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Cryo-EM structure and B-factor refinement
with ensemble representation

JosephG. Beton1,3, ThomasMulvaney 1,3, TristanCragnolini1,2 &Maya Topf 1

Cryo-EM experiments produce images of macromolecular assemblies that are
combined to produce three-dimensional density maps. Typically, atomic
models of the constituent molecules are fitted into these maps, followed by a
density-guided refinement. We introduce TEMPy-ReFF, a method for atomic
structure refinement in cryo-EM density maps. Our method represents atomic
positions as components of a Gaussianmixturemodel, utilising their variances
as B-factors, which are used to derive an ensemble description. Extensively
tested on a substantial dataset of 229 cryo-EM maps from EMDB ranging in
resolution from 2.1-4.9 Å with corresponding PDB and CERES atomic models,
our results demonstrate that TEMPy-ReFF ensembles provide a superior
representation of cryo-EMmaps. On a single-model basis, it performs similarly
to the CERES re-refinement protocol, although there are cases where it pro-
vides a better fit to themap. Furthermore, our method enables the creation of
composite maps free of boundary artefacts. TEMPy-ReFF is useful for better
interpretation of flexible structures, such as those involving RNA, DNA or
ligands.

Cryo-electron microscopy (cryo-EM) can resolve the structure of bio-
molecules at an ever-improving resolution. Larger complexes can now
be visualised as 3-dimensional density maps at near-atomic resolu-
tions, and in various conformations. The interpretation of those maps
often hinges on fitting atomicmodels of the differentmacromolecules
present in the complex1–3. This procedure is often difficult and requires
the user to provide accurate models, and a well-estimated resolution
(which can vary at different parts of the map). Pre-existing experi-
mental or predicted atomic models may be in a different conforma-
tion, and converging to a well-fitted one may require significant
sampling.

Several methods are commonly used for this procedure. To
improve themapfit, themapcanbe treated as a scalarfield, forwhicha
gradient can be used as a force4,5. Optimisation of the position against
the correlation coefficient (CCC) has also been proposed6, or by
Bayesian expectation-maximisation (EM) against the density observed
in the map7,8. The sampling itself is usually based on either molecular
dynamics (MD)4,9, minimisation10, normal mode analysis and/or

gradient following techniques11,12, or Fourier-space-based methods2.
Manual inspection and modification of the structure, or targeted
sampling for specific parts of the structure, are also common, espe-
cially at high resolutions13–15.

Molecular dynamics-based refinement methods have the advan-
tage of wider sampling but may result in locally distorted structures.
This can usually be fixed by either clustering the resulting data9 or by
minimising the structures at the end of the run6. The use of a force field
(such as CHARMM16 or AMBER17) have the added benefit of ensuring
that clashes are generally absent from the structure since they include
parameterised van der Waals repulsion terms.

Virtually all methods rely on blurring the model (globally or
locally)18 to compare against the experimental map, which poses an
additional challenge formaps offlexible systems that will often exhibit
significant resolution heterogeneity betweenflexible and rigid regions.
This heterogeneity in the map can also result from adding up density
maps from different reconstructions (e.g., result of multibody or
focused refinement) into a so-called composite map19,20. However, a
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systematic way to combine multiple maps into a composite map has
not been proposed yet.

Flexibility is intrinsic to biomolecular systems, which presents a
challenge for methods that tend to rely on a single structure repre-
sentation. Methods using a population of models21–26 can provide an
improved understanding of the fit betweenmap andmodels27. Mixture
modelling is a powerful framework to represent arbitrary density
probabilities comprising several parts: by iteratively estimating the
model parameters, and then re-computing the expecteddistribution, a
(locally) optimal model can be generated8. We use this approach to
estimate both the local spread of density around atomic positions and
the background noise level.

Here, we propose TEMPy-ReFF (REsponsibility-based Flexible-
Fitting)—anMD-based refinement guided by an EM scheme that uses a
Gaussian Mixture Model (GMM) to provide self-consistent estimates
for the atomic positions and local B-factors (Fig. 1). We show that the
method can accurately treat maps with highly heterogeneous resolu-
tion. To assess the quality of the refined models, we have developed a
measure that estimates the quality-of-fit of every residue to the local
density and allows us to compare the fit of different parts of themodel
in regions of varying resolution. We demonstrate on a large dataset
(from the CERES database http://cci.lbl.gov/ceres and additional cases
from the Protein Data Bank28 (PDB) and Electron Microscopy Data
Bank29 (EMDB)), that our approach produces single fits of similar
quality compared to state-of-the-art methods, such as Phenix30

although it can sometimes provide improved ones. Importantly, we
show that our B-factor refinement approach not only allows for the
generation of an ensemble of atomic models to better represent the
density information but also enables the generation of more reliable
composite maps.

Results
Mixture modelling applied to refinement
Wehavedeveloped amethodbasedonaGMM(usingoneGaussianper
atom and a uniform background term) to represent the estimated
contribution of various parts of a model to the experimentally
observed intensity. The Gaussians are fitted to the model in a self-
consistent way, such that their summed contributions represent a
(locally) optimal fit to the density. The intensity attributed to a Gaus-
sian, or a sumofGaussians, canbeused to estimate their importance in
representing a specific part of the map density. For example, by
summing the Gaussians for atoms from a given protein chain, it is
possible to determinewhichpart of themap isbest representedby this
chain, or other chains, or are part of the general background noise in
this map. Those weighted contributions (termed responsibilities in
GMM literature) allow us to perform a variety of tasks that are com-
monly performed on cryo-EM maps (described in Fig. 1): fitting an
atomicmodel to themap, segmenting themap into several parts, each
representing a distinct entity (for example, a distinct subunit in a
protein complex), or combining focused maps into a single overall
composite map, with optimal weights of the focused maps.

Although GMM approaches have been successfully employed
before, this was usually a coarse-grained representation of the overall
model and map7,8,31. By describing each atom as a Gaussian point
spread function, a link betweenmap andmodel is directly established:
the intensity of each voxel is a direct sum of the contribution of each
atom, as a function of its position and B-factor. It is important to note
that we define each atom’s “B-factor” as the sigma of its respective
Gaussian in the GMM. Additionally, the formalism used here does not
require the use of Gaussian distributions, and alternative descriptions
for the individual atomic contributions could be considered.

The responsibility calculation has several benefits: for regions of
the map that are close to multiple parts of the structures, the mixture
model allows for uncertainty in the assignment of the density. This
soft-mixing improves the convergence of the refinement, by making it
easier for structural elements to slide towards regions of density that
are a better fit, even if they are currently fit to a high-density region of
the map. The calculation is also self-consistent, as is empirically
demonstrated below: changes in the initial position and B-factor
assignment for the structure result in identical or similar fit for a wide
range of initial values.

Ensemble generation based on B-factors
Our GMM representation models the local ambiguity within cryo-EM
maps by tuning the B-factor of each atom. We reasoned that we could
leverage this information to generate an ensemble of models that
more accurately represents the variety of conformations that are
compatible with the map. Models were randomly generated by per-
turbing the positions of atoms, based on their B-factors, followed by
local L-BFGS32 minimisation (with OpenMM33) to locate close-by
structures that were compatible with the data34. Ensemble maps
were computed by averaging the simulated maps obtained for all
sampled structures in the ensemble (Fig. 2).

We first assessed the accuracy of B-factor assignment in TEMPy-
ReFF. While the B-factor optimisation is intended to be used together
with position refinement, it is useful to test it independently by opti-
mising the B-factors while keeping the atomic positions fixed. We
found that for all cases we tested, the map-model CCC improved sig-
nificantly when taking into account the refined B-factors for map
simulation (SupplementaryTable 1). The averageB-factor convergence
is shown in Supplementary Fig. 1., along with the corresponding
change in the CCC using the examples of Faba bean necrotic stunt
virus (FBNSV) (EMD-10097, 3.2 Å resolution, PDB ID: 6S44) and the
SARS-Cov-2 RNA-dependent RNA polymerase (EMD-30127, 2.9 Å
resolution, PDB ID: 6M71). The distribution of the B-factors is similar to
that of B-factors obtained from the depositedmodels (Supplementary

a TEMPy-REFF

Responsibility estimation

B-factor refinement Model refinement

b
Ensemble 
Generation

c
Composite map

Local scoring

Fig. 1 | Flow chart summarising the steps in the TEMPy-ReFF algorithm. a The
EM (Expectation-Maximisation) algorithm. Responsibility is an estimation of the
part of the data that is represented by a given component in the mixture. New
parameters (the mean and variance of each component corresponding to the
position and B-factor value) for each component (e.g., for each atom) are then re-
estimated using this responsibility and the experimental data. b After refinement,
an ensemble can be generated based on the local variance; local scoring provides a
view of the quality of fit of all regions of the map, irrespective of the local resolu-
tion. c By considering the sum responsibility of all the atoms in a chain, we obtain a
natural expression of the part of a map represented by a given chain. This can be
used for composition.

Article https://doi.org/10.1038/s41467-023-44593-1

Nature Communications |          (2024) 15:444 2

http://cci.lbl.gov/ceres


Fig. 1b). Furthermore, the B-factor assignment is robust: we found that
two refinements starting at initial values that differed by a factor of 5
converged to a similar solution (Supplementary Fig 2). Finally,whenwe
updated the atomic positions, we observed changes in the B-factors,
this is a feature of the change in coordinates (as the two are not
independent) (Supplementary Fig. 3).

Next, we investigated the use of our calculated B-factors in
ensemble generation (Fig. 2). The best-fitted model for rotavirus VP6
(EMD-6272) at 2.6Å appears as only one solution among many in the
generated ensemble (Fig. 2a). On the other hand, the ensemble aver-
age map exhibits a much higher quality-of-fit to the experimental map
than any single model (Fig. 2a, b, Supplementary Fig. 4). Intriguingly,
the ensemble map resembles more closely the experimental map
(Fig. 2a). We determine the optimal number of models in an ensemble
by calculating the CCC with the ensemble map generated from an
increasing number of models (Supplementary Fig. 5). A visual com-
parison between the single TEMPy-ReFF refined model and the
ensemble is shown in Fig. 2cwhere insets of residuefit show the source
of improvements: the density for an arginine (R71 from chain A) could
be explained by positioning the side chain in two alternate con-
formations. The structures in the ensemble populate both possible
conformations (Fig. 2c, left inset). In contrast, the ensemble of models
ismuchmore tightly clustered inwell-resolvedportionsof themap, for
example, residues R117 and Y114 from chain A (Fig. 2c, right inset). We
also found, using the capsid protein from the Faba bean necrotic stunt
virus (PDB ID: 6S44, EMDB ID: 10097, map resolution 3.3Å), that the
per-residue SMOCf35 score (averaged between all ensemble members)
showed a strong anti-correlationwith the RMSF between the ensemble
measures (Pearson’s coefficient −0.81, Fig. 2d).

Benchmarking structure refinement
Weassessed the quality of TEMPy-ReFFmodel refinement using a large
dataset of 229 models taken from the PDB (see Methods) with corre-
sponding maps at resolutions between 1.8 and 5 Å. We compared the
CCC, MolProbity36, and CaBLAM37 scores before and after refinement.
We benchmarked our method against the deposited PDB models as
well as CERES38 (see Methods), which is an automated Phenix30 model
re-refinement programme for cryo-EM maps at resolution ≤5 Å.

We observed, overall, similar performance between TEMPy-ReFF
andCERESbased onmap-model similarity (CCC) and geometricmodel
quality scores (MolProbity, CaBLAM, clash score) (Fig. 3, Supplemen-
tary Table 2). The average CCC scores for refined models from maps
with a resolution range of 3–4Å from TEMPy-ReFF (median: 0.633,
mean ± std: 0.627±0.101) and CERES (median: 0.636, mean ± std:
0.637±0.087) were very similar (Fig. 3a). We only observed improved
average CCC scores from TEMPy-ReFF refinements for models refined
in maps at 4–5 Å resolution (mean CCC ± std from TEMPy-ReFF:
0.672±0.148, CERES: 0.651±0.147). However, we observed improved
(lower) average MolProbity scores in many TEMPy-ReFF refined
models. Specifically, the MolProbity scores for TEMPy-ReFF refined
models from the highest resolution maps (<3 Å), outperformed both
CERES and models obtained from the PDB. Additionally, we noted a
smaller improvement in MolProbity scores for models in the 3–4Å
resolution range. This was largely due to the almost total absence of
clashes in TEMPy-ReFF refined models (Supplementary Table 2).
However, we noted more CaBLAM outliers in TEMPy-ReFF refined
models. Further,we observed ahigher correlationbetweenMolProbity
score and map resolution (i.e., increasing MolProbity score as map
resolution worsens) for TEMPy-ReFF refined models compared to

a

c

R71

R117

Y114
d

Single
refinement

Experimental
map

Ensemble
map

b

Fig. 2 | Ensemble representation of cryo-EM models. a Depiction of structure
ensemble (orange), alongwith themap (transparent grey); a plot of theCCCof each
individual model in the ensemble is shown (blue horizontal lines from y axis), as
well as the ensemble map (red). b depiction of a single-model map (green),
experimental map, and our computed ensemble map at contour level 0.02.
c Differences in the ensemble for different residues, for the ensemble of the
Methionine Transporter (PDB ID: 7MC0, EMDB ID: 23752): for residue R71 (left) the

ensemble is more widespread, and the side-chain density is more spread out into
two peaks, each populated by parts of the ensemble. For high-resolution portions
of the map shown on the right side, for example, R117 and Y114, the ensemble is
highly constrained, and the side-chain density is well-defined.d SMOCf plot (shown
in orange) and RMSFe (shown in blue) for each structure in the ensemble for the
Faba bean necrotic stunt virus (PDB ID: 6S44, EMDB ID: 10097, map resolution
3.3Å); the RMSF and SMOCf score are clearly anticorrelated.
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those obtained from the PDB and CERES (Supplementary Fig. 6). This
might be due to geometric restraints that are commonly applied in
other refinement software, including in CERES38, but not in TEMPy-
ReFF, where the geometry of the model is derived from the energy
function and the MD force field.

We examined the local fit quality using SMOCf for one example
from our benchmark: the ABS methionine transporter, solved at 3.3 Å
(PDB ID: 7MC0, EMDB ID: 23572). This example showed that local
model fit for the TEMPy-ReFF refined model was similar overall, rela-
tive to those from the PDB and CERES (Fig. 3c). Some parts of the
TEMPy-ReFF models showed better fit, and others poorer. This was
perhaps unsurprising, given the overall similar performance across our
benchmark at this resolution range (Fig. 2a). In areas where we did
observe better local fit for TEMPy-ReFF refined models, this was
apparently due to subtle changes in the positioning of the backbone
and the orientation of side chains (Fig. 3c).

We next investigated the degree of structural rearrangement that
was possible during TEMPy-ReFF refinement. We identified structures
deposited in the EMDB/PDB of which two separate conformations
were identified. First, we analysed two structures of the Atm1 ABC
transporter, in an open and closed conformation (EMDB IDs: 13613,
13614 at 3.3 and 3.2 Å resolution, respectively and corresponding PDB
IDs: 7PSL, 7PSM, respectively)39. We observed that large structural
rearrangements (e.g., rotation ofwhole domains)wouldbe required to
refine the structure of closed conformation into the cryo-EM map of
the open conformation (i.e., to refine the 7PSM into EMD-13613).
Despite an increase in CCC from 0.15 to 0.31, refinement with TEMPy-
ReFF was not able to reproduce the structure of the open conforma-
tion, presumably because the model became stuck in local minima
(Supplementary Fig. 7a). In a previous study, we developed a method
that combineddensity-guided-refinement (which is similar toMDFF40),
with the hierarchical application of rigid-body restraints calculated

a b

c

I98

V101

F115

V109

P100

Chain A

Chain B

Fig. 3 | Refinement of the CERES benchmark. a Benchmark comparison using
CCC, between the initial (PDB-deposited) models (blue), the CERES re-refined
models (green), and TEMPy-ReFF refinement-based model (orange), separated by
resolution bands of 1 Å. We evaluated n = 229 individual models. The central line in
each boxplot defines the median value, the bounds of each box define the upper
and lower quartiles and the whiskers define 1.5 times the interquartile range (IQR).
Outliers (points outside this 1.5*IQR range) aremarked with rhombus symbols. The
individual score for each model is marked with a black point. b Benchmark com-
parisonof the same 229models usingMolProbity score, the colouring and layout of

the boxplot is the same as in a. c Comparison between the refinement of the ABC
methionine transporter (PDB ID: 7MC0, EMDB ID: 23572, resolution 3.3 Å) with
TEMPy-ReFF and the correspondingmodels fromPDB andCERES. For all subpanels
the colouring matches that used in a. The left panel shows the overlaid models
within the cryo-EM map, which is rendered as a transparent surface. The central
panels show the SMOCf scores for residues from chains A (upper panel) and B
(lower panel). The left-hand panels show zoomed-in views of sections of chain A
(upper panel) and B (lower panel) as highlighted in the respective SMOCf plots with
black outlined boxes.
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using RIBFIND2 (version 2.0). This method was able to correct large
structural changes in RNA complexes41–43. We applied this method to
the refinements of Atm1 andwere able to successfully refine themodel
from the closed conformation into the open cryo-EM map (Supple-
mentary Fig. 7a). The CCC was 0.34 after rigid-body refinement. We
noticed some errors remained in the model, such as slightly incorrect
placing of ɑ-helices and amino acid side chains. To fix these issues, we
ran an extra round of refinement using TEMPy-ReFF, which further
improved the model to a final CCC of 0.54. We observed a similar
outcome for refinement of the open conformation CGT ABC
transporter44 (EMDB ID: 14843, PDB ID: 7zo8) into the cryo-EMmap for
the closed conformation (EMDB ID: 14844, PDB ID 7zo9): refinement
was only successful when combined with the application of hier-
archical RIBFIND2 restraints (Supplementary Fig. 7b). Thus, we con-
clude that TEMPy-ReFF refinement, without additional rigid-body
restraints, is best suited for refinement that requires local changes in
themodel, for example, arrangement of secondary structure elements
and positioning of side-chains.

B-factor weighted composite maps
We hypothesised that our GMM approach for model representation
could be applied to generating composite maps, where one combines
multiple, potentially overlapping, reconstructions of the same

complex into a single map. This can be viewed as an inverse of the
mixturemodelling problem, where the intensity contributions of each
component map must be correctly mixed together to produce an
accurate composite map. We achieved this using our GMM repre-
sentation to calculate responsibilities for every voxel in each compo-
nent map (Eq. 9), such that portions of component maps that
corresponded to atoms with lower B-factors were assigned the highest
responsibilities. These responsibilities acted as weights for combining
the component maps (Eq. 10). Our approach has several advantages:
because the responsibility decays smoothly, there are no seams within
composite maps and areas where the assignment would be uncertain
are treated as such, and the density will not be arbitrarily assigned to a
specific model or submap.

We evaluated our approach on a compositemap of the Singapore
grouper iridovirus capsid (EMD-34815) (Fig. 4). This map is composed
of 5 componentmaps, with each overlapping significantly with at least
2 other component maps (Fig. 4a), using Chimera45,46. Circular arte-
facts were visible in the depositedmap, which occurred at the edges of
the individual component maps, including at areas of the map con-
taining a fitted model (Fig. 4b, Supplementary Fig. 8a). After generat-
ing a composite map using our responsibility-weighted approach, we
found no visually distinguishable artefacts at equivalent locations in
our compositemap (Fig. 4c). This was reflected in a general increase in
correlation between Fourier components of the TEMPy-ReFF compo-
site map and the deposited model, compared to between the depos-
ited map and model (Supplementary Fig. 8a). Additionally, the CCC
between the model and TEMPy-ReFF composite map improved to
0.79, compared to 0.71 for the deposited map.

We extended our evaluation to composite maps which did not
include visually obvious reconstruction artefacts by reproducing the
composite map of RNA polymerase II (EMD-12969), composed from 3
separate maps (EMD-12966, EMD-12967, EMD-12968)47. Here, we again
see a general increase in correlation between Fourier components in
the TEMPy-ReFF composite map and the model, as well as an increase
in the model CCC score to 0.61, from 0.51 for the deposited map
(Supplementary Fig. 8b).

Case study 1: yeast RNA polymerase III elongation complex
We explored the effectiveness of the TEMPy-ReFF approach in more
detail by refining the model of yeast RNA polymerase III elongation
complex (PDB ID: 5FJ8). The corresponding cryo-EM map (EMD-3178)
was resolved at a global resolution of 3.9Å48. A brief observation of the
deposited model suggests that it is well-fitted to the cryo-EMmap: we
computed the CCC, using ChimeraX, as 0.58. The validation statistics
presented in the PDB are reasonable; clash score of 14, Ramachandran
outliers 1.1% and side-chain outliers 2.1%, with an overall MolProbity
score of 2.8.

The TEMPy-ReFF refinedmodel had an improved correlation with
the map, with a single-model final CCC of 0.62, whilst the ensemble
map had a CCC of 0.70. The MolProbity score remained essentially
unchanged at 2.7. A representation of themodel, as well as the quality-
of-fit for multiple chains, is shown in Fig. 5.

We next applied the TEMPy LoQFit score (see Methods) to locally
assess the improvement of our TEMPy-ReFF refined model, versus the
deposited model. Here, we only use the single-refined model from
TEMPy-ReFF to ensure fair comparisons. We visualise the LoQFit score
at each residue in both models using 2D plots (Fig. 5). The average
LoQFit score for the deposited model was 5.1 Å, and model agreement
was particularly high in chains A and B at the central regions of the
model and map, where the average LoQFit score was 4.6 and 4.5Å,
respectively. However, even in these regions we observe peaks in the
LoQFit score, consistent with poorer model fit, such as those seen
around residues 192–210 and 745–759 in chain A (Fig. 5d), as reflected
in the higher B-factors in this region (Fig. 5c). In addition to this, we
identify extended regions of poorer model fit, generally occurring

Composition

a

b

c

Fig. 4 | Using TEMPy-ReFF for map composition. a Composition of 5 component
maps (EMD-34227, 34229, 34230, 34235, 34236) shown in their overlapping posi-
tion on the left, combined to create the composite map shown on the right.
b Composite map of the Singapore grouper iridovirus capsid (EMD-34815), shown
as a blue surface rendering. In order to simplify visual comparison, we masked the
original map such that only density around the fitted model (PDB ID: 8HIF) is
shown. The deposited composite map retains some artefacts at the borders
between the, approximately circular, component maps, where the map density is
less intense. This is highlighted in the insets, which also show the fitted model,
coloured green. c Composite map, shown as an orange surface rendering, pro-
duced using the responsibilities computed by TEMPy-ReFF as weights for each
component map. The insets show the map density with the model, again shown in
green, at the same location as shown per b. Clearly, the artefacts are no longer
present.
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within chains that lay at the edge of the complex in solvent-exposed
regions with poorer resolution, including chains M and N (Fig. 5d). In
these chains the average LoQFit score was 6.6 and 5.4 Å, respectively,
reflecting the lower map resolution (and correlating with high B-fac-
tors), as well as poorer model fit in the deposited model. Refinement
with TEMPy-ReFF resolved many of these poorer fitting regions: the
average LoQFit score for the refined model improved to 4.6Å, and we
observed significantly better model fit at lower resolution regions of
themap. The average LoQFit score for chainO improved to 5.7 Å in the
refined model (from 6.8Å, Fig. 5d), and in chains M and N the average
LoQFit score improved to 5.1 and 4.5 Å after refinement. We investi-
gated the significance of these changes in the LoQFit score. Firstly, we
observed a close correlation between the LoQFit score and the local
resolution at the equivalent position within a cryo-EM map (Supple-
mentary Fig. 9). Secondly, we benchmarked LoQFit against other
common local scoring functions, Q-score and SMOC, as well as our
B-factor refinement. For Q-score and B-factors, we used the residue
average (Q-scoreavg), for comparison. To do this benchmarking, we
measured the LoQFit, Q-scoreavg, SMOCf and B-factors for 50 models
refined by TEMPy-ReFF, and investigated the correlation between
LoQFit and the other scoring functions via Pearson’s correlation. This
revealed a significant, inverse, correlation between LoQFit and
Q-scoreavg (−0.62 Pearson’s correlation across all examples), and a
significant correlation between LoQFit and the residue average
B-factor (0.64 Pearson’s correlation across all examples). We observed

a much less significant correlation with the SMOCf score (0.32), which
varied much more significantly across the examples we tested, com-
pared to the correlation between LoQFit and Q-scoreavg and average
B-factor (Supplementary Fig. 10). This was unsurprising, given the
previously reported lack of correlation between the Q-score and
SMOCf49.

Case study II: nucleosome-CHD4 complex structure
The nucleosome is a large nucleoprotein present in the nucleus, which
is the primary effector in the compaction of DNA. High-quality
reconstructions have been obtained, but its dynamic nature and
strained DNA strands wound around the histone proteins make it a
challenging system to obtain a good structural model. We apply
TEMPy-ReFF to refine the model associated with map EMD-1005850

(PDB ID: 6RYR) (Fig. 6a–d). The deposited cryo-EMmap clearly suffers
from very variable resolution (range: 3–10 Å, see Supplementary
Fig. 9), which affected the quality-of-fit of the deposited model
(Fig. 6a). Following refinement, the local details of the map are well
respected, especially showing improvement in the DNA structure, as
reflected by the SMOCf score (chain I and J, Fig. 6c). Nucleic acids are
often present in biomolecular complexes resolved by Cryo-EM, and
refining their geometries with respect to the map is an important part
of model refinement. In the deposited model, local deformations pull
the bases slightly away from the density, and from the expected geo-
metries to allow hydrogen bond formation. Our automated refinement

Fig. 5 | Case study of RNA polymerase III elongation complex. a The deposited
3.9 Å cryo-EM map of the RNA polymerase III elongation complex (EMD-3178).
b The TEMPy-ReFF refined model of the RNA polymerase III complex deposited
structure (PDB ID: 5FJ8) shown within the cryo-EM density. c the TEMPy-ReFF
refinedmodel (right) coloured according to the refinedB-factors. d LoQFit scoring
of individual chains from the RNA polymerase III complex, with the scores for the

starting model (obtained from the PDB) shown in blue, and for the TEMPy-ReFF
refined mode shown in orange. The position of these chains within the original
cryo-EM map are highlighted in red. Insets show several regions before and after
refinement coloured asper the LoQFit plots, with the ensembleofmodels shown in
transparent orange.
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pulls them back, forming hydrogen bonds in the process (Fig. 6d).
After refinement, the LoQFit and the local resolution follow similar
trends (Supplementary Fig. 9), indicating the model is well fit to the
map. This case study also further demonstrates how the ensemblemap
calculated with TEMPy-ReFF has greater similarity with the experi-
mental map than a single model (either the deposited model or a
single-refined model).

Case study III: SARS-CoV2 RNA polymerase and AlphaFold2
To refine amodel into anexperimental cryo-EMmap, an initialmodel is
needed. Although building a reliable model directly from the map is
sometimes possible, in most cases, this cannot be done reliably as the
resolution is not sufficient to allow a reliable assignment of every
atomic position. In such cases, a starting model can be obtained using
deep-learning-based ab initio tools, such as AlphaFold251 or
RosettaFold52. These programmes are frequently able to create very
high-quality protein models53. The predicted lDDT score51 (plDDT) is
also an excellent tool to decide which part of themodel can be reliably
kept, and which may not be correctly predicted, due to flexibility or
lack of known homologous sequences and structures.

To assess the capability of our method to refine such a model, we
used AlphaFold2-Multimer54 to create a model of the SARS-Cov-2
polymerase.We used the polymerase sequence (UNIPROT ID: P0DTD1,
residues 4393–5324), with non-structural proteins 7 (UNIPROT ID:
P0DTD1, residues 3860–3942) and 8 (UNIPROT ID: P0DTD1, residues
3943–4140). We only used templates present in the PDB at least a year
earlier than the deposition date of the deposited model (PDB ID:
6M71)55. The predicted model was refined into the SARS-Cov-2 poly-
merase cryo-EM map at 2.9 Å resolution (EMD-30127) (Fig. 7). The

resulting model (Fig. 7d) is highly similar to the deposited model
(Fig. 7c) at most residue positions, which was modelled using
Chimera46, Coot14, and Phenix30. However, more intriguingly, using a
SMOCf plot, we show that some residues that were not present in the
deposited structure55 can actually be placed into the map, with fitting
scores much greater than chance (Fig. 7c, d).

Discussion
We have presented TEMPy-ReFF, an MD-based atomic structure
refinement method, which is driven by the local features of a cryo-EM
mapusing amixturemodelwith anerror term, to account for the noise
in the map. Our approach naturally incorporates both position and
B-factor estimations in the same framework. This information is
essential to represent the local variability around atomic positions. We
conducted comprehensive testing on a substantial dataset comprising
229 cryo-EM maps sourced from EMDB, spanning resolutions from
2.1–4.9 Å and their respective PDB and CERES atomic models. On a
single-model level, TEMPy-ReFF achieves performance similar to the
CERES re-refinement protocol, and in some instances, outperforms it
by providing a more accurate fit to the map.

Currently one of the greatest challenges in model building into
cryo-EMmaps is evaluating the quality-of-fit in a system not described
by a single resolution value, but rather varying local resolution. We
address this challenge using B-factor estimation.We find, as previously
shown21–23,25,26, that an ensemble of equally well-fitted models repre-
sents this local variability better than a single model. However, we go
one step further, by showing that an ensemble map calculated from
these models, provides a better representation of the experimental
map, in comparison to a traditional simulated map (which is typically

a b

c d

Fig. 6 | Case studies of Nucleosome-CHD4 complex. a A nucleosome structure in
complex with chromatin remodelling enzyme CHD4 (EMD-10058, PDB ID: 6RYR) is
shown (worm representation), with the width proportional to the TEMPy-ReFF
refined B-factor, and colour based on local resolution (computed with ResMap).
b Deposited model (left, blue) and the ensemble of models and ensemble map
calculated with TEMPy-ReFF (right, orange), shown inside the cryo-EM map

(transparent grey). c SMOCf plot for each chain. The deposited model is shown in
blue, and the TEMPy-ReFF model is shown in orange. d Zoom-in on some of the
DNAbase pairs (chain I/J, base pair 54) fitted in themap (mesh representation). The
deposited model is shown in blue, TEMPy-ReFF model in orange and hydrogen
bonds are indicated in cyan.
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generated from a single Gaussian function per atom) (Fig. 2a). This is
showcased in Fig. 2c, where a potential double occupancy site for an
arginine necessarily requires more than one model to be correctly
represented. The improvement is also evident in regions of lower local
resolution (Supplementary Fig. 4), which may indicate an inherent
local flexibility of the structure, although this cannot be easily
deconvolved from the blurring due to optical factors56, or image pro-
cessing approaches.

Ensemble methods have been common practice in the NMR
community and have been suggested as a way of dealing with the
uncertainty in the data22,23,34. This has also been demonstrated pre-
viously for X-ray crystallographic data57, and we similarly observe a
plateau as more models are added to the ensemble (Supplementary
Fig. 5). Furthermore, when analysing the differences on a local level

(for example at the residue level) using a distancemeasure (such as the
RMSF), we observe that the local-fit-quality (using SMOCf) correlates
well with those differences (Fig. 2d).

Overall, our automated refinement procedure is computationally
efficient: computation time scales approximately linearly with map
andmodel size (Supplementary Fig. 11). The resultant models are well-
fitted to the cryo-EM map, based on the CCC. Without the ensemble
representation of the fittedmodels, the local and global model-map fit
score is comparable with those from Phenix (as represented by our
comparison with CERES results). We also observed that TEMPy-ReFF
refined models have typically as good, or better, MolProbity scores,
compared to those from CERES and the PDB, across our benchmark
(Fig. 4b). However, the correlation between resolution andMolProbity
scorewas stronger forTEMPy-ReFF refinedmodels, compared to those

Residue Number

a b

pLDDT

dc

Fig. 7 | Case studies of SARS-CoV-2 RNA polymerase (AlphaFold2 model
refinement). a AlphaFold2 predicted structure, with the colouring indicating the
plDDT confidence measure (blue means higher confidence, red means lower con-
fidence), fitted in the deposited map (EMD-30127, grey) b SMOCf plot of the
AlphaFold2 (shown in blue) and TEMPy-ReFF refinedmodel (shown in orange). The
regions highlighted ingrey andpink (correspond to inset regions in Fig. 7d) contain
residues that are not present in the deposited model but are present in the

AlphaFold2 model and are well-fitted to the map. c Deposited model for the SARS-
CoV-2 RNA polymerase (PDB ID: 6M71, blue) fitted in the deposited map (trans-
parent grey). Unassigned regions are visible, at the top and bottom right of the
map.dTEMPy-ReFFmodel (orange) obtainedby refining theAlphaFold2prediction
in the deposited map (transparent grey). Newly modelled regions that fit in the
density (as in Fig. 6h) are shown with coloured squares.
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from CERES (Supplementary Fig. 6). This difference is likely due to a
different application of explicit structural restraints in CERES, com-
pared to TEMPy-ReFF. Our refinement procedure does not include any
specific restraints, for example, to reduce Ramachandran or rotamer
outliers. Rather, models refined by TEMPy-ReFF are implicitly
restrained by the balances of forces applied to the atoms by the force
field. This should produce models with appropriate geometry,
assuming the fitting force from the GMM is appropriately balanced
within the MD force field. Indeed, the generally good MolProbity
scores obtained in our benchmark (Fig. 4b) show this to be an
appropriate approach. In particular,wenoted that TEMPy-ReFF refined
models virtually never contained significant clashes (Supplementary
Table 2). However, many refinement programmes, including those
used for CERES models, do apply geometric restraints (e.g., to elim-
inate phi/psi outliers). Based on our results, it seems that, broadly,
these restraints favour reduced CaBLAM outliers, which are typically
better for PDB/CERES models, at the expense of clash scores, which
were consistently worse in PDB/CERES models compared to those
fromTEMPy-ReFF (Supplementary Table 2).We also show that TEMPy-
ReFF refinements of nucleic acids can simultaneously improve the fit
to the cryo-EM data and the chain geometry (Fig. 6a–d).

Since 2018, deposition of composite maps has been increasing
significantly due to a growing number of macromolecular assemblies
for which focused maps for different assembly subunits are obtained
(often due to conformational flexibility). Some methods have been
proposed to compose such maps20, however, there is currently no
systematic way to evaluate this. Here, we provide a self-consistent way
to perform this procedure. Our approach has the advantage that the
responsibility decays smoothly, i.e., there are no seams between seg-
mented maps, or within composite maps: areas where the assignment
would be uncertain are treated as such. However, the method also has
some drawbacks, the clearest of which is that errors in modelling will
result in errors in composition, and that the maps must be aligned
manually, or using another software, prior to composite map genera-
tion with TEMPy-ReFF.

Finally, we show that our refinement protocol can take advantage
of recent developments in the field of structure prediction51,52. Starting
refinements from AlphaFold251,52 models is not only possible, it gives
results on par with manual refinement (despite using an automated
procedure) and highlights that better and more complete models can
be obtained by using our automated refinement approach, including
more residues that are sustained by the map information (Fig. 6e–h).
However, we note thatmodels that contained large errors required the
application of rigid-body restraints for effective refinement (Supple-
mentary Fig. 7). For these refinements, the TEMPy-ReFF GMM-based
(unrestrained) refinement still played an important role in correcting
minor errors that existed after rough refinement with rigid bodies. It is
difficult to define an exact transition point at which rigid-body
refinement, instead of unrestrained, is required for a given model,
and this currently requires user intervention. However, we envisage a
flexible and automated combination of these approaches could pave
the way for more reliable, and reproducible model building, where
alterations in refinement protocols can be objectively and con-
tinuously assessed53,58.

Further work will be needed to understand the impact of
ensemble model representation, and how to use such an approach
in assessing model-map fit quality, especially for inherently flexible
protein assemblies observed by cryo-EM. In this work, we explore
how ensembles can be derived from local resolution information
using our GMM interpretation of the experimental data. Although
we are able to derive ensembles that improve the overall correlation
with cryo-EM map, the model is admittedly simplistic. Assumptions
that the Gaussians are isotropic and that resolution fluctuations are
a result of conformational heterogeneity are approximations.

Indeed, future work needs to be able to disentangle resolution
heterogeneity due to reconstruction and imaging artefacts from
that caused by atomic displacements and structural variation. It is
foreseeable that this will require an end-to-end approach where
more information from reconstruction and the underlying 2D
micrographs are used to address these challenges. Despite these
limitations, we see this work as an important step, particularly in the
field of drug discovery, where, the docking of candidate com-
pounds is dependent on the local environment, and local errors or
variability can significantly alter the results. Providing multiple
models of cryo-EM maps from near-atomic to medium-resolution
will allow more reliable predictions of ligand poses, thereby open-
ing a window to many potential drug targets in medium-resolution
cryo-EM maps.

Methods
Refinement algorithm
Given an atomicmodel, which can be described as a set of atoms each
possessing a coordinate x, a B-factor B and an atomic numbers Z, the
aim is to optimise these positions and B-factors to best model the
experimental data. The refinement algorithm is inspired by the EM
approach for GMMs59. Here, atoms are represented as Gaussians with
the centre of mass and B-factor represented by the mean of the
Gaussian and sigma, respectively. Per the standard EM algorithm, we
first compute the expected (simulated) map given the estimated
atomic properties. A maximisation step is then performed to optimise
the atomic properties. Traditionally, the maximised properties would
be fed back to the expectation step and the EM process would be
repeated until convergence. In order to incorporate stereochemical
and physical information, we deviate from the standard EM algorithm:
Rather than feed the maximised atomic properties back into the next
expectation step we compute a force that biases atoms towards the
optimised coordinates in an MD simulation. The algorithm is sum-
marised below:

• Perform maximisation step
– Generate the expected (simulated) map given a set of initial

atomic positions, B-factors, and background error.
• Perform expectation step

– For each atom determine a new desired position and
B-factor.

– Update the background noise term.
• Update the biasing force to encourage atoms towards the new

positions.
• Repeat until convergence criteria are satisfied.

Expectation
The intensity ‘P’ due to a given atom ‘i’ at a coordinate v can be mod-
elled as a Gaussianwhere xi

!, Bi and Zi are the atoms positions, B-factor
and atomic number, respectively:

P ~v,~xi,Bi,Zi

� �
=Zie

j~v�~xi j2

�Bi
2 ð1Þ

For brevity, we abbreviate the above equation for a given atom:

Pi ~v
� �

= P ~v,~xi,Bi,Zi

� � ð2Þ

Now, the expected intensity of a given voxel in a cryo-EMmapMs

(refered to as the simulated map) is given by the contributions of allN
atoms with an additional error term E which will be introduced later:

Ms ~v
� �

=
XN
i

Pi ~v
� �

+ E ð3Þ
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Maximisation
The maximisation step attempts to determine updated parameters
that improve the simulated map in the next ‘expectation’ round. To
perform the maximisation step for each atom a responsibility-
weighted experimental map Wi ~v

� �
is calculated for each atom. The

responsibility for a given atom (γi) is given by:

γi ~v
� �

=
Pi ~v
� �

Ms ~v
� � ð4Þ

Next, the experimental mapMe is weighted by this responsibility:

Wið~vÞ=Með~vÞγið~vÞ ð5Þ

The new position xi′ of the i’th atom is given by the weighted real-
space average of the voxels, where v! is the real-space position of the
voxel.

x0i =
1

tot mass

X
v2V

Wi ~v
� �

R ~v
� �

ð6Þ

The new B-factor B0
i is given by the weighted variance.

B0
i =

1
tot mass

X
v2V

Wið~vÞj~v�~xij2 ð7Þ

Due to experimental noise, atomic B-factors are often
restrained10,60. Here, we apply a simple weighting scheme, where the
average B-factor of all atoms in a residue is used to weight
the atoms.

The new estimate of the background noise E′ is also calculated as
the mean of the experimental map weighted by the responsibility of
the error, where |V| is the total number of voxels. Here, only voxels
within 4σof the atoms are included in the calculation. This ensures that
the noise term isn’t biased by density values that are not near the
refined atoms.

Werr ~v
� �

=Me ~v
� � E

Ms ~v
� � ð8Þ

E 0 =
1
jV j
X
v2V

Werrð~vÞ ð9Þ

Defining the fitting potential
After determining improved parameters for the atoms, the force field
used to steer them is updated. We consider two methods to improve
the fit quality: MD, where the system’s coordinates are integrated over
time, taking into account the forces atoms exert on each other; and
energyminimisation,where the coordinates of the systemare changed
to minimise the energy function.

To combine our description of themapwith the energy terms that
are usually present in force fields, we compute a fictitious force
representing the direction of the change in position induced by the
Gaussian fitting (for MD). The energy term (Egmm) is defined as:

Egmm = kgmm 1� e
�j~xi�~x

0
i
j2

2B3
i

0
@

1
A ð10Þ

where kgmm is a user-defined constant (we used 105 for all
refinements in this manuscript), ~xi is an atom’s current position,
~x0i is the updated position suggested by the GMM and Bi is the
atomic B-factor.

Creating composite maps
Given an aligned set of experimental maps with fitted models, we use
the mixture modelling formulation we provide to generate a compo-
site map. The responsibilities attributed to each chain of a model can
be used to weight their intensities when they are combined into the
composite map. Adding the signal from all these maps together typi-
cally leads to artefacts at the seams (Fig. 4, Supplementary Fig. 8). To
deal with this, the experimental maps are reweighted by the respon-
sibility of the components (rather than the atoms) asper Eq. 4 and then
summed together (Supplementary Fig. 12).

The input for the algorithm is a consensus model and multiple
pre-aligned composite maps. Given C components each with a corre-
sponding atomic model and an experimental map Me,c, we create a
simulated map Mc for the component. Here, we use the equation for
simulating a map (Eq. 3), but only consider the contributions of the
atoms of component C:

Mc ~v
� �

=Σv2V ~v
� �

+E ð11Þ

Similarly, the responsibility for a component is determined by
normalising it against the simulatedmap of all components. We retain
only the high-resolution regions of these component maps by setting
the atomic number to 0when computing the simulatedmap for atoms
in a given model, provided that the corresponding atom in another
component map has a lower B-factor. The responsibility map for a
given component, γc, is computed as follows:

γc =
Mc ~v
� �

PC
c Mc ~v

� � ð12Þ

Now, the final composite map,MC , is defined as the sum of all the
responsibility-weighted experimental maps.

MC ~v
� �

=
XC
c

γc ~v
� �

Me,c ~v
� � ð13Þ

Conformation-based force calculation and MD
OpenMM is used for the conformation-based force calculation and
MD33. We tested CHARMM36 and AMBER14 in OpenMM (Supple-
mentary Table 3), and they show slight differences in the preferred
backbone dihedrals (Supplementary Fig. 13). Although other force
fields were available, we used AMBER14 for our runs. We used a GB-
Neck2 implicit solvent model61 and Langevin integrator with a 0.1
femtosecond timestep to calculate atomic trajectories.

Running the refinements
Before any positional refinement of a givenmodel, the B-factors for all
atoms were refined for 25 iterations. B-factors were capped to a max-
imum value of 1.5 for membrane proteins and 2.5 for all other models.
At each refinement iteration, the simulation was run for 2000-time
steps. The CCC was calculated for the updated model, using a global
B-factor (set to be equivalent to the global resolution of the cryo-EM
map) for map simulation (Eq. 3), and if the CCC did not improve for 5
iterations the refinement was stopped. If this convergence criterium
was not met after 300 iterations, the refinement was stopped.

Local quality of fit (LoQFit)
We implemented a local-fit quality score as part of the TEMPy2 python
package. The score – LoQFit – uses an approach similar to a local FSC
score for cryo-EM maps62 in order to assess the fit quality of a protein
model. This local FSC score is calculated for regions defined by a soft-
edged spherical mask, centred at the Cα atom for each residue in the
fittedmodel and applied to bothMS andME . The diameter of thismask
is five times the global resolution of the experimental map. We use an
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FSC threshold of 0.5 to determine the LoQFit score for each residue.
To improve the smoothness of the final LoQFit plot, we include an
option to estimate the exact frequency at 0.5 correlation between the
two maps, using linear interpolation.

We also use SMOCf to estimate the local quality of fit35. Briefly,
SMOCf uses a local window around each residue, and then computes
theManders overlapcoefficient between the simulatedobservedmaps
in this region.

Ensemble algorithm
To compute an ensemble of atomic models that fit the cryo-EM map,
we create an ensemble of locally perturbed conformations. This is
achieved by sampling the coordinates of each atom from a multi-
variate Gaussian. The mean value of this Gaussian is set to initial
position of each atom, and the covariance matrix is constructed from
the shifted B-factors (which are the original B-factors adjusted such
that the minimum B-factor is fixed at 0.25). We then locally minimise
each model in the ensemble, to keep acceptable stereochemistry.

Following this, we apply an ensemble fitting force and a density-
guided force. The ensemble energy term Eens is defined per atom as:

Eens =
kensffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π3 *Bi

3
q * 1� e

�
j~xi�~x0i j

2

Bi
3

 !
ð14Þ

where Eens is a constant (1000 is used for all examples shown in this
manuscript), Bi is the atomic B-factor, x! ’

i are the coordinates of the
atom after resampling, and x!i are the coordinates prior to sampling.
The energy for the density-guided force is defined as the negative
(interpolated) cryo-EM density value at the position of each atom,
scaled by a constant kdens, which typically needs to be optimised for
each map (values used range between 5 and 200). With these forces
applied, we run a short simulation (2000 steps of 0.1 femtoseconds)
and minimise using L-BGFS in openMM33.

We then generate blurred maps for each conformation in the
ensemble, and compute a voxel-based average. To determine the
number of models in an ensemble we increase the number of models
until there is no increase in CCC. This average blurred map represents
the final ensemble average map we use throughout the text.

RMSF
To compute the RMSF value for our generated ensemble, we first
compute the mean structure, and then compute the RMSF using the
normal formula. For an ensemble of structures, the residue fluctuation
profiles for an ensemble withN models are calculated according to the
formula:

RMSF =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j

xi jð Þ � xi
� �� �2vuut ð15Þ

wherexi jð Þ denotes theposition (coordinates) of the i-thCα atom in the
structure of the j-th ensemble model and xi

� �
denotes the averaged

position of the i-th Cα atom in all models in the ensemble.

Local resolution calculations
We used the ResMap method to compute local resolution estimates63.
ResMap uses local windows of varying size, and statistical tests to
determine the most likely resolution for each voxel in the map.

Generation of benchmark and assessment
Our benchmark is based on the CERES database38. We took the cor-
responding deposited maps and structures from EMDB64 and PDB65,
and the re-refined structures from CERES. Because of the CERES
database setup, our benchmark containsmaps resolved from2.1–4.9 Å

resolution. We did not include any CERES models that contained
stretches of 3 or more consecutive residues with no modelled side
chain atoms.

In almost all cases, we assess the goodness-of-fit of models using
the CCC with ChimeraX 1.3, using the commandmeasure correlation66.
The exception to this is the results presented in Fig. 3a, and in Fig. S4, in
which the CCC was calculated using TEMPy67. Simulated maps were
generated using TEMPy with a uniform B-factor set to be equivalent to
the global resolution value for the cryo-EM map, which was obtained
from the EMDB. MolProbity and clash scores were calculated using
phenix.molprobity68, and CaBLAM using phenix.cablam37.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. We obtained atomic models for refinement
from the PDB and CERES, and the corresponding cryo-EM maps from
the EMDB. All TEMPy-ReFF refined models described in this paper,
alongside the corresponding models from the PDB and CERES, where
appropriate, are deposited at the following Zenodo repository:
[https://doi.org/10.5281/zenodo.8395613]. The AlphaFold2-Multimer
predicted model shown in Fig. 7 is also deposited in the same Zenodo
repository. The numerical data underlying the plots shown in Figs. 2a,
3a–c, 5d, 6c, 7b are provided as a Source Data file.

Code availability
TEMPy-ReFF is available at https://www.topf-group.com/tempy-reff.
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