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Risk taking for potential losses 
but not gains increases with time 
of day
Rachel L. Bedder 1,2*, Matilde M. Vaghi 1,2,5, Raymond J. Dolan 1,2,4 & Robb B. Rutledge 1,2,3

Humans exhibit distinct risk preferences when facing choices involving potential gains and losses. 
These preferences are believed to be subject to neuromodulatory influence, particularly from 
dopamine and serotonin. As neuromodulators manifest circadian rhythms, this suggests decision 
making under risk might be affected by time of day. Here, in a large subject sample collected using 
a smartphone application, we found that risky options with potential losses were increasingly 
chosen over the course of the day. We observed this result in both a within-subjects design 
(N = 2599) comparing risky options chosen earlier and later in the day in the same individuals, and 
in a between-subjects design (N = 26,720) showing our effect generalizes across ages and genders. 
Using computational modelling, we show this diurnal change in risk preference reflects a decrease in 
sensitivity to increasing losses, but no change was observed in the relative impacts of gains and losses 
on choice (i.e., loss aversion). Thus, our findings reveal a striking diurnal modulation in human decision 
making, a pattern with potential importance for real-life decisions that include voting, medical 
decisions, and financial investments.

Everyday decisions are driven by risk attitudes that vary across  individuals1–3. Furthermore, risk preferences 
can differ when potential gains and losses are concerned. The same person that takes a cursory glance at a red 
walk signal before hurrying on their way (i.e., risk seeking in a loss frame) might always stick to an old favorite 
at an ice cream shop (i.e., risk aversion in a gain frame). The reflection effect refers to a reversal of preferences 
when shifting between gain and loss magnitudes. This effect is a central feature within prospect  theory4, and is 
repeatedly observed at the population  level5,6. It is also robust across multiple demographics including, for the 
most part, a sample of 4098 participants spanning 19 countries and 13 different  languages7. This effect is also 
observed in non-human  primates8. Behaviorally the reflection effect manifests as risk aversion for gains (i.e., 
smaller certain reward are preferred over larger risky rewards) and risk seeking for losses (i.e., larger risky losses 
are preferred over smaller certain  losses4.

Biological accounts link risk-taking behavior to underlying neural  circuitry9, and to processes that change 
across the lifespan (reviewed in development:10, and in  ageing11). These biological changes are consistent with 
epidemiological evidence that shows that adolescents engage in greater risky  behaviors12, which is often attributed 
to developmental changes in dopaminergic reward  circuitry13,14. However, the majority of such studies focus on 
situations in which every risky option includes a potential gain, without considering decisions that involve only 
potential losses. Many studies implicitly assume that risk taking for gains and losses is governed, at least partially, 
by shared  processes12. However, natural aging is associated with a decline in the integrity of the dopamine system 
(e.g.,15) and this has been linked to a parallel decline in risk taking for potential gains but not potential  losses16. In 
a broader sample between the ages of 12–90, risk attitudes for gains did not relate to risk attitudes for losses in the 
same  individuals6. The overall pattern of findings from these behavioral studies suggests that risk taking for gains 
and losses might be controlled by distinct processes with at least partially dissociable biological underpinnings.

Similarly, computational modelling in studies of risky decision making often feature a single risk aversion 
parameter and a loss aversion parameter. Loss aversion is assumed to govern the relative impact of potential 
gain and losses on choice (i.e., ‘losses loom larger than gains’4,17), which could influence risk taking related to 
both potential gains and losses (reviewed  in18). Notably, this parameter can be difficult to identify specifically in 
paradigms with a large range of probabilities using the cumulative prospect theory model e.g.19,20,that is closely 
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related to the model we employ here for simpler paradigms. Furthermore, many studies do not consider situations 
in which only potential losses are involved. In line with dual-process models of decision making, dopamine is 
associated more with reward-related  behaviors21, while serotonin is associated more with loss-related  behaviors22. 
An environmental asymmetry in rewarding and punishing stimuli has been proposed as providing an adaptive 
account for dissociable decision processes that could vary  independently23. Many neurobiological processes are 
known to change over the course of the day (e.g.,  hormones24;  digestion25), and this includes regular fluctuations 
in  neuromodulators26–28. There are circadian changes in risk taking in animals, although the mechanistic basis 
of those changes is not well understood. Circadian changes in risk taking are observed in male dark-eyed juncos 
deciding whether to sing or  forage29, and increased risk taking during foraging is observed later in the day in 
 sparrows30. Some risk-taking behaviors have been shown to change according to time of day in humans, including 
decreased sensitivity to negative feedback in the afternoon compared to the  morning31, and greater engagement 
with reward-driven behaviors in the evening (e.g., consuming higher calorie  food32). Thus, we hypothesize that 
time of day influences risk taking in humans, and investigate whether effects differ for potential gains or losses.

We tested risk attitudes for gains and losses in humans as a function of time of day. To this end, we measured 
propensity to take different types of risks at different time of the day in a within-subject design, availing a sample 
of 2599 participants who played a gamified risky decision making task more than once on a smartphone platform 
(The Great Brain Experiment). We implemented computational models based on prospect theory, to test whether 
risk taking for gains and losses show differential diurnal patterns that might reflect a differential mechanistic 
basis. To test the generalizability of our result, we looked at the first play of more than 25,000 participants and 
split for demographics including age and gender.

Methods
Participants. We included the data from 26,720 participants from the UK and USA aged 18–69 (18,106 
participants between ages 18–39; 13,054 female participants; 18,977 participants from the UK) who completed 
a risky decision task between March 1, 2013 and September 30, 2014 on the gamified cognitive task platform 
The Great Brain Experiment. Participants played the task at whatever time they liked with no prompting. Results 
from a smaller subset of this data set have been previously published  elsewhere16. The analyses presented here 
were exploratory and not pre-registered. Gender, age, and location were defined as participants self-selecting 
their demographics when they downloaded the app. Participants selected their age from the given age brackets 
of: 18–24, 25–29, 30–39, 40–49, 50–59, 60–69 and 70+. Participants selected the country they were based in from 
a list. All participants gave informed consent within the smartphone platform. The Research Ethics Committee 
of University College London approved this study and adhered to the tenets of the Declaration of Helsinki.

Smartphone-based experiment. The task involved 30 trials where participants chose between safe and 
risky options. Participants also rated their happiness 12 times and the results of those analyses are reported 
 elsewhere33,34. The majority of participants took between 3 and 5 minutes to complete each game. Participants 
began with 500 points. When each game was finished the participants were told the score they achieved, what 
percentage of all other plays from all players it was higher than, and their all-time high score. On each trial 
participants chose between a safe option (where the points were guaranteed if they chose the option) or a risky 
option where they had a 50% chance of two potential outcomes. The risky choice was represented on a spinner 
where an arrow moved around until it landed on either of the two potential outcomes (Fig. 1). Where the safe 
option was chosen the outcome was resolved immediately. There was no time constraint on making a decision 
on each trial.

Each play contained three types of trials: (1) 11 gain trials, where they could choose between a certain gain 
and a gamble with a greater potential gain or a zero; (2) 11 loss trials, where they chose between a certain loss 
and a gamble with a greater potential loss or a zero; and (3) 8 mixed trials where they chose between a certain 
option of zero or a gamble with a potential loss and a potential gain. Two different design matrices were used 
(ratio and uncorrelated, for more details see the Supplementary Methods). Each trial began with the instruction 
‘Spin the Spinner or Play it Safe!’ and the green borders on the circles which contained each of the two options 
alternated between light and dark green every few seconds to indicate to the participants that either option can 
be selected by tapping the screen (Fig. 1).

Data analysis. All data from the smartphone platform was time stamped with Greenwich mean time 
(GMT). Only country-level location data was available for all participants. Thus 6.5 h was subtracted from times-
tamps for data collected in the USA to correct for the time difference for the average participant. 2599 partici-
pants completed the game at least twice, allowing a within-subject analyses. Eligibility for this subset was defined 
as having completed at least two game plays between 8 am and 10 pm on different days that were both either 
the ratio or uncorrelated designs. These time windows were utilized in previous  studies35,36. 26,720 participants 
completed the game at least once, allowing for a between-subjects analysis comparing age groups, genders, and 
different design matrices in their first play. Analysis of first plays only in this extended sample avoids some 
potential issues with self-selection based on interest in completing a risk-taking task at particular times of day, 
because the smartphone app features multiple games related to different aspects of cognition and participants 
could not predict the nature of the game before selecting to play. Participants do not know before they start the 
game that it involves risky decisions.

We report Pearson correlation coefficients for effect sizes of relationships between task measures and time 
of day of the game’s completion. Additionally, we computed the difference between pairs of effect sizes between 
time of day and parameters of a computational model, to test if time of day had different effects on each param-
eter. All p values were computed based on permutation tests using 10,000 random shuffles of the time of play 
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to determine null distributions (MATLAB, Version 2018a). We also included Bayes Factor tests (JASP, Version 
0.14.1). When the Bayes Factors were reported in the main body of the text, we report  BF01 when the p value 
exceeds 0.05, and  BF10 when the p value is less than 0.05. A BF of more than 1 indicates support for the null  (BF01), 
or alternative hypothesis  (BF10). A BF of less than 3 offers mild evidence for the hypothesis, a BF between 3 and 
10 offers moderate evidence, and values exceeding 10 offer strong evidence. When Bayes Factors are reported 
in a table, they are all given as  BF01 for ease of comparison. When the Bayes Factor is reported as ∞ this means 
the magnitude exceeds what is computable with the software. We computed these analyses separately for both 
genders, and for older and younger players, and for USA and UK participants. We fitted choices to individual 
game plays with a prospect theory model using maximum likelihood, where the subjective utility of the gamble 
and certain options were determined by a separate power function for the gain and loss values (loss sensitivity: 
αloss, and gain sensitivity: αgain) and a multiplier for any loss values (loss aversion: λ).

Choice probabilities were then determined by a softmax rule which converts the difference in subjective utili-
ties to the probability of gambling. The softmax includes an inverse temperature parameter ( µ ) which quantifies 
choice stochasticity.

Results
On each choice trial, participants were presented with choices between risky and safe options and had to activate 
a spinner to make a risky choice. To detect the presence of diurnal variations in risk taking, we examined how 
preference for risk taking in gain, loss, and mixed trials (Fig. 1) changed according to the time of day that the 
task was completed. Including trials which contain gains and losses separately allowing us to investigate the roles 
of each frame on risk throughout the day, rather than just attitudes to risk generally. We used a within-subjects 
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Figure 1.  Task Design. Gain trials (green outline) had potential gains and no potential losses. In an example 
gain trial, a participant chose between a risky option (here, 50% probability of 59 points) and a safe option (here, 
100% probability of 35 points). Loss trials (red outline) had potential losses and no potential gains. Mixed trials 
(blue outline) had both potential gains and potential losses with a safe option that was always worth 0 points. 
Therefore, on any trial participants could opt for a risky choice. The experimental design enables the role of a 
gain or loss magnitudes in propensity towards risk to be disambiguated. The participants total score, starting 
at 500 points, was added or taken away from throughout the game as they win and lose points on each risky 
choice. The green, red, and blue outlines were added to the figure for descriptive purposes, each trial had the 
same appearence to the participants.
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analysis in 2599 participants who had completed plays on two different days. To test how generalizable our 
results were to multiple demographics such as age and gender, we examined first plays alone using an extended 
sample of 26,720 participants, who played at different times of day. The median time the task was completed in 
the extended sample was 18:48 with 70% of plays between 08:00 and 22:00.

Within-subject analysis. To test for the presence of circadian effects within individuals, we used the first 
two plays from players (N = 2599; female = 1327; 18–39 = 1507) who completed plays on two different days 
between 08:00 and 22:00 (according to GMT). If risk taking increases throughout the day, then small differences 
in the time of day for the two plays should be associated with little difference in behavior, but large differences 
should be associated with greater differences in risk taking. For each subject, we computed the difference in the 
time of day between the later and the earlier play, where a larger difference indicates the later play being collected 
further on in the day compared to the earlier play. The mean time of day difference between each play used in 
the analysis was 4.3 h (SD, 3.4 h). 52% of subjects (N = 1350) had the game played at the earlier time of day on a 
later calendar day. Thus, the earlier and later plays are balanced for whether they were performed first or second. 
Thus, prior experience or learning would be unlikely to account for the changes we observed with time of day.

First, we found that in gain trials (i.e., those with no potential losses) there was no significant relationship 
between the difference in proportion of risky choices made (for the later play minus the earlier play) and the dif-
ference in time of day (Pearson’s r =  − 0.0038, p = 0.84,  BF01 = 39.93). In contrast, in loss trials (i.e., those with no 
potential gains), we observed a positive correlation between time of day difference and difference in risk taking 
between the two plays (r = 0.057, p = 0.0038,  BF10 = 1.58). We did not observe an effect in mixed trials (r = 0.015, 
p = 0.45,  BF01 = 30.40) (Fig. 2A). Hence, risk taking for potential losses, but not potential gains, increases with 
time of day, with people on average choosing more risky options with potential losses later compared to earlier 
in the day. Because participants could opt for a risky choice in any of the three types of trials, these results sug-
gest that time of day selectively affects loss-related behavior (i.e., loss and mixed prospect choices) and does not 
affect risk taking in gain trials (i.e., gain choices).

Computational modelling using prospect theory. Choice behavior in risky decision tasks is well 
described using a parametric computational model based on prospect  theory4,37. Standard decision models 
include parameters for risk aversion (α), loss aversion (λ), and choice stochasticity (inverse temperature, μ). 
This model can be extended to allow risk aversion to vary for gains and losses separately (referred to as gain 
sensitivity, αgain and loss sensitivity, αloss). Adopting a model-based approach to our behavioral data allows us to 
delineate between alternative mechanisms which could explain the time of day effect on risk taking for losses 
but not gains, asking whether time of day affects a single model parameter. An increase in risk taking for trials 
that include losses could be explained by a decreased loss sensitivity (αloss), reducing the difference in expected 
utility between potential losses associated with safe and risky options. One effect of a decrease in loss sensitivity 
is to render the safe option subjectively less attractive relative to the risky option. Loss aversion is perhaps the 
best known of the phenomena described in prospect theory. Increased risk taking for losses could also relate to 

Figure 2.  Loss sensitivity decreases with time of day in individuals. (A) We identified individuals (N = 2599) 
who completed the risky decision task on two different days between 08:00 and 22:00. Risk taking in loss trials 
increased with time of day within individuals. (B) Loss sensitivity (αloss), but not gain sensitivity (αgain) or loss 
aversion (log(λ)), decreased with time of day in this within-subject sample. Error bars represent bootstrapped 
95% confidence intervals [*p < 0.05, **p < 0.01, ***p < 0.005]. (C) Loss sensitivity was lower for later plays 
in within-subject analysis. Error bars represent bootstrapped 95% confidence intervals. Data binned on 
differences less (N = 1,643) or more than 5 h (N = 956) are shown for illustration purposes. [*p < 0.05, **p < 0.01, 
***p < 0.005].
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a decrease in loss aversion (λ), a parameter that captures the relative weighting in choice of potential losses and 
equivalent gains.

We fit a model with a single risk aversion parameter (Single Alpha Model) and a second model with sepa-
rate risk parameters for gains and losses (Dual Alpha Model) for each play to each participant separately. The 
Dual Alpha Model (pseudo-r2 = 0.40 ± 0.24, mean ± SD) fit the data better than Single Alpha Model (pseudo-
r2 = 0.31 ± 0.22) and was preferred according to Bayesian model comparison which penalizes for model com-
plexity (Table 1).

Using the preferred Dual Alpha Model, we compared the estimate of each parameter between the later and 
earlier play. As expected, gain sensitivity (αgain, 1.02 ± 0.31, mean ± SD), was not associated with time of day 
(r =  − 0.011, p = 0.59,  BF01 = 34.94). Instead, loss sensitivity (αloss, 0.82 ± 0.34) was correlated with time of day 
(r =  − 0.061, p = 0.0019,  BF10 = 3.01), where decreased αloss is consistent with the observed increase in risk taking 
in loss trials with time of day (Fig. 2B,C). If loss aversion decreased with time of day, this could partially explain 
increased risk taking for losses. However, we did not find a relationship between loss aversion log(λ) (0.59 ± 0.93) 
and time of day difference (r = 0.0075, p = 0.70,  BF01 = 37.79) (Fig. 2B,C). We found that the strength of the decline 
in loss sensitivity over the course of the day was significantly greater than any decline in loss aversion (p = 0.015). 
We also found no relationship between time of day and choice stochasticity µ (0.96 ± 3.25, r =  − 0.020, p = 0.309, 
 BF01 = 24.07), arguing against an explanation for our results in terms of changes in choice randomness. We 
report the effects of time of day on the parameters in the Single Alpha Model in the Supplementary Results (S3).

In more complex versions of prospect  theory38, it has been shown that it is often difficult to identify the 
independent contributions of risk aversion and loss aversion. In order to test whether the time of day effect 
could be attributed to changes in loss aversion, we simultaneously fit the two plays (60 trials) from the within-
subjects group using the winning Dual Alpha Model first allowing for only λ to vary separately for each fit (Split 
Lambda Model) and secondly allowing for only αloss to vary separately for each fit (Split Alpha Loss Model). To 
assess whether the observed time of day effects could be accounted for in models that only allowed variation 
for either αloss or λ but not both, we simulated choices using the parameters estimated from each new model fit 
and tested whether simulated rates of risk taking correlated with the difference in time of day between the two 
plays. If loss aversion can explain the observed effect of time of day on risk taking in loss trials, we would expect 
simulated choices from the Split Lambda Model to show greater risk taking in loss trials with time of day. For the 
Split Lambda model, neither simulated choices in mixed trials or loss trials correlated with time of day (mixed: 
r = 0.002, p = 0.92,  BF01 = 40.48; loss: r =  − 0.0076, p = 0.70,  BF01 = 37.78). As expected, the Split Alpha Loss model 
showed a significant increase in risk taking in loss trials with time of day (loss: r = 0.047, p = 0.018,  BF10 = 0.044), 
but not with mixed trials: r = 0.019, p = 0.35,  BF01 = 26.08). These simulated results were consistent with the 
model-free results for the within-subjects data, except the Bayes Factor tests  (BF10) did not support the alternative 
hypothesis for the loss trials. Thus, simulations with new models that only allow a single parameter to be differ-
ent across plays show that λ alone is unable to account for the pattern of model-free results that we observed in 
the within-subjects data. In contrast, αloss alone is able to account for the observed pattern of model-free results.

Between-Subjects analysis. For the within-subjects analysis we used only participants who had played 
the game twice and on different days. To address whether our results generalize to different age groups, gen-
ders, and other subgroups of data (Table 2) we took advantage of a larger sample of participants (N = 26,720, 
UK = 18,977; USA = 7743 including those from the within-subjects analysis). We used the first completed play 
from each participant from all 24 h of the day. For all analyses we considered the day to begin at 06:00.

We were able to confirm our results from the within-subjects sample, where the number of risky choices in 
loss trials and time of day showed a positive correlation (r = 0.037, p < 0.0001,  BF10 = 655,526.74). We also found a 
positive correlation between risky choices in mixed trials, which feature both potential gains and losses (r = 0.027, 
p < 0.0001,  BF10 = 106.61) (Fig. 3) which we did not observe in the within-subjects sample. Consistent with the 
within-subjects sample, we observed no significant relationship in gain trials (r = 0.0018, p = 0.77,  BF01 = 124.94). 
Time of day effects for loss and mixed trials did not differ significantly from each other (p = 0.068), but effect sizes 
for mixed and loss trials were both significantly greater than for gain trials (both p < 0.0001).

We next looked to see if this effect was present in multiple subsamples of the first plays. This diurnal effect 
on risk taking was robust to gender in loss trials (female: r = 0.040, p < 0.0001,  BF10 = 388.26; male: r = 0.032, 
p = 0.0002,  BF10 = 10.24). In mixed trials the effect was statistically significant for female (r = 0.038, p < 0.0001, 
 BF10 = 116.93) but not male participants (r = 0.011, p = 0.20,  BF01 = 40.54). Positive effect sizes were seen for 
younger and older age groups for loss trials (18–39: r = 0.039, p < 0.0001,  BF10 = 6409.96; 40+: r = 0.036, p = 0.0014, 
 BF10 = 3.28, and mixed trials (18–39: r = 0.025, p = 0.0006,  BF10 = 2.3; 40+: r = 0.037, p = 0.0007,  BF10 = 4.33). The 
direction and significance of these effects was consistent when the sample was split for two different trial design 
matrices (i.e., ratio and uncorrelated) (Table 2). Overall, increased risk taking in loss but not gain frames was a 

Table 1.  Model comparison for within-subject data set. BIC measures are summed across the within-
subject dataset (N = 2599). Both models included choice stochasticity (inverse temperature) and loss aversion 
parameters. The final column is the difference between the model BIC and BIC for the Dual Alpha model.

Model Parameters per subject Mean  r2 Median  r2 Model BIC BIC-BICdual

Single alpha 3 0.31 0.27 201,608 1705

Dual alpha 4 0.40 0.36 199,903 0
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Table 2.  Effect sizes for time of day on risk taking for each demographic split. Effect sizes (Pearson’s r) for 
each demographic and experimental split of the data (country, gender, age, ratio or uncorrelated task designs). 
Demographic pairs (where total N = 26,720) are every pair of rows after ‘All’. All Bayes Factor tests test for 
evidence for the null hypothesis  (BF01).  BF01 of > 1 indicate support for the null hypothesis. We report the 
mean, standard deviations and medians for the full sample, and male and female demographic splits in the 
Supplementary Results (S1). We also report the effect sizes for the proportion of choices with the highest 
expected value and total points scored for each trial type in the Supplementary Results (S2).

Data Sample size

Gain trials Loss trials Mixed trials

Effect size
p Value
BF01 Effect size

p Value
BF01 Effect size

p Value
BF01

All 26,720 0.0018 0.77
124.94 0.037  < 0.0001

1.52 ×  10−6 0.027  < 0.0001
0.009

UK 18,977  − 0.00035 0.96
109.79 0.040  < 0.0001

2.85 ×  10−5 0.029  < 0.0001
0.044

US 7,743 0.011 0.34
44.00 0.027 0.016

4.12 0.021 0.066
12.80

Male 13,666  − 0.0038 0.65
84.38 0.032 0.0002

0.098 0.011 0.20
40.54

Female 13,054 0.0052 0.56
76.50 0.040  < 0.0001

0.0030 0.038  < 0.0001
0.0090

Younger 18,106  − 0.0068 0.39
70.54 0.039  < 0.0001

1.56 ×  10−4 0.025 0.0006
0.44

Older 8,614 0.0045 0.68
67.83 0.036 0.0014

0.31 0.037 0.0007
0.23

Ratio 7,750  − 0.0026 0.82
68.48 0.046  < 0.0001

0.017 0.029 0.010
2.71

Uncorrelated 18,970 0.0073 0.31
66.52 0.028  < 0.0001

0.075 0.022 0.0031
1.04

Figure 3.  Risk taking for potential losses increases with time of day. (A) Risk taking in choice trials with 
potential losses increased with time of day (N = 26,720, first plays only). This was true in loss trials featuring 
risky options with equal probabilities of zero or a potential loss, and in mixed trials featuring risky options with 
equal probabilities of potential gains and losses. The frequency of choosing risky options with only potential 
gains was unaffected by time of day. Each time bin includes data collected in the interval starting at the time 
indicated (i.e., the 6am bin includes all data collected from 06:00 until 11:59). Error bars represent the SEM. 
(B) Risk taking in loss trials increased with time of day in both female (N = 13,054) and male participants 
(N = 13,666). Risk taking in mixed trials increased with time of day in females but not males. Error bars 
represent bootstrapped 95% confidence intervals [*p < 0.05, **p < 0.01, ***p < 0.005].
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highly consistent result (Table 2). Although increased risk taking in mixed trials (most closely associated with 
loss aversion in the literature) was also robust to age and task design, the effect was present in female participants, 
but no significant effect was found in male participants.

To further assess the robustness of the results in light of the lack of information regarding the precise time 
zone, we jittered the time of day for the USA sample using 0.5 and 1.5 plus or minus as a conservative test (i.e., 
the time zone cannot be off by more than 1.5 h). We repeated the test 100 times and found that in the USA sample 
time of day was consistently associated with increasing risk taking for losses (p < 0.05 in 95% of samples), but 
not gains (p < 0.05 in 2% of samples). Since the within-subjects analyses relate to the difference in time between 
two plays (i.e., a single player on different days), these results would be unaffected by the knowledge of the exact 
time zone of our USA participants.

Computational modelling in the between-subjects sample. Using the Dual Alpha Model (also pre-
ferred by model comparison when using the full sample, Table 3) we examined each parameter in relation to 
the time of day the game was played. As expected, time of day was correlated with αloss (r =  − 0.039, p < 0.0001, 
 BF10 = 3.12 ×  10+6 , Fig.  4A). This result was robust to gender (Fig.  4C), age, and task design (all r <  − 0.029, 
p < 0.001  BF10 > 10), in line with the model-free analyses. We also observed a modest increase in loss aversion 
log(λ) (r = 0.013, p = 0.036, Fig. 4B). However, the data does not provide evidence for the alternative hypothesis 
despite the large sample size with a  BF10 of 0.068. Loss sensitivity αloss decreased significantly more with time 
of day than loss aversion log(λ) in both female (p < 0.0001) and male participants (p = 0.0007). αgain (1.02 ± 0.30, 
mean ± SD) was not associated with time of day (r =  − 0.0042, p = 0.50,  BF01 = 103.49) nor was choice stochasticity 
μ (0.74 ± 2.76; r =  − 0.0071, p = 0.24,  BF01 = 66.84).

To test whether the model parameters estimated for each participant were sufficient to generate the same time 
of day effect on risk taking, we sampled a new set of 30 trials for each participant (using the same design, ratio 
or uncorrelated, as they originally played) and simulated their choices on these new trials using their original 
fit parameter estimates. We confirmed that the expected time of day effect on the number of risky choices taken 
in each trial type was observed for simulated loss trials (r = 0.037, p < 0.0001,  BF10 = 579,890.049), mixed trials 
(r = 0.027, p < 0.0001,  BF10 = 153.11), but not gain trials (r =  − 0.0044, p = 0.47,  BF01 = 100.73). Thus, the fits from 
our computational model are sufficient to show the selective effect we observed of time of day on risk taking for 
potential losses but not gains.

Table 3.  Model Comparison for individual plays. Bayesian information criterion (BIC) measures are summed 
for fits for each participant’s first play (N = 26,720). Both models included choice stochasticity (inverse 
temperature) and loss aversion parameters. The final column is the difference between the model BIC and BIC 
for the Dual Alpha model.

Model Parameters per subject Mean  r2 Median  r2 Model BIC BIC-BICdual

Single alpha 3 0.29 0.25 1,061,299 1481

Dual alpha 4 0.37 0.34 1,059,817 0

Figure 4.  Loss sensitivity and not loss aversion decreases with time of day. (A) Loss sensitivity parameters 
(αloss) decreased with time of day in both females and males, consistent with increased risk taking in trials with 
potential losses. Error bars represent the SEM. (B) Increased risk taking for losses could be partially explained 
by decreased loss aversion. However, loss aversion parameters (log(λ)) did not decrease with time of day in both 
samples. Error bars represent SEM. (C) Loss sensitivity decreased more than loss aversion in both females and 
males. Error bars represent bootstrapped 95% confidence intervals [*p < 0.05, **p < 0.01, ***p < 0.005].
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Many models suffer from inter-correlated parameters (including some versions of prospect theory;  see20), 
and as a result, parameters cannot always be reliably estimated independently. We used a recovery analysis to 
test whether we could recover the differences in model parameters that were used to generate the  data38. We 
fit our model to simulated choices to test whether we could recover the original parameter estimates. Recover-
ability was high for αloss (r = 0.95, p < 0.0001,  BF10 = ∞), log(λ) (r = 0.70, p < 0.0001,  BF10 = ∞), and αgain (r = 0.94, 
p < 0.0001,  BF10 = ∞).

As a further test of whether 30 trials are sufficient to generate the time of day effect in data simulated from 
our model, we also confirmed the time of day effect on the recovered parameter estimates for αloss (r =  − 0.033, 
p < 0.0001,  BF10 = 23,951.08), but not αgain (r =  − 0.0060, p = 0.33,  BF01 = 80.46). The effect was significant for log(λ) 
(r = 0.019, p = 0.0027,  BF10 = 0.78), but the Bayes Factor test did not show support for the alternative hypothesis.

Discussion
We show that time of day constrains attitudes towards risk, informing a theoretic account of human behavior. 
Time of day, reflecting circadian rhythms, influences risk attitudes with respect to potential losses but with no 
impact on risk taking observed for situations with only potential rewards. Using computational modelling, we 
show that changes in risk taking for losses are explained by a reduced sensitivity to increasing losses over the day, 
which affects both loss and mixed prospect trials. The results are consistent with an account for risk taking with 
distinct processes related to risk taking for potential gains and losses. Humans make different decisions later in 
the day, and these differences depend on the valence of risky options.

In terms of computational processes, a model with separate value sensitivity parameters for potential gains 
and losses explained the data better than a model with a single risk aversion parameter. This was true in both 
within- and between-subject datasets, consistent with a time of day effect on one risk aversion parameter but not 
the other. For both model-free and model-based analyses, we see consistent results between the within-subjects 
and between-subjects data set, where the difference in the time of day the game was played correlated with the 
difference in risk taking for losses and loss sensitivity in the computational model. It is important to note that 
some studies have shown that estimating parameters for both loss aversion and risk aversion for gains and losses 
separately has poor parameter recovery for some task designs e.g.19. Furthermore, tasks with limited sets of prob-
abilities can conflate estimates of risk aversion and loss  aversion39. In order to assess whether shared variance 
between these parameters may disguise time of day changes in loss aversion, we tested whether change in a loss 
aversion parameter alone were sufficient to explain differences in behavior between the two plays for the within-
subjects sample. We demonstrated that the difference in these parameter estimates when all other parameters 
were constrained to be the same in both plays did not correlate with time of day. Furthermore, this model could 
not account for simulated increases in risking taking in loss or mixed trials as a function of time of day.

Another possible limitation of our between-subjects analysis is participants self-selecting into the time of day 
they played the game. However, because these analyses featured only individuals completing the task for the first 
time, they were naïve to the nature of the task. Because the smartphone app included multiple tasks related to 
different aspects of cognition, participants would not have known before starting the task that it involved risky 
decisions and so could not have selected to play due to diurnal impact on preferences for certain kinds of game 
mechanics. Furthermore, the fact that in all analyses the effect was seen for losses but not for gain suggests that 
the effect was not driven by idiosyncrasies of the game itself (e.g., the spinner animation which is present for 
all trial types).

While we observe the effect in a within-subjects analysis and in multiple demographic groups, we acknowl-
edge the effect sizes for these analyses are small. Smartphone and online data collection have been very suc-
cessful in replicating many longer lab experiments, but have typically recorded a reduction in the observed 
effect  sizes40,41. Such reductions in effect sizes may be expected due to inherent noise in this method, due to the 
small number of trials per participant and the real world outside of a laboratory setting. However, smartphone 
methods also benefit from being able to more easily sample outside standard young and educated laboratory 
 demographics42,43 and results may be more likely to generalize to other contexts because participants have not 
had substantial interaction with and training from an experimenter. Recent research has demonstrated that tasks 
with similar designs without explicit incentives show similar choice behavior as to when they are financially 
 incentivised44.

Gamified cognitive tasks in smartphones are well placed to uncover previously undetected temporal effects 
which can contribute to a more holistic account of day-to-day decision making. Typically, participants are not 
prompted as to when they should engage in tasks. While this can create selection effects when exploring the 
influence of circadian rhythms on behavior, particularly in between-subjects designs, we mitigate this issue by 
demonstrating consistent results in both between- and within-subjects analyses. In within-subjects analysis each 
subject acts as their own control, and thus if a participant with an increased tendency to gamble for losses was 
also most likely to complete the task in the evening, then playing twice in the evening would have little influ-
ence on the within-subjects time-of-day effect. Furthermore, the nature of our research question benefits from 
participants playing at unsociable hours of the day, where laboratory visits may be less welcome, creating a bias 
towards certain demographic groups being less willing or unable to attend visits early or late in the day for a lab-
based experiment. In any such study, consistent patterns across between- and within-subjects analyses provides 
evidence that any consistent effects are robust to different self-selection effects.

Many neuromodulator processes are influenced by circadian rhythms, including dopamine, serotonin, 
noradrenaline and  cortisol26,27,45,46. There is also evidence for a relationship with decision making for both cor-
tisol (e.g., increases risk aversion for  gains47), noradrenaline (e.g. reduces discrimination between loss amounts 
when the probability of winning was  low48). Dopamine and serotonin are widely believed to play a role in decision 
making that relates primarily to gains and losses,  respectively23,49. Selective Serotonin Reuptake Inhibitors (SSRIs) 
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are associated with reduced attention to negatively valenced  stimuli50. Depletion of tryptophan (the precursor of 
serotonin) reduces risk taking for  losses51. Although dopamine is often associated with risk taking for  reward21,52, 
there is also evidence that dopamine represents the value of loss-related  stimuli53, and sensitivity to losses is 
associated with low  dopamine54. Increased reward seeking when pre-stimulus dopaminergic midbrain BOLD 
activity is low and phasic responses to potential rewards are elevated provides a potential mechanism linking 
the dynamic range of dopamine and reward  seeking55. If another neurobiological process related to aversiveness 
(i.e., serotonin) has a dynamic range that decreases with time of day, this could provide a potential mechanistic 
explanation for reduced risk aversion for losses. Future studies could measure tonic and phasic dopamine and 
serotonin throughout the day in relation to aversive stimuli to test whether either neuromodulator accounts for 
changes in risk taking with time of day.

An alternative account is that making decisions about losses increases task attention which may interact with 
changes in wakefulness through the  day56. Previous diurnal patterns of behavior have been observed in the lit-
erature when taking into account a participant’s chronotype e.g.,57,58. For example, when participants performed 
a risk taking task with prospective gains at the time of day mismatched to their chronotype (i.e., whether they 
were a ‘morning type’ or ‘evening type’), risk taking increased but there were no changes in choice  consistency59. 
Such differences are attributable to changes in wakefulness and reduced inhibitory executive  function35,60. Here, 
we saw no change in choice stochasticity for simple value-based choice despite the large sample size. Our result is 
selective for decisions involving losses, but not gains, which mitigates the suggestion that the effect seen is caused 
by changes in wakefulness affecting risk taking overall. In fact sleep deprivation has been shown to increase 
risk taking in gains and decrease in  losses61. Future work might usefully examine how chronotypes relate to a 
modulation of diurnal changes in loss sensitivity. Finally, it is of interest that profound changes are reported in 
resting-state brain network connectivity profiles over the course of the  day36. Integrating the latter approach in 
conjunction with measures of decision making could help to identify the specific networks that underlie diurnal 
changes in loss sensitivity.

We observed an effect of time of day on risk taking in mixed trials in the between subjects’ analysis in female 
but not male participants. We did not observe a difference in mixed trials for the within-subjects analysis, but this 
may be due to the smaller sample size, and the fact that we presented participants with fewer mixed trials (eight) 
than loss or gain trials (11 of each). Sex differences in risk taking have been observed in a variety of effects (e.g., 
under  stress62,63, sensitivity to winning and  losing64 and real life risky behaviors such as drug use and dangerous 
 driving65) but little is known about how these may interact with the circadian rhythms of neuromodulators. 
Speculatively, one possible reason is human sex hormones interacting with different phases of circadian rhythms. 
Estrogen has been associated with shortened circadian periods in rodents (i.e., more free running in daylight 
 hours66) and has been suggested to shorten the circadian period in  humans67. Increased estrogen during ovula-
tion has also been associated with reduced loss aversion in mixed trials in  humans68. Future work should focus 
on more purposefully sampling to further explore gender differences in circadian rhythms that we were not able 
to investigate in our within-subjects analyses.

Our results demonstrate that diurnal patterns in cognition and behavior can be remotely assessed with 
smartphones. This also provides a non-invasive method to observe circadian rhythm disruption, a key factor 
in many mental health  disorders69,70. The causal direction of circadian rhythm disruption and psychiatric dis-
orders is  unknown71. Further work exploring the interaction of hormones and circadian cycles may also shed 
light on the increased prevalence of seasonal affective disorder in women which has been associated with dis-
rupted circadian  rhythms72,73. The advancement of smartphone platform and online testing provides a powerful 
methodological framework where frequent sampling of behavior in the morning and evening can provide an 
efficient way to measure circadian rhythm disruption in relation to mental health  disorders40. Gamification can 
also make a task more engaging, which may be particularly valuable in the study of adolescent behavior when 
mental health problems  peak74, with potential for early interventions. Future work could investigate if this effect 
becomes stronger when real money is at stake, as for example shown in the comparison of risk taking for real 
and hypothetical  rewards75.

Many factors contribute to human risk taking and it would be surprising for gradual circadian changes to elicit 
large effects on risk taking. The robust effects on loss sensitivity that we observe could have significant implica-
tions at the societal level. International stock markets are simultaneously at different positions in their diurnal 
patterns (i.e., the New York Stock Exchange (NYSE) opens in the morning around when the Tokyo exchange 
ends trading for the day). Individuals making decisions about purchasing or selling stock from an international 
exchange may exhibit differences in loss sensitivity to individuals making purchases in local time zones. Given 
NYSE opening hours, investors in California may make decisions about NYSE-listed stocks earlier in their day 
on average than investors in Berlin. Time of day is known to be relevant to investor behavior, for example trad-
ers operating at circadian-mismatched times of day have been shown to use riskier strategies resulting in lower 
earnings when competing with traders at circadian-matched  times76. Our finding of lower sensitivity to potential 
losses late in the day draws attention to one potential factor that may contribute to this effect. Policy changes that 
allow for more voting in the early morning, or late evening, could also have profound implications particularly 
if voters view candidates in a loss frame (i.e., they dislike both candidates) where we have shown that risk taking 
increases throughout the day. Clinicians often make important medical decisions late at night, but it is unknown 
whether those decisions are different from the ones they would make in the morning in important ways depend-
ent on the decision framing. Understanding how diurnal biases in risk taking affect behavior at individual and 
population level is useful for policy makers and might shape decision making across a wide range of domains.

Data availability
The datasets analysed during the current study are available in a Dryad repository, https:// doi. org/ 10. 5061/ 
dryad. prr4x gxkk.
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