β0

(1− γ)2

∑
k

(xk − γxk+j (mod N))
2.

This is equivalent to the original matrix when β0 = β and f(γ) = γ/(1 − γ)2 = α/β.

Furthermore f ′ = 1+γ2

(1−γ)4 is strictly positive and thus f is strictly increasing from 0 to ∞ as

γ ranges from 0 to 1, so that f is invertible. Consequently we can always re-express (α, β)

in terms of (γ, β0) and vice versa. But now it is easy to see that

detQ = βN0 detQ(a)/(1− γ)2N ,

where a0 = 1 + γ2, aj = aN−j = −γ and the rest 0. Hence to find the determinant of Q, all

that is needed is the determinant of Q(a) and this is given by

detQ(a) = (1− γN/j)2j (11)

whenever N/j = q is an integer. To see this, write ω = e2πi/N and ω0 = e2πi/q and consider

the expression for the determinant in terms of the eigenvalues λk = pa(ωk) of Q(a):

detQ(a) =

N−1∏
k=0

(1 + γ2 − γωkj − γωk(N−j)) =

N−1∏
k=0

|1− γωjk|2

=

N−1∏
k=0

|1− γωk0 |2 =

(
q−1∏
k=0

|1− γωk0 |2
)j

= (1− γq)2j .
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(a) (b)

(c) (d)

Figure 1. Plots comparing periodic white noise with a real musical sound. (a) A
sound-wave of a flute which is approximately periodic (with period 134 samples) and
locally very smooth. (b) The (log) empirical spectrum of the flute soundwave, where the
x-axis marks off the location of the harmonics. The power in this spectrum is seen to
rapidly decrease with increasing harmonic. (c) A sample from approximately periodic
white noise with the same period as the recorded flute. This waveform is approximately
periodic, but unlike the flute, is very noisy. (d) The empirical and mean spectrum of the
sample from periodic white noise - these spectra posses harmonics and have constant
power.

The last part follows from the fact that the numbers ωk0 for k = 0, . . . , q − 1 solve zq = 1

and thus zq − 1 =
∏q−1
k=0(z − ωk0 ) for all z ∈ C.

2.2. Sparse acoustic models. Consider Figure 1. The top row displays the waveform and

log empirical spectrum3 of a recorded flute playing the note E4 (329 Hz). The recording has

3The empirical spectrum of s ∈ RN is the squared modulus |ŝ|2 of the discrete Fourier transform ŝ ∈ CN of
s, defined by ŝk = N−

1
2
∑N−1

j=0 sjω
−jk for k = 0, . . . , N − 1.
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a sampling rate of 1/∆t = 44100 samples per seconds. The empirical spectrum contains

sharp peaks at integer multiples of N/j0 where j0 = 134 is the integer period. The locations

N/j0, 2N/j0, 3N/j0, . . . are called the harmonics of s and N/j0 is the fundamental frequency.

The waveform is clearly highly periodic and locally very smooth. Note that here we are

talking about temporal smoothness, which essentially means that adjacent samples si and

si+1 are near each other with high probably, as opposed to spectral smoothness, which

would say that ŝi and ŝi+1 are near each other with high probability. Temporal smoothness

generally arises when power in the spectrum decreases rapidly as frequency increases.

Contrast this with the same analysis run on a sample from approximately periodic white

noise pj0 (Equation 5). The plots are displayed in the second row of the same figure. Since

the top row a of the precision matrix of pj0 is given by a0 = 2α+ β, aj0 = aN−j0 = −α, and

as described in the introduction, the spectrum of a circulant Gaussian can be expressed as

the complex polynomial E|ŝk|2 = pa(ω
k)−1 it follows that the spectrum of periodic white

noise is given by an inverted squared sine wave:

E|ŝk|2 = 1/ (2α+ β − 2α cos(2πj0k/N)) (12)

= 1/
(
β + 4α sin2(πj0k/N)

)
, (13)

for k = 0, . . . , N − 1, where the above follows from the trigonometric relation 2 sin2(x) =

1− cos(2x). The spectrum of the model is overlaid on the empirical spectrum. The shape of

the harmonics captures precisely4 the shape of the flute harmonics, but in contrast to the

flute, the power in the harmonics is constant when it ought to rapidly decay with increasing

frequency and consequently the waveform of a realisation from pj is not smooth. We therefore

conclude that pj is not a wholly accurate model for flute notes. In fact, most harmonic

4An astonishing match between reality and mathematics.
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sounds produced by actual musical instruments have a spectrum with decreasing power in

the harmonics and thus much smoother wave-forms.

To provide a better model for musical sounds, in this section we define approximately

periodic Brownian motion, which is sparse, smooth and approximately periodic. This model

arises by passing approx. periodic white noise through the geometric filter:

sk = (1− γ)
∑
u

γuwk−u, k = 0, . . . , n− 1.

for γ ∈ [0, 1] where w ∼ pj(w). We will denote the resulting density bj(s) and derive it’s

basic properties in the next section. After this we derive a sparse periodic model for the case

of the clarinet which lacks certain harmonics and then derive a sparse model incorporating

resonance and apply this to the problem of speech recognition.

2.2.1. Periodic Brownian motion. The standard approach to smoothing a signal s(x) : R→ R

is to pass it through a filter. The simplest such filter is (perhaps) the exponential filter

δ0e
−δ1x, vanishing for x < 0 with δ0, δ1 > 0. Letting G(x) : R → R be a random Fourier

expansion then a smooth Fourier expansion s(x) can be defined by

s(x) = δ0

∫
u≥0

e−δ1uG(x− u)du =
∑
n

Bne
2πinx,

where

Bn = B̄−n =
δ0An(δ1 − 2πin)

δ2
1 + (2πn)2

.

Inspection of the variance

E|Bn|2 =
δ0σ

2
n

δ2
1 + (2πn)2

(14)
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shows that s(x) retains the structure in G’s spectrum {σ2
n} while forcing the power to

decrease like 1/(n2 + const.).

A useful class of noise models are 1/fα noises for α ≥ 0 ([Lindgren and Sandsten, 2014],

Page 88 and [Mumford and Desolneux, 2010], Page 74). These models have a spectrum

which goes down like 1/nα. When α = 0, the result is white noise, when α = 1 the model is

pink noise and when α = 2 the result is Brownian motion. Hence exponential smoothing

results in a signal whose waveform looks locally like a Brownian motion path.

To derive a sparse smooth Gaussian it is simpler to work in discrete time where the analog

of the exponential filter is the geometric smoother5. Let w = (w0, . . . , wN−1) be an input

sequence, γ a constant in [0, 1). A geometric smooth output sequence sk is defined by

sk = (1− γ)

∞∑
u=0

γuwk−u (mod N) (15)

for k = 0, . . . , N − 1. Let’s derive the spectrum of s. Since the kth entry in the Fourier

transform of a u-shifted sequence (w0−u, w1−u, . . . , wN−1−u) (subscripts modulo N) is simply

the Fourier transform of the original sequence pre-multiplied by ω−uk, for k = 0, . . . , N − 1,

we have

E|ŝk|2 = (1− γ)2E|ŵk|2|
∞∑
u=0

γuω−uk|2 =
(1− γ)2

|1− γω−k|2
E|ŵk|2.

On the right hand side of the above equation we have the eigenvalues of Q(a)−1 being

multiplied by (1 − γ)2/(1 + γ2 − γωk − γωN−k) which are the eigenvalues of the matrix

Q(b)−1 where b0 = (1+γ2)/(1−γ)2 and b1 = bN−1 = −γ/(1−γ)2 and the rest 0. Hence if w

is Gaussian with precision Q(a) it must be that s is Gaussian with precision Q(c) = Q(b)Q(a)

5See Chapter 6 in [Lindgren and Sandsten, 2014] for an account of the exponential and geometric linear
filters applied to Gaussian processes
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where

ck =
(1 + γ2)ak − γ(ak−1 + ak+1)

(1− γ)2
, k = 0, . . . , N − 1, (16)

and we define a−1 = aN−1 = a1 and aN = a0. Furthermore, using Equation 11, geometric

filtering modifies the determinant as follows

detQ(c) = detQ(b) · detQ(a) =
(1− γN )2

(1− γ)2N
· detQ(a). (17)

Consequently, geometric smoothing preserves sparsity and closed form determinant calcula-

tions. This makes it a suitable for use in the Poisson process model for processing melodies

previously described. Let’s look at three examples.

Example (a): w ∼ white noise. When w is white noise (precision Q(a), a0 = β, rest

ak = 0) and γ ≈ 1 we get Brownian motion. To see this apply Equation 16. This gives the

precision of s as Q(c) with c0 = β(1 + γ2)/(1− γ)2 and c1 = cN−1 = −γ/(1− γ)2 (the rest

0). Defining β0 = β/(1− γ)2, when γ ≈ 1 the following approximation holds

1

z
e−β0

∑N−1
k=0 (sk−γsk+1 (mod N))

2/2 ≈ 1

z
e−β0s

2
0/2−β0

∑N−2
k=0 (sk−sk+1)2/2.

On the left is the density of s, on the right is the Brownian motion density. The term∑N−2
k=0 (sk − sk+1)2 can be understood as a Riemann sum approximation to the integral of

the square of the derivative of the signal
∫

(∇xs(x))2dx. Thus geometric smoothing works

by constraining the variance of the first derivative.

Above we said that geometric smoothing is the analog of exponential smoothing. A

nice way to see this is to calculate the spectrum of geometrically smoothed input w (where
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E|ŵk|2 = σ2
k).

E|ŝk|2 =
σ2
k

1 + γ2 − 2γ cos(2πk/N)
≈ N2σ2

k/γ

N2(1− γ)2/γ + (2πk)2
, (18)

for k = 0, . . . , N/2 .This approximation makes use of the small angle formula cos(x) ≈ 1−x2/2

for small x. Compare the resulting expression with the exponential smoothing spectrum

Equation 14.

Example (b): w ∼ approximately periodic. When w is a sample from pj0 so that w

has precision matrix Q(a) for a0 = 2α + β and aj0 = aN−j0 = −α, where we will assume

j0 > 1 for simplicity, then geometric smoothing w (Equation 15) results in approximately

periodic Brownian motion s - which has has precision matrix Q(c) with c0 = γ0(2α + β),

c1 = −γ1(2α+ β), cj0 = −γ0α and cj0−1 = cj0+1 = γ1α where γ0 = (1 + γ2)/(1− γ)2 and

γ1 = γ/(1− γ)2. The quadratic form for this j0-periodic Brownian motion looks like

s 7→ (2α+ β)(γ0r0 − 2γ1r1)− 2α (γ0rj0 − γ1rj0−1 − γ1rj0+1) (19)

where rj =
∑N−1
k=0 sksk+j mod N . The quadratic retains the same basic structure as Q(a) :

s 7→ (2α + β)r0 − 2αrj0 but differs in that weighted averages of rj−1, rj , rj+1 are used in

place of the original rj since γ0 − 2γ1 = 1. Another way of writing the quadratic would

emphasise the presence of a first derivative penalty

sTQ(c)s =
∑
k

βs2k + γ1(2α+ β)(sk − sk+1)
2 + γ0α(sk − sk+j)

2

− γ1α
∑
k

(sk − sk+j−1)
2 + (sk − sk+j+1)

2.
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Combining the approximate and exact determinant results we have

detQ(c) ≈
(
1− γN

)2
(1− γ)

2N

(
q2
0βα

q0−1
)j0 (20)

where q0 = N/j0. A plot of the the spectrum of this model, fit to the flute sample, is shown

in Figure 2. The model has captured the decreasing power in the harmonics. Sampling

the fitted model results in a far smoother waveform also shown in the same figure. The

(minimised) negative log likelihood - evaluated on the flute sample - without geometric

smoothing is 251, 842 and the estimated parameters are logα ≈ −9 and log β ≈ −20 (shown

the second row of Figure 1). But with additional geometric smoothing, the negative log

likelihood is brought closer to 0 by about 1 quarter: 190, 182. The parameter estimates

are logα ≈ −15, log β ≈ −21 and γ = .98. Despite this huge improvement in the fit, there

are clear discrepancies between the model and the flute spectrum. In particular, the first

two harmonics are significantly underestimated and the latter harmonics (above no. 7) are

overestimated.

Example (c): w ∼ smooth and approximately periodic. Let w = (w0, . . . , wN−1) be

approximately j0−periodic Brownian motion (with smoothing parameter γ). Geometric

smoothing w (with smoothing parameter ε) results in a doubly smooth j0−periodic signal s.

The precision matrix Q(c) of s is sparse, with determinant

detQ(c) ≈
(
1− εN

)2 (
1− γN

)2
(1− ε)2N

(1− γ)
2N

(
q2
0βα

q0−1
)j0

.

The quadratic form of Q(c) is not particularly nice to write down, so to understand what

twice smoothing amounts to, let’s analyse the simpler case where the input is white noise

instead. In this case, the precision matrix of the output signal x = (x0, . . . , xN−1) has
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(a) (b)

(c) (d)

Figure 2. (a) A realisation from periodic Brownian motion. The path is still periodic
but locally much smoother than periodic white noise. (b) The empirical spectrum of the
flute note with the fitted periodic Brownian motion spectrum superimposed - note that
the harmonics now rapidly decrease with frequency. (c) The empirical spectrum of a
clarinet, note that the even harmonics are significantly weaker than the odd harmonics.
(d) An empirical and mean spectrum of the sparse Gaussian process for sounds with
missing even harmonics introduced here.

quadratic form

x 7→ β
∑
k

(
x2k + (γ1 + ε1)(xk − xk+1)

2 + γ1ε1(xk+1 − 2xk + xk−1)
2) (21)



33

where ε0 = (1 + ε2)/(1 − ε)2, ε1 = ε/(1 − ε)2 and the sums are modulo N . The term∑
(xk+1−2xk +xk−1)2 is a Riemann sum approximation to the integral of the square second

derivative of the signal in continuous time:

∫ (
∇2
tx(t)

)2
dt ≈

∑(
xk+1 − xk

∆2
t

− xk − xk−1

∆2
t

)2

∆t

∝
∑

(xk+1 − 2xk − xk−1)2.

By considering a second application of the argument that lead to Equation 18 we see that

the spectrum E|x̂k|2 of (x0, . . . , xN−1) is proportional to 1/k4, placing this model within

the family of 1/fα noise models. Repeated application of the geometric smoother therefore

produces all 1/fα models with even integer α.

In the spatial statistics literature the non circulant version of this model is referred to as

a second order random walk ([Rue and Held, 2005], Page 110) and in the computer vision

literature (x0, . . . , xN−1) is referred to as a ‘snake’ ([Mumford and Desolneux, 2010], page

132). Snakes serve as the basic model for boundaries between objects in an image. The

circulant version of this model derived above would only make sense if the boundary being

modelled forms a (possibly self-intersecting) closed loop. See [Grenander, 1996] for examples

of this idea applied to potatoes.

2.2.2. Open-closed tubes. The second row of Figure 2 shows the spectrum of a recorded clar-

inet. Unlike the flute, which possess all harmonics N/j0, 2N/j0, 3N/j0, . . . , the clarinet only

has odd harmonics N/j0, 3N/j0, 5N/j0 . . . . Strictly speaking, the clarinet has significantly

weaker even harmonics. In particular, the clarinet lacks completely a second harmonic 2N/j0

and barely has a fourth 4N/j0. Possessing weak even harmonics is a common property of

periodic signals generated by tubes which are open at one end and restricted/closed at the
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other The clarinet fits this description because the mouthpiece end is kept mostly closed by

the presence of a reed6. The flute on the other hand, does not use a reed (or anything else)

to restrict the mouthpiece-end and as can be seen in Figure 1, plot (b), a flute note contains

all harmonics.

Is there a sparse Gaussian model for periodic signals lacking even harmonics? Some

experimentation modifying Equation 13 gives cos2(πj0k/N) as the correct basis terms for a

period 2j0 signal with only odd harmonics:

E|ŝk|2 = 1/
(
β + 4α cos2(πj0k/N)

)
(22)

= 1/ (2α+ β + 2α cos(2πj0k/N)) (23)

using the fact that 2 cos2(x) = cos(2x) + 1. This spectrum is shown in panel (d) of Figure 2.

Notice that the spectrum only contains peaks at 1, 3, 5, . . . . Working backwards from the

spectrum to the Gaussian quadratic yields a sparse precision Qodd(a) where a0 = 2α + β

and aj0 = aN−j0 = α. Hence the quadratic form for a 2j0-periodic Gaussian with only odd

harmonics looks like

(s0, . . . , sN−1) 7−→
∑
k

α(sk + sk+j0)2 + βs2
k, (24)

for α, β > 0. Lacking even harmonics translates into asking for negative correlation between

sk and sk+j0 . This can be seen by noticing that a plus-sign appears in the wave-form coupling

terms (sk + sk+j0)2. In a model for a sound with a full set of harmonics these terms contain

a minus-sign (see Equation 5). This results in positive correlation at lag 2j0 because the

elements in the chains Dm = {sm, sm+j0 , sm+2j0 , sm+3j0 , . . . } will not want to align with

6If the restricted end of a clarinet were perfectly closed then the even harmonics would be totally absent.
See http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/clocol.html for the physics.
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regards to being above zero (+) or below zero (−). Hence with high probability the resulting

chain will have an alternating pattern like . . . ,+,−,+,−,+,−, . . . and thus values of the

wave (sk, sk+2j0) separated by 2j0 time steps will have a tendency to display the patterns

(+,+) or (−,−).

To use this model in applications requiring high temporal resolution, such as is offered by

the Poisson process prior discussed previously, we need the determinant of Qodd (Equation

24). Letting γ/(1 − γ)2 = α/β for γ ∈ [0, 1), then when N/j0 = q is an integer, from

Equations 8 and 11 we get

detQodd =
βN (1− (−γ)q)2j0

(1− γ)2N

=

((
2α+ β +

√
β2 + 4αβ

2

)q

+

(
2α+ β −

√
β2 + 4αβ

2

)q

− 2(−α)q
)j0

.

2.2.3. Resonance in speech. Along with a note’s period, smoothness and whether it has a

full set of harmonics, another audible property of a musical tone is whether there are any

resonance frequencies. Resonance occurs because every physical object possesses frequencies

at which it most easily vibrates. If an instrument has a resonance at k, then there will be a

peak in the spectrum around k in any sound produced by the instrument.

Resonances occur in speech as well as in music. The basic model of speech production

is the source-filter model [Fant, 1970], where the resonance frequencies are called formants.

The vocal tract is the filter and the source is either noise or else something approximately

periodic. Changing the shape of the vocal tract changes the location of the formants and

hence modifies the spectrum of the output sound. Some instruments, such as the guitar, also

have a separate source (the string) and filter (the wooden body) but unlike a voice, the body

of the guitar maintains a constant shape and thus the resonances are fixed. Figure 3 shows
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an example of resonance appearing in a speech spectrum. The first three formants have been

labelled. This figure will be discussed in more detail once the basic model is introduced.

Signal processing researches have known for a long time how to synthesise vowel sounds

to a reasonable degree of accuracy. Each vowel sound can be characterised (approximately)

by the location of its first two formants, which we denote k1, k2. Hence all that needs to be

done to synthesise a person uttering a vowel is to filter a periodic source w0, . . . , wN−1 twice;

the first time to place a peak at k1 and the second to place a peak at k2. The auto-regressive

equations for placing a peak at k1 are

xn = −β1xn−1 (mod N) − β2xn−2 (mod N) + wn, (n = 0, . . . , N − 1),

where β1 = −2 cos(2πk1/N) and β2 = R2. The bandwidth R ∈ [0, 1) controls the strength

of the peak ([Smith, 2021]7). The spectrum of the resulting signal is easily seen to be

E|x̂k|2 =
E|ŵk|2

|1 + β1ω−k + β2ω−2k|2
= pa(ωk)−1pb(ω

k)−1

for k = 0, . . . , N − 1, where b0 = 1 + β2
1 + β2

2 , b1 = bN−1 = β1(1 + β2), b2 = bN−2 = β2 (rest

0) and a0 = 2α+ β, aj0 = aN−j0 = −α (rest 0). Hence resonance filtering acts to multiply

the source’s precision matrix Q(a) with a sparse matrix Q(b), the result Q(c) = Q(a)Q(b)

is circulant with top row c ∈ RN . Furthermore, the determinant is given by detQ(c) =

7http://ccrma.stanford.edu/\~jos/fp/Formant_Filtering_Example.html
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detQ(a) detQ(b) where

detQ(b) =

N−1∏
k=0

|1 + β1ω
−k + β2ω

−2k|2 (25)

=

N−1∏
k=0

|(1−Rωk1ω−k)(1−Rω−k1ω−k)|2 (26)

= (1−RN )4, (27)

by similar reasoning that lead to the proof of Equation 11. Hence so long as R is not too

close to 1 we can use the approximation detQ(c) ≈ detQ(a).

Now, Q(c) can be computed by simple matrix multiplication, but in the application we

have in mind, there is the need to modify Q(b) and Q(a) by changing the location of the

resonance in the filter and value of the period in the source. It is therefore worthwhile

taking advantage of the sparse circulant structure in these matrices to make computing

Q(c) as fast as possible. This can be done by noting that the eigenvalues of Q(c) satisfy

pc(ω
k) =

∑
i,j aibjω

(i+j)k for all k, hence

ck =

N−1∑
i=0

N−1∑
j=0

aibjIi+j=k (mod N), k = 0, . . . , N − 1, (28)

where IA is 1 if the event A occurs and is otherwise 0. Because both a and b are sparse, c is

also sparse and hence Q(c) can be constructed quite quickly. Notice that Equation 16 is a

special case of Equation 28.

Figure 3 shows the spectrum of a recording (of the author) uttering the vowel sound ee as

in the word speech. The recording was made on a simple laptop microphone. By default

the sampling rate is CD quality which has 44100 samples per second, but before carrying

out any analysis, I first down-sampled the recording to have a sample rate of 8192 hertz
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Figure 3. Comparison of Linear Predictive Coding with the sparse Gaussian model
presented here applied to the problem of modelling the formants in speech. The figure
shows the log spectrum of a recording of the vowel [i] and the three inferred formants
labelled k1, k2, k3. Also shown is the inferred fundamental frequency N/j0. This shows
that the sparse Gaussian model correctly locates the formants and the fundamental; and
importantly also provides explicit variables for these hidden quantities (unlike LPC).

(telephone quality). The fitted spectrum is overlaid on the empirical spectrum. The period

j0 of the periodic source is estimated to be 65, or 8192/65 = 126 hertz. Vowel frequencies

for men typically fall in the range [90 − 150], for women in the range [150 − 250] and for

children in the range [250− 350]. The location of the first three formants are estimated to

be k1 = 86, k2 = 376 and k3 = 666. Looking at the quality of the fit in Figure 3, we see that

the model is able capture the resonance peaks and simultaneously model the harmonics.

The methodology to find the hidden variables characterising a vowel j0, k1, k2, k3 and

estimate the unknown acoustic parameters (α, β) and bandwidths (R1, R2, R3) goes as
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follows. We first estimate the parameters (α, β) by marginal maximum likelihood. That is

by numerically maximising the sum
∑
j∈J pj(s), where pj is a sparse Gaussian density Q(a)

with a0 = 2α + β, aj = aN−j = −α and the rest 0. Having obtained estimates for these

parameters we then picked j0 to be the j ∈ J with the highest likelihood pj(s). For this

experiment we chose J = {20, 21, . . . , 102}, which corresponds to assuming the frequency

falls in the range [80, 400] hertz. This grid of possible source periods is indicated with tall

tick-marks on Figure 3.

With j0 so fixed, we used a second round of marginal maximum likelihood to estimate

the bandwidths R1, . . . , R3 and re-estimate the acoustic parameters. To do this requires

summing over all possible formant locations k1 < k2 < k3, where we restricted these to live

at the harmonics N/j0, 2N/j0, . . . , 31N/j0. An upper limit of 31N/j0 restricts the frequency

of all the formants to be located below 4000 hertz. This grid of possible values is labelled

on the figure with short tick-lines. (It is actually a small mistake to force the first formant

to be at least as high as the fundamental frequency like we have done here. Opera singers

(apparently) can produce such a high pitch fundamental that it exceeds the location of the

first formant. Needless to say, this wasn’t an issue here.) The density required to do the

second round of marginal maximum likelihood had a precision of the form Q(a)
∏3
i=1Q(b(i)),

where Q(a) has a0 = 2α + β and aj0 = −α and b(i)0 = 1 + β2
i,1 + β2

i,2, b
(i)
1 = βi,1(1 + βi,2),

b
(i)
2 = βi,2, βi,1 = −2 cos(2πki/N), βi,2 = R2

i , for i = 1, . . . , 3, all given up to sparsity and

reflection.

The methodology just described is a new take on an old problem. The standard algorithm

(called LPC [O’Shaughnessy, 1988]), works using an auto-regressive model:

sk = α1sk−1 + α2sk−2 + · · ·+ αpsk−p + wk, k = p, . . . , N − 1,
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where {wk} is white noise (sd. σ). LPC places no restriction on the the parameters αi, hence

the model can be fit by a linear regression. The spectrum of sk is σ2|1−
∑p
j=1 αjω

−jk|−2.

We set p = 10 and ran LPC on the vowel recording. The resulting estimated spectrum is

plotted on Figure 3. It can be quite hard to see because it is essentially identical to the sparse

Gaussian solution. Although note LPC does not estimate a fundamental, hence the fitted

spectrum lacks harmonics. By searching over the LPC fitted spectrum, it is possible to find

the local maxima and these are taken to be the location of the formants. This methodology

is used in the speech analysis program Praat ([Boersma and Weenink, 2009]).

2.3. Segmenting monophonic audio. In this section we are going to use these sparse

Gaussian processes to transcribe monophonic music. The sample s we will use is a piece of

solo flute music taken from the Raga guide ([Bor, 1992], CD 3, track 11) with sampling rate

8000 hertz. The flute note discussed previously was extracted from this piece of music.

We will take as the sparse acoustic model periodic Brownian motion because as previously

shown, this model fits the flute note much better than periodic white noise. The model

has three parameters: α and β which jointly control the amplitude and periodicity, and γ

which controls the degree of smoothness. In our experience, what varies most from note to

note, both in the same piece of music and across pieces, is amplitude rather than periodicity

or smoothness. Luckily, it is simple enough to estimate amplitude directly from the data8.

This then allows each note in a recording to possess it’s own amplitude when transcribing.

The way this works is to multiply a sample from periodic Brownian motion s′ ∈ Rn with a

constant σ ∈ R, so that s = σs′ has density bj(s/σ)/|σ|n. With a uniform prior on log σ, the

joint distribution over (s, σ) (for fixed s) has a mode at σ̂2 = sTQjs/(n+1) where Qj is given

in Equation 19. Plugging this estimate for the amplitude back into the joint density gives

8This idea is demonstrated in [Mumford and Desolneux, 2010] in the case where the Gaussian process is
white noise and σ2 is then the variance. We apply this same idea here but now σ2 is amplitude.
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the following energy (negative log probability (ignoring constants)) for a variable amplitude

musical note with period j

E(s, j) = (n+ 1) log(σ̂2)− log(detQj), (29)

where the determinant is given in Equation 20. With amplitude inferred from the data,

the other the parameters can be set to default values which work well in a wide range of

situations. We have found that α = e7 and γ = .5 fit this description 9.

The prior we’ll use to transcribe the Indian music is the ordinary Poisson process

over the number of notes m, start times {ti} periods {ji}. This was first proposed in

[Mumford and Desolneux, 2010] and is written

ji ∼ uniform on J

ni ∼ exponentially distributed

ti+1 = ti + ni

for i = 1, . . . ,m where t1 = 1 and tm+1 = N + 1 and J = {5, . . . , 40}. The joint distribution

takes the form

p(s, {σi}, {ti}, {ji},m) =

m∏
i=1

θ

|J |
e−θnibji

(
s[ti,ti+1]/σi

)
/|σi|ni+1 (30)

where θ > 0 gives the tempo of the music. The combined energy of the sound-wave s ∈ RNand

hidden variables is written

E(s, {ti}, {ji},m) = c0m+

m∑
i=1

E(s[ti,ti+1), ji)

9In the presence of σ2 the parameter β is redundant and is henceforth fixed at 1.
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Figure 4. Transcription of the first 6.5 seconds of the Indian music ([Bor, 1992], CD 3,
track 11) under the ordinary Poisson prior with periodic Brownian motion. The width of
the bars indicate the inferred amplitudes and the horizontal lines mark the boundaries
between notes. Note that some events have been split into more than one part to allow
within-event amplitude variation. See indian.wav.

for constant c0 ∈ R. This can be minimised (for fixed s) with the following dynamic program.

Let M(t) be the minimum energy over s(0,t], then it follows that

M(t) = min
u,j

c0 + E(s(t−u,t], j) +M(t− u), (31)

where M(0) = 0 and the min is over j ∈ J and u = 1, . . . , t. This dynamic program has time

complexity O(N2|J |).

We set c0 = 100 and ran this dynamic program on the Indian music10. The results over

the first 6.5 seconds are shown in Figure 4. In this plot the width of the bars are proportional

to the square-root amplitudes {σi} and the horizontal lines mark the location of the starts of

new notes {ti}. The transcription is accurate, except for two notes that have been incorrectly

10The hyper-parameter (like all future hyperparameters) was chosen quite casually by running the algorithm
two or three times trying to arrive at decent looking results.
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broken into multiple parts (both near ∼ 20000 samples). This happens because sometimes

the amplitude significantly changes over the duration of a note, starting off loud and then

gradually getting quieter, following an attack-decay pattern. An audio comparison between

the transcription and the original music is in the file indian.wav11. This has been prepared

by sampling periodic Brownian motion conditioned on the inferred notes. It is surprising

how life like this sample sounds, this is in part due to the modelling of amplitude variation,

but also in part due to the simplistic sound of the flute which is well modelled by this sparse

Gaussian.

On this music the results are quite good, however it is not hard to find music where

this simple model fails. In particular, because notes are being split to model attack and

decay, it very often happens that the two (or more) pieces of a single note are inferred as

having different periods. This is because the model treats the periods as independent and

so doesn’t search for the best single period to describe all sections of a note. Hence to go

further we need a new prior, one which allows the amplitude to change over the duration

of a note. Furthermore, most music consists of multiple simultaneous sounds with more

complex acoustic properties than the flute (e.g. synthesizers, voice etc..) and therefore the

Gaussian processes need enhancing to deal with superpositions of signals and also require

further hidden variables to enable them to produce a richer repertoire of sounds. It is to

these enhancements we turn in the next chapter.

The authors of [Mumford and Desolneux, 2010] also describe in some detail how speech

signals can also be segmented with the above dynamic program. Their basic example is the

word ‘sheep’, which splits into 4 parts: (1) the coloured noise during sh, (2) the periodic

vowel ee, (3) a short segment of near silence and finally (4) the plosive p. In this chapter

11When played on headphones, the right ear is playing the original and the left ear the reconstruction.
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we have shown how geometric filtering white noise results in a sparse Gaussian process

with known determinant, giving shades of coloured noise depending on the value of the

smoothing parameter γ. This model would apply to noise parts of speech - (1),(3) and (4)

- for various values of γ that could be estimated directly from the data like we have done

here for amplitude. For the vowel speech sounds - (2) - one can use the resonance filter

(with periodicity) which we developed in section 2.2.3. In this case, a family of vowel models

{pl,j(s)} is needed, where j gives the periodicity of the voice (long for men, shorter for

women) and l is a label signifying the location of the resonance peaks, or equivalently, the

type of vowel. These models can now be obtained by applying the estimation algorithm also

described in that section.

2.3.1. The compound Poisson prior. It is interesting to note that the transcription of the

Indian music doesn’t look like the periods {ji} have been independently sampled from

J . The path traced by the melody has an upward trend and each note is near its two

neighbours. This suggests a better prior for music would be a compound Poisson process

(see e.g. [Çınlar, 2011]), which can be written

ti+1 = ti + exponentially distributed duration

log(ji+1) = log(ji) + xi

xi ∼ dν(x)/ν(R)

where ν is any positive measure on R, known as the Levy measure. Thus the log peri-

ods/frequencies follow a random walk where the jumps are independently sampled from the

Levy measure. Three examples of Levy measures are the Cauchy, Gaussian and Laplace.

Simulations from these three models are shown in Figure 5.
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(a) Cauchy (b) Gaussian (c) Laplace

Figure 5. Simulated music from three compound Poisson processes. These simulations
look far more like the Indian music transcription than independent sampling under the
ordinary Poisson process.

The Gaussian density looks like

dν(x) = exp(−x2/κ), (x ∈ R).

Using this Levy measure, the total energy takes the form

E(s, {ti}, {ji},m) = c0m+ c1

m∑
i=1

(log(ji)− log(ji−1))
2

+

m∑
i=1

E(s[ti,ti+1), ji), (32)

where log(j0) = 0. This can also be minimised by dynamic programming. Let M(t, j) be the

minimum energy over s(0,t] assuming the right boundary note has period j, then it is easy to

see from Equation 32 that

M(t, j) = min
u,k

c0 + c1 (log(j)− log(k))
2

+ E(s(t−u,t], j) +M(t− u, k), (33)

where M(0, j) = 0 for all j. This dynamic program has complexity O(N2|J |2), which is an

increase by a factor of |J | over the ordinary Poisson process due to the need to track the

period of the last note.
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It will be seen therefore that the Gaussian Levy measure acts to penalise the sum of

the square of the jumps in log frequency space. Thus the Gaussian makes use of of the L2

penalty to regularise the transcription. An alternative to this is to penalise on the sum of the

absolute values of the jumps and thus make use of an L1 norm. The distribution associated

with this norm is the Laplace distribution, which has functional form

dν(x) = exp(−|x|/κ), (x ∈ R).

It will be seen in Figure 5 that the simulations for the Laplace and Gaussian are quite similar.

This is to be expected because the way these simulations are done is to first sample the

location of the boundaries from an ordinary Poisson prior and then sample the random walk

melody. Thus under sampling, the Gaussian, Laplace and Cauchy are only going to differ in

the distribution over jumps not boundaries. The Laplace distribution is not so dissimilar to

the Gaussian for this to show up in the plots.

The difference between the Laplace and the Gaussian measure is more clear when one

considers their behaviours at the mode rather than under (prior) sampling. This can be

illustrated with a simple problem. Suppose you need to travel in a straight line from a

to b (b > a). This journey can be taken in one step of length b − a, or else two steps of

length (b− a)/2, or in general n steps of length (b− a)/n. Using the Laplace measure, each

step, a price proportional to the distance travelled is paid, plus an additional penalty for

stopping c > 0. Thus for any n, the total price paid is n|(b− a)/n|+ nc = b− a+ nc. This

is minimised for n = 1. On the other hand, paying a price proportional to the square of the

distance travelled,i.e. using the Gaussian measure, then using n steps, the total price paid is

n((b− a)/n)2 + nc = (b− a)2/n+ nc. This is minimised by taking n = (b− a)/
√
c steps.
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In the context of transcribing music there will be strong evidence that the frequency is say

a at some time t0 and b at some other time t1 but it may be less obvious what’s happening

in between these times. The Laplace prior will prefer to take the jump from a to b in as

few steps possible and thus will want to continue a until sometime t0 < t < t1 and make a

single jump to b; whereas the Gaussian measure will prefer to interpolate between a and b

by inserting a number of grace notes a < a1 < a2 < · · · < ak < b, where the analysis above

suggests k ∝ b− a.12

An alternative to both these Levy measures is the Cauchy distribution

ν(dx) =
1

κ+ x2
dx, (x ∈ R).

It is well known that this distribution permits orders of magnitude differences in the size of

the jumps. This can be seen in Figure 5 (plot (a)) where a big drop in frequency is followed

by a sequence of smaller changes.

2.4. Piecewise linear Brownian motion with restoring force. Up to now we have

focused exclusively on mean 0 processes, this being an appropriate assumption when analysing

audio. However, often the interest is focused on the mean, and the methodology and models

discussed in the first part of this chapter can be used in these cases as well.

In this section we allow the mean to be given by an unknown piecewise linear function of

time. This model is then suitable for time-series where the mean changes at unknown times

but is linear over each segment. The most vexing question when analysing data using these

sorts of change-point models is whether some sequence of values which appears to suggest a

change in the mean is really just a consequence of short term correlation. The only way to

12This is the music version of the well-known difference between the L1 and L2 norms when used to regularise
statistical regression parameters. In this case, the use of the L2 norm is known as ridge regression and the
use of the L1 norm goes by the name of The Lasso (see e.g. [Efron and Hastie, 2016]).
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deal with this is to fit both the mean and the correlation structure and let the model decide

which is the better explanation.

2.4.1. Is the climate warming? As an example, consider Figure 6. This plot shows the annual

average global temperature from 1850−202113. The overall time average has been subtracted

from each data-point and this is why the series is centred on 0. A question of some interest

is whether there is any change in the average temperature, or rather, whether the apparent

rise in average temperature over the last ∼ 100 years is merely a consequence of year on year

correlation.

Overlaid on the raw data is the best piecewise linear fit under the model to be introduced

in this section. The model and segmentation algorithm have decided these data are best

described by three sections spanning 1850 − 1901, 1902 − 1963 and 1964 − 2021. During

the first section the linear trend is essentially flat, suggesting no rise or fall in average

temperature, however the next two sections show periods where the average temperature is

increasing, with the second section increasing at a faster pace.

The correlation structure assumes that the errors about these linear trends follow a mean

restored Brownian motion. This correlation structure has two parameters, the first σ2

controls the variance and the second γ controls the strength of the correlation. On these

data the estimates of these parameters are σ2 ≈ 0.01 and γ ≈ 0, suggesting that there is

very little correlation and thus the pattern seen in the time series is better explained almost

entirely with changes in the mean. A further parameter included in this model is the rate at

which the climate is changing λ. Here this was estimated to be 1/λ ≈ 57, suggesting that

the climate shifts into a different regime every 57 or so years.

13www.metoffice.gov.uk/hadobs/hadcrut4/data/current/time_series/HadCRUT.4.6.0.0.annual_ns_avg.
txt
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Figure 6. Global average yearly temperature raw data series along with the best
piecewise linear fit under the model described in this section. According to the model,
the climate dramatically shifted in years 1902 and 1964.

2.4.2. The piecewise linear model. Consider the following density for a time series {xi} =

{x0, . . . , xn−1} with linear trend α+ βi:

pα,β(x) =

(
detQn
(2π)n

) 1
2

e−
1
2

∑n−1
i=0 (xi−α−iβ)2/σ2− ε2

∑n−1
i=1 (xi−xi−1−β)2/σ2

(34)

where σ2 > 0 and ε = γ/(1− γ)2 ≥ 0 for γ ∈ [0, 1). The parameter σ2 controls how close to

the linear trend α+ βi the Brownian motion path x0, . . . , xn−1 is likely to be, and then ε/σ2

controls the strength of the serial correlation between adjacent time-points after correcting

for the deterministic change of β per time-step. This density, or rather the version with

α = β = 0, i.e. p0,0(x), under a different parameterisation, is called the weak string model in

[Mumford and Desolneux, 2010]. The precision matrix Qn under the (σ2, ε) parameterisation
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used here, is given in matrix form as

Qn =
1

(1− γ)2σ2



1 + γ2 − γ −γ 0 . . . 0 0

−γ 1 + γ2 −γ 0 . . . 0

0 −γ 1 + γ2 −γ 0 . . .

...
...

...
...

...
...

. . . 0 −γ 1 + γ2 −γ 0

0 . . . 0 −γ 1 + γ2 −γ

0 0 . . . 0 −γ 1 + γ2 − γ



∈ Rn×n.

We will shortly derive the following exact expression for the determinant of this matrix:

detQn =
1− γ2n

(1− γ2)σ2n(1− γ)(n−1)2
. (35)

Real world time series are often better described not as having a single trend, but as being

the concatenation of multiple time series each with a differing trend. This can be modelled

with a Poisson process over the location of these discontinuities coupled with a uniform

distribution over the trend parameters {αi} and {βi}. Let x = x1, . . . , xN is be one of these

time series and let {ti} be the jump times, then the joint density of this model is written

p(x,m, {ti}, {αi}, {βi}) =

m∏
i=1

θe−θ(ti+1−ti)

|D|2
pαi,βi(x[ti,ti+1)]), (36)

where tm+1 = N + 1, D ⊂ R is a finite domain on which both α and β are uniformly

distributed and m gives the number of segments.

2.4.3. A parsing algorithm. One of the most vexing questions in any analysis of a time series

is whether some sequence of values is due to trend or rather correlation. The above model

can be used to answer this question by finding the optimal segmentation of the data into
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piecewise linear regions, with the following dynamic program.

M(t) = min
u
θu+ log(|D|2/θ) +M(t− u)−max

α,β
log pα,β(x(t−u,t]), (37)

for t = 1, . . . , N , M(0) = 0 and then M(N) is the negative log probability of the series under

the optimal segmentation.

The maximisation of log pα,β in this dynamic program is quite straightforward as it is

a simple instance of regression with correlated errors, see [Diggle et al., 2013]. Writing the

quadratic in pα,β(x) in the more general form (x− zb)TA(x− zb), where z is an n× p matrix

of known constants and b is a length p vector of parameters, differentiation of the quadratic

gives b̂ = (zTAz)−1zTAx as the maximising parameter values. When A = Qn and z = z1 : z2

where z1 = (1, . . . , 1) and z2 = (0, . . . , n− 1), this formula gives the following estimates of α

and β

α̂ = x̄− β̂(n− 1)/2, β̂ =

∑n−1
i=0 (xi − x̄)i+ ε

∑n−1
i=1 (xi − xi−1)∑n−1

i=0 i
2 − n−1

2

∑n−1
i=0 i+ ε(n− 1)

. (38)

Although note that it is far simpler to derive this by directly differentiating the density.

Furthermore the expression for β̂ can be simplified using
∑n−1
i=0 i = (n−1)n/2 and

∑n−1
i=0 i

2 =

(n− 1)n(2n− 1)/6. Hence the terms appearing in the expression for M(t) are differences of

cumulative sums over x1, . . . , xN , or else known quantities (assuming σ2 and ε are known).

For example, to compute β̂ relevant for x[t0,t1], then we need the sum

t1−t0∑
i=0

ixt0+i =

t1∑
i=t0

(i− t0)xi =

t1∑
i=t0

ixi − t0
t1∑
i=t0

xi.

These cumulative sums should be pre-computed at a one-off cost of O(N) and therefore the

calculation of M(N) has time complexity O(N2).
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2.4.4. Derivation of detQn. The derivation given here builds on the approximation to detQn

given in [Mumford and Desolneux, 2010]. The parameterisation of the weak string model in

terms of (σ2, ε) allows their approximation to be made exact. Unlike in previous chapters, the

matrix Qn is not circulant, but it is very closely related to the precision matrix of circulant

Brownian motion hence by the matrix determinant lemma, it follows that

detQn =
detQn(γ) ·

(
1 + eT1 Qn(γ)−1e2

)
(1− γ)2nσ2n

,

whereQn(γ) is the precision matrix of circulant Brownian motion14 and e1 = (−√γ, 0, . . . , 0,√γ)T

and e2 = −e1. This is the key insight from [Mumford and Desolneux, 2010] which we apply

here largely unchanged.

The next step is to spot that Qn(γ)−1 is also circulant Q(c) for some top row c ∈ Rn,

with cn−j = cj and thus the quadratic in the above equation can be written

eT1 Qn(γ)−1e2 =

n−1∑
i=0

cie
T
1 π

ie2,

where π is the cyclic permutation matrix of size n × n. The resulting permuted inner-

products between e1 and e2 makes this come out quite simply as 2γ(c1 − c0). Furthermore,

Qn(γ)−1Qn(γ) = I, hence it must also be that (1 + γ2)c0 − 2γc1 = 1 and thus c1 =

((1 + γ2)c0 − 1)/(2γ) and so the determinant can be written

detQn =
detQn(γ)c0(1− γ)2

(1− γ)2nσ2n
, (39)

14That is, the top row of Qn(γ) is sparse with non zero first element 1 + γ2 and where the second and last
elements of the top row are identical and sum to −2γ.
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where c0 is the element of the diagonal in the covariance matrix of circulant Brownian motion,

that is to say

c0 = variance

( ∞∑
u=0

γuw−u (mod n)

)
(40)

for {w0, . . . , wn−1} white noise. Rearranging this sum into independent parts gives this

variance as the product of two geometric series

c0 =

( ∞∑
k=0

(γn)k

)2

×
n−1∑
k=0

(γ2)k

=
1

(1− γn)2
× 1− γ2n

1− γ2
.

Now, the determinant of circulant Brownian motion is (1− γn)2, hence plugging this and c0

into Equation 39 results in Equation 35, completing the proof.

2.4.5. Statistical Inference via marginal maximum likelihood. The marginal likelihood is

obtained by summing the joint density in Equation 36 over all possible realisations of the

Poisson process while integrating out the unknown regression coefficients {αi, βi}. Let L(t)

be this quantity over x1, . . . , xt for t = 1, . . . , N , where L(0) = 1, then the following recursion

follows straightforwardly from the expression for the joint density in Equation 36:

L(t) =
∑

0<u≤t

L(t− u)
e−θuθ

|D|2

∫
D2

pαβ(x(t−u,t])d(α, β). (41)
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In applications, D should be quite large and centred on 0, so that the inner integrals can be

approximated by assuming D = R so that

∫
D2

pα,β(x)d(α, β) ≈
∫
R2

pα,β(x)d(α, β)

=

∫
Rp

1

Z
e−

1
2 (x−zb)TQn(x−zb)db

=
1

Z
e−x

TQnx/2eb̂
T zTQzb̂/2

∫
Rp
e−

1
2 (b−b̂)T zTQnz(b−b̂)db

= p0,0(x)e
1
2

∑n−1
i=0 (α̂+iβ̂)2/σ2+ ε

2

∑n−1
i=1 β̂2/σ2

(
det zTQnz

(2π)2

)− 1
2

,

where the third line follows from the second by the standard method of completing the

square. Furthermore, the simplified form of z = z1 : z2 means that the 2× 2 matrix zTQnz

has a nice equation

zTQnz =

zT1 Qnz1 z
T
1 Qnz2

zT2 Qnz1 z
T
2 Qnz2

 =
1

σ2

 n
∑n−1

i=0 i∑n−1
i=0 i

∑n−1
i=0 i

2 + ε(n− 1)

 .

Therefore the determinant of this matrix is

det zTQnz =
1

σ4

n(n−1∑
i=0

i2 + ε(n− 1)

)
−

(
n−1∑
i=0

i

)2
 . (42)

The above inference scheme was used to obtain Figure 6. A weakness in the model is

that the end points of the piecewise linear trend do not have to meet and at present the

models are limited to linear means and restored Brownian motion error structure. Future

work would be to extend the methods to polynomials (that meet at the end points) plus

second order restored Brownian motion (based on a non-circulant version of Equation 21).
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3. Polyphonic probability models

As discussed in the previous chapter, audio consists of (1) multiple simultaneous acoustic

events, where (2) the amplitude changes over the course of the event and (3) these events

are typically complex and so not well modelled by a simple Gaussian. In this chapter we

define what appears to us to be the most basic stochastic model for polyphonic audio which

incorporates these three properties.

This statistical model contains a prior over the location, duration and class label of all the

sounds in the audio. Then, for each region of time where the labels are constant, a Poisson

process provides a piecewise constant model for the amplitudes. Lastly, a random Fourier

expansion equipped with hyper-priors describes the statistics of the sound wave for fixed

labels and amplitude. The description of this model appears in stages throughout sections

1− 3.

Naturally then, inference with this model proceeds in reverse: first, short segments of

the sound-wave where the amplitudes and labels are constant are found. Then these small

sections are grouped into larger sections where the amplitude varies but the labels are still

fixed. Finally, the start and end times of each of the events is inferred by incorporating

Markov adjacency relations induced by the fact that events typically only partially overlap

in time. This algorithm, which we call Inference via the Binding Energy, is described in

section 2. What is most unique about this algorithm is that it exists entirely in the time

domain and so doesn’t rely on a pre-segmentation of the soundwave such as is offered by a

windowed Fourier transform.

The quality of this analysis can be readily assessed by sampling a version of the audio from

the fitted model and listening to see what the model has recovered and what has been missed

out. Section 3 describes an application of the model to Nancy Sinatra’s Bang-Bang; the model
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accurately transcribes both the guitar and vocals and remarkably has even reconstructed

much of Nancy Sinatra’s voice (see bangbang.wav15).

3.1. Superpositions of Gaussian processes. Figure 7 shows the waveform of about six

seconds of Bach’s Chaconne (on classical guitar, sampled at 8000 hertz), broken into segments

according to the groups of periods that are being played and the time domain is labelled with

these periods. This segmentation and labelling has been prepared by listening to the original

recording which comes from the cd Segovia – Complete Bach Recordings 1927-47. Looking

at this segmentation, to a first approximation, polyphonic music consists in a sequence of

groups of periods (j1, . . . , jk) (i.e. chords), where the number of periods k changes from

group to group. This suggests the random chord prior model for polyphonic music which is

described next.

3.1.1. The random chord model for polyphonic music. Let {tn} be the start times and {jn,i}

the periods of the chords, then the random chord model says

tn+1 = tn + exponential chord duration

(jn,1, . . . , jn,kn) ∼ sampled without replacement uniformly from J,

which is the natural generalisation to polyphonic music of the ordinary Poisson process

model for monophonic music discussed in the previous chapter (Equation 30). The joint

prior density takes the form

p ({tn}, {jn,i},m) =

m∏
n=1

θe−θ(tn+1−tn)πkn(1− π)|J|−kn ,

15As in the previous experiment, the left ear is playing the reconstruction, the right ear the original.
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Figure 7. Six seconds of Bach’s Chaconne played on classical guitar, broken (by hand)
into segments where the chords are constant. The time domain has been labelled with the
periods making up the chord at that moment in time. Notice how the amplitude varies
over the duration of each segment, following an attack-decay-sustain-release pattern - a
programmable feature on many synthesizers.
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where m is the number of chords, θ gives the tempo, and π is the probability that each j ∈ J

appears in a chord. The prior energy of a transcription therefore looks like

E ({tn}, {jn,i},m) = c1m+ c2

m∑
n=1

kn (43)

for c1 and c2 parameters in R. Hence this prior penalises both the number of chords m and

the total number of periods appearing in all chords
∑m
n=1 kn.

3.1.2. The Poisson process acoustic event model. Conditional on these prior variables, in this

chapter we take the actual sound of each chord to be characterised by a Poisson process over

the times xi within the chord at which the amplitude σi ∈ R changes. This then allows each

acoustic event to have it’s own particular attack and decay. No prior instrument specific

knowledge of the characteristics of this attack-decay are built into the model, so this is quite

generic and will work for all instruments and also other acoustic events, such as speech acts.

Letting β(j) ∈ Rui be a periodic Brownian motion spectrum with period j (see section

2.2.1), and si the ith chord fragment, the generic model for a chord s = s1 . . . sd is written

xi+1 = xi + ui

ui ∼ exponential event fragment duration

log σi ∼ uniform on some finite subset of R

si ∼ circulant Gaussian with spectrum
∑

j∈(j1,...,jk)

σ2
i · β(j),

for i = 1, . . . , d. If the periods j1, . . . , jk are known the spectrum µ ∝
∑
j∈(j1,...,jk) β(j) is

known at all times. Hence it is possible to compute the minimum energy, piecewise constant

amplitude fit to a chord s under this model using the dynamic program associated with the
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Figure 8. The best piecewise constant amplitudes (shown by the bounding lines), under
the Poisson process event model, fit to the first note in the Bach music (which has a period
of j = 31), where c0 = 100. This generic model correctly describes the attack-decay
pattern of the classical guitar.

ordinary Poisson process

P (s[1,t], µ) = c0 + min
u

(
E(s(t−u,t], µ) + P (s[1,t−u], µ)

)
, (44)

for t = 1, . . . , n, where the minimum is over u = 1, . . . , t with boundary condition

P (s[1,0], µ) = 0.

An example of this model, for c0 = 100 with energy E(s, 31) (Equation 29), fit to the

first note in the Bach music is shown in Figure 8. The square-root amplitudes are shown

(positively and negatively) by the bounding lines. In the next section we derive the variable

amplitude energy E(s, µ) of a sound wave s where µ is a sum of periodic Brownian motion

spectra. This will allow the Poisson process event model P to be fit to the rest of the events

in the Bach music.
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3.1.3. Polyphonic Gaussian energies. Recall that the acoustic models developed thus far

have all been sparse - meaning density evaluation is O(n). It turns out that it is not possible

to maintain sparsity in the presence of polyphony. The reason for this is that the inverse of a

sparse matrix is in general not sparse. Let s = s1 + s2 where si ∈ Rn for i = 1, 2. Thus s is

the superposition of two signals, for example, s1 could be the sound produced by a piano key

and s2 the sound produced by a second key and s is the total sound of the two note piano

chord. Following the development in the last chapter, we’ll model this as s1 ∼ Gaussian

with circulant precision Q(a) and independently s2 ∼ Gaussian with precision Q(b). Due

to independence, the covariance matrix of the chord s will be Q(a)−1 +Q(b)−1. Thus the

precision matrix of s is Q = Q(a)Q(b)Q(a+ b)−1, since

(
Q(a)−1 +Q(b)−1

)
Q = (Q(b) +Q(a))Q(a+ b)−1

= Q(b+ a)Q(a+ b)−1

= I.

Hence even if Q(a) and Q(b) are sparse, Q will not usually be sparse because Q(a+ b)−1 isn’t

likely to be sparse. This example shows that when working with superpositions, covariance

matrices appear as factors in the precision matrices. Hence the advantage of parameterising

Gaussian models in terms of sparse precision matrices, as opposed to dense covariance

matrices, is lost when it comes to superpositions.

None of this is a proof that Q could never be sparse. But when s1 is approximately j

periodic white noise and s2 is independent white noise, the precision matrix Q = Q(c) ∈ Rn×n

has a top row c with non-zero elements at c0, cj , c2j , c3j etc... (and then reflected). Hence

the number of non-zero elements of c grows with n and Q(c) is therefore not sparse. If a
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sparse signal in the presence of white noise is no longer sparse it’s unlikely adding something

more complex than white noise would be sparse.

The consequence of the above observation is that in the case of polyphonic audio, density

evaluation is best based on the random Fourier representation:

p(s) = e−
1

2σ2
sTQs/z = e−

1
2σ2

∑
k λk|ŝk|

2

·
(∏

k λk/σ
2

(2π)n

) 1
2

, (45)

where σ2 > 0 is amplitude and λk = µ−1
k are the eigenvalues of Q, which for the above

example are given by

µk = 1/pa(ωk) + 1/pb(ω
k), (k = 0, . . . , n− 1),

and as usual µk = µn−k and ω = e2πi/n.

Without a prior on σ2, the ‘energy’ (negative log likelihood, ignoring constants) is given

by E(s, µ) =
∑n−1
k=0 log(σ2µk) where σ2 = 1

n

∑n−1
k=0 λk|ŝk|2. With a uniform prior on log σ

the energy and amplitude are given by

E(s, µ) = (n+ 1) log(σ2) +

n−1∑
k=0

log(µk), σ2 =
1

n+ 1

n−1∑
k=0

λk|ŝk|2. (46)

We take E (s,
∑
l µ(l)) as the basic energy for s =

∑
l sl a superposition of signals {sl} each

with spectrum µ(l).16

3.2. Inference via the Binding Energy. Combining the periodic Brownian motion poly-

phonic Gaussian energy, the Poisson process acoustic event model and the random chord

16A small modification can be made to this energy by letting µ0 = E|ŝ0|2 be a free parameter. The reason

for doing this is that |ŝ0|2 =
(∑n−1

k=0 sk

)2
/n, which isn’t something the spectral templates really ought

to try and predict. The maximum likelihood estimator for µ0 is |ŝ0|2/σ2, which means the estimator for
the amplitude, without priors, becomes σ2 = 1

n−1

∑n−1
k=1 λk|ŝk|

2. Not much is gained in doing this, but we
mention it merely to point out that should only part of the spectrum µ of a signal be known, then it is easy
to allow the unknown part to be estimated from the data.
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prior, we get a total energy

E(s, {tn}, {jn,i},m) = c1m+

m∑
n=1

P
(
s[tn,tn+1),

∑
j∈(jn,1,...,jn,kn ) β(j)

)
+ c2kn. (47)

To minimise this energy (for fixed s) we here propose an algorithm based on finding

the boundaries between chords using a general quantity known as the binding energy

([Mumford and Desolneux, 2010], p.g. 40). The idea is to start by assuming boundaries

between all the samples in a recording s ∈ RN , so that the initial segmentation is {s1, . . . , sN}.

Then look over adjacent segments (s, s′) and consider if a better segmentation can be gotten

by joining (s, s′) into a single event ss′. This is measured using the binding energy B(s, s′)

between s and s′, which we define as

B(s, s′) = c1 + P (s) + P (s′)− P (ss′). (48)

In this equation,

P (s) = min
µ
P (s, µ) + c2 · width(µ), (49)

where width(µ) is equal to the number of signals making up the superposition. In the case

that µ is the spectrum of a chord, then this will simply be k, the number of periods. But we

use this more general notation because the superposition may be non-musical (e.g. sports

commentary over the sound of a crowd) and the algorithm would still apply.

Now, if B(s, s′) < 0, it means the probability associated with the concatenated wave ss′ is

smaller when s and s′ are considered parts of the same acoustic event than when considered

independent. In such a situation it would be preferable to retain the boundary between s

and s′ otherwise the two segments should be joined together to form a larger segment. It

is possible to merge precisely those pairs leading to the greatest combined binding energy
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B =
∑
i left bindB(si−1, si) using the following recursion

B(i, 0) = max {B(i− 1, 0),B(i− 1, 1)}

B(i, 1) = B(si−1, si) + B(i− 1, 0)

B = max {B(N, 0),B(N, 1)}

where B(i, 0) gives the maximum binding energy over s1, . . . , si assuming si−1 and si are

not grouped together and B(i, 1) is the maximum binding energy assuming they are. This

calculation is necessary because it might be the case that the triple (si−1, si, si+1) has positive

binding energy across both its boundaries (si−1, si) and (si, si+1). This calculation decides

which is the best to make, taking into account all the other binding decisions at the current

stage. This whole grouping process is then repeated using the new, larger segments, and so

on, until negative binding energy exists between all adjacent segments.

3.2.1. Forward-Loop-Reduce. In the case of polyphonic music, the main complication with

the methodology is to overcome the curse of dimensionality and search over the ∼ 2|J|

possible combinations of periods in order to calculate P (s). This search can only be done

approximately and we try out here a simple method based on the forward/backward variable

selection technique used extensively in statistics ([Wasserman, 2004]). There are three parts

to this algorithm (1) forward, (2) loop, (3) reduce. Letting K be some fixed upper limit on

the size of a chord, the forward part consists in iteratively solving for the next best period

jk+1 = arg min
j∈J

P (s,
∑k
i=1 β(ji)+β(j))
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for k = 0, . . .K − 1, avoiding duplicates. A co-ordinate descent routine then loops over each

period in turn and locally optimises it

jk = arg min
j∈J

P
(
s,

∑
i6=k β(ji)+β(j)

)

again avoiding duplicate periods. Finally a backward sweep considers the best single deletions,

to give a nested sequence of solutions of size k = K,K − 1, . . . , 1. The best of these is

selected after incorporating the width penalty c2 · k. It is necessary to not stop after the

forward sweep because a common error (similar in nature to period doubling17) is found with

polyphonic music where the best fitting single period j1 is (if possible) the lowest common

multiple of the (most dominant) true periods.

3.2.2. Segmenting Bach’s Chaconne. We now return to the Bach music discussed at the

beginning of the chapter and see if our methods can reproduce the hand segmentation shown

in Figure 7 or equivalently the transcription shown in plot (a) of Figure 9.

The classical guitar has only six strings, so it makes sense to limit the number of

simultaneous sounds at K = 6. Using a set of periodic Brownian motion spectral templates

{β(j)} for j ∈ J , where J corresponds to a guitar tuned according to equal temperament18

(and α = e7 and γ = .5), we parsed the music under the random chord prior with c0 = 100,

c1 = −300 and c2 = 350. Since each chord must contain at least one note, these prior

parameters make the cost of inserting a boundary 50 and the cost 350 for each note in a

chord after the first.

The resulting transcription (see plot (b) of Figure 9) is correct over the first seven chords

but there are errors during the final five segments. It is quite telling that the errors emerge

17Period doubling is a common error in these sorts of algorithms whereby instead of the true period
j having the minimum energy, a period of the form dj for integer d ≥ 2 has minimum energy. See
[Mumford and Desolneux, 2010], page 106
18That is, the periods are of the form 8000/

(
440 · 2(k−49)/12

)
for k = 1, . . . , 88.
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(c) Overlapping chords transcription

Figure 9. (a) The transcription of the Bach music produced by the author. There are
twelve segments, the first seven correspond to chords, the remaining segments consist of
some short notes overlapping some longer notes and chords. (b) The transcription using
the random chord prior. Over the first seven segments the transcription is accurate, but
it breaks down when it meets the overlapping notes. (c) The transcription produced by
the overlapping chord prior. This transcription contains both chords and preserves detail
of individual notes and also fixes broken-notes. See segovia.wav.
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as soon as the music breaks the assumption of the random chord model. The model does not

have any notion of a note continuing beyond the start and end times of other notes. When

transcribing with the random chord prior, this leads to broken-notes, e.g. the long period

109 note has a gap in it. Ideally we’d want the inference to look to the left and right and see

that in both adjacent segments there is a 109 period and so infer that it is likely to be one

long note rather than two notes with a gap in the middle. Note that the missing middle

piece appears further down the plot at period 54.5. This is no accident since 2× 54.5 = 109

because as mentioned earlier periods that are integer multiples of some common period

sound nearly the same.

Another problem with the random chord prior is that it is quite hard to tune the hyper-

parameters to simultaneously preserve all the chord segments m and in each segment contain

the correct number of periods kn. The settings used here incorrectly merge segments eight

and nine and additionally fail to detect one of the periods in the ninth segment. Reducing c2

to allow more periods brings in additional false periods elsewhere in the transcription before

this missing note is recovered. Ideally the model should constrain not the number of periods

in each segment kn, but rather the number of true notes (i.e. recognising that notes extend

beyond segment boundaries). This would allow the transcription to be regularised to be free

of extraneous notes, without this also leading to this over-merging behaviour

A better transcription can be achieved with a more faithful prior - the overlapping chords

model - which is described in the next section. This model fixes broken notes and penalises

the true number of notes rather than the number of periods in a segment.

3.2.3. Overlapping chords prior and inference algorithm. The variables in this prior are the

number of chords m, the chord start times and periods {tn}, {jn,i}, along with each note’s
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own particular duration {dn,i}. These variables are given the following density

p(m, {tn}, {jn,i}, {dn,i}) =

m∏
n=1

θe−θ(tn+1−tn)πkn(1− π)|J|−knλkne−λ
∑kn
i=1 dn,i . (50)

Hence the chords are a Poisson process in time, with the notes uniformly sampled from J

(with probability π) and of exponential duration. In this model θ controls the tempo of the

music and λ controls the sustain of the instrument.

The overlapping notes prior has the following energy

E(m, {tn}, {jn,i}, {dn,i}) = c1m+ c2
∑
n

kn + c3
∑
n,i

dn,i, (51)

which can be seen to generalise the random chord energy (Equation 43) by the addition of a

penalty on the total duration of all the notes and hence this model contains an additional

tuning parameter c3 ∈ R. But also what’s changed is the very definition of a note. In this

model a new note is signalled by a period in a segment which is not matched to a period in

the previous segment - a Markov type dependence.

What follows is a generalisation the binding energy segmentation algorithm to deal with

this new way of carving up a piece of music. Begin by supposing that we have some initial

segmentation {s1, . . . , sN} with guesses for the periods at each segment {J1, . . . , JN} where

Ji ⊂ J . Then the total combined energy of this initial segmentation can be written

E({si}, {Ji}) =

N∑
i=1

c1IJi−Ji−1 6=∅ + c2|Ji − Ji−1|+ c3 · len(si) · |Ji|+ PJi(si), (52)

where J0 = ∅ and PJi(si) = P
(
si,

∑
j∈Ji

β(j)
)
.
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As before, we’ll consider reductions to this energy by left-merging adjacent segments

(si−1, si) while simultaneously fitting the best periods Jnew
i−1 using the forward-reduce algo-

rithm19 applied to the following equation

Jnew
i−1 = arg min

J′⊂J
PJ′(si−1si) +Qi(J

′) + c3 · len(si−1si) · |J ′| (53)

where 1 ≤ |J ′| ≤ K20 and Qi contains the prior coupling terms between adjacent sets of

periods which from Equation 52 is given by

Qi(J
′) = c1

(
IJ′−Ji−2 6=∅ + IJi+1−J′ 6=∅

)
+ c2 (|J ′ − Ji−2|+ |Ji+1 − J ′|) , (54)

with JN+1 = ∅.

Thus associated with each pair (i − 1, i) is a binding energy given as the difference in

energy between the old segmentation where si−1 and si are considered separate and the new

segmentation where these two pieces of the sound wave are grouped together. Hence the

binding energy B(si−1, si) is given by

B(si−1, si) = ei−1 + ei + qi−1 + qi + qi+1 −
(
enew
i−1 + qnew

i−1 + qnew
i

)
, (55)

19The loop stage hes been dropped in the overlapping chords prior to speed up the algorithm.
20An alternative to a fixed upper limit K on the number of periods is to restrict |J ′| to be at most D more
than the maximum number of periods in either of the two segments being bound together (for some small
integer D), that is 1 ≤ |J ′| ≤ D+max(|Ji−1|, |Ji|). This can greatly speed up the algorithm by allowing the
search space to adapt to the number of simultaneous sounds in each region.
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where

ei = PJi(si) + c3 · len(si) · |Ji|

qi = c1IJi−Ji−1 6=∅ + c2|Ji − Ji−1|

enew
i−1 = PJnew

i−1
(si−1si) + c3 · len(si−1si) · |Jnew

i−1 |

qnew
i−1 = c1IJnew

i−1−Ji−2 6=∅ + c2|Jnew
i−1 − Ji−2|

qnew
i = c1IJi+1−Jnew

i−1 6=∅ + c2|Ji+1 − Jnew
i−1 |.

At each stage the pairs leading to the greatest total binding energy B are grouped together

using a recursion similar to the one given earlier except now if (si−1, si) are grouped then

we must be careful not to also group either (si−3, si−2) or (si+1, si+2) due to the occurrence

of Ji−2 and Ji+1 in Qi.

The transcription produced by this prior and algorithm on the Bach music is shown in

plot (c) of Figure 9. The hyper-parameters were set at c0 = 100, c1 = 5, c2 = 90 and c3 = .07.

These settings add a small bias in favour of connecting notes which start at nearly the same

time into chords and then regularises the number of notes and also their duration. The

transcription is quite similar to the hand transcription except it has allowed different notes in

the same chord to have differing durations. The hand transcription is only an approximation

to the truth and so these additional details about the precise timing of the notes may well

be closer to the truth. However, what is certainly an error is the insertion of an extra period

27 note spanning the second to last two segments.

Mistakes like these occur for a range of reasons. One of these being if the boundaries are

slightly off then a segment contains a soundwave with non-constant periods. The weakness

with the binding energy algorithm is that the early grouping decisions determine how precisely
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the true boundaries are recovered, but these early decisions are based on very little data.

There are lots of ways to try and arrive at lower energy solutions: (1) loop over each complete

note and consider if changes to it’s value (including deletion) reduces the energy; (2) consider

refining the boundaries by moving them a little to the right or left; (3) using some more basic

stochastic acoustic model during the early groupings focused on properties of the soundwave

other than periodicity such as strong continuity. However, even with perfect boundaries, the

search algorithm (forwards-backwards) can fail to arrive at the true periods.

A comparison between the original music and the model’s reconstruction is contained

in the file segovia.wav. Listening to this comparison is the easiest way to check that the

segmentation and classification is close to the original, but also it shows up how much of

the statistics of the real world sounds have been captured by the model. Now that attack

and decay have been properly modelled, the reconstructed music is fairly plausible classical

guitar but there are many audible discrepancies. (a) The reconstruction contains ‘pops’.

These are caused by discontinuities in the sampled sound-wave at points where the amplitude

abruptly changes (a consequence of the simplistic piecewise constant model). (b) At the

times when two or more notes overlap they are given the same amplitude; but in reality,

some simultaneous notes are quieter than others. (c) The rich harmonics and vibrato of the

guitar and playing are missing from the reconstruction and (d) fret-board squeaks and the

background acoustics are also not reproduced.

3.3. Complex sounds and random filters. In this section we attempt to account for

some of the more complex sonic details appearing in audio by equipping the Gaussian models

with additional variables describing deviations from their mean Fourier transforms. These

new models are then used to analyse an acoustically rich piece of music - Bang-Bang by

Nancy Sinatra - containing vocals accompanied by an electric guitar. The core idea is to
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make periodic Brownian motion less prescriptive of what the sound-wave should be like. This

then enables the binding energy segmentation algorithm handle the varied sounds created by

the entire range of possible instruments.

3.3.1. Random filters I - the conjugate prior. Recall the discussion on the lack of fit to the

flute sample (section 2.2.1). There, the observed spectrum |ŝ|2 ∈ Rn had visibly greater first

and second harmonics than that predicted by the model. Also, the model underestimated

many of the later harmonics. It would be possible to correct this by modifying the spectral

templates to contain extra power at certain frequencies. For example, to add extra power

at integer frequency k, one could multiply some constant 0 < τk ≤ 1 to λk = µ−1
k . Clearly

this is going to require a large number of constants {τk} to make a real difference to the

spectrum. These constants could come by designing a filter (like the resonance filter for

modelling vowels - see section 2.2.3). Designing a filter is the correct thing to do when

the event classification depends on the presence/absence of the property specified by the

filter (as is the case for vowels). However more often than not the precise shape of the

spectrum, which gives each sound its unique sound quality, is not of interest per-se. In

these circumstances it is impractical to model all the nuances of the spectrum, but also,

just like with amplitude variations, it isn’t always safe to simply ignore them. This leads

to the idea of using a random filter. That is, instead of specifying exactly what the filter is

ahead of time, we only need specify a distribution over possible filters and then maximise

the resulting distribution to find the best fitting filter in each new situation. We do this

here by taking advantage of the exponential family form of the circulant Gaussian and use

a Gamma conjugate prior over (multipliers of) the eigenvalues of the precision matrix Q.

The use of a prior here is absolutely essential because if the filter {τk} is not constrained,

the random Fourier density with the maximum likelihood estimates of the filter plugged
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back in, no longer depends on how well the spectral model λ matches the data |ŝ|2 (a case of

over-fitting).

The random Fourier filter density is defined as

p(s | {τk}, σ) = e−
1

2σ2

∑n−1
k=0 τkλk|ŝk|

2

·
n−1∏
k=0

(
τkλk
2πσ2

) 1
2

. (56)

The idea is to place a Gamma prior on the filter {τk}, which means the joint distribution is

written

p(s, {τk}, σ) ∝ 1

σn+1

n−1∏
k=0

τakλ
1
2

k e
−τk( 1

2σ2
λk|ŝk|2+b),

which places a Gamma(a+ 1/2, b) density on τ0 (and τn
2
if n is even) and a Gamma(2a,2b)

density on the rest. The mode of this density, for fixed s, is located at the solution to the

following equations

τk =
a

λk|ŝk|2/(2σ2) + b
; σ2 =

1

n+ 1

n−1∑
k=0

τkλk|ŝk|2.

Combining these estimators gives a fixed point iteration scheme for finding σ2 given some

initial guess (say 1
n+1

∑n−1
k=1 λk|ŝk|2):

σ2 =
a

n+ 1

n−1∑
k=0

(
1

2σ2
+

b

λk|ŝk|2

)−1

.

Multiplying these two estimates together and then with the model spectrum, gives the

following heuristic equation for the inferred spectrum

Ê|ŝk|2 = σ2µk/τk =
|ŝk|2/2 + bσ2µk

a
, (57)
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which is a weighted average of the empirical spectrum with the mean spectrum. Substituting

this new spectrum back into the joint distribution gives the model’s energy

E(s, µ) = (n+ 1) log(σ2)−
n−1∑
k=0

log
(
λkτ

2a
k

)
, (58)

which we will refer to as the Gamma-Gaussian energy.

A situation of some interest relates to Piano notes, because these are well known to often

lack their first harmonic (or fundamental). It is simple enough to model this by flattening

the spectral templates up-to the midpoint between the first and second harmonic. Figure 10,

plot (a), shows the flattened fundamental. However, when the instrument being modelled

does not lack the first harmonic, these flattened templates are less accurate. To show this

we sampled 1000 monophonic periodic white noise signals, with random periods, and looked

to see where the minimum of the plain Gaussian energy (Equation ) with flattened white

noise templates is located. The minimum is located at the correct period only 40% of the

time. We then gave the Gamma-Gaussian energy the wrong templates, the model still scored

100%21. The reason for this is that the filter is filling in the missing fundamental using

the data as a guide. This can be seen in the inferred template shown in plot (b), which is

calculated using equation 57.

When we switch the templates around, so that now the model contains the fundamental,

but the data lacks the fundamental, the Gaussian energy still accurately classifies the

sampled notes. This property also holds for the Gamma-Gaussian energy, however the

inferred spectrum incorrectly contains the fundamental, when really {τk} ought to have

flattened it out. Changing the hyper-parameters can solve this problem, but not without

significantly degrading the period-classifying accuracy of the Gamma-Gaussian model.

21Both models returned the true period with 100% accuracy when given the correct (un-flattened) templates.
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(a) (b)

Figure 10. Plot (a) shows a periodic white noise template with the fundamental removed.
This emulates the spectrum of a piano note. Plot(b) shows the Gamma prior’s best
reconstruction of the spectrum, with hyper-parameters a = b = 5. Notice that the prior
has recovered the missing fundamental and this leads to a more accurate classification.

3.3.2. Random filters II - the log Gaussian prior. Ideally we want τk to be centred on 1 with

symmetric flexibility to both inflate and deflate and thus arguably log τk ought to be a zero

mean Gaussian. This suggests the use of the log-Gaussian prior on τk, in combination with

the random Fourier filter density and a uniform prior on log σ, this has joint density

p(s, {τk}, σ) ∝
√∏

k λk

σn+1

n−1∏
k=0

e−
1
2 (log2 τk/b+τkλk|ŝk|2/σ2) (59)

where b > 0 is the variance of log τ0 (and log τn
2
if n is even) and b/2 the variance of log τk

(k 6= 0, n2 ). Jointly maximising with respect to {τk} and σ2, gives the following set of

simultaneous equations

e
b

2σ2
τkλk|ŝk|2τk = 1; σ2 =

1

n+ 1

n−1∑
k=0

τkλk|ŝk|2;
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Unlike with the Gamma prior, there is no closed form formula for {τk}, however they can be

expressed in terms of the principle branch of the Lambert W function:

τk = W

(
b

2σ2
λk|ŝk|2

)(
b

2σ2
λk|ŝk|2

)−1

∈ [0, 1]

since b
2σ2λk|ŝk|2 > 0. These can be substituted into the equation for σ2 to give an iterative

algorithm for the amplitude. The energy of the model is

E(s, µ) = log(σ2) +

n−1∑
k=0

log σ2µk +
1

b

n−1∑
k=0

log2 τk (60)

which we refer to as the log-Gaussian energy. This model correctly both inflates and deflates

the model templates so long as b is large enough. and the energy effectively always has

a minimum located at the true period. However, there is something of a puzzle with this

energy in that our motivation of the log-Gaussian prior was to allow τk to be free to vary

above and below 1, but the above maximum-a-posteriori estimate forces τk ≤ 1.

Iteratively solving for {τk} and σ2 by successive substitution can be quite slow to converge.

In our experiments, it required about 200 iterations to achieve full convergence. This is

hugely time consuming given the cost of evaluating the Lambert W function. During the

early iterations the filter {τk} takes on its overall shape and latter iterations are mere

refinements. Thus it is reasonable to limit the number of iterations, say to about 10, and

accept a solution somewhat short of the mode. Further speed improvements can be obtained

by using an approximation to Lambert’s W . In our implementation we made use of the

fourth approximation given in [D’Angelo et al., 2019].

Our conclusions are that (a) the Gamma prior can be used to fill in missing power in

the spectrum and that this can improve accuracy in certain situations. (b) The Gamma
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prior cannot be used to delete energy from the spectrum without losing accuracy. (c) The

log-Gaussian can both fill-in and delete power and still retain accuracy. (d) Piano notes

ought not be any more challenging to accurately classify than notes which do possess a

fundamental, even when using the (incorrect for piano) non-flattened spectrum. However it

is conjectured that flexible models fit to piano notes may not generalise well to non piano

notes because they will have modelled the missing fundamental.

In [Leonard and Hsu, 1992] Gaussian priors for the matrix logarithm of general precision

matrices were first introduced and shown to have certain statistical advantages over the

conjugate Wishart prior. The energies developed over the previous two sections are maximum-

a-posteriori versions of this applicable when the precision matrices are circulant. Specifically,

the Gamma prior arises as a re-normalised Wishart and since circulant matrices have a fixed

(and known) eigenbasis only the eigenvalues need be given a log Gaussian distribution.

3.3.3. Nancy Sinatra’s Bang-Bang. Bang-Bang by Nancy Sinatra is a good example of music

which is not well modelled by the ordinary Gaussian likelihood. The electric guitar has some

very heavy effects on it and the singing contains all the complexity of speech. In-particular

there are strong resonance frequencies which articulate the various vowel sounds and make

the voice recognisable. Furthermore, both these things are happening at the same time. To

my mind, by far the simplest way to deal with this is not by developing specific models for

guitar, guitar plus X effect, guitar plus X effect plus Nancy Sinatra etc... because this isn’t

going to scale. Instead, a general purpose statistical model which is able to adapt to the

acoustics of the situation should be used.

We ran the overlapping chords prior and binding energy algorithm, with parameters

c0 = 100, c1 = 10, c2 = 90 and c3 = .08, using the log-Gaussian energy, with b = 1 and

capping the number of iterations in the estimation of the filter {τk} to 4. The results on the
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Figure 11. Six seconds of Nancy Sinatra’s Bang-Bang transcribed using the log-Gaussian
energy. The lyrics are not part of the output of the model, but they have (to some degree)
been reproduced in the reconstruction bangbang.wav.

first 6 seconds (starting just after the solo guitar intro) of the music are shown in Figure 11.

The highest melodic line corresponds to the singing and we have indicated lyrics on the plot

to make this easier to track. The bottom notes and chords are the accompanying electric

guitar. The reconstruction bangbang.wav has picked up the effects on the guitar and the

quality of the voice and it’s possible to make out some of the words being sung.

4. Conclusion

This thesis has introduced a stochastic model for audio events with four main features:

(1) the event can be built up out of multiple simultaneous individual sounds, each sound

being described by a spectral template model (see Section 2 for a range of templates that

can be used); (2) the amplitude of the sound can change over the course of the event and the

location and values of the amplitude changes are readily inferred (see Section 3.1.2 for the

amplitude model and it’s inference algorithm); (3) the event itself can contain features not
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explicitly present in the spectral templates but which must be acknowledged for successful

classification, this is accomplished through the use of spectral hyper-priors (see Section 3.3

for two proposed forms for these priors); and (4) the likely prior structure of the audio is

determined by the overlapping chord model (introduced in Section 3.2.3).

This event model has been used to infer a discrete representation of long and quite complex

music and to then re-synthesise this music from scratch. The reader should refer to the audio

clips provided to judge for themselves how successful these representations are. The results

are far from perfect and our limited examples have merely scratched the surface of a full and

complete investigation into the properties of this system. However we feel able to make the

following general statements which serve to summarise this thesis and suggest directions for

future work.

The basic audio template we have introduced - (periodic Brownian motion) - extends the

one introduced in [Mumford and Desolneux, 2010] (which captures periodicity) to further

capture the fact that most sounds have decreasing power in the spectrum with increasing

frequency. We have found these templates to be remarkably effective both in classifying

and simulation. However it is likely in full scale applications that the additional flexibility

provided by the ability to model missing harmonics and resonance peaks will be needed (see

Sections 2.2.2 and 2.2.3). When combined with the spectral hyper-priors to mop-up any

remaining details missed by these models, the resulting audio models are likely to be very

high performing. However there is a catch. As the number of templates increases, the time it

takes to search for the best fitting set of templates to any section dramatically increases. The

forward-loop-reduce (see Section 53)) method we have devised for our simple investigations

does not search through all possible combinations, as even with a limited number of periods,

and without the additional possibility of missing harmonics and resonance peaks, a full
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search would be impossible (curse of dimensionality). This is the fundamental weakness in

this approach, and furthermore there does not seem to be a simple solution... Except to

point out that this problem will vanish with the passage of time. It is a simple fact that

humans can’t distinguish say more than a few hundred periods, and thus there really is a

clear upper bound on the number of distinguishable possibilities. For this reason I believe

these discrete search methods, which while currently not in vogue, will make a comeback

once computers catch up.

Aside from the templates, another important feature in the preceding algorithm is the

amplitude model. By not assuming the amplitude is constant over the duration of the musical

event we found the classification accuracy in the context of polyphony to increase markedly.

However, the model is currently missing a crucial feature. This is the prior knowledge that

the amplitude for many instruments (such as piano and guitar) rapidly increases at the start

of the event and then decays. This attack-decay structure needs putting into the model

because then it would allow the identification of repeat notes, whereas the current model will

classify repeat notes as one long note with two sharp amplitude peaks. This prior knowledge

should be applied as a second-stage analysis step to the output of the amplitude-model. The

amplitude model provides the amplitude of the chord at each moment in time, and thus it

ought to be a simple matter to detect attack-decay and thus correct any mistakenly grouped

double-notes. See Figure 8 for an image of the output of the amplitude model, which should

make it obvious what is meant here.

Further, it will be recalled that in the introduction it was noted that phase information

has been thrown away in the above models. This has implication for the detection of note

onsets because in the algorithm of the preceding chapter onsets are only identified by the

absence of a particular period j followed by the introduction of j. As already noted, with
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two adjacent js the amplitudes must be analysed to detect the second j - but even this is

not totally guaranteed to detect the second j if the second onset amplitude is commensurate

with the amplitude of the first j (at the time the second j occurs). The solution to this

problem, as investigated in [Benetos and Stylianou, 2010], is to use phase. The second j

will (in-all-likelihood) be out of phase with the first j. This can be detected by looking for

phase differences associated with relevant frequencies of the two segments. It seems then

that for state of the art results (like in [Benetos and Stylianou, 2010]) a second stage of the

algorithm needs designing, incorporating both amplitude and phases information.

Another aspect of the algorithm I’d like to discuss here is the use of the binding energy

recursion to parse the entire piece of audio. This algorithm was first described in section

3.2 and then generalised in section 3.2.3 to deal with overlap. The unusual feature of this

algorithm is that the entire piece of audio is first reduced to individual samples, and then

these samples are pairwise merged if they are judged to belong to the same event. For

example, consider the sequence of letters t-h-e-d-o-g. After the first stage of grouping this

might become th-e-d-og, then after a second stage th-e-dog then after a further stage the-dog,

hopefully the grouping would stop here, but perhaps may proceed to group into thedog if the

model isn’t sufficiently realistic. In this case we are making an analogy between words and

complete notes, and letters as the individual samples. Thus the entire audio is processed as

a whole (albeit in stages), thus it is not processed sequentially. This is then totally unlike

how a human would parse a long piece of audio, however it does open up the door to the use

of parallel computation which would significantly speed up the search process.

A crucial issue I have admittedly been quite vague on is where did the values for the

hyper-parameters (c1, c2, . . . ) come from? Well, these were chosen by running the algorithm

multiple times and trying a bunch of values and picking the one that gave the best results
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(according to me). This is of course cheating. The difficulty here is that the energies as

currently written lack normalizing constants and thus there is no objective measure of

goodness of fit across different values of the hyper-parameters. If these normalizing constants

were put in, then with enough compute, the best fitting hyper-parameters for each audio

recording could be found. This would open the door to full and complete performance

evaluation and get rid of the task of hand tuning these numbers. I believe this extension of

the current model would be a significant step in the right direction.
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