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ABSTRACT
Threshold queries are an important class of queries that only
require computing or counting answers up to a specified
threshold value. To the best of our knowledge, threshold
queries have been largely disregarded in the research litera-
ture, which is surprising considering how common they are
in practice. We explore how such queries appear in practice
and present a method that can be used to significantly im-
prove the asymptotic bounds of their state-of-the-art evalua-
tion algorithms. Our experimental evaluation of these meth-
ods shows order-of-magnitude performance improvements.

1. INTRODUCTION
Top-k evaluation of queries asks the database engine to

return the k most relevant answers to the query. In Web
search engines, it is the main mode of evaluating keyword
search queries and it has been studied in depth in the wider
context of database query answering [22, 29, 17, 27]. Inter-
nally, this mode of evaluation typically uses two parameters:
a limit k on the number of answers to return, and a ranking
function that determines which answers are more relevant
than others and allows to order them by importance.

Top-k evaluation is indeed a very useful querying paradigm,
but it is also easy to imagine scenarios, such as data ex-
ploration, in which the ranking function is less important
or may even be absent. For instance, upon investigating
a log file of queries for Wikidata’s SPARQL endpoint [26,
8], containing over 254M pattern matching queries, we saw
the following. While ∼15M (6%) pattern matching queries
use LIMIT, only 11,406 (0.0045%) use both LIMIT and OR-

DER BY. Figure 1 (left) visualises these ratios. The picture is
even more pronounced in the non-trivial pattern matching
queries, that is, queries that use at least one join. The logs
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Figure 1: Fractions of pattern matching queries with LIMIT

and ORDER BY in Wikidata query logs.

contain ∼88M such non-trivial pattern matching queries,
out of which 13M (14.9%) use LIMIT, which is quite a large
chunk. However, again, only 10,612 (0.0121%) use both
LIMIT and ORDER BY; see Figure 1 (right).

We therefore believe that threshold queries, which only ask
for a limited number of answers irrespective of any ranking,
are worthy of study. In this paper, we present several sce-
narios in which threshold queries occur (Section 2), ranging
from data exploration to checking cardinality constraints on
data. We then discuss how thresholds can be exploited to
speed up query evaluation (Sections 3 and 4). Notice that
there is room for more aggressive query optimization than
for top-k query answering, since threshold queries do not
care about the ranking of results. As a proof of concept,
we implemented the main ideas of our algorithm using SQL
window functions. Although these only have limited flexi-
bility and we cannot fully exploit our algorithmic ideas, we
already see order of magnitude performance improvements
(Section 5). Finally, we discuss other modes of query evalu-
ation (Section 6) and possible next steps (Section 7).



2. THRESHOLD QUERIES IN THE WILD
Our goal is to understand how thresholds are used in real-

life queries. Therefore, we begin with a handful of examples
from various domains and then distill a formal definition.

Wikidata is a collaborative knowledge base launched in
2012 and hosted by the Wikimedia Foundation [34]. By the
efforts of thousands of volunteers, the project has produced
a large open knowledge base with numerous applications.
Query logs [24] collected along the years on the Wikidata
SPARQL endpoint offer an invaluable glimpse into real-life
workloads and constitute a useful resource for the qualita-
tive analysis of threshold queries. In the logs we found the
following data exploration query.

TQ1 Return up to 10 journal/article pairs for journals with
ISSN 1175-5326.

SELECT * WHERE {
?journal <ISSN > "1175 -5326" .
?article <published_in > ?journal

} LIMIT 10

The query illustrates the simplest way in which a thresh-
old can be used: to limit the number of returned answers.
Without LIMIT, it would return 32,222 objects, which is not
comfortable for human consumption. The LIMIT clause en-
sures that the output is human-consumable and potentially
reduces the amount of work required from the query engine.
As is common in data exploration, the user is happy with
any 10 answers: they need not be the best, or random, or
persistent. Any 10 answers will do. (Note that we do not
consider features like OFFSET or SKIP.)

The next query comes from the Offshore Leaks Database
[21], which records interconnections between offshore entities
involved in the Pandora Papers, Paradise Papers, Bahamas
Leaks, and Offshore Leaks investigations. It contains infor-
mation regarding over 800K people or companies, spanning
80 years up to 2020 and over 200 jurisdictions. The dataset
was published by the International Consortium of Investiga-
tive Journalists (ICIJ), a network of 280 journalists and over
140 media organizations from more than 100 countries, and
is curated as a Neo4j graph with 840,000 nodes and 1.3 mil-
lion relationships. The very first example in the documen-
tation is the following query:

TQ2 Return up to 20 entities, intermediaries, or addresses
that can be reached from an officer called $name in at
most 10 steps.

MATCH (a:Officer {name:$name}) -[r:officer_of

|intermediary_of|registered_address *..10] -(b)

RETURN b.name as name LIMIT 20

This is again a limit query, but this time it involves a path
of varying length (at most 10). While we present out meth-
ods over conjunctive queries (project-join queries), one can
apply them also to queries involving path expressions, such
as conjunctive regular path queries.

A more complex way of using thresholds is to express car-
dinality constrains. For example, the SQL query

TQ3 Find Nobel prizes with more than 3 laureates.

SELECT NobelPrize.id
FROM NobelPrize , Laureate
WHERE NobelPrize.id = Laureate.id
GROUP BY NobelPrize.id
HAVING COUNT(DISTINCT Laureate.name) >= 4

detects violations of a cardinality constraint arising in data
curation of the Nobel Prize data [3]. This is a GROUP BY

query that uses a threshold to specify the desired size of the
groups. This a common query pattern; we give two more
examples below in different query languages.

In theWikidata logs we also found the following data mon-
itoring query, very similar to TQ3:

TQ4 Are there at least 67 language versions of Wikipedia
pages for the movie The Matrix?

SELECT( ?var2 ) WHERE {
VALUES ( ?var2 ) { ( <The_Matrix > ) }
?var2 <instance_of > <film > .
?var3 <about > ?var2 .
?var3 ( <is_Part_Of > / <belongs_to > ) "wikipedia" .

} GROUP BY ?var2 HAVING (COUNT (*) >= 67);

The COVID-19 Knowledge Graph [13] is a continuously
evolving dataset, with more than 10M nodes and 25M edges,
obtained by integrating various data sources, including gene
expression repositories (e.g., the Genotype Tissue Expres-
sion (GTEx) and the COVID-19 Disease Map genes) and
article collections from different scientific domains (ArXiv,
BioRxiv, MedRxiv, PubMed, and PubMed Central). Re-
porting coverage in the COVID-19 Knowledge Graph can be
monitored using the following query, expressed in a Cypher-
like syntax:

TQ5 Find each country that does not have three reports for
some age group.

MATCH (c:Country)-[e:CURRENT_FEMALE|CURRENT_MALE
|CURRENT_TOTAL]->(a:AgeGroup)

WITH c, a, COUNT(type(e)) AS ecount
WHERE ecount < 3 RETURN c, a

In the Covid-19 Knowledge Graph, for each age group, in
each country, there should be at least three reports for the
current number of Covid cases: one for females, one for
males, and one for the total. The query finds countries and
age groups for which this is not the case. Note the use of
Cypher’s notorious implicit group-by [28]: the grouping vari-
abes c and a are derived automatically.

Limit and threshold queries. The above examples illus-
trate two different query templates: TQ1–TQ2 are simple
limit queries and TQ3–TQ5 are grouping queries with car-
dinality constraints over group sizes. We shall reserve the
term threshold queries for the second template, but let us
stress that both of them use thresholds to limit the num-
bers of sought tuples (answers in the case of limit queries
and witnesses for answers in the case of threshold queries)
without any preference over sought tuples. Indeed, general-
ising limit queries will be the key to efficient evaluation of
threshold queries.

Typical threshold values. To get a better grasp of the pa-
rameters of the task ahead of us, we had another look at
the pattern matching queries in the Wikidata logs to find
out what the typical threshold values are (see Figure 2).
It turned out that, in both organic (human-generated) and
robotic queries, more than half of the pattern matching
queries use threshold values not larger than 100. Values
of 10k or more do occur, but they are much less common
than small values.
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Figure 2: Threshold value occurrence ratio in organic and
robotic pattern matching queries in our logs.

Formal definition. Formally, we can define a threshold query
(TQ) in terms of first-order logic as an expression of the form

q(x̄) ∧ ∃a,bȳ p(x̄, ȳ) ,

which can be read as “Return x̄ that match q and for which
there are between a and b many ȳ that match p together
with x̄.” From left to right, q(x̄) is a conjunctive query,
a ∈ N and b ∈ N∪ {∞} specify the lower and upper bounds
for the groups, and p(x̄, ȳ) is a conjunctive query which de-
fines the elements of the groups (it may not use all variables
in x̄). Here the quantifier ∃a,b is a so-called counting quan-
tifier which states that there are between a and b distinct
instances of ȳ for which the subsequent formula holds.

Notice that a threshold query only has a single counting
quantifier ∃a,b, but further ordinary existential quantifiers
may occur inside q and p, as is usual for conjunctive queries.

As an example, consider the Nobel Prize threshold query
(TQ3), and suppose that the schema is

NobelPrize(id , year , category),Laureate(id ,name, country)

with the foreign key constraint Laureate[id ] ⊆ NobelPrize[id ].
This threshold query can be formalized as follows.

TQ3(x) = ∃x1, x2. NobelPrize(x, x1, x2) ∧
∃4,∞y. ∃z. Laureate(x, y, z).

In the remainder of this paper we represent threshold
queries in this logic-based notation, a specific query lan-
guage, or relational algebra, depending on what is discussed.

3. EXPLOITING THRESHOLDS
Let us see a simple example illustrating how thresholds

can be exploited to speed up query evaluation. Let G =
(V,E) be a graph. For positive integers t and k, consider
the following threshold query, dubbed (t, k)-neighbour:

Find all nodes with at least t k-hop neighbours.

Assuming that the graph is stored in a single table Edge with
columns source and target, the query (t, k)-neighbour can
be expressed in SQL as a k-fold join followed by aggregation.
For instance, for t = 10 and k = 3, we have

SELECT X.source
FROM Edge AS X, Edge AS Y, Edge AS Z
WHERE X.target = Y.source AND Y.target = Z.source
GROUP BY X.source
HAVING COUNT(DISTINCT Z.target) >= 10

If we compute the joins naively and then aggregate, we ob-
tain a cubic algorithm (modulo log factors) in the example

above, and Õ(mk) in general over any graph with m edges.

Figure 3: Quadratically many pairs of k-hop neighbours for
all k ≥ 2.

Here, we use the Õ notation to indicate that logarithmic
factors are supressed.

A less näıve approach is to project out irrelevant columns
as early as possible. This amounts to computing all the i-
hop neighbours for all nodes iteratively for i = 1, 2, . . . , k
and returning nodes with at least t k-hop neighbours. This
optimization decreases the time cost drastically, leading to
a quadratic algorithm for every k. Can this be improved
further? The bottleneck here is simply the size of the inter-
mediate results representing i-hop neighbours for all nodes:
in a graph with m edges there can be as many as (m

2
)2 pairs

of nodes connected by an i-hop path, for any i ≥ 2; see
Figure 3. Can we avoid computing all i-hop neighbours?

We claim that it is enough to compute up to t many i-hop
neighbours for each node in the graph. More precisely, we
will compute i-hop neighbours up to threshold t: that is, if
a node has at most t i-hop neighbours, then we store all of
them, and if it has more, then we discard all but t arbitrary
ones. One has to be careful, though, with the order in which
the joins are processed. It might seem natural to go forward,
or “left to right”: in order to compute (i+1)-hop neighbours
of node u we would take all (1-hop) neighbours of the com-
puted i-hop neighbours of u. This works if we have all i-hop
neighbours of u. If we only keep them up to threshold t, this
will not work in general. For instance, let t = 3, i = 1 and
consider the graph in Figure 4a. Suppose that we have only
kept v1, v2, v3 out of u’s four 1-hop neighbours. Then, even
if we consider all their 1-hop neighbours, we only recover
two of u’s 2-hop neighbours, w1 and w2. That is, we have
not found the correct number of 2-hop neighbours up to the
threshold value t = 3.

To obtain correct results we have to go the opposite way:
in order to compute (i + 1)-hop neighbours of node u we
consider the computed i-hop neighbours of all neighbours
of u. In our example in Figure 4b, this means that we
first compute up to three 1-hop neighbours of v1, . . . , v4,
which are annotated under the nodes. (The three 1-hop
neighbours v1, v2, v3 for u are computed in the first itera-
tion, but will be discarded in the next.) For the next it-
eration, that is, i = 2, consider Figure 4c. We proceed
through the neighbours of u in some arbitrary order (here
we choose top to bottom), while remembering the num-
ber of 2-hop neighbours we see. When we visit v1, we
have the set {w1} of 2-hop neighbours. After v2, we have
{w1} ∪ {w1, w2} = {w1, w2}. Visiting v3 does not add any
2-hop neighbours to this set, and we finally find our thresh-
old of three 2-hop neighbours after visiting v4. This means
that u is an answer to (3, 2)-neighbour. At this point, we
could annotate u with any subset of {w1, w2, w4, w5} con-
sisting of three elements, witnessing three 2-hop neighbours.
In the picture, we highlighted {w1, w2, w4}. Notice that w3

was already discarded when computing witnesses for 1-hop
neighbours of v4.
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Figure 4: Computing 2-hop neighbours up to threshold 3.

In general, if we have correctly computed i-hop neighbours
up to threshold t for all nodes, then we are guaranteed to
have (i + 1)-hop neighbours up to threshold t for all nodes
after the next round.
We can prove this by contradiction. Suppose that we have

not retained sufficiently many (i + 1)-hop neighbours of u.
Let v be one of the missing ones. If v has been retained
as an i-hop neighbour of some neighbour u′ of u, then the
only reason why it would not be retained as a (i + 1)-hop
neighbour for u can be that u had t (1 + 1)-hop neighbours
without it. That contradicts the initial assumption. Hence,
v must have not been retained among i-hop neighbours of
some neighbour u′ of u. Since we have assumed that i-hop
neighbours were computed correctly up to threshold t, it
follows that u′ has at least t i-hop neighbours retained. But
all these nodes are (i + 1)-hop neighbours of u, which also
contradicts our initial assumption.

4. EVALUATION IN THEORY
Discussing query evaluation is easier for queries expressed
in relational algebra. We assume the named perspective. A
conjunctive query is then an expression of the form

πX

(
R1 ▷◁ · · · ▷◁ Rn

)
where ▷◁ is the natural join and πX is the projection on the
set X of columns. In order to capture limit and threshold
queries we introduce two new relational algebra operators:

• one that corresponds to a grouping combined with a
selection based on group sizes and

• one that prunes a relation so that the maximum group
size is below a specified upper bound.

The first new operator is bounded (counting) aggregation,
which combines ordinary counting aggregation with selec-
tion and is a direct relational algebra counterpart of the
counting quantifier. We write it as

γa,b
X (R) ,

where X is a set of columns and a ∈ N and b ∈ N ∪ {∞}.
The meaning of γa,b

X (R) is to select tuples r in πX(R) such
that the number of tuples in R that agree with r on X is
between a and b. As an example, consider the relation R
and the result of γ2,3

A,B(R) in Figure 5. This operator allows
us for example to express TQ3 as

πid(NobelPrize) ▷◁ γ4,∞
id (πid,name(Laureate)) .

R

A B C D

1 1 1 1
1 2 1 1
1 2 1 2
2 1 1 1
2 1 1 2
2 1 2 1
2 2 1 1
2 2 1 2
2 2 2 1
2 2 2 2

γ2,3
A,B(R)

A B

1 2
2 1

π2
A,B(R)

A B C D

1 1 1 1
1 2 1 1
1 2 1 2
2 1 1 2
2 1 2 1
2 2 1 2
2 2 2 1

Figure 5: The bounded aggregation and pruning operators.

The second new relational operation is a nondeterministic
pruning operator written as

πb
X(R) ,

where X is a set of columns and b is a natural number. The
result of πb

X(R) is a subset of R such that if it were grouped
on X, then the resulting groups would be of size at most b
and the groups that were already of size at most b in the
grouping of R should remain the same in the grouping of
πb
X(R). An example is given in Figure 5, where a possible

result of π2
A,B(R) is shown. It is possible to use this pruning

operator to express limit queries. For example, the query
TQ2 can be expressed by π20

∅ (Q) where Q is the expression
for the underlying basic graph pattern of TQ2.

The method described in Section 3 can be applied to all
threshold queries of the form

∃a,b ȳ p(x̄, ȳ)

where p(x̄, ȳ) is a conjunctive query and a ≥ 1. Note that
(t, k)-neighbour is an example of such query: it can be ex-
pressed as

∃t,∞xk ∃x1, . . . , xk−1 E(x0, x1) ∧ · · · ∧ E(xk−1, xk) ,

where E = Edge and one should read ∃t,∞xk as “there are
at least t values of xk such that”. The output of the query
is the set of nodes that can be matched to the variable x0

(which is not quantified). Using the bounded aggregation



operator, threshold queries of this form can be written in
relation algebra as

γa,b
X

(
πX∪Y

(
R1 ▷◁ · · · ▷◁ Rn

))
.

For example, for (t, k)-neighbour we get

γt,∞
A0

(
πA0,An(E1 ▷◁ · · · ▷◁ Ek)

)
where Ei = Edge(Ai−1, Ai).

The classical evaluation method for conjunctive queries
aims to optimize performance by choosing an order of joins
and projections that minimizes the size of intermediate re-
sults. That is, it seeks an equivalent project-join expres-
sion whose subexpressions evaluate to relations as small as
possible. For example, for the internal conjunctive query
πA0,An(E1 ▷◁ · · · ▷◁ Ek) of (t, k)-neighbour, one could take

γt,∞
A0

(
πA0,Ak (E1 ▷◁

πA1,Ak (E2 ▷◁

. . .

πAk−2,Ak (Ek−1 ▷◁

Ek) . . . ))
)

as in the “less näıve” evaluation method mentioned in Sec-
tion 3. The rationale behind it is that if each subexpression
yields an intermediate result of size at most K, then one can
evaluate the whole expression in time Õ(K).

A simple proxy for the size of an intermediate result is the
arity of the corresponding subexpression. Indeed, a subex-
pression of arity d yields at most Nd tuples on a database
of size N . We shall refer to the maximal arity of a subex-
pression of a project-join expression E as the width of E. If
E has width d, it can be evaluated in time Õ(Nd). The
width of a conjunctive query Q is the minimal width of
an equivalent project-join expression. This notion can be
equivalently defined in terms of tree decompositions, and co-
incides (up to 1) with a variant of tree-width suitable for
non-boolean conjunctive queries (some bag must contain all
answer columns) [7]. In the running example, the chosen
expression has width 3 (and it is optimal), so we only get a
cubic bound. Yet, all intermediate results are in fact at most
quadratic, because all computed tuples of arity 3 are ob-
tained from an edge and a node. The notion of width could
be refined to capture this: instead of measuring the arity of
subexpressions, one could measure the number of relations
needed to capture the set of columns of each subexpression.
This would align it with hypertree-width [19], one of many
tightenings of tree-width. For simplicity, however, we stick
to the basic width measure.
One way to execute a threshold query is to evaluate the

underlying conjunctive query Q = πX∪Y

(
R1 ▷◁ · · · ▷◁ Rn

)
,

and then perform the aggregation γa,b
X . We can use the

optimal project-join expression for Q, but we are still limited
by its width, which is at least |X ∪ Y |. In order to break
this barrier we need to avoid evaluating Q in full. The key
insight is that a pruned result of Q is sufficient to evaluate
the threshold query, because

γa,b
X (Q) = γa,b

X (πt
XQ)

for t = t(a, b) where t(a, b) = b+1 if b < ∞ and t(a,∞) = a.
How do we compute the pruned result efficiently?
The technique of pushing down projections is commonly

used to reduce the width of project-join expressions. It

amounts to exhaustively applying the identity

πX

(
F ▷◁ G

)
= πX

(
π(X∪ZG)∩ZF

(F ) ▷◁ π(X∪ZF )∩ZG
(G)

)
,

where ZF and ZG are the sets of columns of the expressions
F andG, respectively. For example, the expression chosen in
the running example is obtained this way from πA1,Ak (E1 ▷◁
(E2 ▷◁ · · · (Ek−1 ▷◁ Ek))). We can do the same with pruning.

In their seminal paper [10], Carey and Kossmann explored
ways of pushing the LIMIT operator down query plans. This,
however, is close to impossible. Indeed, LIMIT cannot be
pushed down through a projection, because different an-
swers may become identical after dropping some columns.
It is also very hard to push LIMIT down through a join, be-
cause we need to ensure that matching answers are kept in
both subplans. This is why Carey and Kossmann end up
recomputing additional tuples often.

The pruning operator πt
X , however, offers significantly

more control over which answers are kept, as it limits each
group independently. This makes it much easier to propa-
gate. In fact, it behaves very much like the projection πX

and satisfies the following identities

πt
X

(
F ▷◁ G

)
≡a,b

X πt
X

(
πt
(X∪ZG)∩ZF

(F ) ▷◁ πt
(X∪ZF )∩ZG

(G)
)
,

πt
X

(
πY F

)
≡a,b

X πt
X

(
πY (πt

X∪(ZF \Y )(F ))
)
.

Note that we cannot hope for equality here, because we
have no control over the actual tuples that the operation
πt
X keeps. Instead, we have an equivalence ≡a,b

X defined as
follows:

E1 ≡a,b
X E2 ⇐⇒ γa,b

X (E1) = γa,b
X (E2) .

Now, starting from any project-join expression E for Q we
can propagate πt

X down in πt
X(E) by applying the identities

above exhaustively (replacing left-hand sides by right-hand
sides). Let E′ be the resulting expression.

Unlike projection πX , pruning πt
X does not reduce the

arity of relations. However, it does reduce the size of the
relation in a similar fashion: πt

X(E) returns at most t ·N |X|

tuples over every database instance of size N . That is, what
actually matters for the complexity are the columns that
have not been affected by pruning. Indeed, the expression
E′ can be evaluated in time Õ(t ·Nd) where d is the width
of E′ computed as if each πt

Z were replaced by πZ . For
example, for (t, k)-neighbour we get the width-2 expression

γt,∞
A0

(
πt
A0

πA0,Ak (E1 ▷◁

πt
A1

πA1,Ak (E2 ▷◁

. . .

πt
Ak−2

πAk−2,Ak (Ek−1 ▷◁

πt
Ak−1

(Ek)) . . . ))
)

corresponding precisely to the algorithm for (t, k)-neighbour
from Section 3. (The gap between the theoretical quadratic
bound and the actual linear complexity is again caused by
relying on tree-width rather than hypertree-width.)

The best project-join expression E for Q, as obtained in
the query optimization process, need not result in the best
E′. For example, consider the query

γt,∞
A1,A3

(
E1 ▷◁ E2 ▷◁ E3 ▷◁ E′

4

)
for E′

4 = Edge(A3, A0), selecting pairs of nodes lying on at
least t 4-hop cycles as non-consecutive nodes. One of the



minimal-width project-join expressions for the inner con-
junctive query is

(
E1 ▷◁ E2

)
▷◁

(
E3 ▷◁ E′

4

)
. This expres-

sion leads to a width-4 prune-project-join expression. We
can do better. Instead of a minimal-width expression for
Q, we start with a minimal-width expression for πXQ. For
example, for the cycle query above we can use

πA1,A3

(
E2 ▷◁ E3

)
▷◁ πA1,A3

(
E′

4 ▷◁ E1

)
.

Each such expression can be turned into a prune-project-join
expression for πt

X(Q) by replacing projections that remove
columns from Y with appropriate pruning operators, bottom
up: each πU (G) should be replaced with πt

U (πU∪(ZG∩Y )(G));
additionally, we apply πt

X on top. Then, we propagate prun-
ing operators down the expression, using the identities. In
the cycle example we get a width-3 expression

πt
A1,A3

(
πt
A1,A3

(E2 ▷◁ E3) ▷◁ πt
A1,A3

(E′
4 ▷◁ E1)

)
.

This shows that πt
X(Q) can be evaluated in time Õ(t · Nd)

where d is the width of πX(Q) rather than of Q itself. (In
particular, for limit queries of the form πt

∅(Q), d is the width
of π∅(Q) which equals one plus the tree-width of Q.) To get

γa,b
X (Q) we simply apply γa,b

X to the result of πt
X(Q).

Evaluating a general threshold query q(x̄) ∧ ∃a,bp(x̄, ȳ)
with a ≥ 1, amounts to evaluating an expression of the form

πX∪Z

(
S1 ▷◁ · · · ▷◁ Sm

)
▷◁ γa,b

X

(
πX∪Y

(
R1 ▷◁ · · · ▷◁ Rn

))
where Z corresponds to variables in x̄ that are not actually
used in p. We can do this by evaluating the two subexpres-
sions independently and computing the join. If a = 0, we
need to return

πX∪Z

(
S1 ▷◁ · · · ▷◁ Sm

)
▷◁ γ1,b

X

(
πX∪Y

(
R1 ▷◁ · · · ▷◁ Rn

))
∪

∪ πX∪Z

(
S1 ▷◁ · · · ▷◁ Sm

)
▷ γ1,∞

X

(
πX∪Y

(
R1 ▷◁ · · · ▷◁ Rn

))
where ▷ is the antijoin operator. With πt

X

(
πX∪Y

(
R1 ▷◁

· · · ▷◁ Rn

))
computed for t = t(1, b), this can be done with

minimal overhead. Overall, threshold queries of width d
with thresholds a, b can be evaluated in time Õ

(
t(a, b) ·Nd

)
over databases of size N .

5. GETTING PRACTICAL
Interestingly, our query evaluation algorithm can be mim-

icked with the use of SQL window functions, which allows
us to evaluate its performance in practice. SQL window
functions are a modification of the standard grouping and
aggregation functionality. A window function uses values
from one or multiple rows in a group to return a value for
each row. Unlike aggregation, using window functions does
not replace the rows of a group with a single output row,
but rather the input rows retain their separate identities.
Below is an example of a query, over the same schema as
TQ3, that lists Nobel prizes with their laureates, and adds
a column with the laureate count of each Nobel.
SELECT NobelPrize.ID , Laureate.Name , COUNT (*)

OVER (PARTITION BY NoblePrize.ID) AS LCount
FROM NobelPrize , Laureate
WHERE NobelPrize.ID = Laureate.Prize_ID

We implement the generalized projection operator πt
X with

the help of the window function ROW_NUMBER() that assigns
consecutive natural numbers to rows in each group. We illus-
trate how to use window functions to implement the pruning
operator on the example of π10

source(Edge), conveniently bro-
ken up into subexpressions.

WITH
S AS (SELECT DISTINCT source , target FROM Edge)
C AS (SELECT source , target , ROW_NUMBER () OVER

(PARTITION BY source) AS i FROM S)
SELECT source , target FROM C WHERE i <= 10;

As a complete example, consider the (10, 3)-neighbour query
from Section 3 that identifies all nodes with at least 10 3-hop
neighbours. The rewriting using window functions follows.
WITH

S1 AS (SELECT DISTINCT source AS x2, target AS x3
FROM Edge),

C1 AS (SELECT x2, x3, ROW_NUMBER () OVER
(PARTITION BY x2) AS i FROM S1),

E1 AS (SELECT x2, x3 FROM C1 WHERE i <= 10),
S2 AS (SELECT DISTINCT source AS x1, x3

FROM Edge JOIN E1 ON Edge.target = T3.x2),
C2 AS (SELECT x1, x3, ROW_NUMBER () OVER

(PARTITION BY x1) AS i FROM S2),
E2 AS (SELECT x1, x3 FROM C2 WHERE i <= 10)
S3 AS (SELECT DISTINCT source AS x0, x3

FROM Edge JOIN E2 ON Edge.target = T2.x1),
C3 AS (SELECT x0, x3, ROW_NUMBER () OVER

(PARTITION BY x0) AS i FROM S2),
E3 AS (SELECT x0, x3 FROM C3 WHERE i <= 10),

SELECT x0 FROM E3 GROUP BY x0 HAVING COUNT (*) >=10;

We have used window functions, as illustrated above, to
asses the performance of our algorithm on the following three
types of queries, parameterized by path length k:

(q1) (10, k)-reach selects up to 10 pairs of nodes linked by a
k-hop path;

(q2) (10, k)-neighbour selects all nodes with at least 10 k-hop
neighbours;

(q3) (10, k)-path selects all pairs of nodes linked by at least
10 k-hop paths.

In our experiments we have used two kinds of data sets:

(1) The real-world IMDb data set used in Join Order Bench-
mark [25], which contains information about movies and
related facts about actors, directors, production compa-
nies, etc. We used the movie link relation, which ex-
hibits small-world network structure, and finding paths
in it is meaningful.

(2) Barabási-Albert graphs [5], which are synthetic data sets
that model the structure of scale-free social networks,
with varying parameters of n (total number of nodes to
add) and m0 (the number of edges to attach from newly
added nodes to existing nodes).

We have used PostgreSQL 13.4 powered by a machine with
Intel Core i7-4770K CPU @ 3.50GHz, 16GB of RAM, and an
SSD. PostgreSQL, and other RDBMSs, implements window
functions using sorting, to handle an optional but frequently
used ORDER BY clause in the partition definitions. Sorting is
unnecessary for our purposes and leads to non-optimal im-
plementations of threshold queries. Still, the use of window
functions allows to greatly reduce the number of intermedi-
ate results, which is an essential aspect of our algorithms.
Consequently, the rewriting offers a significant overall per-
formance boost despite the overhead cost of sorting.

In the first experiment we compare the running time of
the baseline and windowed versions of (q1–q3) for varying
values of k on both the IMDB and synthetic data sets (Ta-
ble 1). We see that our approach (windowed) outperforms
the baseline with speedups of up to three orders of magni-
tude, while the baseline times out (T/O) for higher values of
k. The running times of the windowed versions reflect the



Table 1: Experimental evaluation for the baseline (b) and windowed (w) versions of (q1–q3). All measurements are ms.

IMDB database Barabási-Albert graphs with m0 = 10 and n = 3000

k 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

q1/b 39 277 5.157 103.449 T/O T/O T/O T/O T/O T/O 74 549 3.364 19.161 106.741 601.279 T/O T/O T/O T/O
q1/w 39 58 69 88 97 115 132 148 162 176 80 196 298 404 537 665 1.260 1.478 1.547 1.675

q2/b 50 349 5.742 134.97 T/O T/O T/O T/O T/O T/O 138 1.296 11.207 90.199 644.86 T/O T/O T/O T/O T/O
q2/w 44 63 74 93 104 119 137 150 167 180 152 282 399 506 579 653 1.235 1.390 1.540 1.667

q3/b 94 652 11.568 267.176 T/O T/O T/O T/O T/O T/O 273 2.423 18.670 122.894 T/O T/O T/O T/O T/O T/O
q3/w 146 690 2.695 5.266 10.679 18.400 31.020 48.942 74.795 103.054 420 4.201 23.903 57.555 109.764 189.893 301.510 390.968 510.171 576.009

Table 2: Experimental evaluation of the speedup factor, the
ratio of baseline to windowed, for q2 with k = 3 on Barabási-
Albert graphs.

m0\n 32 100 316 1k 3.2k 10k 32k 100k 316k 1M

5 0.6 1.8 3.0 3.6 4.6 5.7 6.7 7.7 8.7 10.0
10 1.4 6.8 13.8 22.8 29.7 37.1 40.0 73.5 T/O T/O
15 2.1 16.3 46.6 66.2 90.5 120.4 T/O T/O T/O T/O
20 1.1 35.4 96.0 149.1 192.8 404.3 T/O T/O T/O T/O
25 0.6 55.2 184.7 272.5 351.7 T/O T/O T/O T/O T/O

good theoretical bounds, while the baseline clearly shows
exponential dependence on k.

In the second experiment, we wish to assess the impact
of the structure and size of the data on the running time
of our algorithm. We use Barabási-Albert synthetic graphs
with varying outdegree (m0) and varying number of nodes
(n), and we compare the running times of the two versions
of query q2 with k = 3 (Table 2) We varied m0 from 5 to
25, using increments of 5, and varied n from 32 to 1M in a
logarithmic scale with increment factor of

√
10 ≈ 3.16. In

the table, we see that the speedup factor of the windowed
approach increases by up to three orders of magnitude as
the size of the data and out-degree m0 increase. T/O means
that the baseline approach timed out (> 30 minutes). For
all entries in Table 2, the windowed algorithm terminated
in under 15 minutes. These results show the robustness of
our algorithm to variations of dataset size and outdegree as
well as its superiority with respect to the baseline.

6. EVALUATION IN ALL ITS FLAVOURS
In Section 4, we discussed methods to evaluate threshold

queries more efficiently. However, when the arity of queries
is large, the complexity of the algorithm is high, that is,
exponential in the arity. So, can we do better?

In order to deal with queries potentially returning very
large number of answers, researchers have considered several
variants of the query evaluation problem. We briefly discuss
these variants — and their relationship to our work — before
explaining our main theorem. Standard query evaluation
asks, for a query q and a database D, to compute

q(D) ,

which is the set of answers of q on D, also called the output
of q on D. Variants of query evaluation studied in literature
include at least the following.

(E1) Boolean evaluation; that is, testing existence of an an-
swer. This variant tests if q(D) is non-empty.

(E2) Counting all answers. Here, the task is to compute
|q(D)|, the number of elements of q(D).

(E3) Sampling answers with uniform probability. Here, the
task is to return a single random answer a ∈ q(D) with
the probability of each a being 1/|q(D)|.

(E4) Enumerating all the answers of the query, that is, gen-
erating q(D) element by element, without repetition.

The computational cost of these variants tends to increase
as we go down in the list. Indeed, (E1) is the easiest prob-
lem since it just aims at testing if a query has at least one
result, and (E4) is the most difficult one since it is aims at
computing all answers. For each of the variants, we briefly
discuss some results that are important to us.

Boolean Evaluation. Even the simplest problem (E1) is
intractable already for conjunctive queries [1, Chapter 15].
One reason is that conjunctive queries can look for k-clique-
shaped pattern in the data, which means that testing if the
answer of such queries is non-empty amounts to solving the
NP-hard k-clique problem. However, queries in practice very
often have a simple structure and are often acyclic [8, 9].
The large body of work triggered by Yannakakis’ seminal re-
sult on efficient evaluation of acyclic conjunctive queries [36]
teaches us that Boolean evaluation for queries whose topo-
logical structure is tree-like can be done efficiently. Even
stronger, we know that tree-likeness of the query is not
only helpful but even necessary for polynomial-time Boolean
evaluation of conjunctive queries [20]. Technically, the no-
tion of tree-width is used to measure how tree-like a query
is: queries with low tree-width are tree-like and queries
with high tree-width are highly cyclic. For instance, a tree-
pattern query has tree-width one, whereas a query asking for
the existence of a k-clique has tree-width k− 1. Recall that
tree-width is one less than the width discussed in Section 4
(for Boolean queries).

Counting. One way to generalize (E1) is by computing the
exact number of answers of a query (E2). For projection-
free conjunctive queries (join queries), counting all answers
is, just like Boolean evaluation, tightly connected to their
tree-width [14, 18]. In the presence of projection, however,
counting query answers is intractable even for acyclic con-
junctive queries [31]. Efficient algorithms for counting an-
swers to general conjunctive queries (project-join queries) re-
quire not low tree-width but low free-connex tree-width [16].
Here, free-connex tree-width is, just like tree-width, usually
defined in terms of tree decompositions, but it restricts the
kind of decompositions that are allowed: there needs to be
a connected set of nodes including the root that contain ex-
actly the output variables. This allows projecting out all
remaining variables before beginning to count. In fact, the
original result [16] was stated in terms of low tree-width and
low star size but we have proved that this is equivalent to
low free-connex tree-width [7]. However, when the problem



is relaxed to randomized approximate counting, low free-
connex tree-width is not necessary for efficient algorithms
to exist. That is, it is sufficient for queries to have low tree-
width [2], just like for Boolean evaluation. Our methods in
Section 4 show that for a different relaxation—exact count-
ing, but only up to a given threshold—conjunctive queries
of low tree-width can also be processed efficiently, simply by
evaluating the associated limit query (with the same thresh-
old) and counting the answers. However, in our main result
(Theorem 1) we go far beyond conjunctive queries and show
how to count answers to threshold queries (which themselves
generalize the problem of counting answers to conjunctive
queries up to a threshold).

Sampling an Answer with Uniform Probability. Sam-
pling query answers was identified as an important data
management task by Chaudhuri at al. [12], who proposed
a simple algorithm for sampling the join S ▷◁ T by sampling
a tuple s ∈ S with weight |T ⋉ {s}| and then uniformly
sampling a tuple t ∈ T ⋉ {s}. Using the alias method for
weighted sampling [33, 35], this algorithm can be imple-
mented in such a way that after a linear time preprocess-
ing phase, independent samples can be obtained in constant
time. This approach was generalized to acyclic projection-
free conjunctive queries [37]. Our Theorem 1 extends the lat-
ter result in three ways: we handle non-acyclic conjunctive
queries, allowing the complexity to grow with the tree-width,
we can allow projection at the cost of replacing tree-width
with its faster growing free-connex variant; and we han-
dle threshold queries, rather than just conjunctive queries.
Finally, Arenas et al. [2] show that efficient almost uni-
form sampling is possible for conjunctive queries of low tree-
width. Here, almost uniform means that the algorithm ap-
proximates the uniform distribution up to a multiplicative
error; this is a weaker notion than uniform sampling.

Enumerating Answers. In the context of enumerating all
the answers to a query, much work has concentrated on guar-
antees on the delay between successive answers. Such query
answering algorithms start with a preprocessing phase, which
is followed by an enumeration phase that generates the an-
swers one by one. A significant focus was on constant-delay
enumeration which, after a polynomial-time preprocessing
phase, aims at generating the answers to the query such
that the time between successive answers is constant. In
this setting, again, low tree-width is not enough to guar-
antee the existence of constant-delay algorithms: the query
needs to have low free-connex tree-width [4]. Importantly,
even acyclic queries can have large free-connex tree-width.
Tree-width can be replaced with fractional hypertree-width
[30, 15, 23] or submodular width [6] but always in the re-
strictive free-connex variant. In Section 4 we have seen that
if the number of needed answers is known beforehand, con-
junctive queries of low tree-width can be processed efficiently
even if they have large free-connex tree-width. This result
is only the starting point for processing threshold queries,
for which we provide a general constant-delay enumeration
algorithm (Theorem 1).

Our Results. Our paper gives two main insights. The first
insight, which was explained in Section 4, is that the thresh-
old variants of (E2) and (E4) for conjunctive queries are eas-
ier than their general variants: we show that the threshold

variants of these problems are tractable if the (unrestricted)
tree-width of queries is small whereas, in the general vari-
ants, restricted forms of their tree-width need to be small.
The point here is that, in general, the restricted tree-width
of queries is never smaller than the unrestricted tree-width;
and it may be larger.

The second insight is about threshold queries, which are
more general than conjunctive queries, and whose evalua-
tion problem generalizes the threshold evaluation problems
for conjunctive queries. Our main theorem about threshold
queries is about counting answers (E2), sampling answers
(E3), and constant-delay enumeration (E4); and its proof
relies on our first insight. The result shows that, for such
threshold queries of free-connex tree-width d (which is one
of the restricted variants we just mentioned), these prob-

lems can be done in time Õ(nd). Here, we need free-connex
tree-width because for these problems it is needed already
for conjunctive queries, which are a special case of thresh-
old queries. Recall that the value d is usually very small in
practice.

Theorem 1. For threshold queries of free-connex tree-
width d, over databases of size n, one can

(a) count answers in time Õ(nd);

(b) enumerate answers with constant delay after Õ(nd) pre-
processing; and

(c) sample answers uniformly in constant time after Õ(nd)
preprocessing.

Assuming d is constant, the combined complexity of each of
these algorithms is pseudopolynomial; that is, it is polyno-
mial in the values of the finite thresholds, rather than the
number of bits in their binary representations.

7. CONCLUSIONS
In this paper, we have shown that thresholds are common-

place in real-life queries and that with dedicated optimiza-
tion techniques, we can speed up the evaluation of threshold
queries, in all its flavours.

We argue that threshold queries are a category on their
own and deserve separate treatment alongside other classi-
cal query classes. As future directions of investigation, we
intend to explore the role of threshold queries in algebraic
components of query engines, we wish to develop and extend
optimization methods, and expand benchmarking efforts to
broader classes of queries and more diverse data sets. In
particular, we envision a comprehensive study of algebraic
equivalence and optimization rules, as well as cost models
and selectivity estimation methods for the new operators
and their use in query optimizers. For example, the exist-
ing state-of-the-art benchmarks, such as the TPC bench-
marks [32] and the Join Order Benchmark [25] could be ex-
tended to cover this important class of queries. Classical
query optimization and selectivity estimation methods [11],
would need to be redesigned in order to cover queries with
thresholds.
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