
BIROn - Birkbeck Institutional Research Online

Aamer, H. and Hidders, Jan and Paredaens, J. and Bussche, J.V.d.
(2021) Expressiveness within Sequence Datalog. In: UNSPECIFIED
(ed.) PODS’21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. ACM, pp. 70-81. ISBN
9781450383813.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53502/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/53502/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Expressiveness within Sequence Datalog
Heba Aamer

Hasselt University
heba.mohamed@uhasselt.be

Jan Hidders
Birkbeck, University of London

jan@dcs.bbk.ac.uk

Jan Paredaens
Universiteit Antwerpen

jan.paredaens@uantwerpen.be

Jan Van den Bussche
Hasselt University

jan.vandenbussche@uhasselt.be

Abstract

Motivated by old and new applications, we investigate Datalog as a
language for sequence databases. We reconsider classical features of Dat-
alog programs, such as negation, recursion, intermediate predicates, and
relations of higher arities. We also consider new features that are useful
for sequences, notably, equations between path expressions, and “pack-
ing”. Our goal is to clarify the relative expressiveness of all these different
features, in the context of sequences. Towards our goal, we establish a
number of redundancy and primitivity results, showing that certain fea-
tures can, or cannot, be expressed in terms of other features. These
results paint a complete picture of the expressiveness relationships among
all possible Sequence Datalog fragments that can be formed using the six
features that we consider.

This paper is the extended version of a paper presented at PODS
2021 [1]

1 Introduction
Interest in sequence databases dates back for at least three decades [13]. For
clarity, here, by sequence databases, we do not mean relations where the tuples
are ordered by some sequence number or timestamp, possibly arriving in a
streaming fashion (e.g., [12, 43, 39, 28]). Rather, we mean databases that allow
the management of large collections of sequences.

In the early years, sequence databases were motivated by applications in
object-oriented software engineering [5] and in genomics [9, 26]. While these
applications remain relevant, more recent applications of sequence databases
include the following.

• Process mining [25] operates on event logs, which are sets of sequences.
Thus, sequence databases, and sequence database query languages, can
serve as enabling technology for process mining. For example, a typical

1

ar
X

iv
:2

20
6.

06
75

4v
1

 [
cs

.D
B

]
 1

4
Ju

n
20

22

query one may want to be able to support is look for all logs in which
every occurrence of ‘complete order’ is followed by ‘receive payment’.

• Graph databases have as main advantage over relational databases that
they offer convenient query primitives for retrieving paths. Paths are,
of course, sequences. For example, the G-CORE graph query language
proposal [29] supports the querying of sequences stored in the database,
separately from the graph; these sequences do not even have to correspond
to actual paths in the graph. An example query in such a context could
be to return the nodes that belong to all paths in a given set of paths.

• JSON Schema [36] is based on the notion of JSON pointers, which are
sequences of keys navigating into nested JSON objects. In J-Logic [22] we
showed that modeling JSON databases as sequence databases is very con-
venient for defining JSON-to-JSON transformations in a logical, declara-
tive manner.
For a simple example, consider a JSON object Sales that is a set of key–
value pairs, where keys are items; the value for an item is a nested object
holding the sales volumes for the item by year. Specifically, the nested
object is again a set of key–value pairs, where keys are years and values
are numbers. We can naturally view Sales as a set of length-3 sequences
of the form item–year–value. Restructuring the object to group sales by
year, rather than by item, then simply amounts to swapping the first two
elements of every sequence. For another example, checking if two JSON
objects are deep-equal amounts to checking equality of the corresponding
sets of sequences.

• Logical approaches to information extraction [44, 17] model the result of
an information extraction as a sequence database.

Given the importance of sequences in various advanced database applica-
tions, our research goal in this paper is to obtain a thorough understanding of
the role that different language features play in querying sequence databases.
For such an investigation, we need an encompassing query language in which
these features are already present, or can be added. For this purpose we adopt
Datalog, a logical framework that is well established in database theory research,
and that has continued practical relevance [14, 7, 4].

Indeed, Datalog for sequence databases, or Sequence Datalog, was already
introduced and studied by Bonner and Mecca in the late 1990s [9, 32]. They
showed that, to make Datalog work with sequence databases, all we have to
do is to add terms built from sequence variables using the concatenation op-
erator. In our work we refer to such terms as path expressions and refer to
sequence variables as path variables.1 Bonner and Mecca studied computational

1We actually work with a minor variant of Bonner and Mecca’s language; while they
additionally introduce index terms, but only allow path expressions in the heads of rules, we
allow path expressions also in rule bodies, and additionally introduce atomic variables. The
two variants are equivalent in that one can be simulated by the other requiring no additional
features such as negation or recursion.

2

completeness, complexity, and termination guarantees for Sequence Datalog,
and showed how to combine Sequence Datalog with subcomputations expressed
using transducers.

Sequence Datalog was recently also considered for information extraction
(“document spanners”), with regular expression matching built-in as a primi-
tive [33, 35]. Such regular expressions may be viewed as very useful syntactic
sugar, as they are also expressible using recursion. Adding regular matching
directly may be compared to Bonner and Mecca’s transducer extensions; the
PTIME capturing result reported by Peterfreund et al. [35] may be compared
to Corollary 3 of Bonner and Mecca [9].

In the present work, we study the relative expressiveness of query language
features in the context of Sequence Datalog. Some of the features we consider
are standard Datalog, namely, recursion, stratified negation, and intermediate
predicates. The latter feature actually comprises two features, since we dis-
tinguish between monadic intermediate predicates and intermediate predicates
of higher arities. While we omit regular expression matching as a feature, we
consider two further features that are specific to sequences:

• Equalities between path expressions, which we call equations, allow for the
elegant expression of pattern matching on sequences.

• Packing, a feature introduced in J-Logic, is a versatile tool that allows for
subsequences to be “bracketed” and temporarily treated as atomic values;
they can be unpacked later.

The standard Datalog features, whose expressiveness is well understood on
classical relational structures [3, 16], need to be re-examined in the presence of
sequences; moreover, their interaction with the new features needs to be under-
stood as well. For example, consider recursion versus equations, and the query
that checks whether an input sequence $x consists exclusively of a’s. (Path
variables are prefixed by a dollar sign.) With an equation we can simply write
$x · a = a · $x (using the dot for concatenation). Without equations (or other
means to simulate equations), however, this query can only be expressed using
recursion. For another example, consider monadic versus higher-arity interme-
diate predicates. Classically, there are well-known arity hierarchies for Datalog
[21]. In our setting, however, a unary relation can already hold arbitrary-length
sequences, and indeed, using a simple coding trick, we will see that the arity
feature is actually redundant.

In our work, we have chosen to define expressiveness in terms of the baseline
class of “flat unary queries”, namely, functions from unary relations to unary
relations, where both the input and the output are just sets of plain, unpacked
sequences. In this way, we avoid trivial tautologies such as “packing is a prim-
itive feature, because without it, we cannot create packed sequences”. As a
matter of fact, we will show that packing, although it certainly is a convenient
feature, is actually redundant for expressing these flat unary queries. A result in
this direction was already stated for J-Logic [22], but the technique used there

3

to simulate packing requires recursion. In the present paper, we show that pack-
ing is redundant also in the absence of recursion. Our proof technique leverages
associative unification [2], and more specifically, the termination of associative
unification for particular cases of word equations [15].

Our further results can be summarized as follows.

1. At first sight, equations seem to be a redundant feature, at least in the
presence of intermediate predicates. Indeed, instead of using an equation
e1 = e2 as a subgoal, we can introduce an auxiliary relation T (e1, e2), and
replace the equation by the subgoal T (e1, e1). (Our notation here is not
precise but hopefully enough to convey the idea). With negated equa-
tions and recursion, however, this simple trick does not work as it violates
stratification. We still show, however, that equations are redundant in the
presence of both intermediate predicates and negation.

2. In the absence of intermediate predicates, however, equations are a prim-
itive feature. Indeed, the “only a’s” query mentioned above, easily ex-
pressed with an equation, is not expressible in the absence of intermediate
predicates.

3. One can also, conversely, simulate intermediate predicates using equations:
a simple folding transformation works in the absence of negation and re-
cursion. In the presence of negation or recursion, however, intermediate
predicates do add power. This is fairly easy to show for recursion: the
squaring query “for every path p in the input, output an2 , where n is the
length of p” requires an intermediate predicate in which the output can be
constructed recursively. In the presence of negation, the primitivity of in-
termediate predicates can be seen to follow from the corresponding result
for classical Datalog (by quantifier alternation). Some work has still to be
done, however, since the classical proof has to be extended to account for
path expressions and equations.

4. It will not surprise the reader that recursion is primitive in Sequence Dat-
alog. This can be seen in many ways; probably the easiest is to use the
above squaring query, and to observe that without recursion, the length
of output sequences is at most linear in the length of input sequences.
Another proof, that also works for boolean queries, is by reduction to the
classical inexpressibility of graph connectivity in first-order logic. As in
the previous paragraph, the reduction must account for the use of path
expressions and equations.

5. A classical fact is that nonrecursive Datalog with stratified negation is
equivalent to the relational algebra. We extend the standard relational al-
gebra by allowing path expressions in selection and projection, and adding
operators for unpacking and for subsequences. We obtain a language
equivalent to nonrecursive Sequence Datalog.

4

Woodstock ’18, June 03–05, 2018, Woodstock, NY Trovato and Tobin, et al.

{I,N,R} = {E, I,N,R}

{I,N} = {E, I,N} {E,N,R} {I,R} = {E, I,R}

{E,N} {N,R} {E,R}

{N} {E} = {I} = {E, I} {R}

{}

Figure 1: Equivalence Classes of the di�erent sets of features where an ascending path denotes subsumption; absence of such
a path denotes non-subsumption.

After applying the procedure, we get the following program:

T(a·$x, $x) R($x).
S($x) T($x·a, $x).

Listing 4: Transformed Program

L���� 3.6. E is redundant in the presence of I, A and N.

P����. The proof of Lemma 3.4 shows how we can eliminate
positive equations in the absence of negation. However, the same
rewriting can be applied to remove positive equations in the pres-
ence of negation.

What remains is to show how we can eliminate negated equa-
tions. Before showing how we can prove our lemma, we brie�y
discuss why we can not use the procedure of eliminating positive
equations.

There are two problems in using the procedure of Lemma 3.4.
Assume we have a rule r of the form H B^¬(e1 = e2). Applying
the procedure of Lemma 3.4, we get the following two rules, where
the�’s are all the variables that appear in B and S is a fresh relation
name:

S(e1,�1, . . . ,�n) B.
H ¬S(e2,�1, ...,�n).
The �rst problem in this approach is that the rule is not safe.

However, this problem can be easily solved as follows:
S(e1,�1, . . . ,�n) B.
H B ^ ¬S(e2,�1, ...,�n).
The second problem that we can not solve easily is when r is a

recursive rule. Then the resultant program uses nonstrati�ed nega-
tion. That’s why we need a totally di�erent approach to eliminate
negated equations.

In our new approach we show how we can rewrite a rule with
negated equations into other rules that uses only positive equations.

We remove all negated equations from one stratum at once. For
each stratum � that contains a rule with negated equations, we
introduce a new stratum �0 that appears right before � such that
�0 contains the following set of rules. Let � be a renaming that
maps each relation name of a head predicate in � to a fresh relation
name; relation names that occur only in bodies in � are mapped to
themselves by �.

For each rule r : H B in � such that B has no negated
equations, we add the rule �(r) to �0.

For each rule r : H B ^ e1 , e 01 ^ . . . ^ en , e 0n in � with n
negated equations, we add the following rules to �0. Here, the �’s
are all the variables appearing in B, and T is a fresh relation name:

�(H) �(B)
T (�1, . . . ,�m) �(B) ^ e1 = e 01.
...

T (�1, . . . ,�m) �(B) ^ en = e 0n .
Now, what remains is to remove the negated equations from r

in �. This is done by replacing r in � with the following rule:
H B ^ ¬T (�1, . . . ,�m).

⇤

Example 3.7 (Eliminating Negated Equations). Consider the fol-
lowing program computing a query from R to S such that S =
{a1 · · · · · an · bn · · · · · b1 | R(a1 · · · · · an · bn · · · · · b1 with ai ,
bi for i = 1 . . .n}:

U($x, $x) R($x).
U($x, $y) U($x, @a·$y·@b), ¬(@a=@b).
S($x) U($x, �).

After applying the procedure, we get the following program:

U1($x, $x) R($x).
U1($x, $y) U1($x, @a·$y·@b).
T($x, $y, @a, @b) U1($x, @a·$y·@b), @a=@b.
S1($x) U1($x, �).
U($x, $x) R($x).
U($x, $y) U($x, @a·$y·@b), ¬T($x, $y, @a, @b).
S($x) U($x, �).

T������ 3.8. E is redundant in the presence of I.

P����. This proof follows directly from Lemma 3.4, Lemma 3.6,
and Theorem 3.2. ⇤

Figure 1: Relative expressiveness of the different sets of Sequence Datalog fea-
tures (Negation, Equations, Intermediate predicates, and Recursion; features
Arity and Packing will turn out to be entirely redundant). An ascending path
denotes subsumption; absence of such a path denotes non-subsumption.

Our results allow us to completely classify the sixteen possible Sequence
Datalog fragments in a Hasse diagram with respect to their expressive power, as
shown in Figure 1. Some fragments are equivalent, as shown; also, the features
for packing and higher-arity intermedicate predicates are omitted, since they
are redundant independently of the presence or absence of other features.

This paper is organized as follows. In Section 2 we define the sequence
database model and the syntax and semantics of Sequence Datalog. In Sec-
tion 3 we introduce the language features and rigorously define what we mean
by one fragment (set of features) being subsumed in expressive power by another
fragment. Section 4 presents our redundancy (expressibility) results, and Sec-
tion 5 presents our primitivity (inexpressibility) results. The Hasse diagram of
Figure 1 is assembled in Section 6. Section 7 presents the relational algebra for
sequence databases. We conclude in Section 8, where we also discuss additional
related work.

2 Sequence databases and Sequence Datalog
In this section we formally define the sequence database model and the syntax
and semantics of Sequence Datalog. We do assume some familiarity with the
basic notions of classical Datalog [3].

2.1 Data model for sequence databases
A schema Γ is a finite set of relation names, each name with an associated arity
(a natural number). We fix a countably infinite universe dom of atomic data
elements, called atomic values. The sets of packed values, values, and paths are
defined as the smallest sets satifying the following:

1. Every atomic value is a value.

5

2. Every finite sequence of values is a path. The empty path is denoted by
ε.
When writing down paths, we will separate the elements by dots, where
the · symbol also serves as the usual symbol for concatenation. Recall
that concatenation is associative.

3. If p is a path, then 〈p〉 is a packed value.

4. Every packed value is a value.
The set of all paths is denoted by Π.

For example, if a, b and c are atomic values, then a · b · a is a path; 〈a · b · a〉
is a packed value; and c · 〈a · b · a〉 is again a path.

An instance I of a schema Γ is a function that assigns to each relation name
R ∈ Γ a finite n-ary relation on Π, with n the arity of R.

It is natural to identify a value v with the one-length sequence v. Thus
values, in particular atomic values, are also paths. Hence, classical relational
database instances are a special case of instances as defined here. We refer to
such instances as classical. So, in a classical instance, each relation name R is
assigned a finite relation on dom.

2.2 Syntax of Sequence Datalog
We assume disjoint supplies of atomic variables (ranging over atomic values)
and path variables (ranging over paths). The set of all variables is also disjoint
from dom. We indicate atomic variables as @x and path variables as $x. Path
expressions are defined just like paths, but with variables added in. Formally,
we define the set of path expressions to be the smallest set such that:

1. Every atomic value is a path expression;

2. Every variable is a path expression;

3. If e is a path expression, then 〈e〉 is a path expression;

4. Every finite sequence of path expressions is a path expression.
A predicate is an expression of the form P (e1, . . . , en), with P a relation

name of arity n, and each ei a path expression. We call ei the ith component
of the predicate. An equation is an expression of the form e1 = e2, with e1 and
e2 path expressions.

Many of the following definitions adapt well-known Datalog notions to our
data model.

An atom is a predicate or an equation. A negated atom is an expression of
the form ¬A with A an atom. We write a negated equation ¬e1 = e2 also as
a nonequality e1 6= e2. A literal is an atom (also called a positive literal) or
a negated atom (a negative literal). A body is a finite set of literals (possibly
empty). A rule is an expression of the form H ← B, where H is a predicate,
called the head of the rule, and B is a body.

We define the limited variables of a rule as the smallest set such that:

6

1. every variable occurring in a positive predicate in the body is limited; and

2. if all variables occurring in one of the sides of a positive equation in the
body are limited, then all variables occurring in the other side are also
limited.

A rule is called safe if all variables occurring in the rule are limited.
Finally, a program is a finite sequence of strata, which are finite sets of safe

rules, so that use of negation in the program is stratified. Recall that stratified
negation means that when a negated predicate ¬P (e1, . . . , en) occurs in some
stratum, then no rule in that stratum or later strata can use P in the head
predicate.

Note that classical Datalog programs with stratified negation are a special
case of our notion of programs, where the only path expressions used are atomic
values or atomic variables.
Example 2.1. An NFA can be represented by a unary relation N (initial states),
a ternary relation D (transitions), and a unary relation F (final states). These
would be classical relations. Now consider a unary relation R containing paths
without packing, i.e., strings of atomic values. Then the following program,
consisting of a single stratum, computes in relation A the strings from R that
are accepted by the NFA. Recall that atomic variables are prefixed with @, and
path variables with $.

S(@q·$x, ε) ← R($x), N(@q).
S(@q2·$y, $z·@a) ← S(@q1·@a·$y, $z), D(@q1, @a, @q2).
A($x) ← S(@q,$x), F(@q).

Example 2.2. Consider unary relations R and S. The following program, again
in a single stratum, uses packing and nonequalities to check whether there are
at least three different occurrences of a string from S as a substring in strings
from R. The boolean result is computed in the nullary relation A.

T($u·<$s>·$v) ← R($u·$s·$v), S($s).
A ← T($x),T($y),T($z), $x6=$y, $x 6=$z, $y 6=$z.

2.3 Semantics
We have defined the notion of instance as an assignment of relations over Π to
relation names. A convenient equivalent view of instances is as sets of facts. A
fact is an expression of the form R(p1, . . . , pn) with R a relation name of arity
n, and each pi a path. An instance I of a schema Γ is viewed as the set of facts
{R(p1, . . . , pn) | R ∈ Γ and (p1, . . . , pn) ∈ I(R)}.

A valuation ν is a function that maps atomic variables to atomic values and
path variables to paths. We say that ν is appropriate for a syntactical construct
(such as a path expression, a literal, or a rule) if ν is defined on all variables in
that syntactical construct. We can apply an appropriate valuation ν to a path

7

expression e by substituting each variable in e by its image under ν and obtain
the path ν(e). Likewise, we can apply an appropriate valuation to a predicate
and obtain a fact.

Let L be a literal, ν a valuation appropriate for L, and I an instance. The
definition of when I, ν satisfies L is as expected: if L is a predicate, then the
fact ν(L) must be in I; if L is an equation e1 = e2, then ν(e1) and ν(e2) must
be the same value. If L is a negated atom ¬A, then I, ν must not satisfy A.

A body B is satisfied by I, ν if all its literals are. Now a rule r = H ← B
is satisfied in I if for every valuation ν appropriate for r such that I, ν satisfies
B, also I, ν satisfies H.

The relation names occurring in a program are traditionally divided into
EDB and IDB relation names. The IDB relation names are the relation names
used in the head of some rules; the other relation names are the EDB relation
names. Given a schema Γ, a program is said to be over Γ if all its EDB relation
names belong to Γ, and its IDB relation names do not. Now the semantics of
programs is defined as usual. A program is called semipositive if negated pred-
icates only use EDB relation names. We first apply the first stratum, which
is semipositive, and then apply each subsequent stratum as a semipositive pro-
gram to the result of the preceding strata. So we only need to give semantics
for semipositive programs. Let P be a semipositive program over Γ, and let I
be an instance over Γ. Let Γ′ be the set of IDB relation names of P. Then P(I)
is the smallest instance over Γ ∪ Γ′ that satisfies all the rules of P, and that
agrees with I on Γ.

Due to recursion, for some programs or instances, P(I) may be undefined,
since instances are required to be finite. We also say in this case that P does not
terminate on I. If, in the course of evaluating a program P with several strata
on an instance I, one of the strata does not terminate, we agree that the entire
program P is undefined on I. As mentioned in the Introduction, Bonner and
Mecca have done substantial work on the question of guaranteeing termination
for Sequence Datalog programs. In this paper, we only consider programs that
always terminate.
Example 2.3. The program from Example 2.1, while recursive, is guaranteed to
terminate on every instance. In contrast, the following two-rule program will
not terminate on any instance:

T(a).
T(a·$x) ← T($x).

3 Features, fragments, and queries
In this paper, we consider six possible features that a program may use, each
identified by a letter, spelled out as follows.

Arity A program uses arity (has the A-feature) if it contains at least one pred-
icate of arity greater than one.

8

Recursion A program uses recursion (has the R-feature) if there is a cycle in
its dependency graph.2

Equations A program uses equations (has the E-feature) if it contains at least
one equation in some rule.

Negation A program uses negation (has the N-feature) if it contains at least
one negated atom in some rule.

Packing A program uses packing (has the P-feature) if a path expression of
the form 〈e〉 occurs in some rule.

Intermediate predicates A program uses intermediate predicates (has the
I-feature) if it involves at least two different IDB relation names.

Let Φ = {A,E, I,N,P,R} be the set of all features. A subset of Φ is called a
fragment. A program P is said to belong to a fragment F if it uses only features
from F .
Example 3.1. The following program belongs to fragment {E}. It computes, in
relation S, all paths from R that consist exclusively of a’s.

S($x) ← R($x), a·$x=$x·a.

The following program does the same, but belongs to fragment {A, I,R}:

T($x, $x) ← R($x).
T($x, $y) ← T($x, $y·a).
S($x) ← T($x, ε).

3.1 Queries and subsumption among fragments
Our goal is to compare the different fragments with respect to their power in
expressing queries. Our methodology is to do this relative to a baseline class of
queries that do not presuppose any feature to begin with. We next define these
queries formally.

We call a schema monadic if each of its relation names has arity zero or one.
Also, we call an instance flat if it contains no occurrences of packed values.

Given a monadic schema Γ and relation name S 6∈ Γ of arity at most one, a
query from Γ to S is a total mapping from flat instances over Γ to flat instances
over {S}. A program P is said to compute such a query if

1. P is over Γ;

2. P terminates on every flat instance of Γ;

3. S is an IDB relation of P; and
2The nodes of this graph are the IDB relation names, and there is an edge from R1 to R2

if R2 occurs in the body of a rule with R1 in its head predicate.

9

4. P(I)(S) equals Q(I) for every flat instance I of Γ.

We now say that fragment F1 is subsumed by fragment F2, denoted by
F1 ≤ F2, if every query computable by a program in F1 is also computable by
a program in F2. Note that it is possible, for different F1 and F2, that F1 ≤ F2
and F2 ≤ F1. Such two fragments are equivalent in expressive power. There
will turn out to be 11 equivalence classes; in Section 6 we will give a theorem
that will characterize the subsumption relation as shown in Figure 1.

3.2 Redundancy and primitivity
We will explore the subsumption relation by investigating the redundancy or
primitivity of the different features with respect to other features. A feature
might be redundant in an absolute sense, in that it can be dropped from any
fragment without decrease in expressive power. This is a very strong notion
of redundancy, and we cannot expect it to hold for most features. Yet a more
relative notion of redundancy may hold, meaning that some feature does not
contribute to expressive power, on condition that some other features are already
present, or are absent. This leads to the following notions.

Definition 3.2 (Redundancy). Let X be a feature and let Y and Z be sets of
features.

• X is redundant if F ≤ F − {X} for every fragment F .

• X is redundant in the presence of Y if F ≤ F − {X} for every fragment
F such that Y ⊆ F .

• X is redundant in the absence of Z if F ≤ F −{X} for every fragment F
such that Z is disjoint from F .

• X is redundant in the presence of Y and absence of Z if F ≤ F −{X} for
every fragment F such that Y ⊆ F and Z is disjoint from F .

Similarly, but conversely, a feature might be primitive in an absolute sense,
in that dropping it from a fragment always strictly decreases the expressive
power. Then again, for other features only more relative notions of primitivity
may hold.

Definition 3.3 (Primitivity). Let X be a feature and let Y and Z be sets of
features. Recall that Φ is the set of all features.

• X is primitive if {X} � Φ− {X}.

• X is primitive in the presence of Y if {X} ∪ Y � Φ− {X}.

• X is primitive in the absence of Z if {X} � Φ− ({X} ∪ Z).

10

4 Expressibility results
In this section we show various expressibility results that lead to absolute or
relative redundancy results for various features.

4.1 Arity
Using a simple encoding trick we can see that arity is redundant. Indeed, let a
and b be two different atomic values. For any paths s1, s2, s′1 and s′2, we have
the following:

Lemma 4.1. (s1, s2) = (s′1, s′2) if and only if

s1 · a · s2 · a · s1 · b · s2 = s′1 · a · s′2 · a · s′1 · b · s′2.

Proof. The if-direction is trivial. For the only-if direction, we consider s1 · a ·
s2 · a · s1 · b · s2 = s′1 · a · s′2 · a · s′1 · b · s′2 and we observe that a appears in the
middle of both sequences. Hence,

(a) s1 · a · s2 = s′1 · a · s′2 and

(b) s1 · b · s2 = s′1 · b · s′2.

For the sake of contradiction, let us assume |s1| < |s′1|. Then s′1 = s1 · x
for a nonempty sequence x. Thus, equation (a) can be rewritten as s1 · a · s2 =
s1 · x · a · s′2, which simplifies to a · s2 = x · a · s′2. Hence the sequence x must
start with a. In the same way, however, we can deduce from (b) that x must
start with b. Hence, the assumption we made is false.

Analogously, |s1| > |s′1| can be seen to be false as well, so we know that
|s1| = |s′1|. Then clearly |s2| = |s′2| as well. Hence, from (a) and (b) we get that
s1 = s′1 and s2 = s′2.

Using this encoding, arities higher than one can be reduced by one. Since
we can do this repeatedly, we obtain:

Theorem 4.2. Arity is redundant.

Example 4.3. Consider the following program which computes in S the reversals
of the paths in R:

T($x, ε) ← R($x).
T($x, $y·@u) ← T($x·@u, $y).
S($x) ← T(ε, $x).

The same query can be expressed without arity as follows:

T($x·a·a·$x·b) ← R($x).
T($x·a·$y·@u·a·$x·b·$y·@u) ← T($x·@u·a·$y·a·$x·@u·b·$y).
S($x) ← T(a·$x·a·b·$x).

11

4.2 Equations
In the presence of I and A, positive equations are readily seen to be redundant,
by introducing an auxiliary intermediate predicate in the program. We only
give an example:
Example 4.4. Recall the program from Example 3.1:

S($x) ← R($x), a·$x=$x·a.

The same query can be computed without equations as follows:

T(a·$x, $x) ← R($x).
S($x) ← T($x·a, $x).

This simple method works only in the absence of negation, because, when
applied to a negated equation in a rule that belongs to a recursive stratum,
stratification is violated. However, negated equations can be handled by another
method:

Lemma 4.5. E is redundant in the presence of I, A and N.

Proof. Positive equations can be handled as above. For each stratum ∆ that
contains negated equations, we insert a new stratum ∆′, right before ∆, con-
sisting of the following rules. Let ρ be a renaming that maps each head relation
name in ∆ to a fresh relation name; relation names that occur only in bodies
in ∆ are mapped to themselves by ρ.

For each rule H ← B in ∆ without negated equations, we add the rule
ρ(H)← ρ(B) to ∆′.

For each rule r : H ← B ∧ e1 6= e′1 ∧ . . . ∧ en 6= e′n in ∆ with n negated
equations, we again add ρ(H) ← ρ(B) to ∆′. Moreover, using a fresh relation
name T , we add the following n rules for i = 1, . . . , n:

T (v1, . . . , vm)← ρ(B) ∧ ei = e′i

Here, the v’s are all variables appearing in B.
Finally, in ∆, we replace r by the following rule:

H ← B ∧ ¬T (v1, . . . , vm).

Example 4.6. The following program retrieves in S those paths from R that can
be written as a1 · · · anbn · · · b1 with ai 6= bi for i = 1, . . . , n:

U($x, $x) ← R($x).
U($x, $y) ← U($x, @a·$y·@b), @a6=@b.
S($x) ← U($x, ε).

Applying the method to eliminate negated equations, we obtain:

12

U1($x, $x) ← R($x).
U1($x, $y) ← U1($x, @a·$y·@b).
T($x, $y, @a, @b) ← U1($x, @a·$y·@b), @a=@b.
S1($x) ← U1($x, ε).
U($x, $x) ← R($x).
U($x, $y) ← U($x, @a·$y·@b), ¬T($x, $y, @a, @b).
S($x) ← U($x, ε).

From the above we conclude that E is redundant in the presence of I and A.
Since we already know that arity is redundant, we obtain:

Theorem 4.7. E is redundant in the presence of I.

4.3 Packing
In this section we show that packing is redundant. The main task will be to
eliminate packing from equations in nonrecursive programs. We will follow the
following strategy to achieve this task:

1. In Section 4.3.3 we show how to eliminate all variables that can hold
values with packing. We will call such variables impure. The elimination
is achieved by “solving” equations involving impure variables.

2. Thereto, we will extend a known method for solving word equations. We
begin by recalling this method in Section 4.3.1. In Section 4.3.2 we present
the extension to path expressions.

3. When all variables are pure, equations involving packing can only be sat-
isfiable if the two sides have a similar “shape”, called packing structure.
We formalize this in Section 4.3.4.

The main result concerning packing is then proven in Section 4.3.5.

4.3.1 Solving equations

Consider an equation e1 = e2 and let X be the set of variables occurring in the
equation. A valuation ν on X is called a solution if ν(e1) and ν(e2) are the
same path. The set of solutions is typically infinite, so we would like a way to
represent this set in a finite manner.

Thereto one can use variable substitutions: partial functions that map vari-
ables to path expressions over X. Such a variable substitution ρ is called a
symbolic solution to the equation if ρ(e1) and ρ(e2) are the same path expres-
sion. Every symbolic solution ρ represents a set of solutions

[ρ] := {ν ◦ ρ | ν a valuation on X}.

A set R of symbolic solutions is called complete if
⋃
{[ρ] | ρ ∈ R} yields the

complete set of solutions to the equation.

13

The classical setting of word equations [2] can be seen as a special case of
the situation just described. A word equation corresponds to the case where e1
and e2 contain no packing, and no atomic variables, i.e., all variables are path
variables.

Plotkin’s “pig-pug” procedure for associative unification [38] generates a
complete set of symbolic solutions to any word equation. However, not ev-
ery word equation admits a finite complete set of symbolic solutions; a simple
example is our familiar equation $x · a = a · $x. Hence, in general, the pro-
cedure may not terminate.3 Nevertheless, pig-pug is guaranteed to terminate
on “one-sided nonlinear” equations [15]. These are word equations where all
variables that occur more than once in the equation, only occur in one side of
the equation.

We briefly review the pig-pug procedure. The procedure constructs a search
tree whose nodes are labeled with word equations; the root is labeled with the
original word equation. For each node we generate children according to a
rewriting relation, ⇒, on word equations. Specifically, we have the following
rewrite rules:

1. Cancellation rule: (x · w1 = x · w2)⇒ (w1 = w2), for x ∈ dom ∪X.

2. Main rules: each one of the rules is associated with a substitution, ρ. Let
x and y be distinct variables and let a be an atomic value.

(a) (x · w1 = y · w2)⇒ (x · ρ(w1) = ρ(w2)) with ρ(x) = y · x
(b) (x · w1 = y · w2)⇒ (ρ(w1) = ρ(w2)) with ρ(x) = y
(c) (x · w1 = y · w2)⇒ (ρ(w1) = y · ρ(w2)) with ρ(y) = x · y
(d) (x · w1 = a · w2)⇒ (x · ρ(w1) = ρ(w2)) with ρ(x) = a·x
(e) (x · w1 = a · w2)⇒ (ρ(w1) = ρ(w2)) with ρ(x) = a

(f) (a · w1 = y · w2)⇒ (ρ(w1) = y · ρ(w2)) with ρ(y) = a·y
(g) (a · w1 = y · w2)⇒ (ρ(w1) = ρ(w2)) with ρ(y) = a

When no rule is applicable to an equation, we have reached a leaf node in
the search tree. There are three possible cases for such a leaf equation:

1. (ε = ε).

2. (a · w1) = (b · w2), for atomic values a 6= b.

3. (ε = w) or (w = ε), for nonempty w.

The first case is successful, while the other two are not. Each path from the
root to a leaf node of the form (ε = ε) yields a symbolic solution, formed by
composing the substitutions given by the rewritings along the path. When
starting from a one-side nonlinear equation, the tree is finite and we obtain a
complete finite set of symbolic solutions.4

3The reader may be interested to know that other means of finite representation (different

14

$x
·〈@

y
·$
z〉·@

w
=

$
u
·$v
·$u

〈@
y
·$z〉·@

w
=

$u
·$
v
·$
x
·$u

@
w=

$
v
·$
x
·〈@

y
·$z〉

ε=
$x
·〈@

y
·$z〉

ε=
$v
·$
x
·〈@

y
·$z〉

@
w=

$u
·$
v
·$
x
·〈@

y
·$
z〉·$

u

ε=
$
v
·$
x
·〈@

y
·$z〉·@

w

ε=
$u
·$v
·$x
·〈@

y
·$z〉·@

w
·$
u

$
x
·〈@

y
·$
z〉·@

w
=

$v
·$u

〈@
y
·$
z〉·@

w
=

$v
·$u

@
w

=
$v
·$u

ε=
$v
·$
u

$
x
·〈@

y
·$z〉·@

w
=$u

$
x
·〈@

y
·$z〉·@

w
=ε

〈@
y
·$z〉·@

w
=ε

〈@
y
·$z〉·@

w
=$
u

@
w

=
ε

@
w

=
$u

ε=
ε

ε=
$u

$x 7→
$u · $x

$x7→$u

$u7→
$x·$u

$u7→〈@y·$z〉

$v 7→
@w

$v7→@w·$v

$u 7→
@w

$u7→@w·$u

$u7→
〈@
y·$z〉·@

u

$x
7→

$v
·$x

$x 7→
$v

$v
7→

$x
·$v

$x 7→
$u · $x

$x7→$u

$u7→
$x·$u

$u7→〈@y·$z〉

$u
7→
〈@
y
·$z〉·$u$u 7→

@
w

$u7→@w·$u

$v 7→
〈@y · $z〉

$v7→〈@y·$z〉·$v
$v 7→

@
w

$v7→@w·$v

Figure 2: Associative unification on an equation on path expressions. Bold
edges indicate the successful branches.

15

4.3.2 Extension to path expressions

Our equations differ from word equations in that path expressions can involve
packing as well as atomic variables. To this end, we extend the rewriting system
as follows.

(h) Given an equation of the form (@x ·w1 = @y ·w2), the only possibility is
for @x and @y to be the same. Thus we add the rule (@x·w1 = @y ·w2)⇒
(ρ(w1) = ρ(w2)) with ρ(@x) = @y.

(i) An equation of the form (@x · w1 = $y · w2) is not very different from
the case where we have a constant instead of @x. Thus, we add two rules
similar to rules (f) and (g):

• (@x · w1 = $y · w2)⇒ (ρ(w1) = $y · ρ(w2)) with ρ($y) = @x · $y
• (@x · w1 = $y · w2)⇒ (ρ(w1) = ρ(w2)) with ρ($y) = @x

(j) Analogously, we add rules similar to rules (d) and (e):

• ($x · w1 = @y · w2)⇒ ($x · ρ(w1) = ρ(w2)) with ρ($x) = @y · $x
• ($x · w1 = @y · w2)⇒ (ρ(w1) = ρ(w2)) with ρ($x) = @y

(k) Given an equation of the form (〈w1〉 ·w2 = 〈w3〉 ·w4), we work inductively
and solve the equation w1 = w3 first. Assuming we can find a finite
complete set R of symbolic solutions for this equation, we then add the
rules (〈w1〉 · w2 = 〈w3〉 · w4)⇒ (ρ(w2) = ρ(w4)) for ρ ∈ R.

(l) An equation of the form (〈w1〉 · w2 = $y · w3) is again not very different
from the case where we have a constant instead of 〈w1〉. Thus, we add
two rules similar to rules (f) and (g):

• (〈w1〉 · w2 = $y · w3)⇒ (ρ(w2) = $y · ρ(w3)) with ρ($y) = 〈w1〉 · $y
• (〈w1〉 · w2 = $y · w3)⇒ (ρ(w2) = ρ(w3)) with ρ($y) = 〈w1〉

(m) Analogously, we again add rules similar to rules (d) and (e):

• ($x · w1 = 〈w2〉 · w3)⇒ ($x · ρ(w1) = ρ(w3)) with ρ($x) = 〈w2〉 · $x
• ($x · w1 = 〈w2〉 · w3)⇒ (ρ(w1) = ρ(w3)) with ρ($x) = 〈w2〉

from a finite set of substitutions) have been discovered, that work for arbitrary word equations
[37].

4It is standard in the literature on word equations to consider only solutions that map
variables to nonempty words. The above procedure is only complete under that assumption.
However, allowing the empty word can be easily accommodated. For any equation eq on a set
of variables X, and any subset Y of X, let eqY be the equation obtained from eq by replacing
the variables in Y by the empty word. Let RY be a complete set of symbolic solutions for
eqY where we extend each substitution to X by mapping every variable from Y to the empty
word. Then the union of the RY is a complete set of symbolic solutions for eq, allowing the
empty word. If eq is one-sided nonlinear, then eqY is too. This remark equally applies to the
extension to path expressions presented in Section 4.3.2.

16

Furthermore, we now have extra non-successful cases for leaf equations,
namely all equations of the form (@x ·w1 = 〈w2〉 ·w3) or (〈w2〉 ·w3 = @y ·w1).

Extending known arguments, one can see that on any one-sided nonlinear
equation, our extended rewriting system terminates and yields a finite complete
set of symbolic solutions.
Example 4.8. Figure 2 shows a DAG representation of the search tree for the
equation $x · 〈@y · $z〉 ·@w = $u · $v · $u. There are four successful branches, so
the following substitutions comprise a complete set of symbolic solutions:

{$x 7→ @w, $u 7→ @w, $v 7→ 〈@y · $z〉}
{$x 7→ @w · $x, $v 7→ $x · 〈@y · $z〉, $u 7→ @w}
{$x 7→ 〈@y · $z〉 ·@w · $v, $u 7→ 〈@y · $z〉 ·@w}
{$x 7→ $x · 〈@y · $z〉 ·@w · $v · $x, $u 7→ $x · 〈@y · $z〉 ·@w}

4.3.3 Pure variables and pure equations

We introduce a syntactic “purity check” on variables, that guarantees that they
can only take values that do not contain packed values. Since later we will work
stratum per stratum, it is sufficient in what follows to focus on semipositive,
nonrecursive programs with only one IDB relation name.

Consider a rule in such a program. When a variable appears in some positive
EDB predicate, we call the variable a source variable of the rule. Now we
inductively define a variable in the rule to be pure if

1. it is a source variable (since we focus on flat input instances); or

2. it appears in one side of a positive equation, such that

• all the variables in the other side of the equation are pure, and
• the other side of the equation has no packing.

By leveraging associative unification, we are going to show that we can
always eliminate impure variables. The method is based on a division of the
positive equations of a rule into three categories:

Pure equations involve only pure variables.

Half-pure equations have all variables in one side pure, and at least one of
the variables in the other side is impure.

Fully impure equations have impure variables in both sides.

Example 4.9. The three equations in the rule

S($x)← R($x, $y) ∧ 〈$x〉 = 〈$y〉 ∧ a · $x = $z ∧ $y = 〈$u〉

are pure. The two equations in the rule

S($x)← R($x, $y) ∧ 〈$y〉 = $z ∧ 〈$x〉 = 〈$z〉

17

are half-pure. The equation 〈$t〉 = 〈$z〉 in the rule

S($x)← R($x, $y) ∧ 〈$t〉 = 〈$z〉 ∧ $z = 〈$y〉 ∧ $t = 〈$x〉

is fully impure.
It is instructive to compare the notion of pure variable with that of limited

variable, used to define the notion of safe rule. Indeed, the set of limited variables
can be equivalently defined as follows, where we only change the base case of
the induction to immediately include all pure variables:

• Every pure variable is limited; and

• If all the variables occurring in one side of the sides of an equation in the
rule are limited, then all the variables occurring in the other side are also
limited.

Therefore, if there is at least one impure variable in a safe rule, then there
must be at least one half-pure equation in the rule. In other words, it is not
possible for a rule to have fully impure equations without having half-pure ones.

Lemma 4.10. Let r be a rule in a semi-positive, nonrecursive program P with
only one IDB relation name. Then there exists a finite set of rules, equivalent
to r on flat instances, in which all positive equations are pure.

Proof. By induction on the number of half-pure equations. Let r : H ← B∧e1 =
e2, where e1 = e2 is half-pure with e1 the pure side and e2 the impure side. Let
u1, . . . , un be the list of all occurrences of variables in e1. Let v1, . . . , vn be n
fresh variables, and let e′1 be e1 with each ui replaced by vi. Now replace e1 = e2
by the following conjunction of n+ 1 equations:

u1 = v1 ∧ . . . ∧ un = vn ∧ e′1 = e2

Here, abusing notation, we use the same notation ui for the variable that occurs
at ui.

Denote the result of this replacement by r′. The equation e′1 = e2 is one-
sided nonlinear; by Section 4.3.2, there exists a finite complete set R of solutions.
If we let r′′ be r′ without e′1 = e2, then clearly r is equivalent to the set of rules
{ρ(r′′) | ρ ∈ R}. However, some of these rules may not have strictly less half-
pure equations than r, which is necessary for the induction to work.

We can solve this problem as follows. Call ρ ∈ R valid if it maps variables
that are pure in r′′ to expressions without packing. Since all ui and vi are pure
in r′′, the equations ρ(ui) = ρ(vi) in ρ(r′′) are all pure, so ρ(r′′) does have
strictly less half-pure equations than r.

Fortunately, we can restrict attention to the valid ρ ∈ R, so the induction
goes through. Indeed, following the definition of pure variable, one can readily
verify that for nonvalid ρ, the rule ρ(r′′) is unsatisfiable on flat instances.

18

4.3.4 Packing structures

By Lemma 4.10, all positive equations can be taken to be pure. We now reduce
this further so that all positive equations are free of packing. Thereto we intro-
duce the packing structure of a path expression e, denoted by δ(e), and defined
as follows:

• δ(ε) = ∗.

• δ(a) = ∗, with a a variable or an atomic value.

• δ(〈e〉) = ∗ · 〈δ(e)〉 · ∗.

• δ(e1 ·e2) equals δ(e1) · δ(e2), in which we replace any consecutive sequence
of stars by a single star.

Assume δ(e) has n stars. Then e can be constructed from δ(e) by replac-
ing each star by a unique (possibly empty) subexpression of e. We call these
subexpressions the components of e. Crucially, they do not use packing.

If e does not use packing, δ(e) is simply ∗. If e begins or ends with packing, or
if some packing in e begins or ends with another packing, then some components
will be empty.
Example 4.11. Let e = @a·〈〈$x · $y〉 · $z〉·〈ε〉. Then δ(e) = ∗·〈∗ · 〈∗〉 · ∗〉·∗·〈∗〉·∗.
The seven components of e are @a, ε, $x · $y, $z, ε, ε, and ε.

A pure equation e1 = e2 can only be satisfiable on flat instances if e1 and
e2 have the same packing structure. Suppose there are n stars in this packing
structure. Then, the equation can be replaced by the conjunction of n equations,
where we equate the corresponding components of e1 and e2. These equations
are still pure, and free of packing.

Moreover, when all positive equations are pure, then all variables in the
rule are pure, since the rule is safe. Now a negated equation e1 6= e2 over
pure variables is equivalent to the disjunction of the nonequalities between the
corresponding components of e1 and e2. Then the rule can be replaced by a
set of rules, one for each disjunct, and the component nonequalities are free of
packing. We can repeat this for all negated equations.

We have arrived at the following:

Lemma 4.12. Let r be a rule in a semi-positive, nonrecursive program P with
only one IDB relation name. Then there exists a finite set of rules, equivalent
to r on flat instances, in which all variables are pure, and all equations (positive
or negated) are free of packing.

4.3.5 Redundancy of packing

We are now ready for the following result. The proof further leverages packing
structures.

Lemma 4.13. Packing is redundant in the absence of recursion.

19

Proof. Consider a query computed by a nonrecursive program P. We must show
that P can be equivalently rewritten without packing. If P has only one IDB
predicate, Lemma 4.12 gives us what we want. Indeed, by the Lemma, we may
assume that equations are already free of packing. Now since the input is a flat
instance, any positive (negated) EDB predicate that contains packing may be
taken to be always false (true). Also, the result of the query is a flat instance, so
IDB predicates containing packing are false as well. We thus obtain a program
free of packing as desired.

When P uses intermediate predicates, the elimination of packing from IDB
predicates requires more work. Since P is nonrecursive, we may assume that
every stratum involves only one IDB relation name. Since arity is redundant, we
may assume that P does not use arity, but feel free to use arity in the rewriting
of P.

Let us consider the first stratum. For every rule, we proceed as follows. Let
R(e) be the head of the rule. Let m be the number of stars in δ(e) and let e1,
. . . , em be the components of e. Replace the head with Rδ(e)(e1, . . . , em) where
Rδ(e) is a fresh relation name.

After this step, the rules in the first stratum no longer contain packing in the
head. Of course, R-predicates in rules in later strata must now be updated to
call the new relation names. So, assume R(e) appears in the body of some later
rule r. For each of the packing structures ps introduced for R, we make a copy
of r in which we replace R(e) by the conjunction Rps($e1, . . . , $em) ∧ e = e′,
where

• m is the number of stars in ps;

• $e1, . . . , $em are fresh path variables; and

• e′ is obtained from the packing structure ps by replacing the ith star by
$ei, for i = 1, . . . ,m.

This rewriting introduces equations in later strata, which is necessary because
these later strata have not yet been purified per Lemma 4.12.

We do the above for every stratum. So, stratum by stratum, we first remove
packing from equations, leaving only pure variables in rules; we replace head
predicates; and rewrite calls to these head predicates in later rules.

After this transformation, packing still appears in negated IDB predicates,
which have been untouched so far. Fortunately, all rules have pure variables
at this point. Thus, a literal ¬R(e), where δ(e) matches one of the packing
structures of R, say ps, with m stars, can now be replaced by ¬Rps(e1, . . . , em),
where ei is the ith component of e. If δ(e) does not match any of the packing
structures introduced for R, the negative literal is true on flat instances and can
be omitted.

Observing that packing in EDB predicates can be handled as in the semi-
positive case, we are done.

Example 4.14. Rewriting the program from Example 2.2 without packing yields
a program with 28 rules:

20

T($u, $s, $v) ← R($u·$s·$v), S($s).
A ← T($x1,$x2,$x3), T($y1,$y2,$y3), T($z1,$z2,$z3),

$xi 6=$yi, $xj 6=$zj, $yk 6=$zk.
% for i=1,2,3, j=1,2,3, k=1,2,3

To get from Lemma 4.13 to the following theorem, it remains to show that
packing is redundant in the presence of recursion. Building on the flat–flat
theorem for J-Logic [22, 23] we can close that gap and we obtain:
Theorem 4.15. Packing is redundant.

Proof. It remains to show that P is redundant in the presence of R. Earlier work
on J-Logic (flat-flat theorem [22, 23]) is readily adapted to Sequence Datalog
and shows that P is redundant in the presence of R and N. The general idea of
the rewriting used in that proof is as follows:

1. We add a new stratum at the beginning of the program, where we prepro-
cess the input relations as follows: every path k1 · k2 · · · · · kn is replaced
by its doubled version k1 · k1 · k2 · k2 · · · · · kn · kn.

2. We modify the program so that it works with doubled EDB and IDB
relations. Packing is simulated using a technique of simulated delimiters,
which relies on the doubled encoding.

3. In the last step, we undouble the doubled output.
Steps 1 and 3 as published introduce negation even if the original program

does not use negation. We next show that this can be avoided. Instead, we
introduce arity, which is harmless as arity is redundant.

We double an EDB relation R into R′ as follows:
T(ε, $x) ← R($x).
T($x·@y·@y, $z) ← T($x, @y·$z).
R’($x) ← T($x, ε).

We undouble a doubled output relation S′ into S as follows:
T($x, ε) ← S’($x).
T($x, @y·$z) ← T($x·@y·@y, $z).
S($x) ← T(ε, $x).

4.4 Intermediate predicates
The following result is straightforward: intermediate predicates can be elimi-
nated by folding in the bodies of the intermediate rules, using equations to unify
calling predicates with intermediate head predicates.
Theorem 4.16. I is redundant in the presence of E and the absence of N and
R.

21

5 Inexpressibility results
In this section we show various inexpressibility results that lead to absolute or
relative primitive results for various features.

5.1 Recursion
To see that recursion is primitive also in the context of Sequence Datalog, we
can make the following observation.

Lemma 5.1. Let Q be a query that can be computed by a nonrecursive program.
Then for any input instance I, the lengths of paths in Q(I) are bounded by a
linear function of the maximal length of a path in I.

Proof. Let P be a nonrecursive program computing a query Q. Let P′ be P
with all negated literals removed. The Q′ query computed by P′ contains Q, so
if we can prove the claim for Q′, it also holds for Q.

By Theorem 4.16, we know that Q′ is computable by a program P′′ that
does not use intermediate predicates. Let n be the number of rules, and for
i = 1, . . . , n, let S(ei) be the head of the ith rule; ai the number of path variables
in ei; and bi the number of atomic values and variables in ei. Then the length
of sequences returned by the ith rule is at most aix + bi, with x the maximal
length of a sequence in the input. The desired linear function can now be taken
to be ax+ b, where a = max{ai | 1 ≤ i ≤ n} and b = max{bi | 1 ≤ i ≤ n}.

We immediately get:

Proposition 5.2. Let a be a fixed atomic value and let Q be any query from
{R} to S satisfying the property that for every instance I and every natural
number n such that R(an) ∈ I, the string an2 is a substring of a path in Q(I).
Then Q is not expressible without recursion.

We readily obtain:

Theorem 5.3. Recursion is primitive.

Proof. First, we show that R is primitive in the presence of I. Consider the
following recursive program P, computing the query Q returning all paths an2

where n is a natural number such that R(an) is in the input:

T(ε, $x, $x) ← R($x).
T($y·$x, $x, $z) ← T($y, $x, a·$z).
S($y) ← T($y, $x, ε).

By Proposition 5.2, query Q is not expressible without recursion.
The above program uses intermediate predicates. In the absence of this

feature, consider just the program P′ consisting of the first two rules. Strictly,
this program does not compute a query, as T is ternary. However, we can
turn P′ into a program P′′ using the arity simulation technique of Lemma 4.1.

22

Program P′′ computes a well-defined query Q′′ from {R} to T . Although Q′′ is
not a natural query, Proposition 5.2 applies to it, so it is not expressible without
recursion.

5.1.1 Boolean queries

The above queries showing primitivity of recursion are unary. What about
boolean queries? It turns out that for boolean queries, in the presence of inter-
mediate predicates, recursion is still primitive. In the absence of intermediate
predicates, however, recursion is redundant for boolean queries, for trivial rea-
sons.

Let us go in a bit more detail. Let R be a binary relation viewed a directed
graph. Let Qa→b? be the boolean query from {R} to S that checks whether b is
reachable from a. It is well-known that Qa→b?, as a classical relational query,
is not computable in classical Datalog without recursion. We can view Qa→b?
as a query on sequence databases by encoding edges (a, b) by paths a · b of
length two. Under this encoding, the query is clearly computable by a Sequence
Datalog program in the fragment {I,R}:

T(@x·@y) ← R(@x·@y).
T(@x·@z) ← T(@x·@y),R(@y·@z).
S ← T(a·b).

We can now show that Qa→b? is not computable without recursion in Sequence
Datalog by showing that, on input instances containing only sequences of length
two, any nonrecursive Sequence Datalog program can be simulated by a classical
nonrecursive Datalog program. This simulation is similar to the one shown in
Lemma 5.4 appearing later. The only added complication is that, due to inter-
mediate predicates, sequences of lengths longer than two can appear. However,
since there is no recursion, these lengths are bounded by a constant depending
only on the program.

In the absence of the I-feature, we note that any boolean query, computed
by a recursive program without intermediate predicates, is already computed
by the nonrecursive rules only. Indeed, if the result of the query is false, then
none of the rules is fired. If, on the other hand, the result of the query is true,
then at least one rule is fired; however, no recursive rule can be fired before at
least one nonrecursive rule is fired.

5.2 Intermediate predicates
It is well known that in classical Datalog, without intermediate predicates, we
can not express queries that require universal quantifiers [11]. We can transfer
this result to Sequence Datalog by a simulation technique.

Let Γ be a monadic schema and let I be an instance of Γ. We say that I is
“two-bounded” if only paths of lengths one or two occur in I. We can encode
two-bounded instances by classical instances as follows. Let Γc (‘c’ for classical)

23

be the schema that has two relation names R1 and R2 for each R ∈ Γ. For I
two-bounded as above, we define the classical instance Ic of Γc as follows:

• Ic(R1) = {a ∈ dom | a ∈ I(R)};

• Ic(R2) = {(a, b) | a · b ∈ I(R)}.

Lemma 5.4. Let P be a program in the fragment {E,N,R}, with IDB relation
name S, such that the result of P on a two-bounded instance is still two-bounded.
Then there exists a semipositive classical Datalog program Pc using only the IDB
relation names S1 and S2, such that for every two-bounded instance I of Γ, we
have Pc(Ic) = (P(I))c.

Proof. Our goal is to eliminate path variables as well as concatenations in path
expressions. We start with path variables. In any rule containing a head pred-
icate or positive predicate of the form S(e1 · $x · e2) or R(e1 · $x · e2), we can
replace $x either by ε, @x, or @x1 ·@x2 (splitting the rule in three versions).

Path variables may still occur in equations. By safety, they must appear
in positive equations, and inductively we may assume that any remaining path
variable $x occurs in a positive equation e1 = e2 where e1 contains no path
variables. This equation is then of the form a1 · · · an = b1 · · · bm · $x · e, where
the as and bs are atomic variables or values.

• If m = n, replace $x by the empty path.

• If m > n, the equation is unsatisfiable and the rule can be removed.

• If m < n, replace $x by am+1 · · · ai, for m < i ≤ n (splitting the rule in
n−m+ 1 versions).

After these steps, all equations (positive or negated) are of the form a1 · · · an =
b1 · · · bm, where the as and bs are atomic variables or values. Such equations
can be easily eliminated. Moreover, any predicates, possibly negated, that are
of the form R(e) with e empty or strictly longer than two, can be eliminated as
well.

We finally replace every remaining predicate (head or body) of the form R(a)
by R1(a) and every predicate of the form R(a1 · a2) by R2(a1, a2), and we are
done.

As a consequence, the query computed by the following program, belonging
to the fragment {I,N}, cannot be expressed without intermediate predicates:

W(@x) ← R(@x·@y), ¬B(@y).
S(@x) ← R(@x·@y), ¬W(@x).

Indeed, the classical counterpart of this query is the query asking, on any di-
rected graph where some nodes are “black”, for all nodes with only edges to
black nodes. That query is well-known not to be expressible in semipositive
Datalog [11].

We thus obtain:

24

Theorem 5.5. I is primitive in the presence of N.

We also have the following primitivity result in the presence of recursion.
The proof merely combines some observations we have already made.

Theorem 5.6. I is primitive in the presence of R.

Proof. Recall the squaring query Q from the proof of Theorem 5.3, which is
expressible in the fragment {I,R}. Suppose, for the sake of contradiction, that
Q can be computed by a program without intermediate predicates. Consider
the behavior of this program on the family of singleton instances In = {R(an)},
for all natural numbers n. Since Q(In) is nonempty, at least one of the rules
must fire, which is only possible if at least one of the nonrecursive rules fires.
Since there are no intermediate predicates, however, this nonrecursive rule must
already produce the correct output S(an2). This contradicts Lemma 5.1.

5.3 Equations
The two theorems in the previous subsection provide counterparts to Theo-
rem 4.16. The following theorem confirms that the presence of equations is
necessary for Theorem 4.16, and implies that the fragments {I} and {E} are
actually equivalent.

Theorem 5.7. E is primitive in the absence of I.

This result follows immediately from the following lemma.

Lemma 5.8. Let a be an atomic value. The boolean query that checks if the
input relation R contains a path consisting exclusively of a’s, cannot be computed
by a program that lacks features I and E.

Proof. By the redundancy of packing and arity, we may ignore these features.
Also, in Section 5.1.1, we already noted that in the absence of intermediate
predicates, recursion does not help in expressing boolean queries. Hence, it
suffices to show that the query cannot be computed by a program in the fragment
{N}. For the sake of contradiction, suppose such a program exists.

Take any rule from the program, and consider the instance J obtained from
the positive predicates in the body by “freezing” all variables, i.e., viewing them
as atomic values distinct from the atomic values already occurring in the rule.
Unless the rule is unsatisfiable (in which case we may ignore it), it will fire on
J . So the query is true on J and the body must contain a positive predicate of
the form R(a`).

Now consider the instance I = {R(an)} where n is strictly larger than all
values ` as above found in the rules. Then no rule can fire on I, but the query
is true on I, so we have the desired contradiction.

Indeed, that query is readily expressed using an equation, as we well know.

25

N
?
∈ F1
or

R
?
∈ F1

I
?
∈ F1
or

E
?
∈ F1

F̂1 ≤ F̂2

no

by 3 and 4

I ∈ F2 or E ∈ F2 by thm 4.7 and 4.16

F̂1 ≤ {E} ≤ F̂2

E ∈
F

2

by thm 4.7

F̂1 ≤ {I} ≤ F̂2I ∈
F2

yes

no

I
?
∈ F2

E
?
∈ F1

by 1 and 2

F̂1 ≤ F̂2

no

by 1 and 2

F̂1 ≤ F̂2
yesby 3, E ∈ F2noby 5, I 6∈ F1

by 1, 2, and thm 4.7

F̂1 ≤ (F̂1 ∪ {I} − {E}) ≤ F̂2

ye
s

ye
s

Figure 3: If-direction of Theorem 6.1.

6 Putting it all together
The results from the previous two sections allow us to characterize the sub-
sumption relation among fragments (defined in Section 3) as follows.

Theorem 6.1. For any fragments F1 and F2, we have F1 ≤ F2 if and only if
the following five conditions are satisfied:

1. N ∈ F1 ⇒ N ∈ F2;

2. R ∈ F1 ⇒ R ∈ F2;

3. E ∈ F1 ⇒ (E ∈ F2 ∨ I ∈ F2);

4. (I ∈ F1 ∧ R 6∈ F1 ∧ N 6∈ F1)⇒ (I ∈ F2 ∨ E ∈ F2);

5. (I ∈ F1 ∧ (R ∈ F1 ∨ N ∈ F1))⇒ I ∈ F2.

Proof. For the only-if direction, we verify the five conditions, assuming F1 ≤ F2.

1. Immediate from the primitivity of negation. We have not stated this
primitivity as a theorem because it is so clear (any fragment without
negation can express only monotone queries; with negation we can express
set difference which is not monotone).

2. Immediate from primitivity of recursion.

26

3. Immediate from Theorem 5.7.

4. Assume I ∈ F1 ∧ R 6∈ F1 ∧ N 6∈ F1 ∧ E 6∈ F2 ∧ I 6∈ F2. By Theorem 4.7, we
have {E} ≤ F1. Now Theorem 5.7 leads to a contradiction with F1 ≤ F2.

5. Immediate from Theorems 5.5 and 5.6.

For the if-direction, since arity and packing are redundant, F1 ≤ F2 if and
only if F̂1 ≤ F̂2, where F̂ = F − {A,P}. Now Figure 3 (on page 26) infers
F̂1 ≤ F̂2 from the five conditions and the redundancy results.

7 Sequence relational algebra
Given the importance of algebraic query plans for database query execution, we
show here how to extend the classical relational algebra to obtain a language
equivalent to recursive-free Sequence Datalog programs. We note that a sim-
ilar language, while calculus-based rather than algebra-based, is the language
StriQuel proposed by Grahne and Waller [20].

The relational algebra, with operators projection; equality selection; union;
difference; and cartesian product, is well known [3, 45]. To extend this algebra
to our data model (Section 2.1), we generalize the selection and projection
operators and add two extraction operators. Let R be an n-ary relation.

Selection: The classical equality selection σ$i=$j(R), with i, j ∈ {1, . . . , n},
returns {t ∈ R | ti = tj}. We now allow path expressions α and β over
the variables $1, . . . ,$n and have the selection operator

σα=β(R) := {t ∈ R | t(α) = t(β)}.

Here, t is viewed as the valuation that maps $i to ti for i = 1, . . . , n.

Projection: For path expressions α1, . . . , αp over variables $1, . . . , $n as above,
we define

πα1,...,αp(R) := {(t(α1), . . . , t(αp)) | t ∈ R}.

Unpacking: For i ∈ {1, . . . , n}, the operator UNPACK i(R) returns

{(t1, . . . , ti−1, s, ti+1, . . . , tn) | (t1, . . . , ti−1, 〈s〉, ti+1, . . . , tn) ∈ R}.

Substrings: SUBi(R) equals

{(t1, . . . , tn, s) | (t1, . . . , tn) ∈ R and s is a substring of ti}.

We could also have defined a more powerful unpacking operator, which ex-
tracts components from paths using path expressions, similar to the use of path
expressions in Sequence Datalog. Such an operator is useful in practice but can
for theoretical purposes be simulated using the given operators, as we will show.

27

“Sequence relational algebra” expressions over a schema Γ, built up using
the above operators from the relation names of Γ and constant relations, are
defined as usual. We have, as expected, the following theorem. Note that this
result applies for arbitrary instances, not only for flat inputs and flat outputs.

Theorem 7.1. For every program P without recursion and every IDB relation
name T , there exists a sequence relational algebra expression E such that for
every instance I, we have P(I)(T) = E(I). The converse statement holds as
well.

That sequence relational algebra can be translated to Sequence Datalog is
clear. Our approach to translate in the other direction is for the most part
standard. We can make use of the following normal form.

Lemma 7.2. Let P be a nonrecursive Sequence Datalog program that does not
use equations. Then there is a nonrecursive program P′ computing the same
query as P where each rule in P′ has one of the following six forms:

1. R1(v1, . . . , vn)← R2(e1, . . . , em);

2. R1(v1, . . . , vn, e)← R2(v1, . . . , vn);

3. R1(v1, . . . , vn)← R2(x1, . . . , xk), R3(y1, . . . , y`);

4. R1(v1, . . . , vn)← R2(v1, . . . , vn),¬R3(v′1, . . . , v′m);

5. R1(v′1, . . . , v′m)← R2(v1, . . . , vn);

6. R(p)← .

The following restrictions apply:

• In all forms, v1, . . . , vn are distinct variables. Moreover, in forms 2 to 6,
each vi must be a path variable.

• In form 3, the xi and yj are path variables and {v1, . . . , vn} is contained
in {x1, . . . , xk} ∪ {y1, . . . , y`}.

• In forms 4 and 5, v′1, . . . , v′m are distinct variables taken from {v1, . . . , vn}.

• In form 6, p is a path (constant relation).

This lemma is stated for programs without equations, since we know that
equations are redundant in the presence of intermediate predicates. Given the
normal form, extraction rules of the first form can be expressed in the algebra
as follows. First, by compositions of unpacking and substring operations, we
can generate all subpaths until the maximum packing depth of the expressions
appearing in the rule. Using cartesian product and selection, we then select the
desired paths. Rules of the second form are generalized projections. The other
rules are handled as in the classical relational algebra. It remains to prove:

28

Proof of Lemma 7.2. The conversion to normal form is best described on a gen-
eral example. Consider the following one-rule Sequence Datalog program:

T(a·b·c, @x·c·$y, $z·$z)← P1($y·$y, $z·a, @u·d), P2($z·@x·c, d),
¬N1(@x·$y·$z, a·@x), ¬N2(a·b, $y).

In what follows, we call the rule that we process the main rule and its stratum
the main stratum.

Step 1: Get variables from positive literals

Step 1.1 Replace every occurrence of a positive atom P (e1, . . . , em) by a new
predicate H(v1, . . . , vn) where {v1, . . . , vn} is the set of variables used in the
atom. For each H add a new rule of the form H(v1, . . . , vn) ← P (e1, . . . , em).
Note that these set of rules are guaranteed to be form 1. Moreover, every atomic
variable in the main rule should be replaced by a new path variable.

In case the positive atom does not use variables, then we replace every
occurrence by a new predicate H($v) with a fresh variable $v. To get this H,
we add the two rules H ′ ← P (e1, . . . , em) and H(a) ← H ′ for a new predicate
H ′ and a ∈ dom. Note that the first rule is of form 1, while the second added
rule is of form 2.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
T(a·b·c, $x·c·$y, $z·$z)← H1($y, $z, $u), H2($z, $x),

¬N1($x·$y·$z, a·$x), ¬N2(a·b, $y).

Step 1.2

• When no positive atoms exist in the main rule, then the rule has no
variables. Only in this case, we add to the main stratum a new rule of the
form R(a) ← , where R is a new relation name and a is some value from
the domain. This added rule is of form 6. Moreover, we add R($v) to the
body of the main rule, where $v is a fresh path variable.

• Otherwise, this step should be repeated until only one positive atom re-
mains in the main rule. We remove two positive atoms Hi(x1, . . . , xn) and
Hj(y1, . . . , ym), and replace them with H(v1, . . . , vk), where H is a fresh
predicate name, and the set of variables vs is the union of the set of xs
and ys. In addition, we introduce a new rule of the form

H(v1, . . . , vk)← Hi(x1, . . . , xn), Hj(y1, . . . , ym)

in the main stratum. This rule is of form 3.

29

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
T(a·b·c, $x·c·$y, $z·$z)← H($y, $z, $u, $x),

¬N1($x·$y·$z, a·$x), ¬N2(a·b, $y).

Step 2: Separate each negative literal in an intermediate rule.

Step 2.1 Let H(v1, . . . , vn) be the only positive atom in the body of the rule.
Every literal ¬N(e1, . . . , em) is replaced by a predicate HN(v1, . . . , vn), where
HN is a new relation name. Moreover, we add a rule of the form

HN(v1, . . . , vn)← H(v1, . . . , vn),¬N(e1, . . . , em)

to the main stratum, and we remove H(v1, . . . , vn) from the main rule.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
HN1($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N1($x·$y·$z, a·$x).
HN2($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N2(a·b, $y).
T(a·b·c, $x·c·$y, $z·$z)← HN1($y, $z, $u, $x),

HN2($y, $z, $u, $x).

Step 2.2 We do the same as in step 1.2, leaving us in the end with a sin-
gle positive atom holding the variables from the original rule. All the rules
introduced by this step are of form 3.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
HN1($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N1($x·$y·$z, a·$x).
HN2($y, $z, $u, $x)← H($y, $z, $u, $x), ¬N2(a·b, $y).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x).

Step 3: Generate negated expressions. We next work on the rules that
were introduced to deal with the negated atoms.

Step 3.1 In step 2.1 we added rules with negative literals:

HN(v1, . . . , vn)← H(v1, . . . , vn),¬N(e1, . . . , em)

30

For each such added rule, we define a sequence of rules in order to generate the
values for the expressions ei. Since our rule is safe from the beginning, we are
guaranteed that all the variables used in these expressions are among the vs.

We inductively generate m rules as follows (where the v′s are fresh variables)
and add them to the main stratum:

1. N1(v1, . . . , vn, e1)← H(v1, . . . , vn)

2. for 1 < i ≤ m, the rule

Ni(v1, . . . , vn, v
′
1, . . . , v

′
i−1, ei)← Ni−1(v1, . . . , vn, v

′
1, . . . , v

′
i−1).

Each one of the above rules is of form 2. In addition, we replaceH(v1, . . . , vn)
in the rule under consideration by

Nm(v1, . . . , vn, v
′
1, . . . , v

′
m).

Moreover, we replace ¬N(e1, . . . , em) by ¬N(v′1, . . . , v′m).

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x).
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x).
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11).
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21).
HN1($y, $z, $u, $x)← N12($y, $z, $u, $x, $n11, $n12),

¬N1($n11, $n12).
HN2($y, $z, $u, $x)← N22($y, $z, $u, $x, $n21, $n22),

¬N2($n21, $n22).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x).

Step 3.2 We have now obtained rules of the form

HN(v1, . . . , vn)← Nm(v1, . . . , vn, v
′
1, . . . , v

′
m),¬N(v′1, . . . , v′m).

We now further replace them with

HN(v1, . . . , vn)← FN(v1, . . . , vn, v
′
1, . . . , v

′
m);

where FN is a new relation name. Now this rule is of form 5. Moreover, we
add the rule

FN(v1, . . . , vn, v
′
1, . . . , v

′
m) ← Nm(v1, . . . , vn, v

′
1, . . . , v

′
m),¬N(v′1, . . . , v′m),

which is of form 4, to the main stratum.

31

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x).
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x).
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11).
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21).
FN1($y, $z, $u, $x, $n11, $n12)←

N12($y, $z, $u, $x, $n11, $n12), ¬N1($n11, $n12).
FN2($y, $z, $u, $x, $n21, $n22)←

N22($y, $z, $u, $x, $n21, $n22), ¬N2($n21, $n22).
HN1($y, $z, $u, $x)← FN1($y, $z, $u, $x, $n11, $n12).
HN2($y, $z, $u, $x)← FN2($y, $z, $u, $x, $n21, $n22).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T(a·b·c, $x·c·$y, $z·$z)← HN($y, $z, $u, $x).

Step 4: Generate final head expressions. We are now left to work on the
final rule which is normalized in a similar way as step 3.1. The final rule is of
the form T (e1, . . . , em) ← H(v1, . . . , vn), where by safety it is guaranteed that
any variable appearing in any of the es is among the vs.

We inductively generate m rules as follows (where the v′s are fresh variables):

1. T1(v1, . . . , vn, e1)← H(v1, . . . , vn)

2. for 1 < i ≤ m, the rule

Ti(v1, . . . , vn, v
′
1, . . . , v

′
i−1, ei)← Ti−1(v1, . . . , vn, v

′
1, . . . , v

′
i−1).

Each one of the above rules is of form 2. The last thing to be done is to
update the main rule to

T (v′1, . . . , v′m)← Tm(v1, . . . , vn, v
′
1, . . . , v

′
m).

Now, this rule is of form 5.

H1($y, $z, @u)← P1($y·$y, $z·a, @u·d).
H2($z, @x)← P2($z·@x·c, d).
H($y, $z, $u, $x)← H1($y, $z, $u), H2($z, $x).
N11($y, $z, $u, $x, $x·$y·$z)← H($y, $z, $u, $x).
N21($y, $z, $u, $x, a·b)← H($y, $z, $u, $x).
N12($y, $z, $u, $x, $n11, a·$x)← N11($y, $z, $u, $x, $n11).
N22($y, $z, $u, $x, $n21, $y)← N21($y, $z, $u, $x, $n21).
FN1($y, $z, $u, $x, $n11, $n12)←

N12($y, $z, $u, $x, $n11, $n12), ¬N1($n11, $n12).
FN2($y, $z, $u, $x, $n21, $n22)←

N22($y, $z, $u, $x, $n21, $n22), ¬N2($n21, $n22).
HN1($y, $z, $u, $x)← FN1($y, $z, $u, $x, $n11, $n12).

32

HN2($y, $z, $u, $x)← FN2($y, $z, $u, $x, $n21, $n22).
HN($y, $z, $u, $x)← HN1($y, $z, $u, $x), HN2($y, $z, $u, $x).
T1($y, $z, $u, $x, a·b·c)← HN($y, $z, $u, $x).
T2($y, $z, $u, $x, $t1, $x·c·$y)← T1($y, $z, $u, $x, $t1).
T3($y, $z, $u, $x, $t1, $t2, $z·$z)←

T2($y, $z, $u, $x, $t1, $t2).
T($t1, $t2, $t3)← T3($y, $z, $u, $x, $t1, $t2, $t3).

8 Conclusion
Sequence databases and sequence query processing (e.g., [42]) were an active
research topic twenty years ago or more. We hope our paper can revive interest
in the topic, given its continued relevance for advanced database applications.
Systems in use today do support sequences one way or another, but often only
nominally, without high expressive power or performance. This situation may
cause application builders to bypass the database system and solve their problem
in an ad-hoc manner.

Of course, to support data science, there is much current research on database
systems and query languages for arrays and tensors, e.g., [41, 34, 24, 27, 6].
However, in this domain, applications are typically focused on supporting linear
algebra operations [31, 24, 6]. Such applications are qualitatively different from
the more generic type of sequence database queries considered in this paper.

We note that other sequence query language approaches, not based on Dat-
alog, deserve attention as well. There have been proposals based on functional
programming [30], on structural recursion [40], and on transducers [10, 8, 19, 18].
On the other hand, a proposal very close in spirit to Sequence Datalog can be
found in the work by Grahne and Waller [20] already mentioned in Section 7.

Sequence Datalog is also a very useful language for dealing with non-flat
instances. In this paper, for reasons we have explained, we focused on queries
from flat instances to flat instances. However, using packing, interesting data
structures can be represented in a direct manner. For example, a tree with root
label a and childtrees T1, . . . , Tn can be represented by the path a · 〈T1〉 · · · 〈Tn〉
(where each Ti is represented by a path in turn). Thus, Sequence Datalog can
be used as an XML-to-XML query language and more.

We conclude by recalling an intriguing theoretical open problem already
mentioned before [22]. It can be stated independently of Sequence Datalog,
although we did stumble upon the problem while thinking about Sequence Dat-
alog. Consider monadic Datalog with stratified negation over sets of natural
numbers, with natural number constants and variables, and addition as the only
operation. Which functions on finite sets of natural numbers are expressible in
this language?

33

References
[1] H. Aamer, J. Hidders, J. Paredaens, and J. Van den Bussche. Expressive-

ness within sequence datalog. In Proceedings 40th36th ACM Symposium
on Principles of Databases, pages 70–81. ACM, 2021.

[2] H. Abdulrab and J.-P. Pécuchet. Solving word equations. Journal of Sym-
bolic Computation, 8(5):499–521, 1989.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[4] M. Alviano and A. Pieris, editors. Datalog 2.0 2019: Third International
Workshop on the Resurgence of Datalog in Academia and Industry, volume
2368 of CEUR Workshop Proceedings, 2019.

[5] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and
S. Zdonik. The object-oriented database system manifesto. In W. Kim,
J.-M. Nicolas, and S. Nishio, editors, Proceedings 1st International Con-
ference on Deductive and Object-Oriented Databases, pages 40–57. Elsevier
Science Publishers, 1989.

[6] P. Barceló, N. Higeura, J. Pérez, and B. Suercaseaux. On the expressive-
ness of LARA: A unified language for linear and relational algebra. In
C. Lutz and J.C. Jung, editors, Proceedings 23rd International Conference
on Database Theory, volume 155 of Leibniz International Proceedings in
Informatics, pages 6:1–6:20. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2020.

[7] P. Barceló and R. Pichler, editors. Datalog in Academia and Industry:
Second International Workshop, Datalog 2.0, volume 7494 of Lecture Notes
in Computer Science. Springer, 2012.

[8] M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. Definable rela-
tions and first-order query languages over strings. Journal of the ACM,
50(5):694–751, 2003.

[9] A. Bonner and G. Mecca. Sequences, Datalog, and transducers. Journal of
Computer and System Sciences, 57:234–259, 1998.

[10] A.J. Bonner and G. Mecca. Querying sequence databases with transducers.
Acta Informatica, 36:511–544, 2000.

[11] A.K. Chandra and D. Harel. Structure and complexity of relational queries.
Journal of Computer and System Sciences, 25(1):99–128, 1982.

[12] J. Chomicki. Temporal query languages: a survey. In D.M. Gabbay and
H.J. Ohlbach, editors, Temporal Logic: ICTL’94, volume 827 of Lecture
Notes in Computer Science, pages 506–534. Springer-Verlag, 1994.

34

[13] The Commitee for Advanced DBMS Function. Third-generation database
system manifesto. SIGMOD Record, 19(3):31–44, 1990.

[14] O. de Moor, G. Gottlob, T. Furche, and A. Sellers, editors. Datalog
Reloaded: First International Workshop, Datalog 2010, volume 6702 of Lec-
ture Notes in Computer Science. Springer, 2011.

[15] F. Durán, S. Eker, S. Escobar, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. Associative unification and symbolic reasoning modulo associativity
in Maude. In V. Rusu, editor, Proceedings 12th International Workshop
on Rewriting Logic and Its Applications, volume 11152 of Lecture Notes in
Computer Science, pages 98–114. Springer, 2018.

[16] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, second
edition, 1999.

[17] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Document span-
ners: A formal approach to information extraction. Journal of the ACM,
62(2):12:1–12:51, 2015.

[18] S. Ginsburg and X.S. Wang. Regular sequence operations and their use in
database queries. Journal of Computer and System Sciences, 56(1):1–26,
1998.

[19] G. Grahne, M. Nykänen, and E. Ukkonen. Reasoning about strings in
databases. Journal of Computer and System Sciences, 59:116–162, 1999.

[20] G. Grahne and E. Waller. How to make SQL stand for String Query
Language. In R.C.H. Connor and A.O. Mendelzon, editors, Research Issues
in Structured and Semistructured Database Programming, volume 1949 of
Lecture Notes in Computer Science, pages 61–79. Springer, 2000.

[21] M. Grohe. Arity hierarchies. Annals of Pure and Applied Logic, 82(2):103–
163, 1996.

[22] J. Hidders, J. Paredaens, and J. Van den Bussche. J-logic: Logical founda-
tions for json querying. In Proceedings 36th ACM Symposium on Principles
of Databases, pages 137–149. ACM, 2017.

[23] J. Hidders, J. Paredaens, and J. Van den Bussche. J-logic: a logic for
querying json. arXiv:2006.04277, 2020.

[24] D. Hutchison, B. Howe, and D. Suciu. LaraDB: A minimalist kernel for
linear and relational algebra computation. In F.N. Afrati and J. Sroka, edi-
tors, Proceedings 4th ACM SIGMOD Workshop on Algorithms and Systems
for MapReduce and Beyond, pages 2:1–2:10, 2017.

[25] IEEE Task Force on Process Mining. Process mining manifesto, 2011. URL:
https://www.tf-pm.org/resources/manifesto.

35

https://www.tf-pm.org/resources/manifesto

[26] H.V. Jagadish and F. Olken. Database management for life science research.
SIGMOD Record, 33(2):15–20, 2004.

[27] H. Jananthan, Z. Zhou, et al. Polystore mathematics of relational algebra.
In J.-Y. Nie, Z. Obradovic, T. Suzumura, et al., editors, Proceedings IEEE
International Conference on Big Data, pages 3180–3189. IEEE, 2017.

[28] Y. Law, H. Wang, and C. Zaniolo. Relational languages and data models
for continuous queries on sequcnes and data streams. ACM Transactions
on Database Systems, 36(2):8:1–8:32, 2011.

[29] LDBC Graph Query Language Task Force. G-CORE: A core for future
graph query languages. In Proceedings 2018 International Conference on
Management of Data, pages 1421–1432. ACM, 2018.

[30] L. Libkin, R. Machlin, and L. Wong. A query language for multidimen-
sional arrays: design, implementations, and optimization techniques. In
Proceedings of the 1996 ACM SIGMOD International Conference on Man-
agement of Data, volume 25:2 of SIGMOD Record, pages 228–239. ACM
Press, 1996.

[31] S. Luo, Z.J. Gao, M.N. Gubanov, L.L. Perez, D. Jankov, and C.M. Jer-
maine. Scalable linear algebra on a relational database system. Communi-
cations of the ACM, 63(8):93–101, 2020.

[32] G. Mecca and A.J. Bonner. Query languages for sequence databases: Ter-
mination and complexity. IEEE Transactions on Knowledge and Data En-
gineering, 13(3):519–525, 2001.

[33] Y. Nahshon, L. Peterfreund, and S. Vansummeren. Incorporating informa-
tion extraction in the relational database model. In Proceedings 19th In-
ternational Conference on Web and Databases, pages 6:1–6:7. ACM, 2019.

[34] S. Papadopoulos et al. The TileDB array data storage manager. Proceedings
of the VLDB Endowment, 10(4):349–360, 2016.

[35] L. Peterfreund et al. Recursive programs for document spanners. In
P. Barcelo and M. Calautti, editors, Proceedings 22nd International Confer-
ence on Database Theory, volume 127 of LIPIcs, pages 13:1–13:18. Schloss
Dagstuhl–Leibniz Center for Informatics, 2019.

[36] F. Pezoa, J.L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. Foundations
of JSON Schema. In Proceedings 25th International Conference on World
Wide Web, pages 263–273, 2016.

[37] W. Plandowski. On PSPACE generation of a solution set of a word equation
and its applications. Theoretical Computer Science, 792:20–61, 2019.

[38] G. Plotkin. Building-in equational theories. In B. Meltzer and D. Michie,
editors, Machine Intelligence 7, pages 73–90. Edinburgh University Press,
1972.

36

[39] R. Ramakrishnan et al. SRQL: sorted relational query language. In
M. Rafanelli and M. Jarke, editors, Proceedings 10th International Con-
ference on Scientific and Statistical Database Management, pages 84–95.
IEEE Computer Society, 1998.

[40] E.L. Robertson, L.V. Saxton, D. Van Gucht, and S. Vansummeren. Struc-
tural recursion as a query language on lists and ordered trees. Theory of
Computing Systems, 44:590–619, 2009.

[41] F. Rusu and Y. Cheng. A survey on array storage, query languages, and
systems. arXiv:1302.0103, 2013.

[42] R. Sadri, C. Zaniolo, A. Zarkesh, et al. Expressing and optimizing sequence
queries in database systems. ACM Transactions on Database Systems,
29(2):282–318, 2004.

[43] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A model for sequence
databases. In P.S. Yu and A.L.P. Chen, editors, Proceedings 11th Inter-
national Conference on Data Engineering, pages 232–239. IEEE Computer
Society, 1995.

[44] W. Shen et al. Declarative information extraction using Datalog with em-
bedded extraction. In Ch. Koch et al., editors, Proceedings 33th Inter-
national Conference on Very Large Data Bases, pages 1033–1044. ACM,
2007.

[45] J.D. Ullman. Principles of Database and Knowledge-Base Systems, vol-
ume I. Computer Science Press, 1988.

37

	1 Introduction
	2 Sequence databases and Sequence Datalog
	2.1 Data model for sequence databases
	2.2 Syntax of Sequence Datalog
	2.3 Semantics

	3 Features, fragments, and queries
	3.1 Queries and subsumption among fragments
	3.2 Redundancy and primitivity

	4 Expressibility results
	4.1 Arity
	4.2 Equations
	4.3 Packing
	4.3.1 Solving equations
	4.3.2 Extension to path expressions
	4.3.3 Pure variables and pure equations
	4.3.4 Packing structures
	4.3.5 Redundancy of packing

	4.4 Intermediate predicates

	5 Inexpressibility results
	5.1 Recursion
	5.1.1 Boolean queries

	5.2 Intermediate predicates
	5.3 Equations

	6 Putting it all together
	7 Sequence relational algebra
	8 Conclusion

