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A Dockerfile defines a set of instructions to build Docker images, which can then be instantiated to support
containerized applications. Recent studies have revealed a considerable amount of quality issues with Docker-
files. In this paper, we propose a novel approach DRIVE (Dockerfiles Rule mIning and Violation dEtection) to
mine implicit rules and detect potential violations of such rules in Dockerfiles. DRIVE firstly parses Dockerfiles
and transforms them to an intermediate representation. It then leverages an efficient sequential pattern mining
algorithm to extract potential patterns. With heuristic-based reduction and moderate human intervention,
potential rules are identified, which can then be utilized to detect potential violations of Dockerfiles. DRIVE
identifies 34 semantic rules and 19 syntactic rules including 9 new semantic rules which have not been reported
elsewhere. Extensive experiments on real-world Dockerfiles demonstrate the efficacy of our approach.
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1 INTRODUCTION
Virtualization plays a fundamental role in cloud computing [6]. Comparing with traditional virtu-
alization techniques (e.g., hypervisor), containerization is a light-weight and efficient alternative,
gaining increasing popularity in practice [33, 35]. Nowadays, Docker has become a mainstream
supporting tool for containerization of applications. According to a recent report [11], as of August
31, 2021 there has been a total of 396 billion all-time pulls on Docker Hub, up from 318 billion just
six months ago, an increase of about 25% year-over-year.
Docker relies on Docker images to deliver deployable applications. Since the corresponding

execution environment is also encapsulated in the images, users could run the applications on
target platforms directly without considering configuration differences. The instructions of building
Docker images are specified in order in Dockerfiles according to a set of syntax rules. As a result, the
quality of Dockerfiles is crucial to the success of built images. However, recent empirical studies on
large-scale open-source projects have exposed serious concerns on the quality of existingDockerfiles
in relation to either their functionality or performance, some of which are even broken [19, 20, 23].
Clearly, Dockerfiles, like other source-level artifacts, need to be carefully designed following

basic principles, rules, or otherwise patterns in a practical term. Several tools, such as VSCode
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plugins,1 provide preliminary support for Dockerfile construction, but remain at the syntax level
(e.g., highlighting keywords, hovering tips, etc.). Indeed, the official Docker website provides
practice guidelines for writing Dockerfiles [1]. However, such guidelines are at a high level and of
general-purpose, and, most importantly, focus on Docker-specific commands only. In Dockerfiles,
Shell commands (i.e., those led by the RUN command) are most frequently used, which usually
account for over 40% of all the instructions (with some empirical study even reveals that up to
68.3% of Dockerfile changes focuses on the Shell commands [47]) and about 90% of repositories use
Shell commands [12].
Fig. 1 and Fig. 3 give two concrete examples taken from real-world Docker projects. In Fig. 1,

the required software dependency is installed through the pip install command in a regular
Python containerization project. Normally, pip install [packages] would suffice in most cases
of traditional environments. However, in Docker it will cause performance issues, although it
can pass the syntax check and be built successfully. The resulting Docker image would be larger
than necessary, which is caused by the default caching mechanism provided by the pip command
to reduce the amount of time spent on duplicated downloads and builds. This mechanism has
unexpected side-effects in a Docker image, since the image is usually built once and Docker itself
provides a separate caching mechanism. To save space, we can add the –no-cache-dir flag (Fig. 2).

FROM python:3.8 
... 

RUN pip install django 
...

Fig. 1. Pip without –no-cache-dir argument

FROM python:3.8 
... 

RUN pip install --no-cache-dir django 
...

Fig. 2. Pip with –no-cache-dir argument

Fig. 3 shows a more sophisticated example with multiple commands. Frequently, we need to
download compressed files from the Internet followed by an uncompressing command. In Fig. 3,
wget is used to retrieve a zip file in a remote website, and then unzip is used to uncompress the
downloaded file. Executing such a command will retain the original zip file and create a new folder
to place the extracted files, but the original zip file is still kept which is no longer needed. Such
inadvertent inclusion of unnecessary files in images inevitably results in longer build time and
larger image size. Therefore, the original downloaded file should be deleted afterwards with an
additional rm command as illustrated in Fig. 4.

RUN wget -O data.zip https://example.com/data.zip && \ 
     unzip data.zip && \ 
...

Fig. 3. Unzip w/o remove instruction

The above examples demonstrate that there are some implicit rules which should be respected
when writing Dockerfiles. Unfortunately, these rules are largely ignored by the official best practice
1https://code.visualstudio.com/docs/containers/overview
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RUN wget -O data.zip https://example.com/data.zip && \ 
     unzip data.zip && rm data.zip && \ 
...

Fig. 4. Unzip with remove instruction

guidelines, and are frequently violated even in some high-rated real-world projects. For example, in
the Dockerfile of a top-rated face alignment project,2 the authors do not clean the cache after using
conda install (cf. Rule 25 in Table 4). Similar violation of this rule can be found in the Dockerfile
of another popular project.3 The violation of such rules may not necessarily lead to build failures,
but may have a negative effect on non-functional properties instead, which is similar to the notion
of “code smells" in programs [38].
Some work and tools have been proposed to address this issue. The two representative tools

are Hadolint [2] and Binnacle [19], which attempt to identify patterns in Dockerfile commands.
However, they both suffer from various limitations such as heavy human intervention and low
efficiency. For example, in Hadolint, the patterns are mainly specified by community experts
without automatic pattern discovery mechanism. Moreover, these patterns (or rules) which are
either Dockerfile-specific or Shell commands are mostly at the syntax level. In Binnacle, a multi-stage
parsing technique, i.e., phased parsing, is utilized to parse Dockerfiles based on abstract syntax trees
(ASTs), but the rule mining process still depends on prior knowledge to select sub-trees. Moreover,
a severe limitation of this approach is that they can only extract local Tree Association Rule (TAR)
(i.e., the localness problem), since finding arbitrary TARs is computationally infeasible [19]. As a
concrete example, the “remove after downloading" rule in Fig. 4 cannot be discovered by Binnacle,
if the related commands are not located in the same subtree (i.e., with the same manually selected
root node).
In this paper, we propose a novel approach DRIVE (Dockerfiles Rule mIning and Violation

dEtection) to identify general patterns in Dockerfiles with moderate human participation. Our
approach adopts a sequential pattern mining method. In particular, it transforms Dockerfiles
into intermediate representations on which standard sequential pattern mining algorithm can be
applied. This approach can scale up to identify arbitrarily frequent patterns and requires less time
compared with the baseline work. As a result, DRIVE is able to identify new rules which have
not been discovered by previous approaches. Specifically, we produce 9 new rules, and reproduce
19 syntactic and 25 semantic rules which were human summarized before. These implicit rules
can serve as specific guidelines for writing Dockerfiles in practice, the usefulness of which is
indeed witnessed by, e.g., comments from StackOverflow posts (cf. Section 4). Moreover, given the
identified rules, DRIVE can detect violations of such patterns by analysing input Dockerfiles.

It is worth emphasizing that, our contribution lies in not only the new identified rules, but also
the method leading to these findings. Previous work requires Dockerfile experts to summarize the
rules which are laborious and time consuming, and, perhaps more importantly, lacks extensibility.
These rules were presented via ASTs, which are harder to mine. Our approach largely automates
this process, and crucially, is sequence-based (i.e., we treat Dockerfiles as sequences and the mined
rules are also formulated as properties of sequences). It can be envisaged that, in the future, more
Dockerfiles will emerge, and our approach can be easily applied to produce more useful rules. Such
a data-driven nature turns out be indispensable for modern software engineering practice.

In summary, we make the following contributions.

2https://github.com/1adrianb/face-alignment/blob/master/Dockerfile
3https://github.com/zjhuang22/maskscoring_rcnn/blob/master/docker/Dockerfile
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• We propose an efficient pattern mining approach for Dockerfiles with moderate human
intervention.
• We obtain 19 syntactic and 34 semantic rules to encode state-of-art Dockerfile best practice,
including 9 semantic rules which have not been reported elsewhere.
• We present new violation detection algorithms and tool support for Dockerfiles.
• We collect and construct high-quality Dockerfile dataset, which is more diverse and three
times larger than the existing one, and is potentially beneficial for future research.

Organization. The rest of the paper is structured as follows. Section 2 briefly introduces the back-
ground. Section 3 describes our approach in detail. Section 4 presents the experimental settings
and results. Section 5 discusses the findings further and threats to validity. Section 6 reviews the
related work. Section 7 concludes the paper and outlines future research.

The implementation of our approach, as well as the dataset, is publicly available at https://github.
com/zwlin98/DRIVE.

2 BACKGROUND
2.1 Containerization and Docker
Different from traditional heavy-weight virtualization techniques such as virtual machines (VMs),
container-based virtualization, a.k.a. containerization, encapsulates specific application files, depen-
dent libraries, runtime support and environmental variables into a separate deployable file system,
usually known as an image [3]. Such encapsulation could hide the underlying heterogeneity of the
running applications, which can greatly facilitate the practice of infrastructure-as-code (IaC) [4].
Containerization allows for running applications in an isolated environment as an independent pro-
cess. Multiple processes can share the same operating system (OS) kernel and run simultaneously.
Since containerization only includes necessary files to deploy the application, and does not require
a complete guest OS copy, this leads to a much reduced file size and greatly enhanced performance.

Among the many containerization-enabling techniques, Docker is the most popular and de facto
industry standard nowadays. Dockerfiles direct the building process of Docker images and adopt a
layered construction strategy. Namely, the instructions in Dockerfiles are executed sequentially
where the execution of each line generates a branch (or a directory) in the instance’s overlay file
system, and each corresponds to a layer in the target image [22].

2.2 Sequential pattern mining
Pattern mining aims to find interesting patterns in a dataset. Various mining techniques have been
proposed in the literature, such as frequent itemset mining [31] and association rule learning [41].
DRIVE mainly adopts a sequential pattern mining approach [16] in which the order information of
items is preserved. Generally, sequential pattern mining aims to identify frequent subsequences out
of a sequence dataset. A frequent subsequence 𝑠 is usually defined as a subsequence whose support
value 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑠) exceeds a pre-defined threshold 𝑡 . Exhaustive enumeration of all subsequences
would be practically infeasible. DRIVE utilizes an efficient algorithm, i.e., PrefixSpan, to identify
sequential patterns [37]. Different from typical Apriori likemethods [42], the basic idea of PrefixSpan
is to examine only the prefix subsequences and project only their corresponding suffix subsequences
into projected databases. It explores two kinds of database projections to improve the efficiency and
an additional main-memory-based technique is developed to further speed up the performance [37].
PrefixSpan represents one of the fastest sequence mining algorithms, and is widely used in practice.
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2.3 Dockerfile linters
Hadolint is perhaps the most popular open-source Dockerfile linter currently [2]. It employs static
analysis techniques to identify and fix issues in Dockerfiles, improving the quality and security
of Docker images. Hadolint includes a rich set of rules that can be customized according to user
needs. These rules are derived from Dockerfile best practices and expert experience, which can be
regarded as domain knowledge. Hadolint leverages both the Dockerfile parser and the Shell parser
to implement specific detection methods for the violation of each rule.

Binnacle is a another tool which can be used to excavate and enforce Dockerfile rules [19]. To this
end, it first builds an abstract syntax tree for the Dockerfile using multi-stage parsing techniques,
selects nodes of interest from statistical information, and finally uses frequent subtree mining
algorithms to excavate local rules from the subtrees of these nodes.

3 APPROACH
An overview of the workflow of DRIVE is depicted in Fig. 5. It mainly consists of three components,
i.e., pre-processing, rule mining and rule enforcing.
• The pre-processing mainly involves the processing of Dockerfiles, i.e., gold set collection, file
parsing and substitution, and transformation of the selected Dockerfiles to an intermediate
representation.
• DRIVE mines the pre-processed Dockerfiles in command-based groups, out of which prelim-
inary patterns are extracted. To reduce the candidate size, a semi-automatic summarizing
technique combining heuristic-based filtering and manual investigation is applied to generate
refined rules.
• DRIVE checks any input Dockerfile against the generated rules, and detects potential viola-
tions.

Collected 
Dockerfiles 

Heuristic
Filtering

Parsing 
and

Substituting 

Command-
Based Grouping 

Intermediate
Representation

Semi-Automatic 
Summarizing 

Enforcing
Rules

Gold 
Set

Validation 
Set

Refined 
Rules

Mining 
Each Group

Extracted 
Patterns

① Pre-Processing

② Rule Mining

③ Rule EnforcingDSL 
Representation

Rule 
Violations

Fig. 5. The workflow of DRIVE

3.1 Pre-processing
3.1.1 Data collection. In this step, we construct a gold set based on which patterns can be mined.
Previous studies have provided some datasets of Dockerfiles [19, 20]. However, we observe that (1)
the size of the dataset is relatively small (e.g., Henkel’s dataset contains only about 400 Dockerfiles4);
(2) the dataset is primarily from the official Docker organization. As a result, although the Dockerfiles
in these datasets are of high-quality, they are under-sampled and may not be representative. This

4Note that approximate 5,000 additional Dockerfiles were collected as a complement, but were not used [19].
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motivates us to re-collect dataset and construct a larger and more representative dataset of high-
quality Dockerfiles from diversified sources.
To this end, we use GitHub REST APIs (mainly search code5 and search repositories6) to

query the entire repositories which contain Dockerfiles from GitHub (as of May 2022). Due to the
volume of available repositories, we use the number of stars to select the most representative ones.
Note that stars are often used by researchers to select GitHub projects in software engineering [9],
and empirical studies have confirmed the positive correlation between popularity and quality [36].
Particularly, we choose 1,000 stars as the threshold for the initial filtering, resulting in 4,393
repositories and 14,260 Dockerfiles. However, high star number does not necessarily guarantee
high quality. These files still suffer from various quality problems (such as syntax and size issues)
for which we apply the following filtering heuristics.
• We first use Hadolint to parse the initial set of Dockerfiles and delete those that failed the
syntax checking. We also examine the size of remaining Dockerfiles, and delete those which
are too small (i.e., less than 4 lines and without RUN command) and thus obviously not helpful
to identify patterns.
• To encourage diversity, we adopt a stratified sampling strategy and sort the remaining
Dockerfiles in descending order of stars per language, giving rise to five quintiles. We select
the first quintile (top 20%) of each language group for manual inspection. To this end, we
hire three Docker experts, all of whom have at least 5 years of Docker-related development
experience, to examine the selected Dockerfiles following the official best practice guidelines
and the rules reported from existing work (e.g., [19]). The experts adopt the majority-vote
mechanism to make decisions and resolve possible conflicts. We add those files, which have
passed the manual checking, to the gold set afterwards.
• Manual inspection is very time-consuming and laborious. To accelerate the process, we also
record the author and affiliation information of Dockerfiles populated in the second step. To
expand the gold set efficiently, we assume that Dockerfiles authored by the same developers
and organizations have better quality. This assumption is based on the empirical findings
that in the open source software context, developers do not perform differently in terms of
the code quality across different projects, and the developers who have more stars tend to
introduce less issues [29]. In this approach, we select Dockerfiles from the second quintile
(20%-40%) of the collected dataset, and add them to the gold set.

After the heuristic-based filtering, we obtain a gold set𝐺 of 1,761 Dockerfiles, the distribution
of which in different programming languages is shown in Table 1, where the number in brackets
denotes those selected by the manual inspection. Note that the programming language classification
of Dockerfile projects is based on the tags of the GitHub repositories. The remaining Dockerfiles
which were not selected to 𝐺 are used as the validation set for experiments. (Note that the deleted
Dockerfiles are not included.)

3.1.2 Parsing and Substitution of Dockerfiles. We propose a parsing method to transform a Dock-
erfile to an intermediate representation that is convenient for the follow-up mining. Because we
pay more attention to the rules related to “actions" rather than regular declarations, we delete
declaration related instructions (those with e.g., LABEL and MAINTAINER).

Concretely, we adopt three-phase parsing to analyze the two types of commands in Dockerfiles,
i.e., Docker-specific commands and Shell scripts. The first phase is to analyze the Docker-specific
commands, and the second is to parse the Shell scripts (i.e., those led by the RUN command). Finally,

5https://docs.github.com/en/rest/search#search-code
6https://docs.github.com/en/rest/search#search-repositories
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Table 1. Language distribution statistics

Language Initial Set Gold Set

Go 4,361 372 (350)
Python 2,765 354 (322)
Java 1,374 214 (195)
JavaScript 1,343 198 (186)
Shell 842 148 (122)
Typescript 831 113 (99)
C 719 103 (103)
C++ 710 131 (120)
Rust 594 64 (56)
Php 421 35 (32)
Ruby 300 29 (29)

Total 14,260 1,761

FROM python:3.7-slim

RUN apt-get update && 
    apt-get install -y \
 ca-certificates \
 xz-utils \
 --no-install-recommends && 
    rm -r /var/lib/apt/lists/*

Original Dockerfile

FROM-IMAGE-[python]-TAG-[3.7-slim]

SC-[apt-get] SC-[apt-get]-ARG-[update] 
SC-[apt-get] SC-[apt-get]-ARG-[install] 
    SC-[apt-get]-ARG-[-y]
    SC-[apt-get]-ARG-[ca-certificates] 
    SC-[apt-get]-ARG-[xz-utils]
    SC-[apt-get]-ARG-[--no-install-recommends]
SC-[rm] SC-[rm]-ARG-[-r] 
    SC-[rm]-ARG-[/var/lib/apt/lists/*]

After Parsing 

SC-[apt-get] SC-[apt-get]-ARG-[update] 
SC-[apt-get] SC-[apt-get]-ARG-[install] 
    SC-[apt-get]-ARG-[-y]
    SC-[apt-get]-ARG-[ca-certificates] 
    SC-[apt-get]-ARG-[xz-utils]
    SC-[apt-get]-ARG-[--no-install-recommends]
SC-[rm] SC-[rm]-ARG-[-r] 
    SC-[rm]-ARG-[PATH-APT-LIST]

After Substitution 

FROM-IMAGE-[python]-TAG-[SPECIFIC]

COPY requirements.txt ./ COPY-[requirements.txt]-[./] COPY-[FILE-PIP-REQUIREMENT.TXT]-[PATH-NORMAL]

RUN pip install \
        --no-cache-dir 
        -r requirements.txt

SC-[pip] SC-[pip]-ARG-[install]
    SC-[pip]-ARG-[--no-cache-dir] 
    SC-[pip]-ARG-[-r]
    SC-[pip]-ARG-[requirements.txt]

SC-[pip] SC-[pip]-ARG-[install]
    SC-[pip]-ARG-[--no-cache-dir] 
    SC-[pip]-ARG-[-r]
    SC-[pip]-ARG-[FILE-PIP-REQUIREMENT.TXT]

Fig. 6. Before/After Parsing and Substitution

since there are various user-defined variables in a typical Dockerfile (e.g., file paths/names, URLs,
etc.) which are too specific to be useful for the pattern mining, we abstract them away and substitute
with more general, pre-defined tokens.

In the first phase, we resort to buildkit APIs7 to parse a Dockerfile to an abstract syntax tree (AST).
By visiting each node of the tree, we can extract the command and corresponding parameter values.
To distinguish with the Shell scripts, we substitute these commands with specific annotations. As
an example illustrated in Fig. 6, a typical FROM expression can be defined as

FROM [–platform=<platform>] <image>[:<tag>] [AS <name>]

It is annotated as
FROM-IMAGE-[python]-TAG-[3.7-slim]

in this phase as shown in the second column of Fig. 6.
In the second phase, we parse the Shell script led by the RUN command. To better analyze the

meaning of each command in Shell, we develop a dedicated tool based on mvdan/sh8 which is also
7https://github.com/moby/buildkit/blob/master/frontend/dockerfile/parser
8https://github.com/mvdan/sh
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Table 2. rules of variable substitution

Variable Regex Type Substitution

http:// URL URL-PROTOCOL-HTTP
https:// URL URL-PROTOCOL-HTTPS
ftp:// URL URL-PROTOCOL-FTP
git:// URL URL-PROTOCOL-GIT
.git URL URL-PROTOCOL-GIT
(\w+):// URL URL-PROTOCOL-[PROTOACAL]

var/cache/yum PATH PATH-VAR-CACHE-YUM
var/cache/ PATH PATH-VAR-CACHE
var/lib/apt/lists PATH PATH-APT-LIST
src PATH PATH-SRC-DIR
cache PATH PATH-DOT-CACHE
~ PATH PATH-NORMAL
. PATH PATH-NORMAL
other path PATH PATH-NORMAL

.gem FILE FILE-GEM

.asc FILE FILE-ASC

.tar.gz FILE FILE-TAR-GZ

.tar.bz2 FILE FILE-TAR-BZ2

.tar FILE FILE-TAR

.zip FILE FILE-ZIP

.jar FILE FILE-JAVA-JAR

.sh FILE FILE-SHELL-SCRIPT

.crt FILE FILE-TLS-CERT

.pem FILE FILE-TLS-CERT

.key FILE FILE-KEY
go.sum FILE FILE-GO-SUM
go.mod FILE FILE-GO-MOD
Cargo.toml FILE FILE-Rust-CARGO-TOME
yarn.lock FILE FILE-YARN-YARN.LOCK
package.json FILE FILE-NPM-PACKAGE.JSON
CMakeLists.txt FILE FILE-CMAKEFILEM
requirements.txt FILE FILE-PIP-REQUIREMENT.TXT

(t|T)rue Other TRUE
(f|F)alse Other FALSE
* Other GLOB-STAR

included in the replication package. Similarly, we need to construct ASTs of the Shell script, so as
to facilitate the following command extraction. It is a non-trivial task, since we need to confirm
whether each token functions as a command or as a parameter. The Shell scripts will be parsed into
different types of statements, such as assign, call, etc. We mitigate this problem by analyzing ASTs.
The call statement is made up of a command and corresponding arguments. By checking each call
statement, we can figure out the whether a token is a command or an argument. For example, in

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 0. Publication date: XXXX.
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the script apt-get install unzip, “unzip" is used as a parameter of “apt-get", but the “unzip"
in unzip example.zip is a command. We also annotate the other parsed Shell commands in a
similar way as illustrated in Fig. 6.
In the third phase, we transform the parsed Dockerfile to an intermediate representation. The

main purpose is to abstract away the unnecessary details which are not useful for pattern mining.
We observe that there are common variables and files in the Dockerfiles which need to be unified to
adapt to the association rule mining algorithm, so we propose substitution rules for variables which
can be summarized as 35 heuristic substitution rules and are classified into four different categories,
i.e., URLs, file paths, file names, and others, given in Table 2. For example, we can extract the image
name as a key information from the FROM instruction, keep the image name, and substitute the
image tag with either LATEST or SPECIFIC depending on the corresponding values in Dockerfiles.

For URLs inDockerfile, we focus on the protocols and file types. For example, “https://abc.com/
a/download.zip" is transformed to “URL-PROTOCOL-HTTPS" and “FILE-ZIP" sequentially. Simi-
larly, we abstract local paths. For example, in Fig. 6 we substitute the second argument of the
COPY command by “PATH-NORMAL", while the path of “/var/lib/apt/lists/*" in the RUN instruc-
tion is converted to “PATH-APT-LIST". We also abstract file names in Dockerifles. For example,
requirements.txt in Fig. 6 is transformed to “FILE-PIP-REQUIREMENT.TXT". We ignore the path
prefixes of such files. Namely, “/app/requirement.txt", “requirement.txt", “pip-requirements
.txt" and other similar local files will be replaced with a unified intermediate representation of
“FILE-PIP-REQUIREMENT.TXT".

As shown in Fig. 6, in the final intermediate representation, we use “SC-[$cmd]" to mark Shell
command, “SC-[$cmd]-ARG-[$arg]" to mark parameters of the corresponding commands. The
irrelevant symbols, such as “&&" and “\", will be deleted. For example, in Fig 6, pip install
–nocache-dir -r requirements.txt is parsed into a sequence “SC-[pip], SC-[pip]-ARG-[inst
all], SC-[pip]-ARG-[–no-cache-dir], SC-[pip]-ARG-[FILE-PIP-REQUIREMENT.TXT]".

Note that the representation is important for the later pattern/rule mining as we want the rules
to be as general as possible and not to overfit to specific details.

3.2 Rule Mining
After pre-processing, we are now in a position to mine patterns from the Dockerfiles. Notably,
we employ frequent sequence mining algorithms to identify frequent patterns. The underlying
observation is that in high-quality Dockerfiles, sequences that conform to specific rules are more
likely to occur. We focus on sequential pattern mining because Dockerfiles are largely sequential
(no branch or loop in Docker-specific commands).

Various data mining methods are available for discovering frequent patterns, which can be
basically classified into three categories, i.e, itemset-based mining, sequence-based mining, and tree-
based mining. We choose the frequent sequence mining algorithm since the alternatives may suffer
from effectiveness and/or efficiency issues. On one hand, Dockerfiles consist of instructions that
are structured sequentially and contain nested shell statements. Itemset-based frequent sequence
mining algorithms ignore such order information, producing a large amount of redundant results,
which requires additional manual efforts. In addition, the ordering information is not preserved
in the returned results, which introduces further difficulty to the follow-up rule construction. On
the other hand, tree-based frequent subtree mining algorithms usually perform well in processing
source code with control flow information. However, Dockerfiles do not have conditional or loop
control flows, and these structures rarely appear in nested shell statements. Therefore, frequent
subtree mining algorithms do not show advantages and may increase the complexity of the mining
process instead, resulting in efficiency issues.
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3.2.1 Command based grouping. Shell-related commands take a majority of the collected Docker-
files. To better identify the patterns among these commands, we divide the gold set into multiple
groups based on the Shell commands. All the Dockerfiles in the gold set containing same Shell com-
mand will be put in a group denoted by that command. Analysing the intermediate representations,
we find 77 commands annotated by “SC” which denotes the Shell command type. It is common
that one Dockerfile contains multiple Shell commands, such as the example in Fig. 6, we adopt a
replicated grouping strategy. In other words, the Dockerfile with multiple Shell commands will be
replicated and included in all these corresponding command groups.

3.2.2 Mining. We employ the PrefixSpan algorithm (cf. Section 2.2) to extract patterns in each
command group derived from the previous step. However, the mined frequent subsequences are
way too many. To reduce the size, we select the maximal sequential patterns from the output of
PrefixSpan. Maximal sequential patterns is defined as those where no sequence is a subsequence
of that sequence. For example, “pip install-r requirements.txt" is a subsequence of “pip
install –no-cache-dir -r requirements.txt", so the latter is a maximal sequential pattern.
Since we treat subsequences with the support value greater than a given threshold equally, selecting
maximal sequential patterns to represent other patterns can effectively reduce the data size without
losing information.

3.2.3 Semi-automatic summarization. Based on the maximal sequence patterns discovered in
each command group, we can refine and extract the corresponding rules. It is difficult to be fully
automated to obtain these rules, since domain expertise is required to decide whether or not they
are indeed implicit rules for Dockerfiles. Therefore, we incorporate human participation in this step.
Despite the preliminary reduction of candidate set in the previous step via maximal subsequence,
the remaining candidate set is still very large. To further boost productivity, we again use heuristics
to prune irrelevant ones in each group.

SC-[unzip] SC-[unzip]-ARG-[FILE-ZIP] SC-[rm] SC-[rm] 
SC-[unzip] SC-[unzip]-ARG-[FILE-ZIP] SC-[mv] 
...

SC-[unzip] SC-[unzip]-ARG-[FILE-ZIP] SC-[rm] SC-[rm]-ARG-[FILE-ZIP] 
...

(SC-[unzip], SC-[unzip]-ARG-[FILE-ZIP]) (SC-[rm], MISSING) (SC-[rm], MISSING) 
(SC-[unzip], SC-[unzip]-ARG-[FILE-ZIP]) (SC-[mv], MISSING) 

...

(SC-[unzip], SC-[unzip]-ARG-[FILE-ZIP]) (SC-[rm], SC-[rm]-ARG-[FILE-ZIP]) 
...

(SC-[unzip], SC-[unzip]-ARG-[FILE-ZIP]) (SC-[rm], SC-[rm]-ARG-[FILE-ZIP])

...

① Original Maximal Sequence Patterns

② Tuple Representation

③ Pruned Maximal Sequence Patterns

Fig. 7. Pruning of Tuple-Represented Patterns

Given themaximal sequence patterns obtained in each command group, we use tuples to represent
them. Each tuple has two parts, i.e., command, and parameters. The former denotes the specific
command, and the latter denotes the corresponding parameters. As an example shown in Fig. 7,
the pattern excerpt in the first part is selected from the unzip command group, and the second
part is the tuple representation. Since sequence mining just considers co-occurrences of items, it is
high likely that there are incomplete tuples in the returned patterns. We assume that the patterns
with incomplete tuple information is less likely to be a potential rule. The underlying rationale is:
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1) if the command part is missing, the parameters alone do not make sense to be included; 2) if the
parameter part is missing, it means there is no frequent co-occurrence of the command and any
of its parameters above the threshold support value. Then we can consider that the probability of
extracting rules from this pattern is much lower than those of complete patterns. As an example in
Fig. 7, we can observe that the parameters of “SC-[rm]" and “SC-[mv]" are missing. Therefore, we
can prune the patterns containing these incomplete tuples to further reduce the size.

As a result, the number of the maximal sequences left in each collection could be greatly reduced.
We can then manually select and summarize the corresponding rules from each collection. For
example, in the last pattern of the third part of Fig. 7, we can summarize an unzip-related rule:

when a compressed file is decompressed by unzip, the original compressed file should
be deleted to save space.

Following the classification of rules give by [19], we summarize two types of rules for the
remaining patterns of each command group, i.e., syntax, and semantic. Syntax rules refer to those
regarding the grammatical regulations of command usage. For instance, there should be two
parameters of command CP; semantic rules describe those regarding the operational meanings of
the commands, as shown by the unzip example in Fig. 7.

3.3 Rule Enforcement
As mentioned before, we have identified two categories of implicit rules, i.e., syntax rules and
semantic one. For the former type, violation detection can be conducted through a common Shell
linter (e.g., ShellCheck9), so we mainly focus on the semantic rule violation detection. Based on the
relation of the elements within the rule, we classify the semantic rules into four types as follows.
• 𝑃 ⇒ 𝑄 , which means that when 𝑃 appears, there must be 𝑄 after it, otherwise there is a
violation.
• (𝑃1 |𝑃2 | · · · |𝑃𝑛) ⇒ (𝑄1 |𝑄2 | · · · |𝑄𝑛), which means that when any one of 𝑃1, · · · , 𝑃𝑛 appears,
there must be one of 𝑄1, · · · , 𝑄𝑛 after it, otherwise there is a violation.
• 𝑃 ⇐ 𝑄 ⇒ 𝑅, which means that when 𝑄 appears, there must be 𝑃 before it, and there must
be 𝑅 after it, otherwise there is a violation.
• 𝑆𝑃𝐸𝐶𝐼𝐴𝐿, which denotes special rules to be enforced separately.

To facilitate rule interpretation and the follow-up violation detection, we use a custom YAML-
based domain specific language (DSL) to describe each semantic rule based on the above classifica-
tion. Fig. 8 shows an example DSL for the unzip rules. All the rules will be encoded in such DSL
style and used as a configuration file to drive the following detection process.

id: 8 
description: removing compressed files after unzipping. 
type: p=>q 
level: MUST 
p:  
  - SC-[unzip] 
  - SC-[unzip]-ARG-[FILE-ZIP] 
q: 
  - SC-[rm] 
  - SC-[rm]-ARG-[FILE-ZIP]

Fig. 8. Illustration of YAML-Based DSL Rule Description

9https://github.com/koalaman/shellcheck

ACM Trans. Softw. Eng. Methodol., Vol. 0, No. 0, Article 0. Publication date: XXXX.

https://github.com/koalaman/shellcheck


0:12 Yu Zhou, Weilin Zhan, Zi Li, Tingting Han, Taolue Chen, and Harald Gall

Algorithm 1: Detection Algorithm
Data: Dockerfile 𝐷 and Rule list 𝑅
Result: List of Violation 𝑉

1 𝐷′ = ParseAndSubstitution(𝐷)
2 foreach 𝑟 in 𝑅 do
3 if 𝑟 .𝑡𝑦𝑝𝑒 is 𝑃 ⇒ 𝑄 then
4 def check(seq):
5 𝑝 ← list of positions where 𝑟 .𝑃 last appeared in 𝑠𝑒𝑞 ;
6 if p is None then
7 return True ;
8 𝑞← boolean value of whether 𝑟 .𝑄 appears in 𝑠𝑒𝑞 [𝑝𝑚𝑎𝑥 + 1 :] ;
9 if q is False then
10 return False ;
11 return check(seq[0:𝑝𝑚𝑖𝑛]) ;
12 if check(𝐷′) is False then
13 𝑉 .𝑎𝑑𝑑(𝑟 ) ;
14 else if 𝑟 .𝑡𝑦𝑝𝑒 is (𝑃1 |...|𝑃𝑛) ⇒ (𝑄1 |...|𝑄𝑛) then
15 𝑝 ← list of positions where 𝑟 .(𝑃1 |...|𝑃𝑛) last appeared in 𝐷′ ;
16 if p is None then
17 Continue next loop ;
18 𝑞← boolean value of whether 𝑟 .(𝑄1 |...|𝑄𝑛) appears in 𝐷′ [𝑝𝑚𝑎𝑥 + 1 :] ;
19 if q is False then
20 𝑉 .𝑎𝑑𝑑(𝑟 ) ;
21 else if 𝑟 .𝑡𝑦𝑝𝑒 is 𝑃 ⇐ 𝑄 ⇒ 𝑅 then
22 while True do
23 𝑞← list of positions where 𝑟 .𝑄 first appeared in 𝐷′ ;
24 if q is None then
25 Break loop ;
26 𝑝 ← boolean value of whether 𝑟 .𝑃 appears in 𝐷′ [0 : 𝑞𝑚𝑖𝑛] ;
27 𝑟 ← boolean value of whether 𝑟 .𝑅 appears in 𝐷′ [𝑞𝑚𝑎𝑥 + 1 :];
28 if p and r is not True then
29 𝑉 .𝑎𝑑𝑑(𝑟 ) ;
30 𝐷′ ← 𝐷′ [𝑞𝑚𝑎𝑥 + 1 :]
31 end
32 else if 𝑟 .𝑡𝑦𝑝𝑒 is SPECIAL then
33 Execute the process that belongs to the specific rule;
34 end

Our detection process is shown in Algorithm 1. The algorithm requires two inputs, viz., the rules
in the DSL format and the Dockerfile to be detected. We firstly parse the Dockerfile as described in
Section 3.1.2 and obtain the processed 𝐷 ′ (Line 1). Then we iterate each rule and process it based
on its type. If the rule is of the form 𝑃 ⇒ 𝑄 , we locate the last position where 𝑃 occurs in 𝐷 ′, and
split 𝐷 ′ from this position into two parts, i.e., 𝐷 ′

𝐿
(the left part) and 𝐷 ′

𝑅
(the right part). If 𝑄 does

not appear in 𝐷 ′
𝑅
, it is regarded as a violation of this rule (Line 4-10); otherwise, repeat the above

process on 𝐷 ′
𝐿
until 𝑃 cannot be found (Line 11).

If the rule is of the form (𝑃1 |𝑃2 | · · · |𝑃𝑛) ⇒ (𝑄1 |𝑄2 | · · · |𝑄𝑛), we locate the position where any
one of 𝑃1, · · · , 𝑃𝑛 lastly appears in 𝐷 ′, and similarly split 𝐷 ′ from this position into two parts, i.e.,
𝐷 ′
𝐿
and 𝐷 ′

𝑅
. If none of𝑄1, · · · , 𝑄𝑛 appear in 𝐷 ′

𝑅
, it is regarded as a violation of this rule (Line 15-20).
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Fig. 9. Distribution of rules in groups

If the rule is of the form 𝑃 ⇐ 𝑄 ⇒ 𝑅, we need to find all the positions where 𝑄 occurs. For each
position, we split 𝐷 ′ from this position and obtain 𝐷 ′

𝐿
and 𝐷 ′

𝑅
. If 𝑃 and 𝑅 cannot be found in 𝐷 ′

𝐿

and 𝐷 ′
𝑅
respectively, it is considered as a violation of this rule (Line 22-31).

Finally, if the rule is of the SPECIAL type, the processing flow that belongs to the rule is executed
to determine whether there is a violation of that rule (Line 33). The processing of this type of rules
must be tailored on the case-by-case basis. For example, for Rule 32 in Table 4, we leverage the
Shell parser to check whether the embedded Shell commands following the RUN instruction in the
Dockerfile contain “set -eux”.

4 EVALUATION
In this section, we conduct experiments to evaluate our approach. Particularly, we aim to answer
the following research questions (RQs).

RQ1. How effective is the rule mining component of DRIVE?
RQ2. How effective is the violation detection component of DRIVE?
RQ3. How efficient is the overall DRIVE approach?

4.1 Experimental setup
The experiments were conducted on a server with an Intel Xeon 2.3GHz 32-core CPU and 32GB
RAM running Arch Linux. The prototype is implemented with Go v1.18 and Python v.3.10.4. The
baselines compared in the experiments areHadolint [2] and Binnacle [19]. As mentioned in Section 3,
we collect Dockerfiles from GitHub, based on which the datasets are populated. Particularly, there
are mainly three datasets used in our experiments.

D1. The initial dataset collected from GitHub consists of 14,260 Dockerfiles, but with duplicates.
We remove the duplicates, resulting in a dataset with 12,066 Dockerfiles.

D2. This is the Gold set of Dockerfiles we construct from D1 (cf. Section 3.1.1). It contains 1,761
Dockerfiles.

D3. This is another Gold Set provided by Binnacle, which includes 405 Dockerfiles.

For the hyperparameter, DRIVE only needs to set the support value threshold for subsequence
frequency. The threshold value directly affects the number of output pattern candidates, mining
efficiency and manual inspection effort. As common in machine learning, we tune this hyper-
parameter via experiments and find that 40% is an appropriate value.
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Table 3. Syntactic rules mined by DRIVE

Id Rule Id Rule

1 go build 11 mvn package
2 go get 12 gem install
3 bundle install 13 make install
4 npm install -g 14 cargo build
5 tar -C 15 mv PATH PATH
6 ssh-keygen -t 16 cat PATH
7 sh -s 17 ls PATH
8 yarn build 18 cp PATH PATH
9 addgroup/groupadd -g 19 touch PATH
10 git clone

Table 4. Semantic rules mined by DRIVE

Id Rule Description Rule Type Level Confidence Lift

1 apk add using arg. –no-cache 𝑃 ⇒ 𝑄 M 86% 4.43
2 pip install using arg. –no-cache-dir 𝑃 ⇒ 𝑄 M 55% 1.68
3 pip install using requirement.txt 𝑃 ⇒ 𝑄 E 66% 3.48
4 curl using arg. -f 𝑃 ⇒ 𝑄 E 77% 1.39
5 curl with url type https 𝑃 ⇒ 𝑄 M 89% 1.58
6 wget with url type https 𝑃 ⇒ 𝑄 M 82% 1.49
7 git clone with url type https 𝑃 ⇒ 𝑄 E 96% 1.72
8 removing compressed files after unzipping 𝑃 ⇒ 𝑄 M 70% 1.51
9 tar something then remove 𝑃 ⇒ 𝑄 M 64% 1.43
10 gpg using arg. –batch 𝑃 ⇒ 𝑄 E 45% 9.31
11 gpg using arg. –keyserver 𝑃 ⇒ 𝑄 E 45% 9.31
12 gpg using .asc file then remove the .asc file 𝑃 ⇒ 𝑄 E 60% 9.12
13 dnf install using arg. -y 𝑃 ⇒ 𝑄 M 76% 1.57
14 mkdir using arg. -p 𝑃 ⇒ 𝑄 E 61% 1.02
15 chown using arg. -r 𝑃 ⇒ 𝑄 E 61% 0.89
16 rm using arg. -rf 𝑃 ⇒ 𝑄 E 77% 1.63
17 yum install using arg. -y 𝑃 ⇒ 𝑄 M 84% 1.78
18 zypper install using arg. -y 𝑃 ⇒ 𝑄 M 81% 1.72
19 apt-get install using arg. -y 𝑃 ⇒ 𝑄 M 72% 1.53
20 apt-get install using arg. –no-install-recommends 𝑃 ⇒ 𝑄 M 77% 1.63
21 configure using arg. -build 𝑃 ⇒ 𝑄 M 85% 7.83

22 apt-get update prefix apt-get install 𝑃 ⇐ 𝑄 ⇒ 𝑅 M 76% 2.09
23 go build using multi-stage 𝑃 ⇐ 𝑄 ⇒ 𝑅 E 91% 4.47
24 java build using multi-stage 𝑃 ⇐ 𝑄 ⇒ 𝑅 E 72% 6.67

25 clean cache after using conda to install packages (𝑃1 | ... |𝑃𝑛 ) ⇒ (𝑄1 | ... |𝑄𝑛 ) M 72% 7.21
26 clean cache after using apt-get/dpkg to install packages (𝑃1 | ... |𝑃𝑛 ) ⇒ (𝑄1 | ... |𝑄𝑛 ) M 68% 2.81
27 clean cache after using zypper to install packages (𝑃1 | ... |𝑃𝑛 ) ⇒ (𝑄1 | ... |𝑄𝑛 ) M 75% 8.82
28 clean cache after using dnf to install packages (𝑃1 | ... |𝑃𝑛 ) ⇒ (𝑄1 | ... |𝑄𝑛 ) M 61% 9.77
29 clean cache after using yum/rpm to install packages (𝑃1 | ... |𝑃𝑛 ) ⇒ (𝑄1 | ... |𝑄𝑛 ) M 71% 5.73
30 using sha to verify the downloaded file (𝑃1 | ... |𝑃𝑛 ) ⇒ (𝑄1 | ... |𝑄𝑛 ) E 56% 1.54
31 using gpg to verify the downloaded file (𝑃1 | ... |𝑃𝑛 ) ⇒ (𝑄1 | ... |𝑄𝑛 ) E 42% 1.32

32 set -eux to print command and quick fail in shell script 𝑆𝑝𝑒𝑐𝑖𝑎𝑙 E N/A N/A
33 using useradd to avoid last user to be root 𝑆𝑝𝑒𝑐𝑖𝑎𝑙 E N/A N/A
34 using groupadd/addgroup to avoid last user to be root 𝑆𝑝𝑒𝑐𝑖𝑎𝑙 E N/A N/A
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4.2 RQ1: The effectiveness of rule mining
As mentioned above, D2 is the Gold dataset based on which we apply DRIVE. In the first step, we
group the parsed Dockerfiles based on the commands and obtain 77 groups in our case. Then we
mine the frequent patterns from each group. The average size of the preliminary output patterns
of each group is 4,515. However, we are only interested in maximal subsequence patterns, which
reduces the size to 18, approximately 0.4% of the original size. Though the size is greatly reduced,
it is still too large for manual examination. After pruning the patterns with incomplete tuple
information, the average pattern size in each group is further reduced to 4, shrunk by 77.8%. The
distribution of pattern size among the command groups is shown in Fig. 9.
We then ask the three Docker experts to examine the resultant patterns of each group. Finally

we obtain 53 rules, including 34 semantic ones and 19 syntactic ones. Generally, semantic rules
are more interesting and useful in practice, since syntactic rules are easier to be detected through
conventional Linter tools. Table 3 and Table 4 show these syntactic and semantic rules respectively.
Particularly, we assign two levels to the semantic rules, i.e., “MANDATORY" and “ENCOURAGED". The
former level means that the rule should be followed rigorously, while the latter means that they
are strongly suggested. The details of the level information, as well as the confidence ratio and lift
ratio [45] of the discovered patterns, are summarized in Table 4.

We find that these rules cover all the 15 filtered rules identified in the Binnacle toolset, and 19 of
them are actually included in the total 23 rules manually summarized in Binnacle. 10 rules match
those summarized in Hadolint. Therefore, in total, among the 34 semantic rules identified by DRIVE,
24 of them match those manual rules devised by previous work (4 rules exist in both Hadolint and
Binnacle). Interestingly, we also find 9 rules by DRIVE, which are highlighted in Table 4, were not
identified before by Binnacle or Hadolint.

We observe that a considerable amount of rules are related to Shell commands. Interestingly, these
rules are not general, since some can only be applied in the context of Dockerfiles. Representative
examples include rules 25-29 listed in Table 4, i.e., “deleting the cache generated during package
installation using a package management tool”. In a typical independent Shell environment, keeping
these caches is beneficial, because reusing them can save bandwidth or speed up future installation
tasks. However, when building a Dockerfile, these caches will not be used again. So including these
caches will inevitably result in an unnecessarily large built image. Such examples show that the
existing general-purpose Shell best practices should not be simply taken for granted.
The 9 new rules we find are all semantic ones, and may have negative consequence if they are

violated. For instance, Rule 8 states that, when building a docker image, if the original file is not
deleted after decompressing the file, a large amount of storage space will be wasted, because it
makes no sense to keep the original file in the docker image. This corresponds to the illustrative
example in Fig. 4. Rules 23 and 24 suggest that, if programs written in static languages (such as Go
and Java) need to be compiled when building Docker images, it is supposed to use the multi-stage
build strategy so as to avoid generating intermediate files during compilation. Interestingly, this
rule is confirmed by a question “How to reduce my java/gradle docker image size?” posted in the
StackOverflow websit.10 where the developer complained that the final image size was high up to
1.1 GB due to all the unnecessary files included. The accepted answer pointed that using multi-stage
build can keep the jar files only and get rid of those unnecessary intermediate files.

Since DRIVE and Binnacle operate on different Gold sets to mine patterns, it might be unfair to
conclude that DRIVE is more effective. To give a fair comparison, we also run the two tools on the
same Gold sets. i.e., D2 and D3. The comparative results are given in Table 5.

10https://stackoverflow.com/questions/40958062/how-to-reduce-my-java-gradle-docker-image-size
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Table 5. Rules mined by Binnacle and DRIVE in different datasets

Dataset DRIVE Binnacle

Semantic Syntactic Semantic Syntax

D3 7 11 4 12

D2 33 19 7 17

We observe no substantial difference in mining syntactic rules. This is because all the syntax-
related rules seem to be local and can be mined by either the frequent subtree mining algorithm
used by Binnacle, or the frequent sub-sequences mining algorithm used by DRIVE. However, DRIVE
shows advantages in mining semantic association rules. This is because, after replacing variables,
we retain the semantics of the text and can mine the relationship among commands. As a result,
we can conclude that DRIVE is more effective to identify implicit semantic rules in Dockerfiles.

4.3 RQ2: The effectiveness of violation detection in DRIVE
To assess the rule violation detection component of DRIVE, we compare with Hadolint, since
Binnacle does not provide such a functionality. We generate the test dataset by sampling the initial
validation dataset D1. Namely, we randomly select 300 Dockerfiles in the initially collected dataset
excluding the Dockerfiles from the Gold set.

Table 6. Rules covered in Hadolint

Id Rule Description
1 apk add using arg. –no-cache
2 pip install using arg. –no-cache-dir
13 dnf install using arg. -y
17 yum install using arg. -y
18 zypper install using arg. -y
19 apt-get install using arg. -y
20 apt-get install using arg. –no-install-recommends
26 clean cache after using apt-get/dpkg to install packages
28 clean cache after using dnf to install packages
29 clean cache after using yum/rpm to install packages

Table 7. Various metrics in violation detection

Approach TP FP TN FN Precision Recall F-measure

DRIVE 195 19 85 1 0.911 0.995 0.951
Hadolint 182 0 104 14 1.0 0.929 0.963

Among the identified semantic rules reported by DRIVE shown in Table 4, only 10 (given in
Table 6) are also reported by Hadolint. To ensure fairness, we only consider these rules in comparing
violation detection capabilities on the test set. In our experiment, DRIVE and Hadolint report 215
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and 182 Dockerfiles with rule-violations, respectively. To further investigate the result we again
ask the three Docker experts to manually annotate each file in the dataset for the violations of the
10 rules. We then calculate the Precision, Recall, and F-measure for each tool. The result is shown
in Table 7.
It can be observed that DRIVE and Hadolint demonstrate different advantages in terms of

Precision and Recall. DRIVE reports almost no false negatives (FN), meanwhile Hadolint reports
no false positives (FP). Their F-measure are almost at the same level. Hadolint is slightly higher
than DRIVE (96.3% versus 95.1%). Upon examining the detection results, we find that this is caused
by the internal logic of their detection methods. DRIVE uses a sequence-based method to detect
the violation of rules. Some rare but valid sequences may cause a false negative reported by our
approach. For example, in Rule 19, in most cases, developers write the -y parameter following
apt-get install command. However, apt-get -y install is also a valid expression which is
semantically equivalent, but will be falsely identified as a violation by DRIVE. Hadolint, on the
other hand, uses a Shell parser in detection and can accurately identify such a case. However, the
downside is the report of false negatives. For example, in a real-world Dockerfile11, when RUN yum
clean all && yum makecache && yum install ... appears, Hadolint finds that the same RUN
statement contains both software installation and cache clearance actions, so it verdicts that this
case does not violate the rule which causes a false negative (corresponding to Rule 19). DRIVE, on
the other hand, can accurately detect the violation based on the sequence information whether
there is a cache clearance action after the last installation action in the RUN statement. In addition,
we investigated the only false negative case in DRIVE. The false report was caused by a Dockerfile12
that violated Rule 19 exactly at the last use of the apt-get install command. In this command,
the -y parameter was missing and there was another command with the -y parameter after it.

4.4 RQ3: The efficiency of the overall approach
In this research question, we mainly consider the performance, particularly of the running time. As
a comparison, we run Binnacle and DRIVE on all the three datasets mentioned above, and collect
their running time in the parsing and rule mining phases, respectively. The details of time cost
comparison are given in Table 8.

Table 8. Time Cost of DRIVE and Binnacle

Dataset
DRIVE Binnacle

Parsing (s) Rule Parsing (s) Rule
mining (s) mining (s)

D3 (405) 3 201 62 1,028

D2 (1,761) 14 257 264 1,386

D1 (12,066) 68 1,134 337 N/A

We also collect the time spent by DRIVE and Hadolint on rule detection in Table 9. As shown
in the table, our algorithm is very fast in rule detection and is more than twice as fast as that of
Hadolint.
11https://github.com/siaorg/sia-task/blob/f0bb2c4fd40b752bbd571e17232db7c24ad041c4/sia-task-docker/scheduler-
docker/scheduler/Dockerfile#L12
12https://github.com/bitpay/bitcore/blob/88318365e65509a386376f39cd6b4579063cf654/.docker/rippled.Dockerfile
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Table 9. Time Cost in Voilation Detection of DRIVE and Hadolint

Dataset DRIVE Hadolint
Rule Detection (s) Rule Detection (s)

D3 (405) 4 8

D2 (1,761 ) 15 40

D1 (12,066) 70 345

It can be observed that the efficiency of DRIVE is higher than Binnacle in the data preprocessing
part and rule mining part. In data preprocessing, our processor can efficiently process Dockerfile
into sequence form. While in the rule mining part, on the one hand, because the sequence mining
algorithm we chose has the advantage in speed, but also because our mining method is designed
to be parallel, the mining work between each group is independent of each other and can run in
parallel. Therefore, the running time of the tool can be significantly accelerated.

Based on the above analysis, we can conclude that DRIVE can extract Dockerfile rules and detect
violations of a large volume of Dockerfiles very efficiently.

5 DISCUSSION
In Section 3.1.1, we collect the initial dataset containing the Dockerfiles deemed to have a high
quality, but the actual mining process indicates that this is not the case. As shown in RQ2, 45% of
Dockerfiles have at least one rule violation. For example, 2,976 Dockerfiles use the pip command.
However, only 607 of them use pip with –no-cache-dir argument. We believe that, when writing
Dockerfile, using pip with –no-cache-dir is a rule that should be followed. This rule does not
have any side effects in the Dockerfile context, but the benefits are apparent.

As mentioned before, our approach is sequence based. This has certain advantages, for instance,
it is easy to mine and can be extended to new, emerging Dockerfiles. Moreover, to be compatible
with the mining process, the obtained rules are also specified as properties of sequences (cf. Table 4),
which are easier to understand comparing to the previous work which specify the rules based
on ASTs. However, a slight disadvantage is that our violation detection may not be as precise as
the approach using ASTs. In RQ2, we observe a (albeit only marginally) higher false positive. It
is possible to convert sequence-based rules to AST-based rules, but it may require more human
involvement, which is against the philosophy of the current work. We leave as future work how to
combine these two approaches in a better way.
In this paper, we assume that Dockerfiles are largely sequential (no branch or loop in either

Docker-specific commands or Shell scripts). However, in some rare cases, there exist branch
statements or loop statements in the Shell scripts of Dockerfile’s RUN instruction. Though the
commands in such statements could be successfully parsed, the execution sequence does not
match the assumption of sequential pattern mining. Therefore, in our experiment, we remove the
Dockerfiles with such statements in the Gold set to reduce the potential noises. We also notice
that sometimes developers move the Shell commands following RUN to a separate script file such
as install.sh, in this case, we did not analyze the contents of the separated Shell scripts as well,
and these files are also excluded from the Gold set.
We focus on Dockerfiles for two reasons. Firstly, Docker is the de facto industry standard in

the container ecosystem. Secondly, Dockerfiles specify the building instructions which directly
determine the resultant image quality. Moreover, Dockerfiles can also be reused by some other
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Docker-compatible container tools such as Podman13 and Buildah14. Therefore, our approach could
be used as-is to improve the quality of the built image of those containers. More generally, in
DevOps, configuration files can be basically categorized into imperative and declarative styles. For
imperative configuration files that incorporate a significant amount of sequential information, such
as Dockerfile and Chef15 configuration files, DRIVEwould performwell given an abundant of golden
data with moderate adaptation if necessary. On the other hand, for purely declarative configuration
files such as those used in Kubernetes16 and Puppet17, where the sequential information is typically
irrelevant, replacing the sequence mining algorithm in DRIVE with a frequent itemset mining
algorithm could yield better results.

5.1 Threats to Validity
Construct validity. This aspect of validity is related with the degree to which variables represent

the concepts [40]. In our approach, we solely rely on the sequence patterns mined from the
Dockerfiles to extract potential rules. To balance the efficiency and accuracy, we leverage a set of
heuristics and abstraction rules to accelerate the mining process. These heuristics are based on
domain experts and observations. To mitigate the potential errors introduced in this process, we
double check these heuristics and hire human experts to manually check the selected samples after
processing. For the detection part of DRIVE, we use the typical metrics such as precision, recall,
and F-measure to evaluate the performance, which are widely used in the literature.

Internal validity. The internal threats are mainly introduced from the bias of the collected data. To
mitigate this, we collect an initial Dockerfile dataset from a diversity of domains and programming
languages. We select projects with high star numbers as the initial data source. This metric is
a direct indicator for popularity [8] and widely used as a criterion to select GitHub projects in
empirical studies in software engineering [9]. Popular projects usually attract more attention and
more participation which are crucial for open-source software quality assurance. Therefore, projects
with more stars are more likely to be of higher quality. In our experiments, we set the threshold to
be 1,000 stars. In the remaining projects, we use a set of heuristics, including both tool support and
human examination, to further select high quality Dockerfiles. The selection criteria are based on
the public tags and commonly used in similar research practice.

External validity. The external validity is mainly about the generalization issues of the proposed
approach. We admit that it is impractical to collect all the high quality Dockerfiles based on which
all rules could be automatically extracted. However, we demonstrated that with the current collected
data, our approach could already find many interesting rules, some of which have not been covered
in the state-of-the-art tools. On the other hand, the methodology of our approach, i.e., applying
data mining techniques to other software artifacts to find potential patterns, has also well been
demonstrated by related work in the literature [7, 25, 26].

6 RELATEDWORK
In this section, we briefly review three threads of relevant work in literature, i.e. empirical studies
on Dockerfiles, automatic Dockerfile analysis, and pattern extraction from software artifacts.
Empirical studies on Dockerfiles. Cito et al. performed the first empirical study on open-source
ecosystem of Docker [12]. Particularly, they investigated the quality and evolution behaviors of
13https://podman.io/
14https://buildah.io/
15https://www.chef.io/
16https://kubernetes.io/
17https://www.puppet.com/
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Dockerfiles. A considerable proportion of Dockerfiles suffered from various quality issues, calling
for effective quality check integration. Wu et al. observed that Dockerfile smells are common in
the collected Docker projects, taking up to 84% of the population, and there existed co-occurrence
between certain types of Dockerfile smells [46]. Eng and Hindle analysed the change history of a
large-scale Dockerfiles and reconfirmed the many code smells reported by previous studies with
a slightly decreasing trend over the recent years [15]. Zerouali et al. examined the Debian-based
Docker images over a three-year period, and found more than 90% of community images did not
use the apt upgrade command in the building process, leading to potential outdated packages in
the generated image [49]. Ksontini et al. investigated the refactoring history of 68 projects and
identified a set of technical debt issues with inappropriate Dockerfiles, such as build time, image
size, maintainability [23]. Interestingly, a more recent empirical study [5] revealed that a specific
type of technical debt, i.e., self-admitted technical debt takes up to 3.4% in the explored datasets via
manual investigation over the comments.
Despite the different focuses of these empirical studies, they confirm the necessity of quality

check for Dockerfiles.

Automatic Dockerfile analysis. Perhaps the closest work to ours is binnacle [19] where Henkel
et al. propose a phased parsing approach to analyse Dockerfiles, based on which Docker specific
commands and Shell commands could be modeled as ASTs. Then the tree association rules (TARs)
could be obtained via frequent sub-tree mining afterwards. However, the work is susceptible to
high computation cost and could only identify intra-directive rules under the same local node.
Differently, our work treats the commands sequentially, which gives a performance advantage, and
inter-directive rules could be identified.
DockerMock [24] aims to timely detect Dockerfile faults before actual building. It mocks the

execution of Dockerfile instructions based on the parsed ASTs within fuzzy contexts. Similarly,
shipwright [20] also attempts to repair the broken Dockerfiles to pass the building requirements
through static analysis. Some other work has been proposed to address the duplicates or type-2
clone issues among multiple Dockerfiles [34, 44]. Different from our work, the emphasis of such
work is mainly to detect faults or duplicates instead of best practice violations.

DockerizeMe attempts to automatically infer the dependencies of Python code snippets and
generate Dockerfiles to deliver the environment configuration [21]. Meanwhile, RUDSEA proposed
by Hassan et al. can generate Dockerfile changes as updates along with fast software evolution
by analysing changes of software environment asumptions and their impacts [18]. Such line of
work mainly focuses Dockerfile synthesis instead of pattern mining as in our approach. Xu et al.
described a specific kind of Dockerfile smells, termed as “Temporary File Smell", which denotes the
unnecessary temporary files are shipped in the final built Docker images. They propose dynamic
analysis and static analysis approaches to detect and fix such smells in Dockerfiles [30, 48]. However,
in our work we adopt a data-driven way to identify patterns in general and detect violations of
such rules correspondingly.

Pattern extraction from software artifacts. Li and Zhou proposed a frequent itemset mining
based approach, i.e., PR-Miner to extract implicit, undocumented programming rules from large
software codebase. Thousands of rules could be extracted within less than 1 minute. The tool can
also be leveraged to detect the violations of the extracted rules [25]. Sun et al. extended typical
static analysis tools with dependence-based rule mining technique, and more project-specific
programming rules could thus be discovered [43]. Liang et al. [26] applied a frequent itemset
mining algorithm, i.e., FPClose [17] to the pre-processed codebase by program slicing. With the
extracted rules, the approach can effectively detect a number of subtle bugs that have been missed
previously. Their subsequent work, NAR-miner, employed a similar technique, but to extract
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negative association rules from large-scale codebase, and detect their violations to find bugs [7].
Cao et al. adopted a learning-to-rank approach to mine specification rules in Java programs by
combining 38 measures [10].

Besides mining conventional programs, some approaches work on Shell scripts. Dong et al. [14]
presented a large-scale empirical study of Bash usage based on over one million open-source scripts
found in GitHub repositories, identifying frequently used language features and common smells in
these scripts. D’Antoni et al. [13] presented NoFAQ, a tool that suggests possible fixes for commonly
occurring errors in command-line tools by using a set of rules expressed in a domain specific
language and evaluated the tool on 92 benchmark problems through a crowd-sourcing interface.
Mazurak et al. [32] presented ABASH, a tool for statically analyzing Bash scripts that can detect
certain common program errors leading to security vulnerabilities.They reported experiments
with 49 bash scripts, identifying 20 as containing bugs of varying severity while yielding only
a reasonable number of spurious warnings. Different from our work, these approaches do not
consider Docker environment, and thus the patterns found may not be adequate in the Docker
context as discussed previously.
Apart from mining codebase, other kinds of software artifacts could also be mined to extract

interesting patterns, for example, error patterns from software revision history [27], past-time
temporal rules from execution traces [28], specification rules from configuration files [39]. These
approaches deal with different types of software artifacts than ours.

7 CONCLUSION
In this paper, we present DRIVE, a novel approach to efficiently mine implicit rules from high-
quality Dockerfiles, based on sequential pattern mining techniques. We demonstrate the efficacy of
our approach against state-of-the-art baselines. DRIVE can find more useful implicit rules with less
time, among which 9 rules have been firstly reported. Since Dockerfiles can also be reused by some
other Docker-compatible containers (e.g., Podman), our approach also has potentials to improve
the quality of built images of those containers.
In the future, we plan to augment DRIVE with more functionalities, such as repair recommen-

dations for detected violations, and develop full-fledged tools (as plugin of mainstream IDEs) to
deliver better usability. More generally, we believe that such a data-driven paradigm could be also
applied to other related areas, such as configuration pattern mining and code smell detection.
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