
BIROn - Birkbeck Institutional Research Online

Charalampopoulos, Panagiotis and Chen, H. and Christen, P. and Loukides,
G. and Pisanti, N. and Pissis, S.P. and Radoszewski, J. (2024) Pattern
masking for dictionary matching: theory and practice. Algorithmica , ISSN
0178-4617. (In Press)

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53168/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/53168/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Algorithmica manuscript No.
(will be inserted by the editor)

Pattern Masking for Dictionary Matching: Theory and
Practice

Panagiotis Charalampopoulos · Huiping
Chen? · Peter Christen · Grigorios Loukides ·
Nadia Pisanti · Solon P. Pissis?? · Jakub5

Radoszewski

Abstract Data masking is a common technique for sanitizing sensitive data main-
tained in database systems which is becoming increasingly important in various
application areas, such as in record linkage of personal data. This work formalizes10

the Pattern Masking for Dictionary Matching (PMDM) problem: given a dictionary
D of d strings, each of length `, a query string q of length `, and a positive integer z,
we are asked to compute a smallest set K ⊆ {1, . . . , `}, so that if q[i] is replaced by

? Corresponding author

?? Corresponding author

Panagiotis Charalampopoulos
School of Computing and Mathematical Sciences, Birkbeck, University of London, UK
E-mail: p.charalampopoulos@bbk.ac.uk

Huiping Chen
School of Computer Science, University of Birmingham, Birmingham, UK
E-mail: h.chen.13@bham.ac.uk

Peter Christen
Australian National University, Canberra, Australia
E-mail: peter.christen@anu.edu.au

Grigorios Loukides
Department of Informatics, King’s College London, London, UK
E-mail: grigorios.loukides@kcl.ac.uk

Nadia Pisanti
Università di Pisa, Pisa, Italy
E-mail: nadia.pisanti@unipi.it

Solon P. Pissis
CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands
E-mail: solon.pissis@cwi.nl

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Warsaw, Poland
E-mail: jrad@mimuw.edu.pl

2 P. Charalampopoulos et al.

a wildcard for all i ∈ K, then q matches at least z strings from D . Solving PMDM
allows providing data utility guarantees as opposed to existing approaches.15

We first show, through a reduction from the well-known k-Clique problem, that a
decision version of the PMDM problem is NP-complete, even for binary strings. We
thus approach the problem from a more practical perspective. We show a combinatorial
O((d`)|K|/3 + d`)-time and O(d`)-space algorithm for PMDM for |K| = O(1). In
fact, we show that we cannot hope for a faster combinatorial algorithm, unless the20

combinatorial k-Clique hypothesis fails [Abboud et al., SIAM J. Comput. 2018;
Lincoln et al., SODA 2018]. Our combinatorial algorithm, executed with small |K|, is
the backbone of a greedy heuristic that we propose. Our experiments on real-world
and synthetic datasets show that our heuristic finds nearly-optimal solutions in practice
and is also very efficient. We also generalize this algorithm for the problem of masking25

multiple query strings simultaneously so that every string has at least z matches in D .
PMDM can be viewed as a generalization of the decision version of the dictionary

matching with mismatches problem: by querying a PMDM data structure with string q
and z = 1, one obtains the minimal number of mismatches of q with any string from D .
The query time or space of all known data structures for the more restricted problem30

of dictionary matching with at most k mismatches incurs some exponential factor with
respect to k. A simple exact algorithm for PMDM runs in time O(2`d). We present a
data structure for PMDM that answers queries over D in time O(2`/2(2`/2 +τ)`) and
requires space O(2`d2/τ2 +2`/2d), for any parameter τ ∈ [1,d].

We complement our results by showing a two-way polynomial-time reduction35

between PMDM and the Minimum Union problem [Chlamtáč et al., SODA 2017].
This gives a polynomial-time O(d1/4+ε)-approximation algorithm for PMDM, which
is tight under a plausible complexity conjecture.

This is an extended version of a paper that was presented at ISAAC 2021.

Keywords string algorithms · dictionary matching · wildcards · record linkage ·40

query term dropping

1 Introduction

Let us start with a true incident to illustrate the essence of the computational problem
formalized in this work. In the Netherlands, water companies bill the non-drinking
and drinking water separately. The 6th author of this paper had direct debit for the45

former but not for the latter. When he tried to set up the direct debit for the latter, he
received the following masked message by the company:

Is this you?
Initial: S. Name: P****s E-mail address: s******13 @g***l.com50

Bank account number: NL10RABO ********11.

The rationale of the data masking is: the client should be able to identify themselves
to help the companies link the client’s profiles, without inferring the identity of any
other client via a linking attack [36,66], so that clients’ privacy is preserved.1 Thus,

1 In linking attacks, the adversary is a data recipient who uses the released data of an individual together
with publicly available data, or with background knowledge, to infer the individual’s identity.

Pattern Masking for Dictionary Matching: Theory and Practice 3

the masked version of the data is required to conceal as few symbols as possible, so55

that the client can recognize their data, but also to correspond to a sufficient number
of other clients, so that it is hard for a successful linking attack to be performed.

This requirement can be formalized as the Pattern Masking for Dictionary Match-
ing (PMDM) problem: Given a dictionary D of d strings, each of length `, a query
string q of length `, and a positive integer z, PMDM asks to compute a smallest set60

K ⊆ {1, . . . , `}, so that if q[i], for all i∈K, is replaced by a wildcard, q matches at least
z strings from D . The PMDM problem applies data masking, a common operation to
sanitize personal data maintained in database systems [3,30,69]. In particular, PMDM
lies at the heart of record linkage of databases containing personal data [27,51,52,64,
72,74], which is the main application we consider in this work.65

Record linkage is the task of identifying records that refer to the same enti-
ties across databases, in situations where no entity identifiers are available in these
databases [25,43,59]. This task is of high importance in various application domains
featuring personal data, ranging from the health sector and social science research, to
national statistics and crime and fraud detection [27,48]. In a typical setting, the task70

is to link two databases that contain names or other attributes, known collectively as
quasi-identifiers (QIDs) [73]. The similarity between each pair of records (a record
from one of the databases and a record from the other) is calculated with respect to
their values in QIDs, and then all compared record pairs are classified into matches
(the pair is assumed to refer to the same person), non-matches (the two records in75

the pair are assumed to refer to different people), and potential matches (no decision
about whether the pair is a match or non-match can be made) [25,43].

Unfortunately, potential matches happen quite often [11]. A common approach [64,
72] to deal with potential matches is to conduct a manual clerical review, where a
domain expert looks at the attribute values in record pairs and then makes a manual80

match or non-match decision. At the same time, to comply with policies and legisla-
tion, one needs to prevent domain experts from inferring the identity of the people
represented in the manually assessed record pairs [64]. The challenge is to achieve
desired data protection/utility guarantees; i.e. enabling a domain expert to make good
decisions without inferring peoples’ identities.85

To address this challenge, we can solve PMDM twice, for a potential match
(q1,q2). The first time we use as input the query string q1 and a reference dictionary
(database) D containing personal records from a sufficiently large population (typically,
much larger than the databases to be linked). The second time, we use as input q2
instead of q1. Since each masked q derived by solving PMDM matches at least90

z records in D , the domain expert would need to distinguish between at least z
individuals in D to be able to infer the identity of the individual corresponding to the
masked string. The underlying assumption is that D contains one record per individual.
Also, some wildcards from one masked string can be superimposed on another to
ensure that the expert does not gain more knowledge from combining the two strings,95

and the resulting strings would still match at least z records in D . Thus, by solving
PMDM in this setting, we provide privacy guarantees alike z-map [70]; a variant of the
well-studied z-anonymity [67] privacy model.2 In z-map, each record of a dataset must

2 The notation used for such privacy models is generally k instead of z, e.g. k-anonymity [68,70].

4 P. Charalampopoulos et al.

match at least z records in a reference dataset, from which the dataset is derived. In our
setting, we consider a pattern that is not necessarily contained in the reference dataset.100

Offering such privacy is desirable in real record linkage systems where databases
containing personal data are being linked [27,52,74]. On the other hand, since each
masked q contains the minimum number of wildcards, the domain expert is still able to
use the masked q to meaningfully classify a record pair as a match or as a non-match.

Offering such utility is again desirable in record linkage systems [64]. Record105

linkage is an important application for our techniques, because no existing approach
can provide privacy and utility guarantees when releasing linkage results to domain
experts [53]. In particular, existing approaches [52,53] recognize the need to offer
privacy by preventing the domain expert from distinguishing between a small number
of individuals, but they provide no algorithm for offering such privacy, let alone an110

algorithm offering utility guarantees as we do.
A secondary application where PMDM is of importance is query term dropping,

an information retrieval task that seeks to drop keywords (terms) from a query, so that
the remaining keywords retrieve a sufficiently large number of documents. This task
is performed by search engines, such as Google [10], and by e-commerce platforms115

such as e-Bay [54], to improve users’ experience [39,71] by making sufficiently many
search results available to users. For example, e-Bay applies query term dropping,
removing one term, in our test query:

Query: vacuum database cleaner120

Query results: 0 results found for vacuum database cleaner
42 results found for vacuum cleaner

We could perform query term dropping by solving PMDM in a setting where strings
in a dictionary correspond to document terms and a query string corresponds to a
user’s query. Then, we provide the user with the masked query, after removing all125

wildcards, and with its matching strings from the dictionary. Two remarks are in order
for this application. First, we consider a setting where the keyword order matters.
This occurs, for example, when using phrase search in Google.3 Second, since the
dictionary may contain strings of different length, PMDM should be applied only to
the dictionary strings that have the same length as the query string.130

Query term dropping is a relevant application for our techniques, because existing
techniques [71] do not minimize the number of dropped terms. Rather, they drop
keywords randomly, which may unnecessarily shorten the query, or drop keywords
based on custom rules, which is not sufficiently generic to deal with all queries.
More generally, our techniques can be applied to drop terms from any top-z database135

query [45] to ensure there are z results in the query answer.

Related Algorithmic Work. Let us denote the wildcard symbol by ? and provide a
brief overview of works related to PMDM, the main problem considered in this paper.

– Partial Match: Given a dictionary D of d strings over an alphabet Σ = {0,1}, each
of length `, and a string q over Σ t{?} of length `, the problem asks whether q140

3 An indicative example of a query in Google is “free blue tv” which yielded 7050 results, as blue tv is a
well-known app, whereas the query “blue free tv” yielded only 5 results.

Pattern Masking for Dictionary Matching: Theory and Practice 5

matches any string from D . This is a well-studied problem [16,21,47,58,62,63,
65]. Patrascu [62] showed that any data structure for the Partial Match problem
with cell-probe complexity t must use space 2Ω(`/t), assuming the word size is
O(d1−ε/t), for any constant ε > 0. The key difference to PMDM is that the
wildcard positions in the query strings are fixed.145

– Dictionary Matching with k-errors: A similar line of research to that of Partial
Match has been conducted under the Hamming and edit distances, where, in this
case, k is the maximum allowed distance between the query string and a dictionary
string [13,14,17,19,29,77]. The structure of Dictionary Matching with k-errors
is very similar to Partial Match as each wildcard in the query string gives |Σ |150

possibilities for the corresponding symbol in the dictionary strings. On the other
hand, in Partial Match the wildcard positions are fixed.
The PMDM problem is a generalization of the decision version of the Dictionary
Matching with k-errors problem (under Hamming distance): by querying a data
structure for PMDM with string q and z = 1, one obtains the minimum number of155

mismatches of q with any string from D , which suffices to answer the decision
version of the Dictionary Matching with k-errors problem. The query time or space
of all known data structures for Dictionary Matching with k-mismatches incurs
some exponential factor with respect to k. In [28], Cohen-Addad et al. showed
that, in the pointer machine model, for the reporting version of the problem, one160

cannot avoid exponential dependency on k either in the space or in the query
time. In the word-RAM model, Rubinstein showed that, conditional on the Strong
Exponential Time Hypothesis [18], any data structure that can be constructed
in time polynomial in the total size ||D || of the strings in the dictionary cannot
answer queries in time strongly sublinear in ||D ||.165

We next provide a brief overview of other algorithmic works related to PMDM.

– Dictionary Matching with k-wildcards: Given a dictionary D of total size N
over an alphabet Σ and a query string q of length ` over Σ t{?} with up to k
wildcards, the problem asks for the set of matches of q in D . This is essentially
a parameterized variant of the Partial Match problem. The seminal paper of170

Cole et al. [29] proposed a data structure occupying O(N logkN) space allowing
for O(`+2klog logN+|output|)-time querying. This data structure is based on
recursively computing a heavy-light decomposition of the suffix tree and copying
the subtrees hanging off light children. Generalizations and slight improvements
have been proposed in [15], [55], and [38]. In [15] the authors also proposed an175

alternative data structure that instead of a logkN factor in the space complexity has
a multiplicative |Σ |k2

factor. Nearly-linear-sized data structures that essentially try
all different combinations of letters in the place of wildcards and hence incur a |Σ |k
factor in the query time have been proposed in [15,56]. On the lower bound side,
Afshani and Nielsen [5] showed that, in the pointer machine model, essentially180

any data structure for the problem in scope must have exponential dependency on
k in either the space or the query time, explaining the barriers hit by the existing
approaches.

– Enumerating Motifs with k-wildcards: Given an input string s of length n over an
alphabet Σ and positive integers k and z, this problem asks to enumerate all motifs185

6 P. Charalampopoulos et al.

over Σ t{?} with up to k wildcards that occur at least z times in s. As the size of
the output is exponential in k, the enumeration problem has such a lower bound.
Several approaches exist for efficient motif enumeration, all aimed at reducing
the impact of the output’s size: efficient indexing to minimize the output delay [9,
40]; exploiting a hierarchy of wildcards positions according to the number of190

occurrences [12]; defining a subset of motifs of fixed-parameter tractable size (in
k or z) that can generate all the others [60,61], or defining maximality notions
meaning a subset of the motifs that implicitly include all the others [34,41].

Our Contributions. We consider the word-RAM model of computations with w-bit
machine words, where w = Ω(log(d`)), for stating our results. We make the following195

contributions:

1. (Section 3) A reduction from the k-Clique problem to a decision version of the
PMDM problem, which implies that PMDM is NP-hard, even for strings over a
binary alphabet. The reduction also implies conditional hardness of the PMDM
problem. We also present a generalized reduction from the (c,k)-Hyperclique200

problem [57].
2. (Section 4) A combinatorial O((d`)k/3 + d`)-time and O(d`)-space algorithm

for PMDM if k = |K| = O(1), which is optimal if the combinatorial k-Clique
hypothesis is true.

3. (Section 5) We consider a generalized version of PMDM, referred to as MPMDM:205

we are given a collection M of m query strings (instead of one query string) and
we are asked to compute a smallest set K so that, for every q from M , if q[i],
for all i ∈ K, is replaced by a wildcard, then q matches at least z strings from
dictionary D . We show an O((d`)k/3zm−1 +d`)-time algorithm for MPMDM, for
k = |K|= O(1) and m = O(1).210

4. (Section 6) A data structure for PMDM that answers queries over D in O(2`/2(2`/2+
τ)`) time and requires space O(2`d2/τ2 +2`/2d), for any parameter τ ∈ [1,d].

5. (Section 7) A polynomial-time O(d1/4+ε)-approximation algorithm for PMDM,
which we show to be tight under a plausible complexity conjecture.

6. (Section 8) A greedy heuristic based on the O((d`)k/3 +d`)-time algorithm.215

7. (Section 9) An extensive experimental evaluation on real-world and synthetic data
demonstrating that our heuristic finds nearly-optimal solutions in practice and
is also very efficient. In particular, our heuristic finds optimal or nearly-optimal
solutions for PMDM on a dataset with six million records in less than 3 seconds.

We conclude this paper with a few open questions in Section 10.220

This paper is an extended version of a paper that was presented at ISAAC 2021 [20].
Compared to [20], Sections 8 and 9 are new, while Sections 1, 5 and 6 contain
additional details that were omitted from [20] due to space constraints.

2 Definitions and Notation

Strings. An alphabet Σ is a finite nonempty set whose elements are called letters.225

We assume throughout an integer alphabet Σ = [1, |Σ |]. Let x = x[1] · · ·x[n] be a string

Pattern Masking for Dictionary Matching: Theory and Practice 7

of length |x| = n over Σ . For two indices 1 ≤ i ≤ j ≤ n, x[i . . j] = x[i] · · ·x[j] is the
substring of x that starts at position i and ends at position j of x. By ε we denote the
empty string of length 0. A prefix of x is a substring of x of the form x[1 . . j], and a suffix
of x is a substring of x of the form x[i . .n]. A dictionary is a collection of strings. We230

also consider alphabet Σ? = Σ t{?}, where ? is a wildcard letter that is not in Σ and
matches all letters from Σ?. Then, given a string x over Σ? and a string y over Σ with
|x|= |y|, we say that x matches y if and only if x[i] = y[i] or x[i] = ?, for all 1≤ i≤ |x|.
Given a string x of length n and a set S⊆ {1, . . . ,n}, we denote by xS = x⊗S the string
obtained by first setting xS = x and then xS[i] = ?, for all i ∈ S. We then say that x is235

masked by S.
The main problem considered in this paper is the following.

PATTERN MASKING FOR DICTIONARY MATCHING (PMDM)
Input: A dictionary D of d strings, each of length `, a string q of length `, and a
positive integer z.
Output: A smallest set K ⊆ {1, . . . , `} such that qK = q⊗K matches at least z
strings from D .

We refer to the problem of computing only the size k of a smallest set K as
PMDM-SIZE. We also consider the data structure variant of the PMDM problem240

in which D is given for preprocessing, and q,z queries are to be answered on-line.
Throughout, we assume that k ≥ 1 as the case k = 0 corresponds to the well-studied
dictionary matching problem for which there exists a classic optimal solution [6]. We
further assume z≤ d; otherwise the PMDM has trivially no solution. In what follows,
we use N to denote d`.245

Tries. Let M be a finite set containing m > 0 strings over Σ . The trie of M , denoted
by R(M), contains a node for every distinct prefix of a string in M ; the root node
is ε; the set of leaf nodes is M ; and edges are of the form (u,α,uα), where u and
uα are nodes and α ∈ Σ is the label. The compacted trie of M , denoted by T (M),
contains the root, the branching nodes, and the leaf nodes of R(M). Each maximal250

branchless path segment from R(M) is replaced by a single edge, and a fragment of
a string M ∈M is used to represent the label of this edge in O(1) space. The size of
T (M) is thus O(m). The most well-known example of a compacted trie is the suffix
tree of a string: the compacted trie of all the suffixes of the string [75]. To access the
children of a trie node by the first letter of their edge label in O(1) time we use perfect255

hashing [35]. In this case, the claimed complexities hold with high probability (w.h.p.,
for short), that is, with probability at least 1−N−c (recall that N = d`), where c > 0 is
a constant fixed at construction time. Assuming that the children of every trie node
are sorted by the first letters of their edge labels, randomization can be avoided at the
expense of a log |Σ | factor incurred by binary searching for the appropriate child.260

3 NP-hardness and Conditional Hardness of PMDM-SIZE

We show that the following decision version of PMDM-SIZE is NP-complete.

8 P. Charalampopoulos et al.

1 2

3 4

n=4
k=3

Instance of k-PMDM
e1

e3

e4

e2

Instance of k-CLIQUE
D : s1 = bbaa <-> e1 s3 = abba <-> e3

s2 = baba <-> e2 s4 = aabb <-> e4
q = aaaa z = 3{1,2,3} is

a 3-Clique K = {1,2,3} as qK = a matches 3=k(k-1)/2=z strings in D

Fig. 3.1: An example of the reduction from k-CLIQUE to k-PMDM. The solution for
both is {1,2,3} as shown. Note that, for k = 4, the instance of 4-PMDM would need
z = 6 matches; neither this many matches can be found in D nor a 4-clique can be
found in the graph.

k-PMDM
Input: A dictionary D of d strings, each of length `, a string q of length `, and
positive integers z≤ d and k ≤ `.
Output: Is there a set K ⊆ {1, . . . , `} of size k, such that qK =q⊗K matches at
least z strings from D?

Our reduction is from the well-known NP-complete k-CLIQUE problem [49]:
Given an undirected graph G on n nodes and a positive integer k, decide whether G265

contains a clique of size k (a clique is a subset of the nodes of G that are pairwise
adjacent).

Theorem 3.1 Any instance of the k-CLIQUE problem for a graph with n nodes and m
edges can be reduced in O(nm) time to a k-PMDM instance with `= n, d = m and
Σ = {a,b}.270

Proof Let G = (V,E) be an undirected graph on n = |V | nodes numbered 1 through n,
in which we are looking for a clique of size k. We reduce k-CLIQUE to k-PMDM as
follows. Consider the alphabet {a,b}. Set q = an, and for every edge (u,v) ∈ E such
that u < v, add string au−1bav−u−1ban−v to D . Set z = k(k−1)/2. Then G contains a
clique of size k, if and only if k-PMDM returns a positive answer. This can be seen
by the fact that cliques of size k in G are in one-to-one correspondence with subsets
K ⊆ {1, . . . ,n} of size k for which qK matches z strings from D : the elements of K
correspond to the nodes of a clique and the z strings correspond to its edges. k-PMDM
is clearly in NP and the result follows. ut

An example of the reduction from k-CLIQUE to k-PMDM is shown in Figure 3.1.

Corollary 3.2 k-PMDM is NP-complete for strings over a binary alphabet.

Any algorithm solving PMDM-SIZE can be trivially applied to solve k-PMDM.

Corollary 3.3 PMDM-SIZE is NP-hard for strings over a binary alphabet.

Remark 3.4 Given an undirected graph G, an independent set is a subset of nodes of G275

such that no two distinct nodes of the subset are adjacent. Let us note that the problem
of computing a maximum clique in a graph G, which is equivalent to that of computing

Pattern Masking for Dictionary Matching: Theory and Practice 9

the maximum independent set in the complement of G, cannot be n1−ε -approximated
in polynomial time, for any ε > 0, unless P = NP [42,78]. In Section 7, we show a
polynomial-time O(d1/4+ε)-approximation algorithm for PMDM. We remark that280

this algorithm and Theorem 3.1 do not contradict the inapproximability results for the
maximum clique problem, since our reduction from k-CLIQUE to k-PMDM cannot be
adapted to a reduction from maximum clique to PMDM-SIZE.

Theorem 3.1 shows that solving k-PMDM efficiently even for strings over a
binary alphabet would imply a breakthrough for the k-CLIQUE problem for which285

it is known that, in general, no fixed-parameter tractable algorithm with respect to
parameter k exists unless the Exponential Time Hypothesis (ETH) fails [22,46]. That
is, k-CLIQUE has no f (k)no(k) time algorithm, and is thus W[1]-complete (again,
under the ETH hypothesis). On the upper bound side, k-CLIQUE can be trivially
solved in O(nk) time (enumerating all subsets of nodes of size k), and this can be290

improved to O(nωk/3) time for k divisible by 3 using square matrices multiplication
(ω is the exponent of square matrix multiplication). However, for general k ≥ 3 and
any constant ε > 0, the k-CLIQUE hypothesis states that there is no O(n(ω/3−ε)k)-
time algorithm and no combinatorial O(n(1−ε)k)-time algorithm [4,57,76]. Thus,
conditional on the k-CLIQUE hypothesis, and since d` = nm = O(n3) and ` = n295

(Theorem 3.1), we cannot hope to devise a combinatorial algorithm for k-PMDM with
runtime O((d`)(1−ε)k/3) or O(`(1−ε)k) for any constant ε > 0. In Section 4, we show
a combinatorial O(d`+min{(d`)k/3, `k})-time algorithm, for constant k ≥ 3, for the
optimization version of k-PMDM (seeking to maximize the matches), which can then
be trivially applied to solve k-PMDM in the same time complexity, thus matching the300

above conditional lower bound. Additionally, under the k-CLIQUE hypothesis, even
with the aid of algebraic techniques, one cannot hope for an algorithm for k-PMDM
with runtime O((d`)(ω/9−ε)k) or O(`(ω/3−ε)k), for any constant ε > 0.

In fact, as we show next, by reducing from the (c,k)-HYPERCLIQUE problem,
which is not known to benefit from fast matrix multiplication [57], we obtain stronger305

conditional lower bounds for some values of d and `.
A hypergraph H is a pair (V,E), where V is the set of nodes of H and E is a set

of non-empty subsets of V , called hyperedges. The (c,k)-HYPERCLIQUE problem
is defined as follows: Given a hypergraph H = (V,E) such that all of its hyperedges
have size c, does there exist a set S of k > c nodes in V so that every subset of c310

nodes from S is a hyperedge? We call set S a (c,k)-hyperclique in H. We will reduce
(c,k)-HYPERCLIQUE to k-PMDM in time O(|V | · |E|).

Theorem 3.5 Any instance of the (c,k)-HYPERCLIQUE problem for a hypergraph
with n nodes and m hyperedges each of size c can be reduced in O(nm) time to a
k-PMDM instance with `= n, d = m and Σ = {a,b}.315

Proof We reduce (c,k)-HYPERCLIQUE to k-PMDM as follows. Consider the alphabet
{a,b}. Set q = an, and for every hyperedge ei ∈ E, add the binary string xi to D such
that xi[j] = b if and only if j ∈ ei. Set z =

(k
c

)
. Then H contains a (c,k)-hyperclique

if and only if k-PMDM returns a positive answer. This can be seen by the fact that
(c,k)-hypercliques H are in one-to-one correspondence with subsets K ⊆ {1, . . . ,n}

10 P. Charalampopoulos et al.

of size k for which qK matches z strings from D : the elements of K correspond to the
nodes of a (c,k)-hyperclique and the z strings correspond to its hyperedges. ut

The (c,k)-HYPERCLIQUE hypothesis states that there is no O(n(1−ε)k)-time al-
gorithm, for any k > c > 2 and ε > 0, that solves the (c,k)-HYPERCLIQUE problem.
For a discussion on the plausibility of this hypothesis and for more context, we
refer the reader to [57, Section 7]. Theorem 3.5 shows that solving k-PMDM effi-
ciently even for strings over a binary alphabet would imply a breakthrough for the320

(c,k)-HYPERCLIQUE problem. In particular, assuming that the (3,k)-HYPERCLIQUE
hypothesis is true, due to Theorem 3.5, and since d`= nm = O(n4), we cannot hope
to devise an algorithm for k-PMDM requiring time O((d`)(1−ε)k/4) or O(`(1−ε)k),
for any k > 3 and ε > 0.

4 Exact Algorithms for a Bounded Number k of Wildcards325

We consider the following problem, which we solve by exact algorithms. These
algorithms will form the backbone of our effective and efficient heuristic for the
PMDM problem (see Section 8).

HEAVIEST k-PMDM
Input: A dictionary D of d strings, each of length `, a string q of length `, and a
positive integer k ≤ `.
Output: A set K ⊆ {1, . . . , `} of size k such that qK =q⊗K matches the maximum
number of strings in D .

We will show the following result, which we will employ to solve the PMDM330

problem.

Theorem 4.1 HEAVIEST k-PMDM for k=O(1) can be solved in O(N+min{Nk/3, `k})
time, where N = d`.

Recall that a hypergraph H is a pair (V,E), where V is the set of nodes of H
and E is a set of non-empty subsets of V , called hyperedges—in order to simplify335

terminology we will simply call them edges. Hypergraphs are a generalization of
graphs in the sense that an edge can connect more than two nodes. Recall that the size
of an edge is the number of nodes it contains. The rank of H, denoted by r(H), is the
maximum size of an edge of H.

We refer to a hypergraph H[K] = (K,{e : e ∈ E,e⊆ K}), where K is a subset of340

V , as a |K|-section. H[K] is the hypergraph induced by H on the nodes of K, and it
contains all edges of H whose elements are all in K. A hypergraph is weighted when
each of its edges is associated with a weight. We define the weight of a weighted
hypergraph as the sum of the weights of all of its edges. In what follows, we also refer
to weights of nodes for conceptual clarity; this is equivalent to having a singleton edge345

of equal weight consisting of that node.
We define the following auxiliary problem on hypergraphs (see also [23]).

Pattern Masking for Dictionary Matching: Theory and Practice 11

HEAVIEST k-SECTION
Input: A weighted hypergraph H =(V,E), with E given as a list, and an integer k>
0.
Output: A subset K of size k of V such that H[K] has maximum weight.

When k = O(1), we preprocess the edges of H as follows in order to have O(1)-
time access to any queried edge. We represent each edge as a string, whose letters350

correspond to its elements in increasing order. Then, we sort all such strings lexico-
graphically using radix sort in O(|E|) time and construct a trie over them. An edge
can then be accessed in O(k logk) = O(1) time by a forward search starting from the
root node of the trie.

A polynomial-time O(n0.697831+ε)-approximation for HEAVIEST k-SECTION, for355

any ε > 0, for the case when all hyperedges of H have size at most 3 was shown
in [23] (see also [8]).

Two remarks are in place. First, we can focus on edges of size up to k as larger
edges cannot, by definition, exist in any k-section. Second, HEAVIEST k-SECTION
is a generalization of the problem of deciding whether a (c,k)-hyperclique (i.e. a set360

of k nodes whose subsets of size c are all in E) exists in a graph, which in turn is a
generalization of k-CLIQUE. Unlike k-CLIQUE, the (c,k)-hyperclique problem is not
known to benefit from fast matrix multiplication in general; see [57] for a discussion
on its hardness.

Lemma 4.2 HEAVIEST k-PMDM can be reduced to HEAVIEST k-SECTION for a365

hypergraph with ` nodes and d edges in O(N) time, where N = d`.

Proof We first compute the set Ms of positions of mismatches of q with each string
s ∈ D . We ignore strings from D that match q exactly, as they will match q after
changing any set of letters of q to wildcards. This requires O(d`) = O(N) time in
total.370

Let us consider an empty hypergraph (i.e. with no edges) H on ` nodes, numbered
1 through `. Then, for each string s ∈D , we add Ms to the edge-set of H if |Ms| ≤ k;
if this edge already exists, we simply increment its weight by 1.

We set the parameter k of HEAVIEST k-SECTION to the parameter k of HEAVIEST
k-PMDM. We now observe that for K ⊆V with |K|= k, the weight of H[K] is equal
to the number of strings that would match q after replacing with wildcards the k letters
of q at the positions corresponding to elements of K. The statement follows. ut

An example of the reduction in Theorem 4.2 is shown in Figure 4.1.
The next lemma gives a straightforward solution to HEAVIEST k-SECTION. It is375

analogous to algorithm SMALL-`, presented in Section 6, but without the optimization
in computing sums of weights over subsets. It implies a linear-time algorithm for
HEAVIEST 1-SECTION.

Lemma 4.3 HEAVIEST k-SECTION, for any constant k, can be solved in O(|V |k+|E|)
time and O(|V |+ |E|) space.380

Proof For every subset K ⊆ V of size at most k, we sum the weights of all edges
corresponding to its subsets. There are

(|V |
k

)
= O(|V |k) choices for |K|, each having

12 P. Charalampopoulos et al.

Instance	of	HEAVIEST	k-SECTION	Instance	of	HEAVIEST	k-PMDM	
D	:	 	s1	=	abcda 	q	=	aaaaa	

	s2	=	aadba 	k	=	3	
	s3	=	acaba 	d=6	
	s4	=	adaca 	l=5	
	s5	=	bbaac	
	s6	=	acdaa	

K={2,3,4}	of	size	k=3	has	maximum		
number	of	matches	(5)	as	qK	=	a									a	

matches	s1,	s2,	s3,	s4,	and	s6.	 K	=	{2,3,4}	of	size	k=3	is	s.t.	H	x	K	has	maximum	weight	5	

1	

e1	(1)	e3	(2)	

e5	(1)	

e2	(1)	

5	

e6	(1)	

Hypergraph	H	with	l =	5	nodes		
a	weight-2	edge	(e3)	and	
4	weight-1	edges	

4	
3	

2	

e1={2,3,4}	from	s1	
e2={3,4}	from	s2	
e3=e4={2,4}	from	s3	and	s4	
e5={1,2,5}	from	s5	
e6={2,3}	from	s6	

Fig. 4.1: An example of the reduction from HEAVIEST k-PMDM to HEAVIEST k-
SECTION. The solutions are at the bottom. Each edge has its weight in brackets and
the total weight is d = 6.

2k−1 non-empty subsets: for every subset, we can access the corresponding edge (if
it exists) in O(1) time. ut

We next show that for the cases k = 2 and k = 3, there exist more efficient solutions.
In particular, we provide a linear-time algorithm for HEAVIEST 2-SECTION.

Lemma 4.4 HEAVIEST 2-SECTION can be solved in O(|V |+ |E|) time.

Proof Let K be a set of nodes of size 2 such that H[K] has maximum weight. We
decompose the problem in two cases. For each of the cases, we give an algorithm that385

considers several 2-sections such that the heaviest of them has weight equal to that of
H[K].

Case 1. There is an edge e = K in E. For each edge e ∈ E of size 2, i.e. edge in
the classic sense, we compute the sum of its weight and the weights of the nodes that
it is incident to. This step requires O(|E|) time.390

Case 2. There is no edge equal to K in E. We compute H[{v1,v2}], where v1,v2
are the two nodes with maximum weight, i.e. max and second-max. This step takes
O(|V |) time.

In the end, we return the heaviest 2-section among those returned by the algorithms
for the two cases, breaking ties arbitrarily. ut

We next show that for k = 3 the result of Lemma 4.3 can be improved when
|E|= o(|V |2).395

Lemma 4.5 HEAVIEST 3-SECTION can be solved in time O(|V | · |E|) using O(|V |+
|E|) space.

Proof Let K be a set of nodes of size 3 such that H[K] has maximum weight. We
decompose the problem into the following three cases.

Case 1. There is an edge e = K in E. We go through each edge e ∈ E of size 3400

and compute the weight of H[e] in O(1) time. This takes O(|E|) time in total. Let the
edge yielding the maximum weight be emax.

Pattern Masking for Dictionary Matching: Theory and Practice 13

Case 2. There is no edge of size larger than one in H[K]. We compute H[{v1,v2,v3}],
where v1,v2,v3 are the three nodes with maximum weight, i.e. max, second-max and
third-max. This step takes O(|V |) time.405

Case 3. There is an edge of size 2 in H[K]. We can pick an edge e of size 2 from
E in O(|E|) ways and a node v from V in O(|V |) ways. We compute the weight of
H[(e∪{v})] for all such pairs. Let the pair yielding maximum weight be (e′,u′).

Finally, the maximum weight of H[K′] for K′ ∈ {emax, {v1,v2,v3}, e′∪{u′}} is
equal to the weight of H[K], breaking ties arbitrarily. ut

We next address the remaining case of any arbitrarily large constant k ≥ 4.

Lemma 4.6 HEAVIEST k-SECTION for an arbitrarily large constant k ≥ 4 can be410

solved in time O((|V | · |E|)k/3) using O(|V |+ |E|) space.

Proof If |E|> |V |2, then the simple algorithm of Lemma 4.3 solves the problem in
time

O(|V |k + |E|) = O(|V |k/3(|V |2)k/3 + |E|) = O((|V | · |E|)k/3)

and linear space. We can thus henceforth assume that |E| ≤ |V |2.
Let K be a set of nodes of size at most k such that H[K] has maximum weight. If415

H[K] contains isolated nodes (i.e. nodes not contained in any edge), they can be safely
deleted without altering the result. We can thus assume that H[K] does not contain
isolated nodes, and that |V | ≤ k|E| since otherwise the hypergraph H would contain
isolated nodes.

We first consider the case that the rank r(H[K])> 1, i.e. there is an edge of H[K]420

of size at least 2. We design a branching algorithm that constructs several candidate
sets; the ones with maximum weight will have weight equal to that of H[K]. We will
construct a set of nodes X , starting with X := /0. For each set X that we process, let ZX
be the superset of X of size at most k such that H[ZX] has maximum weight. We have
the following two cases:425

Case 1. There is an edge e in H[ZX] that contains at least two nodes from ZX \X .
To account for this case, we select every possible such edge e, set X := X ∪ e, and
continue the branching algorithm.

Case 2. Each edge in H[ZX] contains at most one node from ZX \X . In this case
we conclude the branching algorithm as follows. For every node v∈V \X we compute430

its weight as the total weight of edges Y ∪{v} ∈ E for Y ⊆ X in O(2k) = O(1) time.
Finally, in O(|V |k) = O(|V |) time we select k−|X | nodes with largest weights and
insert them into X . The total time complexity of this step is O(|V |). This case also
works if |X |= k and then its time complexity is only O(1).

The correctness of this branching algorithm follows from an easy induction,435

showing that at every level of the branching tree there is a subset of K.
Let us now analyze the time complexity of this branching algorithm. Each branch-

ing in Case 1 takes O(|E|) time and increases the size of |X | by at least 2. At every
node of the branching tree we call the procedure of Case 2. It takes O(|V |) time if
|X |< k.440

If the procedure of Case 2 is called in a non-leaf node of the branching tree, then
its O(|V |) running time is dominated by the O(|E|) time that is required for further

14 P. Charalampopoulos et al.

branching since we have assumed that |V | ≤ k|E|. Hence, it suffices to bound (a) the
total time complexity of calls to the algorithm for Case 2 in leaves that correspond to
sets X such that |X |< k and (b) the total number of leaves that correspond to sets X445

such that |X |= k.
If k is even, (a) is bounded by O(|E|(k−2)/2|V |) and (b) is bounded by O(|E|k/2).

Hence, (b) dominates (a) and we have

O(|E|k/2) = O(|E|k/3|E|k/6) = O(|E|k/3|V |k/3). (4.1)

If k is odd, (a) is bounded by O(|E|(k−1)/2|V |) and (b) is bounded by O(|E|(k−1)/2),
which is dominated by (a). By using (4.1) for k−3 we also have:450

O(|E|(k−1)/2 · |V |) = O(|E|(k−3)/2 · |E| · |V |) =

O((|E| · |V |)(k−3)/3 · |E| · |V |) = O((|E| · |V |)k/3).

We now consider the case that r(H[K]) = 1. We use the algorithm for Case 2 above
that works in O(|V |) time, which is O(|V | · |E|). ut

Lemmas 4.2-4.6 imply Theorem 4.1, which we iteratively employ to obtain the
following result.

Theorem 4.7 PMDM can be solved in time O(N+min{Nk/3, `k}) using space O(N)
if k = O(1), where N = d`.

Proof We apply Lemma 4.2 to obtain a hypergraph with |V |= ` and |E|= d. Start-
ing with k = 1 and for growing values of k, we solve HEAVIEST k-SECTION un-
til we obtain a solution of weight at least z, employing either only Lemma 4.3,
or Lemmas 4.3, 4.4, 4.5, 4.6 for k = 1,2,3 and k ≥ 4, respectively. We obtain
O(N +min{Nk/3, `k}) time and O(N) space. ut

5 Exact Algorithms for a Bounded Number m of Query Strings455

Recall that masking a potential match (q1,q2) in record linkage can be performed by
solving PMDM twice and superimposing the wildcards (see Section 1). In this section,
we consider the following generalized version of PMDM to perform the masking
simultaneously. The advantage of this approach is that it minimizes the final number
of wildcards in q1 and q2.460

MULTIPLE PATTERN MASKING FOR DICTIONARY MATCHING (MPMDM)
Input: A dictionary D of d strings, each of length `, a collection M of m strings,
each of length `, and a positive integer z.
Output: A smallest set K ⊆ {1, . . . , `} such that, for every q from M , qK =q⊗K
matches at least z strings from D .

Let N = d`. We show the following theorem.

Pattern Masking for Dictionary Matching: Theory and Practice 15

Theorem 5.1 MPMDM can be solved in time O(N+min{Nk/3zm−1, `k}) if k =O(1)
and m = O(1), where N = d`.

We use a generalization of HEAVIEST k-SECTION in which the weights are m-465

tuples that are added and compared component-wise, and we aim to find a subset K
such that the weight of H[K] is at least (z, . . . ,z). An analogue of Lemma 4.3 holds
without any alterations, which accounts for the O(N + `k)-time algorithm. We adapt
the proof of Theorem 4.6 as follows. The branching remains the same, but we have
to tweak the final step, that is, what happens when we are in Case 2. For m = 1470

we could simply select a number of largest weights, but for m > 1 multiple criteria
need to be taken into consideration. All in all, the problem reduces to a variation of
the classic Multiple-Choice Knapsack problem [50], which we solve using dynamic
programming.

The variation of the classic Multiple-Choice Knapsack problem is as follows.475

κ HEAVIEST VECTORS (κ -HV)
Input: A collection T of t vectors from Zm

≥0, a vector x from {0, . . . ,z}m, for a
positive integer z, and an integer κ ∈ {0, . . . , t}.
Output: Compute κ elements of T (if they exist) such that if y is their component-
wise sum, y[i]≥ x[i] for all i ∈ {1, . . . ,m}.

The exact reduction from Case 2 is as follows: the set T contains weights of
subsequent nodes v ∈V \X (defined as the sums of weights of edges Y ∪{v} ∈ E for
Y ⊆ X), so t ≤ |V |, x is (z, . . . ,z) minus the sum of weights of all edges e ∈ E such
that e⊆ X , and κ = k−|X |.480

The solution to κ-HV is a rather straightforward dynamic programming.

Lemma 5.2 For κ,m = O(1), κ-HV can be solved in time O(t · zm−1).

Proof We apply dynamic programming. Let T = v1, . . . ,vt . We compute an array A
of size O(tκzm−1) such that, for i ∈ {0, . . . , t}, j ∈ {0, . . . ,κ} and v ∈ {0, . . . ,z}m−1,

A[i, j,v] = max{a : ∃S⊆ {v1, . . . ,vi}, |S|= j, ∑
u∈S

u = (v,a)},

where (v,a) denotes the operation of appending element a to vector v. From each state485

A[i, j,v] we have two transitions, depending on whether vi+1 is taken to the subset or
not. Each transition is computed in O(m) = O(1) time. This gives time O(t · zm−1) in
total.

The array is equipped with a standard technique to recover the set S (parents of
states). The final answer is computed by checking, for each vector v ∈ {0, . . . ,z}m−1

such that v[i]≥ x[i], for all i = 1, . . . ,m−1, if A[t,κ,v]≥ x[m]. ut

Overall, we pay an additional O(zm−1) factor in the complexity of handling of
Case 2, which yields the complexity of Theorem 5.1.490

16 P. Charalampopoulos et al.

6 A Data Structure for PMDM Queries

We next show algorithms and data structures for the PMDM problem under the
assumption that 2` is reasonably small. We measure space in terms of w-bit machine
words, where w = Ω(log(d`)), and focus on showing space vs. query-time trade-
offs for answering q,z PMDM queries over D . A summary of the complexities of495

the data structures is shown in Table 6.1. Specifically, algorithm SMALL-` and data
structure SIMPLE are used as building blocks in the more involved data structure
SPLIT underlying the following theorem.

Theorem 6.1 There exists a data structure that answers q,z PMDM queries over
D in time O(2`/2(2`/2 + τ)`) w.h.p. and requires space O(2`d2/τ2 +2`/2d), for any500

τ ∈ [1,d].

Algorithm SMALL-`: O(d`) Space, O(2``+d`) Query Time. Our algorithm is based
on the Fast zeta/Möbius transform [31, Theorem 10.12]. No data structure on top of
the dictionary D is stored. In the query algorithm, we initialize an integer array A of
size 2` with zeros. For an `-bit vector m, by Km ⊆ {1, . . . , `} let us denote the set of the505

positions of set bits of m. Now for every possible `-bit vector m we want to compute
the number of strings in D that match qKm = q⊗Km.

To this end, for every string s ∈D , we compute the set K of positions in which s
and q differ. For m that satisfies K = Km, we increment A[m], where m is the integer
representation of the bit vector. This computation takes O(d`) time and O(1) extra510

space. Then we apply a folklore dynamic-programming-based approach to compute
an integer array B, which is defined as follows:

B[m] = ∑
j∈S(m)

A[j], where S(m) = { j ∈ [1,2`] : K j ⊆ Km}.

In other words, B[m] stores the number of strings from D that match qKm .
We provide a description of the folklore algorithm here for completeness. Consider

a vector (mask) m. Let S(m, i) consist of the subsets of m which do not differ from m515

but (possibly) in the rightmost i bits, and

B[m, i] = ∑
j∈S(m,i)

A[j].

Clearly, S(m) is equal to S(m, `), and hence B[m] is equal to B[m, `]. The following
equation is readily verified (in the first case, since the ith bit of m is 0, no element of
S(m) can have the ith bit set):

B[m, i] =

{
B[m, i−1] if the ith bit of m is 0,
B[m, i−1] OR B[m XOR 2i, i−1] if the ith bit of m is 1.

By OR and XOR we denote the standard bitwise operations. Overall, there are520

O(2``) choices for m and i. We can compute B[·, ·] column by column, in constant
time per entry, thus obtaining an O(2``)-time algorithm. We can limit the space usage
to O(2`) by discarding column i when we are done computing column i+1.

Pattern Masking for Dictionary Matching: Theory and Practice 17

Data structure Space Query time
Algorithm SMALL-` O(d`) O(2``+d`)

DS SIMPLE O(2`d) O(2``)
DS SPLIT, any τ O(2`d2/τ2 +2`/2d) O(2`/2 · (2`/2 + τ)`)

DS SPLIT for τ = 2`/4
√

d O(2`/2d) O(2``+23`/4
√

d`)

Table 6.1: Basic complexities of the data structures from Section 6.

Thus, overall, the (query) time required by algorithm SMALL-` is O(`2`+d`), the
data structure space is O(d`), and the extra space is O(2`).525

We now present SIMPLE, an auxiliary data structure, which we will apply later
on to construct DS SPLIT, a data structure with the space/query-time trade-off of
Theorem 6.1.

DS SIMPLE: O(2`d) Space, O(2``) Query Time. We initialize an empty set Q. For530

each possible subset of {1, . . . , `} we do the following. We mask the corresponding
positions in all strings from D and then sort the masked strings lexicographically. By
iterating over the lexicographically sorted list of the masked strings, we count how
many copies of each distinct (masked) string we have in our list. We insert each such
(masked) string to Q along with its count. After processing all 2` subsets, we construct535

a compacted trie for the strings in Q; each leaf corresponds to a unique element of
Q, and stores this element’s count. The total space occupied by this compacted trie
is thus O(2`d). Upon an on-line query q (of length `) and z, we apply all possible 2`

masks to q and read the count for each of them from the compacted trie in O(`) time
per mask. Next, we show how to decrease the exponential dependency on ` in the540

space complexity when 2` = o(d), incurring extra time in the query.

DS SPLIT: O(2`d2/τ2 +2`/2d) Space, O(2`/2 · (2`/2 + τ)`) Query Time, for any τ .
This trade-off is relevant when τ = ω(

√
d); otherwise the DS SIMPLE is better.

We split each string p ∈ D roughly in the middle, to prefix pL and suffix pR;
specifically, p = pL pR and |pL|= d`/2e. We create dictionaries DL={pL : p∈D} and545

DR={pR : p∈D}. Let us now explain how to process DL; we process DR analogously.
Let λ =d`/2e. We construct DS SIMPLE over DL. This requires space O(2`/2d). Let τ

be an input parameter, intuitively used as the minimum frequency threshold. For each
of the possible 2λ masks, we can have at most bd/τc (masked) strings with frequency
at least τ . Over all masks, we thus have at most 2λ bd/τc such strings, which we call550

τ-frequent. For every pair of τ-frequent strings, one from DL and one from DR, we
store the number of occurrences of their concatenation in D using a compacted trie as
in DS SIMPLE. This requires space O(2`d2/τ2).

Consider DL. For each mask i and each string pL ∈DL, we can afford to store the
list of all strings in DL that match pL⊗ i. Note that we have computed this information555

when sorting for constructing DS SIMPLE over DL. This information requires space
O(2`/2d). Thus, DS SPLIT requires O(2`d2/τ2 +2`/2d) space overall.

Let us now show how to answer an on-line q,z query. Let q = qLqR with |qL|=
d`/2e. We iterate over all possible 2` masks.

18 P. Charalampopoulos et al.

abba

acba

acca

abac

ab

ac

ac

ab

ba

ba

ca

ac

a?

?b

?c

??

4

2

2

4

b?

?a

??

D DL DR

? ? ? a ? ?

? a ? a

4 3 4 3

Counts of Simple

2

3

4

DL DR

Compacted trie of Split

· · ·

Fig. 6.1: Let τ = 3. If both q′L and q′R are 3-frequent (we check this using the counts of
DS SIMPLE), then we read the count for q′Lq′R from the compacted trie of DS SPLIT.
If q′L is 3-infrequent, then we apply SMALL-` on qR and on the dictionary consisting
of at most τ = 3 strings from DR corresponding to the right halves of strings in DL
that match q′L.

For a mask i, let q′ = q⊗ i. We split q′ into two halves, q′L and q′R with q′ = q′Lq′R560

and |q′L|= d`/2e. First, we check whether each of q′L and q′R is τ-infrequent using the
DS SIMPLE we have constructed for DL and DR, respectively, in time O(`). We have
the following two cases (inspect also Figure 6.1).

– If both halves are τ-frequent, then we can read the frequency of their concatenation
using the stored compacted trie in time O(`).565

– Else, at least one of the two halves is τ-infrequent. Assume without loss of
generality that q′L is τ-infrequent. Let F be the dictionary consisting of at most
τ strings from DR that correspond to the right halves of strings in DL that match
q′L. Naïvely counting how many elements of F match q′R could require Ω(τ`)
time, and thus Ω(2`τ`) overall. Instead, we apply algorithm SMALL-` on qR and570

F . The crucial point is that if we ever come across q′L again (for a different mask
on q), we will not need to do anything. We can maintain whether q′L has been
processed by temporarily marking the leaf corresponding to it in DS SIMPLE for
DL. Thus, overall, we perform the SMALL-` algorithm O(2`/2) times, each time
in O((2`/2 + τ)`) time. This completes the proof of Theorem 6.1.575

Efficient Construction. For completeness, we next show how to construct DS SPLIT
in O(d` log(d`)+ 2`d`+ 2``d2/τ2) time. We preprocess D by sorting its letters in
O(d` log(d`)) time. The DS SIMPLE for DL and DR can then be constructed in
O(2`/2d`) time. We then create the compacted trie for pairs of τ-frequent strings. For
each of the 2` possible masks, say i, and each string p ∈D , we split p′ = p⊗ i in the580

middle to obtain p′L and p′R. If both p′L and p′R are τ-frequent then p′ will be in the set
of strings for which we will construct the compacted trie for pairs of τ-frequent strings.
The counts for each of those strings can be read in O(`) time from a DS SIMPLE over
D , which we can construct in time O(2`d`)—this data structure is then discarded.
The compacted trie construction requires time O(2``d2/τ2).585

Comparison of the Data Structures. DS SIMPLE has lower query time than algorithm
SMALL-`. However, its space complexity can be much higher. DS SPLIT can be

Pattern Masking for Dictionary Matching: Theory and Practice 19

viewed as an intermediate option. For τ as in Table 6.1, it has lower query time than
algorithm SMALL-` for d = ω(23`/2), while keeping moderate space complexity. DS
SPLIT always has higher query time than DS SIMPLE, but its space complexity is590

lower by a factor of 2`/2. For example, for d = 22` we get the complexities shown
in Table 6.2.

Data structure Space Query time
Algorithm SMALL-` O(22``) O(22``)

DS SIMPLE O(23`) O(2``)
DS SPLIT for τ = 25`/4 O(25`/2) O(27`/4`)

Table 6.2: Basic complexities of the data structures from Section 6 for d = 22`.

Let us now discuss why our data structure results cannot be directly obtained using
the same data structures as for the problem Dictionary Matching with k-wildcards
(see Section 1 for the problem definition). Conceivably, one could construct such a595

data structure, and then iterate over all subsets of {1, . . . , `}, querying for the masked
string. Existing data structures for dictionary matching with wildcards (cf. [15, Table
1], [56], and [38]), that allow querying a pattern with at most ` wildcards, have:

(a) either Ω(min{σ `,d}) query time, thus yielding Ω(2` ·min{σ `,d}) query time for
our problem, and space Ω(d`), a trade-off dominated by the SMALL-` algorithm600

(cf. our Table 6.1);
(b) or Ω(`) query time, thus yielding Ω(2``) query time for our problem, and

Ω(d` log` log(d`)) space, a trade-off dominated by the DS SIMPLE (cf. our Ta-
ble 6.1).

7 Approximation Algorithm for PMDM605

Clearly, PMDM is at least as hard as PMDM-SIZE because it also outputs the
positions of the wildcards (set K). Thus, PMDM is also NP-hard. In what follows,
we show existence of a polynomial-time approximation algorithm for PMDM whose
approximation factor is given with respect to d. Specifically, we show the following
approximation result for PMDM.610

Theorem 7.1 For any constant ε > 0, there is an O(d1/4+ε)-approximation algorithm
for PMDM, whose running time is polynomial in N, where N = d`.

Our result is based on a reduction to the Minimum Union (MU) problem [24],
which we define next.

MINIMUM UNION (MU)
Input: A collection S of d sets over a universe U and a positive integer z≤ d.
Output: A collection T ⊆S with |T |= z such that the size of ∪S∈T S is mini-
mized.

615

20 P. Charalampopoulos et al.

To illustrate the MU problem, consider an instance of it where U = {1,2,3,4,5},
S = {{1},{1,2,3},{1,3,5},{3},{3,4,5},{4},{4,5},{5}}, with d = |S |= 8, and
z = 4. Then T = {{3},{3,4,5},{4},{4,5}} is a solution because |T |= z = 4 and
|∪S∈T S|= 3 is minimum. The MU problem is NP-hard and the following approxi-
mation result is known.620

Theorem 7.2 ([24]) For any constant ε > 0, there is an O(d1/4+ε)-approximation
algorithm for MU, whose running time is polynomial in the size of S .

We next describe the reduction that leads to our result.

Theorem 7.3 PMDM can be reduced to MU in time polynomial in N.

Proof We reduce the PMDM problem to MU in polynomial time as follows. Given625

any instance IPMDM of PMDM, we construct an instance IMU of MU in time O(d`)
by performing the following steps:
1. The universe U is set to {1, . . . , `}.
2. We start with an empty collection S . Then, for each string si in D , we add

member Si to S , where Si is the set of positions where string q and string si have630

a mismatch. This can be done trivially in time O(d`) for all strings in D .
3. Set the z of the MU problem to the z of the PMDM problem.

Thus, the total time O(d`) needed for Steps 1 to 3 above is clearly polynomial in
the size of IPMDM.

Claim For any solution T to IMU and any solution K to IPMDM, such that IMU is635

obtained from IPMDM using the above three steps, we have |K|= |∪S∈T S|.
Proof (of Claim) Let F ⊆D consist of z strings that match qK . Further, let the set
F ∗ consist of the elements of S corresponding to strings in F . We have |∪S∈T S| ≤
|∪S∈F ∗ S| ≤ |K|.

Now, let C = ∪S∈T S. Then, qC=q⊗C matches at least z strings from D and hence
|K| ≤ |C|= |∪S∈T S|. ut

To conclude the proof, it remains to show that given a solution T to IMU we can
obtain a solution K to IPMDM in time polynomial in the size of IMU. This readily
follows from the proof of the above claim: it suffices to set K = ∪S∈T S. ut

We can now prove Theorem 7.1.640

Proof (of Theorem 7.1.) The reduction in Theorem 7.3 implies that there is a
polynomial-time approximation algorithm for PMDM. In particular, Theorem 7.2
provides an approximation guarantee for MU that depends on the number of sets of
the input S . In Step 2 of the reduction of Theorem 7.3, we construct one set for the
MU instance per one string of the dictionary D of the PMDM instance. Also, from
the constructed solution T to the MU instance, we obtain a solution K to the PMDM
instance by simply substituting the positions of q corresponding to the elements of
the sets of T with wildcards. This construction implies the approximation result of
Theorem 7.1 that depends on the size of D . ut

Applying Theorem 7.1 to solve PMDM is not practical, as in real-world applica-
tions, such as those in Section 1, d is typically in the order of thousands or millions [27,
33,39,71].

Pattern Masking for Dictionary Matching: Theory and Practice 21

Sanity Check. We remark that Theorem 3.1 (reduction from k-CLIQUE to k-PMDM)
and Theorem 7.1 (approximation algorithm for PMDM) do not contradict the in-645

approximability results for the maximum clique problem (see Section 3), since our
reduction from k-CLIQUE to k-PMDM cannot be adapted to a reduction from maxi-
mum clique to PMDM-SIZE.

Two-Way Reduction. Chlamtáč et al. [24] also show that their polynomial-time
O(d1/4+ε)-approximation algorithm for MU is tight under a plausible conjecture for650

the so-called Hypergraph Dense vs Random problem. In what follows, we also show
that approximating the MU problem can be reduced to approximating PMDM in
polynomial time and hence the same tightness result applies to PMDM.

Theorem 7.4 MU can be reduced to PMDM in time polynomial in the size of S .

Proof Let ||S || denote the total number of elements in the d members of S . We655

reduce the MU problem to the PMDM problem in polynomial time as follows. Given
any instance IMU of MU, we construct an instance IPMDM of PMDM by performing
the following steps:

1. Sort the union of all elements of members of S , assign to each element j a unique
rank rank(j)∈{1, . . . , |U |}, and set `= |U |. This can be done in O(||S || log ||S ||)660

time.
2. Set the query string q equal to the string a` of length `. For each set Si in S ,

construct a string si = a`, set si[rank(j)] := b if and only if j ∈ Si, and add si to
dictionary D . This can be done in O(d`) time.

3. Set the z of the PMDM problem equal to the z of the MU problem. This can be665

done in O(1) time.

Thus, the total time O(d` log(d`)) needed for Steps 1 to 3 above is clearly polyno-
mial in the size of IMU as `≤ ||S ||.

A proof of the following claim is analogous to that of Section 7.

Claim For any solution T to IMU and any solution K to IPMDM, such that IPMDM670

is obtained from IMU using the above three steps, we have |K|= |∪S∈T S|.

To conclude the proof, it remains to show that, given a solution K to IPMDM, we
can obtain a solution T to IMU in time polynomial in the size of IPMDM. It suffices
to pick z sets in S that are subsets of K. Their existence is guaranteed by construction,
because such sets correspond to the at least z strings in D that have b in a subset of
the positions in K. This selection can be done naïvely in O(||S ||) time. Finally, the
above claim guarantees that they indeed form a solution to IMU. ut

8 A Greedy Heuristic for PMDM

We design a heuristic called GREEDY τ -PMDM that solves PMDM and which, for a
given constant τ ≥ 1, iteratively applies Theorem 4.1 (see Section 4), for k = 1, . . . ,τ .
Intuitively, the larger the τ , the more effective – but the slower – GREEDY τ -PMDM675

22 P. Charalampopoulos et al.

is. Specifically, in iteration i = 1, we apply Theorem 4.1 for k = 1, . . . ,τ and check
whether there are at least z strings from D that can be matched when at most k
wildcards are substituted in the query string q. If there are, we return the minimum
such k and terminate. Clearly, by Theorem 4.7, the returned solution K1 is an optimal
solution to PMDM. Otherwise, we proceed into the next iteration, i = 2. In this680

iteration, we construct string qK1 = q⊗K1 and apply Theorem 4.1, for k = 1, . . . ,τ , to
qK1 . This returns a solution K2 telling us whether there are at least z strings from D that
can be matched with qK2 = qK1 ⊗K2. If there are, we return K1∪K2, which is now a
(sub-optimal) solution to PMDM, and terminate. Otherwise, we proceed into iteration
i = 3, which is analogous to iteration i = 2. Note that GREEDY τ -PMDM always685

terminates with some (sub-optimal) solution K1∪K2∪·· ·∪K j, for some j ≤ d`/τe.
Namely, in the worst case, it returns set {1, . . . , `} after d`/τe iterations and q{1,...,`}
matches all strings in D . The reason why GREEDY τ -PMDM does not guarantee
finding an optimal solution to PMDM is that at iteration i we fix the positions of
wildcards based on solution K1∪·· ·∪Ki−1, whereas some of those positions might690

not belong to the global optimal solution.
Since τ = O(1), the time complexity of GREEDY τ -PMDM is O((N +Nτ/3)`):

each iteration takes time O(N +Nτ/3) by Theorem 4.1, and then there are no more
than d`/τe= O(`) iterations. The space complexity of GREEDY τ -PMDM is O(N).
The hypergraph H = (V,E) used in the implementation of Theorem 4.1 has edges of695

size up to k. If every string in D has more than k mismatches with q, then all edges in
H have size larger than k. In this case, we preprocess the hypergraph H, as detailed
below. The objective is to remove selected nodes and edges from H, so that it has at
least one edge of size up to k and then apply GREEDY τ -PMDM.

Hypergraph Preprocessing. Let us now complete the description of our heuristic,700

by describing the hypergraph preprocessing. We want to ensure that hypergraph
H = (V,E) has at least one edge of size up to k so that GREEDY τ -PMDM can be
applied. To this end, if there is no edge of size up to k at some iteration, then we add
some nodes into the partial solution with the following heuristic.

1. We assign a score s(u) to each node u in V using the function:705

s(u) = |Eu| ·
∑e∈Eu w(e)
∑e∈Eu |e|

,

where Eu = {e ∈ E : u ∈ e} and w(e) is the edge weight.
2. Then, we add the node with maximum score from H (breaking ties arbitrarily)

into the partial solution and update the edges accordingly.

These two steps are repeated until there is at least one edge of size up to k; this takes
O(d`2) time. After that, we add the removed nodes into the current solution Kk and710

use the resulting hypergraph to apply GREEDY τ -PMDM.

The intuition behind the above process is to add nodes which appear in many short
edges (so that we mask few positions) with large weight (so that the masked positions
greatly increase the number of matched strings). We have also tried a different scoring715

Pattern Masking for Dictionary Matching: Theory and Practice 23

function s′(u) = ∑e∈Eu
w(e)
|e| instead of s(u), but the results were worse, and thus not

reported.

9 Experimental Evaluation

Methods. We compared the performance of our heuristic GREEDY τ -PMDM (hence-
forth, GR τ), for the values τ ∈ [3,5], for which its time complexity is subquadratic in720

N, to the following two algorithms:

– BASELINE (henceforth, BA). In iteration i, BA adds a node of hypergraph H into
K and updates H according to the preprocessing described in Section 8. If at least z
strings from D match the query string q after the positions in q corresponding to K
are replaced with wildcards, BA returns K and terminates; otherwise, it proceeds725

into iteration i+1. Note that BA generally constructs a suboptimal solution K to
PMDM and takes O(d`2) time.

– BRUTEFORCE (henceforth, BF). In iteration i, BF applies Lemma 4.3 in the
process of obtaining an optimal solution K of size i = k to PMDM. In particular,
it checks whether at least z strings from D match the query string q, after the730

i positions in q corresponding to K are replaced with wildcards. If the check
succeeds, BF returns K and terminates; otherwise, it proceeds into iteration i+1.
BF takes O(k(2`)k +dk) time (see Lemma 4.3).

Since – as mentioned in Section 1 – there are no existing algorithms for addressing
PMDM, in the evaluation we used our own baseline BA. We have implemented all735

of the above algorithms in C++. Our implementations are freely available at https:
//bitbucket.org/pattern-masking/pmdm/.

Datasets. We used the North Carolina Voter Registration database [2] (NCVR); a
standard benchmark dataset for record linkage [26,33,48,73]. NCVR is a collection
of 7,736,911 records with attributes such as Forename, Surname, City, County, and740

Gender. We generated 4 subcollections of NCVR: (I) FS is comprised of all 952,864
records having Forename and Surname of total length `= 15; (II) FCi is comprised of
all 342,472 records having Forename and City of total length `= 15; (III) FCiCo is
comprised of all 342,472 records having Forename, City, and County of total length
`= 30; and (IV) FSCiCo is comprised of all 8,238 records having Forename, Surname,745

City and County of total length `= 45.
We also generated a synthetic dataset, referred to as SYN, using the IBM Synthetic

Data Generator [1], a standard tool for generating sequential datasets [32,44]. SYN
contains a collection of 6 ·106 records, each of length `= 50, over an alphabet of size
|Σ | = 10. We also generated subcollections of SYN comprised of: x · 106 arbitrarily750

selected records; the length-y prefix of each selected record. We denote each resulting
dataset by SYNx.y.

Comparison Measures. We evaluated the effectiveness of the algorithms using:

https://bitbucket.org/pattern-masking/pmdm/
https://bitbucket.org/pattern-masking/pmdm/
https://bitbucket.org/pattern-masking/pmdm/

24 P. Charalampopoulos et al.

z

A
v
g
R

E
 (

lo
g
s
c
a
le

)

10 50 100 500 1000

0
.0

1
0
.0

5
0
.2

0
1
.0

0

BA

GR 3

GR 4

GR 5

(a) d=952,864 and `= 15

z

A
v
g
R

E
 (

lo
g
s
c
a
le

)
10 50 100 500 1000

0
.0

0
1

0
.0

1
0
.1

1

BA

GR 3

GR 4

GR 5

(b) d=342,472 and `= 15

0

3

6

9

10 50 100 500 1000
z

A
v
g

S
S

BF

BA

GR 3

GR 4

GR 5

(c) d=952,864 and `= 15

Fig. 9.1: AvgRE (in logscale) vs. z computed for (a) FS and (b) FCi; (c) AvgSS vs. z
for FS.

0.0

2.5

5.0

7.5

10 50 100 500 1000
z

A
v
g

S
S

BF

BA

GR 3

GR 4

GR 5

(a) d=342,472 and `= 15

0

5

10

10 50 100 500 1000
z

A
v
g

S
S

BA

GR 3

GR 4

GR 5

(b) d=342,472 and `= 30

0

10

20

30

10 25 50 75 100
z

A
v
g

S
S

GR 3

GR 4

GR 5

(c) d=8,238 and `= 45

Fig. 9.2: AvgSS vs. z for (a) FCi. (b) FCiCo (BF did not produce results for any z
within 48 hours), and (c) FSCiCo (BF and BA did not produce results for any z within
48 hours. The results of GR for z > 100 are omitted because AvgSS > 40 which is
close to `= 45).

AvgRE An Average Relative Error measure, computed as avgi∈[1,1000]
ki−k∗i

k∗i
, where k∗i

is the size of the optimal solution produced by BF, and ki is the size of the solution755

produced by one of the other tested algorithms. Both k∗i and ki are obtained by
using, as query qi, a record of the input dictionary selected uniformly at random.

AvgSS An Average Solution Size measure computed as avgi∈[1,1000]k∗i for BF and
avgi∈[1,1000]ki for any other algorithm.

We evaluated efficiency by reporting avgi∈[1,1000]ti, where ti is the elapsed time of760

a tested algorithm to obtain a solution for query qi over the input dictionary.

Execution Environment. In our experiments we used a PC with Intel Xeon E5-
2640@2.66GHz and 160GB RAM running GNU/Linux, and a gcc v.7.3.1 compiler
at optimization level -O3.

Effectiveness. Figures 9.1 and 9.2a show that GR produced nearly-optimal solutions,765

significantly outperforming BA. In Figure 9.1a, the solutions of GR 3 were no more

Pattern Masking for Dictionary Matching: Theory and Practice 25

...

R
un

tim
e

(s
ec

on
ds

)

10 20 30 40 50

0
5

10
15

20
25 BA

GR 3

GR 4

GR 5

(a) d=6·106 and z=100

0
2

0
0

4
0

0
6

0
0

10 15 20 25 30 35
k

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
) BA

GR 5

(b) `=50 and z=100

d (10
6
)

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

1 2 3 4 5 6

0
.0

0
.5

1
.0

1
.5

2
.0 BA

GR 3

GR 4

GR 5

(c) `=30 and z=100

z

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

10 50 100 500 1000

0
1

2
3

4

BA

GR 3

GR 4

GR 5

(d) d=6·106 and `=30

Fig. 9.3: Efficiency vs. (a) ` for SYN6.`, (b) k for SYN, (c) d for SYNx.30, x ∈ {1 ·106,2 ·
106, . . . ,6 ·106}, and (d) z for SYN6.30. The results of BF are omitted, because it was
slower than other methods by at least two orders of magnitude on average.

than 9% worse than the optimal, while those of BA were up to 95% worse. In
Figure 9.2a, the average solution size of BF was 5.4 vs. 5.9 and 9, for the solution
size of GR 3 and BA, respectively.

In Figures 9.2b and 9.2c, we examined the effectiveness of GR for larger ` values.770

Figure 9.2b shows that the solution size of GR 3 was at least 31% and up to 60%
smaller than that of BA on average, while Figure 9.2c shows that the solution of GR 3
was comparable to that of GR 4 and 5. We omit the results for BF from Figures 9.2b
and 9.2c and those for BA from Figure 9.2c, as these algorithms did not produce
results for all queries within 48 hours, for any z. This is because, unlike GR, BF does775

not scale well with ` and BA does not scale well with the solution size, as we will
explain later.

Note that increasing τ generally increases the effectiveness of GR as it computes
more positions of wildcards per iteration. However, even with τ = 3, it remains
competitive to BF.780

Efficiency. Having shown that GR produced nearly-optimal solutions, we now show
that it is comparable in terms of efficiency or faster than BA for synthetic data. (BF
was at least two orders of magnitude slower than the other methods on average and
thus we omit its results.) The results for NCVR were qualitatively similar (omitted).
Figure 9.3a shows that GR spent, on average, the same time for a query as BA did.785

However, it took significantly (up to 36 times) less time than BA for queries with large
solution size k. This can be seen from Figure 9.3b, which shows the time each query
with solution size k took; the results for GR 3 and 4 were similar and thus omitted. The
reason is that BA updates the hypergraph every time a node is added into the solution,
which is computationally expensive when k is large. Figures 9.3c and 9.3d show that790

all algorithms scaled sublinearly with d and with z, respectively. The increase with
d is explained by the time complexity of the methods. The slight increase with z is
because k gets larger, on average, as z increases (see Figure 9.4c next, in which we
also show the average solution size for the experiments in Figures 9.3a and 9.3c). GR
3 and 4 performed similarly to each other, being faster than GR 5 in all experiments795

as expected: increasing τ from 3 or 4 to 5 trades-off effectiveness for efficiency.

26 P. Charalampopoulos et al.

0

5

10

15

20

10 20 30 40 50
...

A
vg

S
S

BA
GR 3
GR 4
GR 5

(a) d = 6 ·106, z = 100

0

5

10

15

1 2 3 4 5 6

d (10
6
)

A
v
g
S

S

BA

GR 3

GR 4

GR 5

(b) `= 30, z = 100

0

5

10

15

10 50 100 500 1000
z

A
v
g
S

S

BA

GR 3

GR 4

GR 5

(c) d = 6 ·106, `= 30

Fig. 9.4: AvgSS vs. (a) ` for SYN6.`, (b) d for SYNx.30, x ∈ {1 ·106,2 ·106, . . . ,6 ·106},
and (c) z for SYN6.30.

Average Solution Size. Figures 9.4a, 9.4b, and 9.4c show the average solution size in
the experiments of Figure 9.3a, 9.3c, and 9.3d, respectively. Observe that the results are
analogous to those obtained using the NCVR datasets: GR outperforms BA significantly.
Also, observe in Figure 9.4c that the solution size of each tested algorithm gets larger,800

on average, as z increases.

Summary. We have presented an extensive experimental evaluation demonstrating
the effectiveness and efficiency of the proposed heuristic on real-world datasets used
in record linkage, as well as on synthetic datasets. In the experiments that we have
performed, the proposed heuristic: (I) found nearly-optimal solutions for varying805

values of z and `, even when applied with a small τ ; and (II) scaled as predicted by the
complexity analysis, requiring fewer than 3 seconds for d = 6 ·106 in all tested cases.
Our experimental results suggest that our methods can inspire solutions in large-scale
real-world systems, where no sophisticated algorithms for PMDM are being used.

10 Open Questions810

The following questions of theoretical nature remain unanswered:

1. Can we improve on the exact O(d`+(d`)k/3)-time algorithm presented in Sec-
tion 4 for PMDM and k = O(1) using fast matrix multiplication [7,37] or show
that algebraic techniques cannot help, e.g., via the (c,k)-HYPERCLIQUE problem?

2. Can we improve on the O(2`/2(2`/2 + τ)`)-time and O(2`d2/τ2 +2`/2d)-space815

trade-off presented in Section 6 for the data structure answering q,z PMDM
queries?

11 Acknowledgements

Panagiotis Charalampopoulos was partially supported by the Israel Science Foundation
grants 592/17 and 810/21. Huiping Chen was supported by a CSC Scholarship. Part of820

Pattern Masking for Dictionary Matching: Theory and Practice 27

the work was performed when this author was at King’s College London. Grigorios
Loukides was supported in part by the Leverhulme Trust RPG-2019-399 project.
Nadia Pisanti is supported by NextGeneration EU programme PNRR ECS00000017
Tuscany Health Ecosystem, by MUR PRIN 2022YRB97K PINC, and by the ALPACA
EU project (GA 956229). Jakub Radoszewski was supported by the Polish National825

Science Center, grant number 2018/31/D/ST6/03991. The authors acknowledge the
use of the following HPC infrastructure: King’s Computational Research, Engineering
and Technology Environment (CREATE).

References

1. IBM Synthetic Data Generator for Itemsets and Sequences. https://github.com/zakimjz/830

IBMGenerator (2020)
2. North Carolina Voter Registration database (dataset ncvoter_Statewide.zip). https://dl.

ncsbe.gov/?prefix=data/ (2020)
3. Secure critical data with Oracle Data Safe (white paper). https://www.oracle.com/a/tech/

docs/dbsec/data-safe/wp-security-data-safe.pdf (2020)835

4. Abboud, A., Backurs, A., Williams, V.V.: If the current clique algorithms are optimal, so is Valiant’s
parser. SIAM Journal on Computing 47(6), 2527–2555 (2018). DOI 10.1137/16M1061771

5. Afshani, P., Nielsen, J.S.: Data structure lower bounds for document indexing problems. In: 43rd
International Colloquium on Automata, Languages and Programming (ICALP 2016), LIPIcs, vol. 55,
pp. 93:1–93:15 (2016). DOI 10.4230/LIPIcs.ICALP.2016.93840

6. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic search. Communications
of the ACM 18(6), 333–340 (1975). DOI 10.1145/360825.360855

7. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: D. Marx
(ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual
Conference, January 10 - 13, 2021, pp. 522–539. SIAM (2021). DOI 10.1137/1.9781611976465.32.845

URL https://doi.org/10.1137/1.9781611976465.32
8. Applebaum, B.: Pseudorandom generators with long stretch and low locality from random local

one-way functions. SIAM Journal on Computing 42(5), 2008–2037 (2013). DOI 10.1137/120884857
9. Arimura, H., Uno, T.: An efficient polynomial space and polynomial delay algorithm for enumeration

of maximal motifs in a sequence. Journal of Combinatorial Optimization 13(3), 243–262 (2007).850

DOI 10.1007/s10878-006-9029-1
10. Bailey, D.R., Battle, A.J., Gomes, B.A., Nayak, P.P.: Estimating confidence for query revision models

(U.S. Patent US7617205B2 (granted to Google), 2009)
11. Bailey, M., Cole, C., Henderson, M., Massey, C.: How well do automated linking methods perform?

Lessons from U.S. historical data. NBER Working Papers 24019, National Bureau of Economic855

Research, Inc (2017). DOI 10.3386/w24019
12. Battaglia, G., Cangelosi, D., Grossi, R., Pisanti, N.: Masking patterns in sequences: A new class

of motif discovery with don’t cares. Theoretical Computer Science 410(43), 4327–4340 (2009).
DOI 10.1016/j.tcs.2009.07.014

13. Belazzougui, D.: Faster and space-optimal edit distance "1" dictionary. In: 20th Annual Symposium860

on Combinatorial Pattern Matching (CPM 2009), Lecture Notes in Computer Science, vol. 5577, pp.
154–167. Springer (2009). DOI 10.1007/978-3-642-02441-2_14

14. Belazzougui, D., Venturini, R.: Compressed string dictionary search with edit distance one. Algorith-
mica 74(3), 1099–1122 (2016). DOI 10.1007/s00453-015-9990-0

15. Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with wildcards. Theory of865

Computing Systems 55(1), 41–60 (2014). DOI 10.1007/s00224-013-9498-4
16. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearest neighbor search

and related problems. In: 31st ACM Symposium on Theory of Computing (STOC 1999), pp. 312–321
(1999). DOI 10.1145/301250.301330

17. Brodal, G.S., Venkatesh, S.: Improved bounds for dictionary look-up with one error. Information870

Processing Letters 75(1-2), 57–59 (2000). DOI 10.1016/S0020-0190(00)00079-X

https://github.com/zakimjz/IBMGenerator
https://github.com/zakimjz/IBMGenerator
https://github.com/zakimjz/IBMGenerator
ncvoter_Statewide.zip
https://dl.ncsbe.gov/?prefix=data/
https://dl.ncsbe.gov/?prefix=data/
https://dl.ncsbe.gov/?prefix=data/
https://www.oracle.com/a/tech/docs/dbsec/data-safe/wp-security-data-safe.pdf
https://www.oracle.com/a/tech/docs/dbsec/data-safe/wp-security-data-safe.pdf
https://www.oracle.com/a/tech/docs/dbsec/data-safe/wp-security-data-safe.pdf
https://doi.org/10.1137/1.9781611976465.32

28 P. Charalampopoulos et al.

18. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small depth circuits. In:
Parameterized and Exact Computation, 4th International Workshop (IWPEC 2009), Lecture Notes in
Computer Science, vol. 5917, pp. 75–85. Springer (2009). DOI 10.1007/978-3-642-11269-0_6

19. Chan, H., Lam, T.W., Sung, W., Tam, S., Wong, S.: Compressed indexes for approximate string875

matching. Algorithmica 58(2), 263–281 (2010). DOI 10.1007/s00453-008-9263-2
20. Charalampopoulos, P., Chen, H., Christen, P., Loukides, G., Pisanti, N., Pissis, S.P., Radoszewski,

J.: Pattern Masking for Dictionary Matching. In: H.K. Ahn, K. Sadakane (eds.) 32nd International
Symposium on Algorithms and Computation (ISAAC 2021), Leibniz International Proceedings in
Informatics (LIPIcs), vol. 212, pp. 65:1–65:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,880

Dagstuhl, Germany (2021). DOI 10.4230/LIPIcs.ISAAC.2021.65. URL https://drops.dagstuhl.
de/opus/volltexte/2021/15498

21. Charikar, M., Indyk, P., Panigrahy, R.: New algorithms for subset query, partial match, orthogonal
range searching, and related problems. In: 29th International Colloquium on Automata, Languages
and Programming (ICALP 2002), pp. 451–462 (2002). DOI 10.1007/3-540-45465-9_39885

22. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized
complexity. Journal of Computer and System Sciences 72(8), 1346–1367 (2006). DOI 10.1016/j.jcss.
2006.04.007

23. Chlamtáč, E., Dinitz, M., Konrad, C., Kortsarz, G., Rabanca, G.: The densest k-subhypergraph problem.
SIAM Journal on Discrete Mathematics 32(2), 1458–1477 (2018). DOI 10.1137/16M1096402890

24. Chlamtáč, E., Dinitz, M., Makarychev, Y.: Minimizing the union: Tight approximations for small set
bipartite vertex expansion. In: 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017),
pp. 881–899 (2017). DOI 10.1137/1.9781611974782.56

25. Christen, P.: Data Matching – Concepts and Techniques for Record Linkage, Entity Resolution, and
Duplicate Detection. Data-Centric Systems and Applications. Springer, Heidelberg (2012). DOI895

10.1007/978-3-642-31164-2
26. Christen, P., Gayler, R.W., Tran, K.N., Fisher, J., Vatsalan, D.: Automatic discovery of abnormal values

in large textual databases. J. Data and Information Quality 7(1–2) (2016). DOI 10.1145/2889311
27. Christen, P., Ranbaduge, T., Schnell, R.: Linking Sensitive Data. Springer, Heidelberg (2020). DOI

https://doi.org/10.1007/978-3-030-59706-1900

28. Cohen-Addad, V., Feuilloley, L., Starikovskaya, T.: Lower bounds for text indexing with mismatches
and differences. In: 30th ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pp. 1146–
1164 (2019). DOI 10.1137/1.9781611975482.70

29. Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and indexing with errors and don’t
cares. In: 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 91–100 (2004). DOI905

10.1145/1007352.1007374
30. Cuzzocrea, A., Shahriar, H.: Data masking techniques for nosql database security: A systematic

review. In: 2017 IEEE International Conference on Big Data (BigData 2017), pp. 4467–4473 (2017).
DOI 10.1109/BigData.2017.8258486

31. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,910

S.: Parameterized Algorithms. Springer (2015). DOI 10.1007/978-3-319-21275-3. URL https:
//doi.org/10.1007/978-3-319-21275-3

32. Ding, B., Lo, D., Han, J., Khoo, S.C.: Efficient mining of closed repetitive gapped subsequences
from a sequence database. In: 25th IEEE International Conference on Data Engineering (ICDE), pp.
1024–1035 (2009). DOI 10.1109/ICDE.2009.104915

33. Durham, E.A., Kantarcioglu, M., Xue, Y., Tóth, C., Malin, B.: Composite bloom filters for secure
record linkage. IEEE Transactions on Knowledge and Data Engineering 26(12), 2956–2968 (2014).
DOI 10.1109/TKDE.2013.91

34. Federico, M., Pisanti, N.: Suffix tree characterization of maximal motifs in biological sequences. Theor.
Comput. Sci. 410(43), 4391–4401 (2009). DOI 10.1016/J.TCS.2009.07.020920

35. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case access time.
Journal of the ACM 31(3), 538–544 (1984). DOI 10.1145/828.1884

36. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: A survey of recent
developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010). DOI 10.1145/1749603.1749605. URL
https://doi.org/10.1145/1749603.1749605925

37. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: K. Nabeshima, K. Nagasaka, F. Winkler,
Á. Szántó (eds.) International Symposium on Symbolic and Algebraic Computation, ISSAC ’14,
Kobe, Japan, July 23-25, 2014, pp. 296–303. ACM (2014). DOI 10.1145/2608628.2608664. URL
https://doi.org/10.1145/2608628.2608664

https://drops.dagstuhl.de/opus/volltexte/2021/15498
https://drops.dagstuhl.de/opus/volltexte/2021/15498
https://drops.dagstuhl.de/opus/volltexte/2021/15498
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/1749603.1749605
https://doi.org/10.1145/2608628.2608664

Pattern Masking for Dictionary Matching: Theory and Practice 29

38. Gawrychowski, P., Lewenstein, M., Nicholson, P.K.: Weighted ancestors in suffix trees. In: Algorithms930

- 22th Annual European Symposium (ESA 2014), Lecture Notes in Computer Science, vol. 8737, pp.
455–466. Springer (2014). DOI 10.1007/978-3-662-44777-2_38

39. Gollapudi, S., Ieong, S., Ntoulas, A., Paparizos, S.: Efficient query rewrite for structured web queries.
In: 20th ACM International Conference on Information and Knowledge Management (CIKM 2011),
pp. 2417–2420 (2011). DOI 10.1145/2063576.2063981935

40. Grossi, R., Menconi, G., Pisanti, N., Trani, R., Vind, S.: Motif trie: An efficient text index for pattern
discovery with don’t cares. Theoretical Computer Science 710, 74–87 (2018). DOI 10.1016/j.tcs.2017.
04.012

41. Grossi, R., Pietracaprina, A., Pisanti, N., Pucci, G., Upfal, E., Vandin, F.: MADMX: A strategy for
maximal dense motif extraction. J. Comput. Biol. 18(4), 535–545 (2011). DOI 10.1089/CMB.2010.940

0177
42. Hastad., J.: Clique is hard to approximate within n1−ε . Acta Mathematica 182, 105–142 (1999).

DOI 10.1007/BF02392825
43. Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data quality and record linkage techniques. Springer

(2007)945

44. I, T., Enokuma, Y., Bannai, H., Takeda, M.: General algorithms for mining closed flexible patterns
under various equivalence relations. In: Machine Learning and Knowledge Discovery in Databases, pp.
435–450 (2012). DOI 10.1007/978-3-642-33486-3_28

45. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational
database systems. ACM Computing Surveys 40(4) (2008). DOI 10.1145/1391729.1391730950

46. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences
62(2), 367–375 (2001). DOI 10.1006/jcss.2000.1727

47. Jayram, T.S., Khot, S., Kumar, R., Rabani, Y.: Cell-probe lower bounds for the partial match problem.
Journal of Computer and System Sciences 69(3), 435–447 (2004). DOI 10.1016/j.jcss.2004.04.006

48. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: Summarizing and linking electronic health955

records. Distributed and Parallel Databases pp. 1–40 (2019). DOI 10.1007/s10619-019-07263-0
49. Karp, R.M.: Reducibility among combinatorial problems. In: 50 Years of Integer Programming

1958-2008 - From the Early Years to the State-of-the-Art, pp. 219–241. Springer (2010). DOI
10.1007/978-3-540-68279-0_8

50. Kellerer, H., Pferschy, U., Pisinger, D.: The Multiple-Choice Knapsack Problem, pp. 317–347. Springer960

Berlin Heidelberg (2004). DOI 10.1007/978-3-540-24777-7_11
51. Konda, P., Das, S., Suganthan G.C., P., Martinkus, P., Ardalan, A., Ballard, J.R., Govind, Y., Li, H.,

Panahi, F., Zhang, H., Naughton, J., Prasad, S., Krishnan, G., Deep, R., Raghavendra, V.: Technical
perspective: Toward building entity matching management systems. SIGMOD Record 47(1), 33–40
(2018). DOI 10.1145/3277006.3277015965

52. Kum, H.C., Krishnamurthy, A., Machanavajjhala, A., Reiter, M.K., Ahalt, S.: Privacy preserving
interactive record linkage (PPIRL). Journal of the American Medical Informatics Association 21(2),
212–220 (2014). DOI 10.1136/amiajnl-2013-002165

53. Kum, H.C., Ragan, E.D., Ilangovan, G., Ramezani, M., Li, Q., Schmit, C.: Enhancing privacy through
an interactive on-demand incremental information disclosure interface: Applying privacy-by-design970

to record linkage. In: Fifteenth USENIX Conference on Usable Privacy and Security, pp. 175–189
(2019). DOI 10.5555/3361476.3361489

54. Kumar, P.S., Arasada, P., Jammalamadaka, R.C.: Systems and methods for generating search query
rewrites (U.S. Patent US10108712B2 (granted to ebay), 2018)

55. Lewenstein, M., Munro, J.I., Raman, V., Thankachan, S.V.: Less space: Indexing for queries with975

wildcards. Theoretical Computer Science 557, 120–127 (2014). DOI 10.1016/j.tcs.2014.09.003
56. Lewenstein, M., Nekrich, Y., Vitter, J.S.: Space-efficient string indexing for wildcard pattern matching.

In: 31st Symposium on Theoretical Aspects of Computer Science (STACS 2014), pp. 506–517 (2014).
DOI 10.4230/LIPIcs.STACS.2014.506

57. Lincoln, A., Williams, V.V., Williams, R.R.: Tight hardness for shortest cycles and paths in sparse980

graphs. In: 29th ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 1236–1252
(2018). DOI 10.1137/1.9781611975031.80

58. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric communication
complexity. Journal of Computer and System Sciences 57(1), 37–49 (1998). DOI 10.1006/jcss.1998.
1577985

59. Papadakis, G., Skoutas, D., Thanos, E., Palpanas, T.: Blocking and filtering techniques for entity
resolution: A survey. ACM Computing Surveys 53(2) (2020). DOI 10.1145/3377455

30 P. Charalampopoulos et al.

60. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.: A basis of tiling motifs for generating repeated
patterns and its complexity for higher quorum. In: 28th International Symposium on Mathematical
Foundations of Computer Science 2003 (MFCS), Lecture Notes in Computer Science, vol. 2747, pp.990

622–631. Springer (2003). DOI 10.1007/978-3-540-45138-9_56. URL https://doi.org/10.
1007/978-3-540-45138-9_56

61. Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.: Bases of motifs for generating repeated patterns
with wild cards. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(1), 40–50
(2005). DOI 10.1109/TCBB.2005.5995

62. Pǎtraşcu, M.: Unifying the landscape of cell-probe lower bounds. SIAM Journal on Computing 40(3),
827–847 (2011). DOI 10.1137/09075336X

63. Pǎtraşcu, M., Thorup, M.: Higher lower bounds for near-neighbor and further rich problems. SIAM
Journal on Computing 39(2), 730–741 (2009). DOI 10.1137/070684859

64. Ragan, E.D., Kum, H.C., Ilangovan, G., Wang, H.: Balancing privacy and information disclosure in1000

interactive record linkage with visual masking. In: ACM Conference on Human Factors in Computing
Systems (CHI 2018) (2018). DOI 10.1145/3173574.3173900

65. Rivest, R.L.: Partial-match retrieval algorithms. SIAM Journal on Computing 5(1), 19–50 (1976).
DOI 10.1137/0205003

66. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Trans. Knowl. Data Eng.1005

13(6), 1010–1027 (2001). DOI 10.1109/69.971193. URL https://doi.org/10.1109/69.971193
67. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information

(abstract). In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS 1998), p. 188. Association for Computing Machinery (1998).
DOI 10.1145/275487.2755081010

68. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its
enforcement through generalization and suppression. Tech. rep., Computer Science Laboratory, SRI
International (1998)

69. Santos, R.J., Bernardino, J., Vieira, M.: A data masking technique for data warehouses. In: 15th
International Database Engineering and Applications Symposium (IDEAS 2011), pp. 61–69 (2011).1015

DOI 10.1145/2076623.2076632
70. Sweeney, L.: Computational disclosure control: a primer on data privacy protection. Ph.D. thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA (2001). URL http://hdl.handle.
net/1721.1/8589

71. Tan, Z., Xu, C., Jiang, M., Yang, H., Wu, X.: Query rewrite for null and low search results in ecommerce.1020

In: SIGIR Workshop On eCommerce, CEUR Workshop Proceedings, vol. 2311 (2017)
72. Tao, Y.: Entity matching with active monotone classification. In: 37th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems (PODS 2018), pp. 49–62 (2018). DOI
10.1145/3196959.3196984

73. Vatsalan, D., Christen, P.: Scalable privacy-preserving record linkage for multiple databases. In:1025

23rd ACM International Conference on Information and Knowledge Management (CIKM 2014), pp.
1795–1798 (2014). DOI 10.1145/2661829.2661875

74. Vatsalan, D., Sehili, Z., Christen, P., Rahm, E.: Privacy-preserving record linkage for Big Data: Current
approaches and research challenges. In: Handbook of Big Data Technologies, pp. 851–895. Springer
(2017). DOI 10.1007/978-3-319-49340-41030

75. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on Switching and
Automata Theory (SWAT 1973), pp. 1–11. IEEE Computer Society (1973). DOI 10.1109/SWAT.1973.
13

76. Williams, V.V.: On some fine-grained questions in algorithms and complexity. In: 2018 International
Congress of Mathematicians (ICM), pp. 3447–3487 (2019). DOI 10.1142/9789813272880_01881035

77. Yao, A.C., Yao, F.F.: Dictionary look-up with one error. Journal of Algorithms 25(1), 194–202 (1997).
DOI 10.1006/jagm.1997.0875

78. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic
number. Theory of Computing 3(1), 103–128 (2007). DOI 10.4086/toc.2007.v003a006

https://doi.org/10.1007/978-3-540-45138-9_56
https://doi.org/10.1007/978-3-540-45138-9_56
https://doi.org/10.1007/978-3-540-45138-9_56
https://doi.org/10.1109/69.971193
http://hdl.handle.net/1721.1/8589
http://hdl.handle.net/1721.1/8589
http://hdl.handle.net/1721.1/8589

	Introduction
	Definitions and Notation
	NP-hardness and Conditional Hardness of PMDM-Size
	Exact Algorithms for a Bounded Number k of Wildcards
	Exact Algorithms for a Bounded Number m of Query Strings
	A Data Structure for PMDM Queries
	Approximation Algorithm for PMDM
	A Greedy Heuristic for PMDM
	Experimental Evaluation
	Open Questions
	Acknowledgements

