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SUMMARY

Popular accounts of mind and brain propose that the brain continuously forms predictions about future sen-
sory inputs and combines predictions with inputs to determine what we perceive.1–6 Under ‘‘predictive pro-
cessing’’ schemes, such integration is supported by the hierarchical organization of the cortex, whereby
feedback connections communicate predictions from higher-level deep layers to agranular (superficial
and deep) lower-level layers.7–10 Predictions are compared with input to compute the ‘‘prediction error,’’
which is transmitted up the hierarchy from superficial layers of lower cortical regions to the middle layers
of higher areas, to update higher-level predictions until errors are reconciled.11–15 In the primary visual cortex
(V1), predictions have thereby been proposed to influence representations in deep layers while error signals
may be computed in superficial layers. Despite the framework’s popularity, there is little evidence for these
functional distinctions because, to our knowledge, unexpected sensory events have not previously been pre-
sented in human laminar paradigms to contrast against expected events. To this end, this 7T fMRI study con-
trasted V1 responses to expected (75% likely) and unexpected (25%) Gabor orientations.Multivariate decod-
ing analyses revealed an interaction between expectation and layer, such that expected events could be
decoded with comparable accuracy across layers, while unexpected events could only be decoded in super-
ficial laminae. Although these results are in line with these accounts that have been popular for decades, such
distinctions have not previously been demonstrated in humans. We discuss how both prediction and error
processes may operate together to shape our unitary perceptual experiences.

RESULTS

Due to previous work, partly from our group,16,17 demonstrating

fast and robust learning of action-cue-outcome relationships in

human participants, we used an action-outcome paradigm to

establish predictions. Twenty-two participants (17 female, mean

age = 26.09 years, and SD = 3.41) were trained with perfect

relationships between finger actions andvisualGabor orientations

(e.g., index finger abduction = clockwise-oriented Gabor [CW];

little finger abduction = counter-clockwise Gabor [CCW]). They

were presented at test (scanning phase, the following day)

with degraded contingencies to measure neural responses to

‘‘expected’’ (in line with perfect contingency training phase;

75% of trials in the scanner) and ‘‘unexpected’’ (25%) events

(see Figure 1). On half the trials they were asked to give a yes/no

response to whether the stimulus was oriented CW and on the

other half they were asked whether it was oriented CCW. This

design orthogonalized the Gabor orientation presentation from

the response. Linear support vector machines (SVMs) were

trained to discriminate Gabor orientations from V1 activation dur-

ing a localizer and were tested on the main task,18 separately for

expected and unexpected events (Figure 2). Under the predictive

processingaccountoutlinedabove,an interaction ishypothesized

between expectation and layer in decoding accuracy.

Influence of expectations on behavior
Reaction time (RT) data were collected for responses to ex-

pected and unexpected stimuli in the test session and median

RTs were calculated for correct trials, separately for each condi-

tion and participant. Similarly, the proportion of correct re-

sponses was analyzed for expected and unexpected conditions.

RT analyses revealed no difference between expected (M =

586.78 ms, SD = 73.42) and unexpected (M = 589.98 ms, SD =

75.60) trials (t(19) =�0.57, p = 0.58, and d =�0.13). Participants

were, however, more accurate on expected (M = 0.97,SD = 0.03)

than unexpected (M = 0.95, SD = 0.04) trials (t(19) = 2.67, p =

0.015, d = 0.60; see Figure 3A).

Distinct cortical representations of predictions and
errors
Using ultra-high-field 7T fMRI (spatial resolution: 0.8 mm

isotropic), we examined the brain activity patterns across
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cortical layers of the V1 for expected and unexpected Gabor ori-

entations. To determine layer-specific activity patterns, cortical

V1 voxels were divided into three equivolume gray matter layer

bins—superficial, middle, and deep. The proportion of each vox-

el’s volume across the layers was used to create three cortical

layer V1 masks for each participant that were used as layer re-

gions of interest (ROIs) for the following decoding analyses.

To investigate how expectations are represented across the

cortical column in the V1, linear SVMs were trained to discrimi-

nate Gabor orientations (CW or CCW) from a short localizer

task that presented blocks of high-contrast flickering Gabors

and were tested on the main task (beta images from a first-level

generalized linear model [GLM]). Given that expected events

were presented with 75% likelihood, while unexpected events

were presented with 25% likelihood, modeling all expected trials

would render regressors that contained three times the data of

unexpected regressors. We therefore modeled three expected

regressors, all with an identical number of trials to unexpected

regressors in the GLM, to reduce decoding biases across com-

parisons. The accuracy scores for each of the three expected

decoding conditions were averaged for each participant,

providing one accuracy score for expected trials and one for un-

expected trials in each of the layermasks. These decoding accu-

racies were compared using a repeated measures ANOVA.

This analysis revealed a main effect of layer (F(1.45, 29.04) =

5.98, p = 0.012, np2 = 0.23, Greenhouse-Geisser corrected,

ε = 0.73), no main effect of expectation (F(1, 20) = 0.39, p =

0.54, and np2 = 0.019), and, crucially, an interaction between

expectation and layer (F(2, 40) = 4.45, p = 0.018, and np2 =

0.18; see Figure 3B). Two control analyses were run at the voxel

selection stage to balance the number of voxels in each layer

mask, considering that there were more voxels in the superficial

Figure 1. Experiment design

(A) Schematic representation of proposed extrinsic feedforward (red) and feedback (blue) connections across layers in early visual areas.

(B) Experimental paradigm. A centrally presented visual cue instructed participants to abduct either their index or little finger. The imperative cue could be either a

triangle or square presented around the fixation cross. Each finger abduction predicted an oriented Gabor and participants were required to respond (yes/no) to

whether the stimulus was clockwise (CW) or counter-clockwise (CCW) oriented relative to the vertical. In the training phase, actions perfectly predicted the

stimulus orientation (100% contingency). This example demonstrates the relationship for a participant trained in index finger abduction to clockwise-oriented

Gabor mappings.

(C) In the scanning session 24 h after the training phase, participants completed the same task, but the action-outcome relationship was degraded to 75% to

produce unexpected (25%) as well as expected (75%) events.
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layers (due to known draining vein biases in gradient-echo echo-

planar imaging [EPI]21–25; see STAR Methods). The effects re-

mained in both a voxel-balanced control t-map analysis (this

analysis selected an equal number of the most active voxels

across the three layer bins; see STAR Methods; expectation 3

layer: F(2, 40) = 3.64, p = 0.035, np2 = 0.15; layer: F(1.60,

31.98) = 4.83, p = 0.021, and np2 = 0.20, Huynh-Feldt corrected,

ε = 0.80; expectation: F(1, 20) = 1.77, p = 0.20, and np2 = 0.08),

and a random-sample analysis (selecting an equal number of

voxels across layers sampled randomly from each layer;

expectation 3 layer: F(2, 40) = 4.35, p = 0.019, and np2 = 0.18;

layer: F(2, 40) = 4.70, p = 0.015, and np2 = 0.19; expectation:

F(1, 20) = 2.07, p = 0.17, and np2 = 0.09).

This interaction was generated via relatively consistent decod-

ing across layers for expected events (F(2, 40) = 0.82, p = 0.45,

and np2 = 0.04), while decoding performance differed for unex-

pected events (F(2, 40) = 6.90, p = 0.003, np2 = 0.26)—increasing

from deep to superficial layers (Figure 3B). These effects are

complemented by one-sample t tests demonstrating that de-

coding of expected events was significantly different from

chance across all layers (deep: t(20) = 2.62, p = 0.016; middle:

t(20) = 4.13, p = 0.001; superficial: t(20) = 2.94, p = 0.008), while

unexpected events could only be decoded in superficial layers

(deep: t(20) = �0.73, p = 0.47; middle: t(20) = 1.03, p = 0.31;

superficial: t(20) = 3.97, p = 0.001). Additional post hoc tests re-

vealed no significant differences between expected and unex-

pected decoding within each layer (deep: t(20) = 2.01, p =

0.058, d = 0.44; middle: t(20) = 0.94, p = 0.36, d = 0.21; superfi-

cial: t(20) = �1.41, p = 0.18, and d = 0.31), though the numerical

differences reveal superior representation of expected events in

deep (expected: M = 3.27, SD = 5.73; unexpected: M = �1.76,

SD = 11.21) and middle layers (expected: M = 5.36, SD = 5.95;

unexpected: M = 2.98, SD = 13.20), flipping to superior re-

presentation of the unexpected in superficial layers (expected:

M = 4.76, SD = 7.43; unexpected: M = 8.63, SD = 9.98).

Taken together, these tests demonstrate that representation

of unexpected events increases toward the superficial layers of

the V1, only becoming significantly decodable in these layers,

while expected events are represented similarly across the

cortical column.

DISCUSSION

This study examined how unexpected visual events are repre-

sented across cortical layers, in comparison with expected

events, in a high-resolution fMRI study. It found, in line with previ-

ous work,19 that expected events were represented (decoded)

equivalently across deep, middle, and superficial bins but, more

Figure 2. Data analysis

(A) Visualization of the selected anatomical V1 ROI (light gray) on a mean functional image of an example participant. Overlaid red and yellow lines represent co-

registered anatomical WM (yellow) and pial surface (red) boundaries to the mean functional image, showing voxels that were significantly active against baseline

to the presented stimuli in the functional localizer task (green).

(B) A mean functional image overlaid with distributions of voxels in superficial (green), middle (blue), and deep (red) layers of the cortex.

(C) A schematic representing the level-set approach used to determine the volume distribution of a selected voxel (e.g., red square) over the superficial, middle,

and deep cortical layers.19,20

(D) A schematic of the decoding approach adopted here. Voxel proportions across the three layer bins in (C) were used to separate voxels according to the

majority layer and formed layer masks for V1. Linear classifiers (SVMs) were trained on CW and CCW stimuli from the localizer task and tested on Gabors from the

main task. The procedure was repeated separately for expected and unexpected time courses and in each V1 layer mask.
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novelly, that unexpected events were represented with varying fi-

delity—such that theywerepoorly represented indeepandmiddle

layers and could only be decoded above chance in superficial

layers.

These findings are in line with predictive processing accounts

in which predictions and errors are represented distinctly across

cortical laminae, such that predictions conveyed via feedback

projections inject input into hypothesis units in deep layers, while

feedforward connections transmit the error from the superficial

laminae.12 This finding is also in linewithdata frommice andmon-

keys indicating superficial layer discrepancy signals with respect

to other types of feedback26–28 (see also Gillon et al.29 and Fiser

et al.30). Although this account of cortical processing has been

popular for a couple of decades, such distinctions have not pre-

viously been demonstrated in human cortical processing.

It is worth noting that alternatives have been proposed to this

account to explain precisely how prediction and input signals

are combined in the brain. Particularly, a number of fMRI studies

have observed improved sensory decoding of events expected

on the basis of preceding cues relative to unexpected

events,16,17,31,32 which may suggest that channels tuned to ex-

pected inputs aremore responsive than channels tuned to the un-

expected. Such a ‘‘global sharpening’’ account33 proposes that

the precision weights are adjusted to increase the gain of ex-

pected channels, allowing them to respond more sensitively to

expected input and subsequently improving representation of

the expected across the cortical column. This account would pre-

dict facilitated processing of the expected1–5 across layers, if we

relatively inhibit processing via other channels across layers, and

therefore is inconsistent with the patterns observed here.

Figure 3. Results

(A) Mean RTs and accuracy (± SEM) for expected and unexpected events alongside probability density estimates and individual participant data points. There

was no difference between conditions in RT, but participants were more accurate in expected than unexpected judgments (*p < 0.05).

(B) The results of the decoding analysis across cortical layer bins, where mean (± SEM) decoding accuracy percentage above chance (50%) is plotted for ex-

pected and unexpected trials. On the left panel, circles around mean data points indicate that the decoding accuracy was significantly above chance (p < 0.05),

which was the case across all layers for expected events but only in superficial layers for unexpected events. On the right panel, decoding accuracies are plotted

alongside probability density estimates and individual participant data points. The linear trend across layers was significant for unexpected (**p < 0.001) but not

expected events.
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Predictive processing accounts were initially developed to

explain inference about the present—removing redundancy in

the system—while the difference between our expected and un-

expected conditions pertains to cues that allow one to predict

statistical likelihoods about future events. The fact that we see

differences between conditions like these demonstrates that

future-based (e.g., cue-based) predictions inject hypotheses

into units in deep layers19 in the same way as present-state pre-

dictions. These findings are in line with evidence from human

ultra-high resolution 7T MRI studies demonstrating activity in

deep cortical layers of the V1 for visual events that are expected

but never presented19,34 (see also Muckli et al.35).

Forging functional conclusions about the operation of

mechanisms across cortical layers has become possible with

high-resolution MRI but is, of course, also plagued by interpreta-

tional issues due to venous draining of blood toward the pial

surface.21–25 Specifically, gradient-echo blood-oxygen-level-

dependent (BOLD) signal is known to exhibit strong contributions

from large veins situated perpendicular to the cortical

surface as venous blood is drained from lower to upper

cortical layers.15,22,24 Such venous issues render it likely, for

instance, that neural effects at deeper cortical layers contribute

to responses in superficial layers.36 Other labs favor cerebral-

blood-volume-based vascular-space-occupancy (VASO)37 fMRI

due to superior laminar separation, although this is accompanied

by reduced content-based sensitivity relative to gradient-echo

methods.38 Here, we use gradient-echo BOLD but mitigate such

contributions by comparing responses between stimuli that are

identical—other than their expectedness due to a preceding

cue—because venous draining influences should be equivalent

for both expected and unexpected events. Another methodolog-

ical debate in the field surrounds separation of the signal into

three cortical layers,19,20,36,39–41 such as here, versusmore layers.

Given the voxel size of 0.8 mm and a cortical thickness of

2.5–3mm, three layers could be conceived to be themost realistic

resolution to be achieved with this voxel size.42 Nevertheless,

importantly for our conclusions, we know of no literature that

would suggest such an expectation 3 layer interaction effect, as

observed here, would be generated by our methodological

choices and not reflective of true mechanistic differences, but

future work would, of course, be wise to investigate replicability

with different approaches.

Such distinct representation of prediction and error may be an

adaptive solution allowing predictions to shape perception to

serve a number of functions. Some of us have recently discussed

how predictions often need to exhibit quite distinct behavioral

shaping of perception to serve the organism.4,43 To overcome

noise in sensory processing and generate broadly accurate ex-

periences rapidly, we may bias perception toward what we

expect.44,45 However, larger error signals (that cannot have re-

sulted from noise) may require high perceptual resources to

enable accurate perception and resultant model updating. If

we represent the error signal separate from the prediction,

even in early sensory processing, this may be one way to enable

these large error signals to communicate deviation rapidly to

systems mediating model updating—such as the locus coeru-

leus.46 Future work must establish how these error signals relate

to perception and model updating to truly test these accounts

and examine whether error signals in superficial layers are

calculated in the first feedforward sweep47 or subsequent stim-

ulus-processing iterations.

It has been suggested in various theoretical accounts that

symptoms of psychosis, like hallucinations and delusions, can

be explained in terms of aberrant signaling of prediction error

as well as overweighting of expectations.48–50 As demonstrated

in this study, laminar fMRI is capable of distinguishing the repre-

sentation of these signals across different cortical layers. There-

fore, laminar fMRI would bewell suited to test the theoretical pre-

dictions from predictive coding models of psychosis, as well as

comparing these mechanisms in other clinical and neurological

populations characterized by aberrant perceptual inference,

like Parkinson’s disease.51

In conclusion, this study provides evidence that expected and

unexpected visual events are distinctly represented across the

cortical column in the V1 via a novel 7T fMRI design that pre-

sented unexpected visual events alongside expected counter-

parts. Expected events were represented similarly across layers

but unexpected events were only represented well in superficial

layers. These findings contribute to our understanding of how

predictions can interact with sensory inputs to shape what we

perceive and how we interact with the world.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Clare Press (c.press@

ucl.ac.uk).

Materials availability
This study did not generate any new materials.

Data and code availability

d The GLM-generated beta data will be deposited at OSF and will be publicly available as of the date of publication. DOIs are

listed in the key resources table.

d All original code will be deposited at OSF and will be publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to re-analyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
Twenty-two participants (17 female, mean age = 26.09 years, SD = 3.41) were recruited from UCL and Birkbeck, University of Lon-

don, and paid a small honorarium for participation. All participants reported normal or corrected to normal vision and had no history of

psychiatric or neurological illness. We did not analyse the effects according to demographic differences, because we only collected

gender and age information, and there was no plan to conduct such analyses at any point. In principle this limits the generalisability of

our findings, but there is no evidence from previous work to suggest such low level and fundamental visual functions would differ

according to these characteristics. One participant’s data were excluded due to a technical error during acquisition, which meant

that event onsets in one run could not be modelled. This resulted in a final sample of 21 participants. The experiment was approved

by the UCL ethics committee.

METHOD DETAILS

Stimuli
Sinusoidal grating (Gabor) stimuli were created using MATLAB and presented against a grey background using Cogent Graphics.

During pre-scanner training, stimuli were presented on a 14’’ LCD screen (resolution: 1280x1024; refresh rate: 60 Hz) at a viewing

distance of 45 cm, and during scanning on an LCD monitor (resolution: 1280x1024; refresh rate: 60 Hz) through a mirror at a viewing

distance of 91 cm. In both sessions, stimuli were viewed at 15 degrees of visual angle. A Gaussian filter enveloped the grating stimuli

to create Gabor patches of 80%Michelson contrast, at 1.5 cycles per degree, andwith random spatial phase. TheGabor stimuli were

presented in an annulus around a fixation cross in themiddle of the screen (see Figure 1B). Two stimulus orientations were generated

to appear in CW (45�) and CCW (135�) orientations (relative to the hypothetical vertical mid-point e.g., 90�).

Procedure
Main task

Participants completed two sessions. First, they completed a training session in which finger abductions perfectly predicted visually

presented Gabor orientations. The following day, they completed the same task in the MRI scanner but the action-outcome relation-

ship was degraded to 75% validity to allow for presentation of unexpected (25%) as well as expected events.

Participants completed the training session on Gorilla (www.gorilla.sc) for online experiments, taking part on either a laptop or

desktop computer no more than 24 hrs before the scanning session. Instruction at the beginning of the experiment requested par-

ticipants to set screen brightness to the maximum level to reduce variability in viewing conditions. Each trial started with a white
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fixation cross. Participants were instructed to depress the ‘c’ and ‘m’ computer keys with their right index and little fingers, respec-

tively, until an imperative cue (e.g., square or triangle overlaid around the fixation cross) indicated which finger to abduct. A right-hand

index finger abduction would involve the finger moving left of handmidline, while a right hand little finger abduction moves right of the

midline. After the appropriate action was executed, the imperative cue was replaced with an oriented Gabor for 500 ms, resulting in

apparent synchrony of stimulus onset with action execution. A variable 300 – 500 ms delay followed stimulus offset and preceded a

response screen which asked about Gabor orientation. On half the trials they were asked to give a yes/no response to whether the

stimulus was oriented CW and on the other half they were asked whether it was oriented CCW. This design orthogonalised the Gabor

from the response. Participants were required to respond to the question screen within 1500 ms and the next trial started after a var-

iable ITI of 2000-3000 ms. Responses were made using the left thumb on the ‘a’ and ‘z’ keys for ‘yes’ or ‘no’, respectively. The

response question alternated every block. Participants completed the training task in ten runs of 36 trials each.

The following day, participants completed the test session at the Wellcome Centre for Human Neuroimaging, UCL. The test ses-

sion task was largely similar to the training session except that participants’ abductions now predicted the stimulus orientation with

75% validity and they performed actions usingMR-compatible button boxes instead of the keyboard. The right-hand button box was

positioned orthogonally to the screen in the scanner, in line with the body midline. A short refresher of the training session was pre-

sented immediately before the scanning session, using the MR compatible button boxes outside of the scanner. Responses were

now required within 1000 ms of the question screen (to reduce scanning time), and the response question was randomly selected

on each trial. The next trial started after a variable ITI of 2000-6000 ms. Participants completed the test session in four scanning

runs that contained 96 trials each, and a 30 s break was presented mid-way through each run.

Therewere 384main experimental trials in the scanning session, 360 online training trials and 192 refresher training trials. This num-

ber of trials was determined based on a preceding 3T fMRI study using a comparable task design.16 Participants completed 32 prac-

tice trials before proceeding to the main trials in the initial training session. Imperative cue order and trial order were randomised

within blocks and the specific action-Gabor (predictive) relationship was counterbalanced across participants. The imperative

cue-action mapping was also counterbalanced and reversed halfway through each session (e.g., at the beginning of the sixth block

in training, and beginning of the third block in scanning) to deconfound potential influences of cue-outcome learning and remove any

correlation between the imperative action cues and actual or expected Gabor orientations across the experiment.

Localiser task

At the end of the main experiment, participants completed a functional localiser task in an additional scanning run. This task pre-

sented flickering Gabor stimuli at approximately 1.8 Hz along with a fixation cross. These Gabors were identical to those presented

in the main experiment except that they were presented at 100% contrast, and in blocks of 14 s. Each block containing flickering

Gabors was followed by a blank screen containing only the fixation cross for the same duration. In each stimulus block, Gabor orien-

tation was either CW or CCW and the presentation order was pseudorandomised. The task required participants to respond by

pressing any button when the central fixation cross changed colour from white to grey, ensuring that their fixation remained central.

In total, 32 blocks of flickering Gabors were presented, 16 of each orientation.

Image acquisition
Images were acquired using a 7TMagnetomMRI scanner (Siemens Healthcare GmbH, Erlangen, Germany) using a 32-channel head

coil at the Wellcome Centre for Human Neuroimaging, UCL. Functional images were acquired using T2*-weighted 3D gradient-echo

EPI sequence (3,552 ms volume acquisition time, TR = 74 ms, TE = 26.95 ms, 48 slices, 15�flip angle, voxel size: 0.8 x 0.8 x 0.8 mm,

field of view: 192 x 192 x 39 mm). Structural images were acquired using a Magnetization Prepared Two Rapid Acquisition Gradient

Echo (MP2RAGE) sequence (TR = 5,000ms, TE = 2.60ms, TI = 900ms, 240 slices, voxel size 0.73 0.73 0.7 mm, 5�flip angle, field of

view 208 3 208 3 156 mm).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioural analyses
RT data were collected for responses to expected and unexpected stimuli in the test session and median RTs were calculated for

correct trials separately for each condition, for each participant. Similarly, the proportion of correct responses was analysed for ex-

pected and unexpected conditions for each participant. One participant was removed from the behavioural analysis due to missing

almost half of the responses (44% of trials) and performing similarly to chance on the remainder (62% accuracy; note that this partic-

ipant was maintained for the imaging analysis, but the significance patterns were identical if they were removed).

fMRI data preprocessing
Preprocessing of the images was conducted in SPM12 and Freesurfer (http://surfer.nmr.mgh.harvard.edu/). Functional images were

cropped to select only the occipital lobe, to account for distortions in the frontal lobes. These cropped functional images were

spatially realigned to the mean image within runs, but also across runs. The temporal signal-to-noise ratio (tSNR, defined as

mean signal/SD over time) was calculated before and after spatial realignment and was found to be significantly higher after

(M =14.31, SD = 1.23) than before (M = 10.21, SD = 1.05) realignment (t(20) = -22.10, p <.001).

The realigned functional images were co-registered to the cortical surfaces estimated in participants’ MP2RAGE scans in several

steps. First, boundaries between grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) were detected using Freesurfer

ll
OPEN ACCESS

Current Biology 34, 1–7.e1–e4, May 20, 2024 e2

Please cite this article in press as: Thomas et al., Predictions and errors are distinctly represented across V1 layers, Current Biology (2024), https://
doi.org/10.1016/j.cub.2024.04.036

Report

http://surfer.nmr.mgh.harvard.edu/


on re-constructed structural scans (skull removed) and were manually corrected to remove any dura that was inaccurately classified

as part of the GM surface. A rigid body boundary-based registration (BBR)52 was used to register GM boundaries to the mean func-

tional image, and a further recursive boundary-based registration (RBR)53 applied the BBR recursively to portions of cortical mesh in

6 iterations.

Cortical layer definition
The level set method was used to divide GM into three equivolume layers for cortical layer definition (for details see20). This method

was used to separate five cortical bins (3 GM, WM and CSF) and determine three GM layers (deep, middle, and superficial) by calcu-

lating two intermediate surfaces between the WM and pial boundaries. In human V1, these three layer bins have been suggested to

correspond to histological layers 1 to 3, layer 4, and layers 5 and 6, respectively.19

Layer-specific ROI definition
Freesurfer was used to define V1 based on anatomical landmarks in the MP2RAGE scans. ROIs were restricted to voxels from the

preprocessed functional localiser data that weremost active during blocked presentation of the stimuli. This was achieved bymodel-

ling regressors for blocks of CW and CCW stimuli against baseline in a temporal GLM to identify voxels that expressed a significant

response to these stimuli (t > 2.3, p < 0.05;M = 5420.57, SD = 2228.12 number of voxels). A V1mask of active voxels was created this

way for each participant.

Next, these active voxel masks were used to design a matrix of distributed voxels across each layer bin using the level-set defi-

nition described earlier.20 These participant-specific design matrices specified the proportion of each active voxel across the 5 layer

bins specified above (3GM, WM, CSF), where each voxel was binned into one of the three GM layer bins according to its majority

proportion (Figure 2D; see onlinematerials for a complementary univariate analysis approach). For example, a voxel that was spatially

located 7% in superficial, 76% in middle and 17% in deep layers would be labelled as amiddle layer voxel and selected to contribute

to the voxels in the middle layer mask. An arbitrary threshold was set such that the majority proportion for a voxel to be included in a

layer mask was >0.4 (40%). This meant that any voxels with roughly equal proportion in each layer bin would not be selected. Impor-

tantly, the results did not change when this threshold was removed, since the majority of voxels’ ‘winning’ proportion was greater

than 0.4. Using this approach, three layer masks were created from the active V1 voxels for each participant.

This method of defining layer specific ROIs yields V1 layer masks that differ in the number of voxels that contribute to each layer in

each participant. Notably, there is a consistently greater number of voxels in superficial (M = 1613.95, SD = 678.17) than middle

(M = 1172.48, SD = 530.94) and deep (M = 907.62, SD = 442.68) layer masks (one-way ANOVA: F(2,40) = 120.50, p <.001,

np2 =.86). We therefore performed another analysis to control for these differences, considering that greater information contributing

to the decoding signals in superficial layers relative to the other layers may confound our interpretations. Here, the steps are identical

to above, except that an additional stepwas performed to equalise the number of voxels present in each layer ROImask. Specifically,

we defined the number of voxels to select in eachmask as themaximum number common to all layers. For example, if the deepmask

had the fewest and contained 831 voxels, 831 voxels would be selected across all layers. Next, we loaded in an orientation prefer-

ence t-map from the GLM specified above, that contrasted CWandCCW regressors against each other, to select the (e.g., 831) most

orientation-tuned voxels from each layer. These voxels were those that contributed to each layer mask, such that each layer mask

contained an equivalent number of voxels in each layer. Another control version selected the (e.g. 831) voxels randomly from all the

active voxels in each layer. Importantly, the results did not change across these selection methods, suggesting that differences in

voxel numbers across layers should not alter interpretation (see Results).

Decoding analysis
Multivariate decoding analyses were implemented using the TDT toolbox54 in MATLAB. We used a cross-classification approach

whereby a linear SVMwas trained to discriminate Gabor orientations (CW or CCW) presented during the localizer task. This indepen-

dent dataset ensured that the trained classifier was not biased with any information about the predictability of stimuli. For this step,

we reran the GLM that we used for ROI definition above, but instead specified the onsets for each block in the localizer task as sepa-

rate regressors. Movement parameters were also modelled as nuisance regressors. This GLM resulted in 16 beta images for each

orientation that were fed into the SVM for training.

Next, we specified the test data in our cross-classification decoding approach from our main experimental task data. Specifically,

we reran and modified the GLM previously run on the main task data that included separate regressors for each condition type

(expected, unexpected) and stimulus type (CW, CCW) in each experiment run, in two ways. First, considering that we only had 4

scanning runs, yet it is well established that decoding data is more reliable with increased number of samples, we modelled each

condition according to the first and second halves of each run (since there was a 30s break in between continuous scanning;

note also that all trial types were balanced within each run half). This resulted in 8 condition regressors for each scanning run

(2x ExpCW1, ExpCCW1, UnexpCW1, UnexpCCW1). Second, we ensured that each modelled regressor would have equal weight

in terms of the number of trials contributing to each image, considering known biases in decoding performancewith unequal numbers

of trials.55 We therefore modelled expected conditions with the same number of trials as those that contribute to unexpected regres-

sors, by randomly sampling from expected trials to form three different expected regressors (see Results). Again, movement param-

eters were modelled as nuisance regressors.

ll
OPEN ACCESS

e3 Current Biology 34, 1–7.e1–e4, May 20, 2024

Please cite this article in press as: Thomas et al., Predictions and errors are distinctly represented across V1 layers, Current Biology (2024), https://
doi.org/10.1016/j.cub.2024.04.036

Report



In total, this GLM resulted in 16 beta images (3x ExpCW, ExpCCW, 1x UnexpCW, UnexpCCW, twice in each scanning run). The

beta images from this GLM were grouped according to our main experimental conditions such that we repeated the decoding pro-

cedure separately four times (Expected [x3], Unexpected) to determine whether stimulus orientation classification differed across

each of these conditions. We tested each of these four decoding iterations separately, restricting the voxels to each of our three

V1 layermasks. This procedure resulted in 12 testing iterations (4 conditions in each of 3masks). Accuracy of the SVMwas calculated

as the proportion of correctly classified images across all decoding steps and was conducted separately for each participant. The

accuracy scores for each of the three expected conditions were averaged for each participant, providing one accuracy score for ‘ex-

pected’ trials, and one for ‘unexpected’ trials, in each of the layer masks. These scores were then compared between expected and

unexpected conditions, and across layers, to determine whether information about presented stimuli varied as a function of learned

expectation across the cortical layer bins.

The results were then analysed with a 2x3 repeated measures ANOVA with the factors experimental condition (expected, unex-

pected) and cortical layer (deep, middle, superficial). Follow up tests examined differences across layers, separately for expected

and unexpected events.
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