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Abstract
We consider the problem of maintaining the size of the LZ77 factorization of a string S of length at
most n under the following operations: (a) appending a given letter to S and (b) deleting the first
letter of S. Our main result is an algorithm for this problem with amortized update time Õ(

√
n). As

a corollary, we obtain an Õ(n
√

n)-time algorithm for computing the most LZ77-compressible rotation
of a length-n string—a naive approach for this problem would compute the LZ77 factorization of
each possible rotation and would thus take quadratic time in the worst case. We also show an
Ω(

√
n) lower bound for the additive sensitivity of LZ77 with respect to the rotation operation. Our

algorithm employs dynamic trees to maintain the longest-previous-factor array information and
depends on periodicity-based arguments that bound the number of the required updates and enable
their efficient computation.
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1 Introduction

Lempel-Ziv 77 (LZ77) [70] is one of the most well known and most effective compression
algorithms that admit efficient implementations. An LZ-like parsing of a string is a parti-
tioning of the string into phrases, where each phrase starting at position i is either a single
letter that does not occur previously, or is a prefix of the rest of the string of length ℓ ≥ 1
that has a previous occurrence at some position s < i. Each phrase can then be encoded by
a pair (1, T [i]), or (ℓ, s), depending on the type of the phrase. The latter is a reference to a
previous occurrence of the phrase, and thus compression can be achieved when there are
many long phrases. The LZ-like parsing is also known as a Lempel-Ziv-Storer-Szymanski
factorization (LZSS) [63] with self-references or a C-factorization [14]. The number of phrases
in an LZ-like parsing can be minimized by adopting a greedy left-to-right approach, which is
the so-called LZ77 parsing, and can be computed off-line in O(n) time and space for linearly
sortable alphabets, or in O(n log σ) time and O(n) space for general ordered alphabets,
where n is the length of the string and σ is the number of distinct letters in the string (also
o(n)-time algorithms for well-compressible strings over a small alphabet are known [20, 36]).
Algorithms for computing the LZ77 parsing of a given (static) string have been studied
extensively [1, 18, 16, 54, 4, 31, 32, 38, 33, 27, 28, 69, 24, 53, 25, 57, 44].
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19:2 Maintaining the Size of LZ77 on Semi-dynamic Strings

In an on-line setting, where the string can grow by appending symbols at the end, only
the last phrase of an LZ77 parsing can change. The LZ77 parsing of the string can be
maintained in amortized O(log σ) time for each append operation, by a direct adaptation
of Ukkonen’s suffix tree construction algorithm [67]. There are also results that focus on
achieving smaller space [55, 62, 69, 58, 6].

The fully-dynamic setting, where edits to the text at any position are allowed, is much
more challenging than the on-line setting. The efficient computation of the LZ77 parsing
essentially relies on index data structures such as suffix trees or arrays, which allow fast
prefix searches. Recent advances have showed that dynamic indices with poly-logarithmic
update and query times are possible [53, 37], and together with dynamic longest common
extension (LCE) queries [51, 52, 53], this enables the computation of the LZ77 parsing of a
dynamic string S in Õ(|LZ(S)|) time, where |LZ(S)| is the number of phrases in the LZ77
parsing of the current string. Note that this number can be linear in the size of the string.

In this paper, we consider the problem of maintaining the size of the LZ77 parsing of
a semi-dynamic string of length at most n, where the allowed update operations are (a)
appending a letter and (b) shrinking the string by deleting the first letter. We present an
algorithm that processes each update in strongly sublinear time.

Related Work
Cormode and Muthukrishnan [13] introduced the substring compression problem, where the
goal is to preprocess a static string so that given any factor of the string, the phrases in its
LZ77 parsing can be computed efficiently. Existing solutions for the substring compression
problem [13, 35, 42, 43] basically compute the LZ77 parsing one phrase at a time, and thus
require Õ(|LZ(S)|) time to answer a query for a factor S. Our aim is to achieve better query
time when the size of the LZ77 parsing can be large, by considering the more restricted
semi-dynamic setting, where the queried factor moves in a sliding-window fashion over a
string (note, however, that the whole string is not necessarily given beforehand).

The notion of compression sensitivity [2] measures the degree to which the sizes of
compressed representations can change in response to updates. Akagi et al. [2] considered
the compression sensitivity of LZ77 under single-letter updates. We extend this result by
showing that a cyclic rotation of a length-n string by one letter can change the size of the
LZ77 parsing only by O(

√
n), and there are arbitrarily long strings for which the size of the

LZ77 parsing changes by Θ(
√

n).
The semi-dynamic/sliding window setting has been considered for maintaining the suffix

tree [12, 21, 46], the Directed Acyclic Word Graph [29, 60], as well as for other stringology
problems [3, 15, 48, 47, 49]. Early studies of the dynamic longest common subsequence and
edit distance problems considered models where the allowed updates are a subset of prepend,
append, and delete the first or last letter, see [66, 45, 39, 30]. Our results are not related to
the problem considered in [10], where the “sliding window” considered there is a range in
which previous occurrences of the phrases are limited to those starting inside the range.

Our Contributions
We consider the following problem with strings indexed from 0.

Semi-dynamic LZ Compression Size
Maintained object: A string S of length at most n along with |LZ(S)|.
Update: Perform one of the two following operations:
delete: S → S[1 . . |S| − 1]; append(a) for a ∈ Σ: S → Sa.
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Our main result can be stated as follows.

▶ Theorem 1. The Semi-dynamic LZ Compression problem admits a solution using O(n)
space and O(

√
n log2 n) amortized update time.

We also define the problem in the sliding window model.

Sliding Window LZ Compression Size
Input: A string S of length n and an integer d ∈ [1 . . n].
Output: The size of LZ(S[i . . i + d)), for each i = 0, . . . , n − d.

We define the rotation operation on a string S as rot(S) = S[1 . . |S|)S[0]. The string
obtained from S by r applications of the rotation operation is denoted rotr(S), while
rot0(S) := S.

Most LZ-Compressible Rotation
Input: A string S of length n.
Output: An integer r ∈ [0 . . n) such that LZ(rotr(S)) has the least number of phrases,
that is, arg minr∈[0. .n) |LZ(rotr(S))|.

This problem is a special case of Sliding Window LZ Compression Size. It suffices
to iterate over all length-n factors of string S2 using a sliding window.

In Fact 25 in Section 6, we show that some rotation of S can have Θ(
√

|S|) fewer phrases
than S, or 2

3 z phrases, where z = |LZ(S)|. This implies that storing the best rotation value
and compressing the rotation can yield better compression.

As a baseline, the Sliding Window LZ Compression Size can be solved using
Generalized Substring Compression queries [35] as follows.

▶ Proposition 2. The Sliding Window LZ Compression Size problem can be solved in
O(n

√
log n + Z log log n) time and O(n log log n) space, where Z =

∑n−d
i=0 |LZ(S[i . . i + d))|

is the total number of phrases in the LZ77 factorizations of all length-d windows of S.

Proof. Let us recall that in the Generalized Substring Compression problem, we are to
preprocess a string S so that, given any factor S[ℓ . . r] of S, we can compute the phrases in its
LZ77 parsing efficiently. Keller et al. [35] presented an efficient data structure for answering
Generalized Substring Compression queries based on range successor queries. If the
later range successor data structure of Gao et al. [26] is used, we obtain an O(n log log n)-size
data structure that can be constructed in O(n

√
log n) time and can answer a Generalized

Substring Compression query for S[ℓ . . r] in O(|LZ(S[ℓ . . r])| log log n) time. ◀

Other trade-offs in the proposition are also possible; see [50, 26, 19]. For example, one
can obtain linear space with O(n

√
log n + Z logϵ n) time, for any ϵ > 0 [50, 26]. Still, the

time complexity of the algorithm of Proposition 2 is Õ(n + Z), which can be as bad as Õ(n2)
for poorly compressible texts. As a corollary of Theorem 1, we obtain the following result.

▶ Corollary 3. The Sliding Window LZ Compression Size and Most LZ-Compressible
Rotation problems can be solved in O(n

√
n log2 n) time using O(n) space.

Technical Overview
At the heart of our solution, lies the maintenance of a dynamic tree that encodes the longest-
previous-factor array information; the LZ77 factorization corresponds to a single path in
this tree and this path’s length can be efficiently retrieved by maintaining said tree using
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19:4 Maintaining the Size of LZ77 on Semi-dynamic Strings

link-cut trees [61]. A periodicity-based argument allows us to show that deleting the first
letter of S results in O(

√
n) updates to our dynamic tree. Appending a letter to S might

unfortunately lead to Ω(n) updates. However, all updated edges of the tree have the same
target and consecutive sources. Moreover, the structure of those updates allows us to handle
them efficiently in batches. Namely, we show that there are O(

√
n) consecutive intervals of

positions [a . . b] such that, for all elements i of each interval, the (rightmost) position of the
longest previous factor starting at position i changes from some position j to some position
j′ and, for some integers x and y, for all i ∈ [a . . b], i − j′ = x and i − j = y. All in all, given
the endpoints of the intervals and the changes in the (rightmost) positions of the longest
previous factors, we update the tree structure in Õ(

√
n) time in total by storing all edges

with the same target using a joinable balanced binary search tree [64]. In order to exploit the
above structural insights, we show that it suffices to maintain a data structure that allows us
to efficiently retrieve the value LPFS [i] for the elements of an Õ(

√
n)-size subset of [1 . . |S|).

We obtain this data structure by exploiting ideas that stem from internal string queries,
such as the Interval LCP problem [35]. For a static string S, it suffices to combine a
suffix tree and a 2D range successor data structure over an n × n grid, where, for each suffix
S[j . . n), we have a point (RANK[j], j), where RANK[j] is the lexicographic rank of said suffix
among the suffixes of S. For computing the positions of longest previous factors, we enhance
this data structure with further range successor data structures. We then maintain such
a data structure that efficiently answers the desired queries when the involved factors are
contained in S[0 . . |S| − O(

√
n)]. We overcome the technical challenge posed by the need

to handle the remaining queries by analysing the periodic structure implied by “hard” such
queries and batching them so that we only spend an additive O(

√
n) factor overhead in the

time complexity.

Structure of the paper. The auxiliary data structure for LPF computation in a semi-
dynamic setting is described in Section 3. An abstract structure of the LPF-tree is defined
in Section 4, where the periodicity-based arguments are also given. Implementations of
operations on the tree are provided in Section 5. Finally, Section 6 considers the additive
sensitivity of the size of the LZ77 parsing under a single rotation operation.

2 Preliminaries

Let S = S[0]S[1] · · · S[n−1] be a string (or text) of length n = |S| over an integer alphabet Σ.
The elements of Σ are called letters. For two positions i and j of S, we denote by S[i . . j]
a string called a factor of S that starts at position i and ends at position j (the factor is
empty, denoted by ε, if i > j). A factor of S can be represented in O(1) space by specifying
the indices i and j of an occurrence of it. We define S[i . . j + 1) = S[i . . j] = S(i − 1 . . j]. A
string U is a proper prefix (resp. suffix) of S if there exists a non-empty string V such that
S = UV (resp. S = V U).

If a string B is both a proper prefix and a proper suffix of a length-n string S, then B

is called a border of S. A positive integer p is called a period of S if S[i] = S[i + p] for all
i ∈ [0 . . n − p). String S has a period p if and only if it has a border of length n − p. We
refer to the smallest period of S as the period of S, and denote it by per(S). String S is
called periodic if per(S) ≤ n/2.

▶ Lemma 4 (Periodicity Lemma [22], weak version). If p and q are periods of a string S and
satisfy p + q ≤ |S|, then gcd(p, q) is also a period of S.
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▶ Lemma 5 ([11, 56, 42]). The set of occurrences of a string X in a string Y can be expressed
as a union of O(|Y |/|X|) arithmetic progressions such that the difference of each progression
equals per(X). The intervals spanned by the progressions are disjoint.

For a string S of length n, we define the following arrays indexed from 0 to n − 1:

LPFS [i] = max({ℓ ≥ 0 : S[j . . j + ℓ) = S[i . . i + ℓ), j < i} ∪ {0})
LPFposS [i] = max({j < i : S[j . . j + LPFS [i]) = S[i . . i + LPFS [i]) ̸= ε} ∪ {−1}).

See Figure 3 in Page 11 for an example.

▶ Theorem 6 (Corollary of [8]). For a string S of length n, arrays LPFS and LPFposS can
be constructed in O(n

√
log n) time.

Proof. Array LPFS can be constructed in O(n) time [17], while array LPFposS can be
constructed in O(n(1 + log σ/

√
log n)) = O(n

√
log n) time [8]. ◀

Predecessor data structures. For a static set, a combination of x-fast tries [68] and
deterministic dictionaries [59] yields the following efficient deterministic data structure.

▶ Fact 7 ([23, Proposition 2]). A sorted static set Y ⊆ [1 . . U ] can be preprocessed in O(|Y |)
time and space so that predecessor queries can be performed in O(log log |U |) time.

A dynamic predecessor data structure over m integer keys can be stored using an
exponential search tree [5] in O(m) space, supporting insertions, deletions, and predecessor
queries in O(log2 log m/ log log log m) worst-case time.

3 Answering LPF Queries in a Batch in a Semi-dynamic String

In the semi-dynamic model, we will extensively use a solution to the following problem to
compute previous occurrences of factors of the maintained string S.

Semi-dynamic Batch LPF
Maintained object: A string S of length at most n.
Update: Perform one of the two following operations:

delete: S → S[1 . . |S| − 1];
append(a) for a ∈ Σ: S → Sa.

Query: Given a set Y ⊆ [0 . . |S|), compute LPFS [y] and LPFposS [y] for each y ∈ Y .

This section is devoted to an O(n)-space solution for this problem with O(
√

n log n)
update time and O(

√
n log n + |Y | logϵ n) query time, for any ϵ > 0. We start with a

discussion of static algorithms for computing LPF and LPFpos.
A solution to the following static problem can be used to answer queries for LPF in a

sliding window if the whole string is known in advance.

Interval LCP
Input: A string T of length n.
Query: Given a factor F of T and an interval [i . . j], find the longest prefix F ′ of
F that occurs in T at some position in [i . . j] and a position k ∈ [i . . j] such that
T [k . . k + |F ′|) = F ′.

CPM 2024



19:6 Maintaining the Size of LZ77 on Semi-dynamic Strings

▶ Theorem 8 (Keller et al. [35], Belazzougui et al. [8]). The Interval LCP problem admits
a solution with O(n) space, O(n

√
log n) construction time, and O(logϵ n) query time, for

any ϵ > 0.

To answer queries for LPFpos in a sliding window we would use an auxiliary problem
called Interval LCP Position in which, in addition to the output of an Interval LCP
query, we compute the rightmost position within the interval [i . . j] where the longest prefix
of F occurs. Using range successor queries, one can obtain a solution for the Interval LCP
Position problem with the complexities of Theorem 8.

Let us formally define range successor queries. We are given a set P of n points in an
n × n grid. Given a range [x . . x′] × [y . . ∞) (or [x . . x′] × (−∞ . . y]), we are to report a point
of P that is included in the range and has a minimal y-coordinate (maximal y-coordinate,
respectively). Clearly, the x and y coordinates can be interchanged in this definition.

▶ Lemma 9. The Interval LCP Position problem admits a solution with O(n) space,
O(n

√
log n) construction time, and O(logϵ n) query time, for any ϵ > 0.

Proof. We compute in O(n) time the suffix array SA, the rank array RANK and the LCP
array [34]. Let us recall the definitions of these arrays. The suffix array SA[0 . . n) is a
permutation of [0 . . n) such that:

T [SA[0] . . n) < T [SA[1] . . n) < · · · < T [SA[n − 1] . . n);

then SA[RANK[i]] = i for all i ∈ [0 . . n). The LCP array is defined as follows:

LCP[i] = max{ℓ ≥ 0 : T [SA[i] . . SA[i]+ℓ) = T [SA[i+1] . . SA[i+1]+ℓ)} for i ∈ [0 . . n−1).

Next, we perform O(n
√

log n)-time preprocessing (see [8]) to construct an O(n)-sized data
structure for O(logϵ n)-time range successor queries (see [50]) on two sets of points on n × n

grids: set P1 = {(i, LCP[i]) : i ∈ [0 . . n − 1)} and set P2 = {(i, RANK[i]) : i ∈ [0 . . n)}; the
set P2 was also used in [35]. Finally, we perform the preprocessing of Theorem 8.

Upon an Interval LCP Position query for a factor F and interval [i . . j], we first use
an Interval LCP query to compute the longest prefix F ′ of F that occurs at some position
in [i . . j] and a position k ∈ [i . . j] such that T [k . . k + |F ′|) = F ′. We would like to compute
the maximum index k′ ∈ [k . . j] such that T [k′ . . k′ + |F ′|) = F ′.

First, we use range successor queries on the set of points P1 to locate the range [ℓ . . r] in
the suffix array that contains all the suffixes that have a longest common prefix with suffix
T [k . . n] of length at least |F ′|. Namely, to compute r, we find the smallest x-coordinate of a
point from P1 in the range [RANK[k] . . ∞) × [0 . . |F ′|). If there is no such point, r = n − 1,
and otherwise r is the computed x-coordinate. The computation of ℓ is symmetric.

Now, among the suffixes that correspond to SA[ℓ . . r], we would like to find the suffix
occurring at a maximum position that is at most j. We ask a range successor query on
the set of points P2 to find the maximum y-coordinate of a point in [ℓ . . r] × (−∞ . . j]; the
returned y-coordinate is the sought position k′.

The Interval LCP query and each range successor query take O(logϵ n) time, for any
ϵ > 0 [8, 35]. ◀

The data structure of Lemma 9 essentially consists of the suffix tree of T (which is used in
the data structure underlying Theorem 8) and range successor data structures. The corollary
below follows from the work of Keller et al. [35] and Lemma 9.
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▶ Corollary 10. A string T of length n can be preprocessed in O(n
√

log n) time so that, given
a string F and an interval [i . . j], computing the longest prefix of F that occurs in T at some
position in [i . . j], as well as the rightmost position in [i . . j] at which it occurs, reduces in
O(logϵ n) time, for any ϵ > 0, to computing the locus of L in the suffix tree of T , where L is
the longest prefix of F that occurs in T .

We are now ready to proceed to semi-dynamic computation of LPF and LPFpos.

▶ Lemma 11. The Semi-dynamic Batch LPF problem admits an O(n)-space solution
with O(

√
n log n) update time and O(

√
n log n + |Y | logϵ n) query time, for any ϵ > 0.

Proof. We will be rebuilding some data structures over the string S after every ⌊
√

n⌋ updates.
We will keep the update-time bound worst-case by using the so-called time slicing technique,
that is, splitting the work required for the construction of the data structure into roughly equal
chunks and distributing them among the subsequent ⌊

√
n⌋ updates; if the data structures

can be constructed in Õ(n) time, then we will spend Õ(
√

n) time on each single update. Let
S1 be the current string S, S2 be S1 after ⌊

√
n⌋ updates, and S3 be S2 after ⌊

√
n⌋ updates.

The data structure for S1 will be ready by the time S2 is processed and will be used until
S3 is reached, at which point the data structure that is constructed for S2 will be ready.
This way, when processing the current string S, we can assume that we have access to data
structures for a string Z = V S[0 . . |S| − x), where x ≤ 2

√
n and V is a string composed of

all deleted letters since the construction of this data structure was issued.
The data structures that are stored for Z include the static data structure of Corollary 10

for the Interval LCP Position problem that takes O(n) space and O(n
√

log n) time to
construct; the suffix tree of Z augmented in O(n) time with the weighted-ancestor-queries
data structure of [7], which allows one to retrieve in O(1) time the locus of any given factor
of Z in the suffix tree of Z, and other O(n)-time constructible data structures based on the
suffix tree of Z to be specified later.

Let us now discuss how to compute LPFS [y] and LPFposS [y] for all y ∈ Y . We compute
at most three candidate values for LPFS [y] for each y ∈ Y , together with candidate positions
LPFposS [y], and we take the maximum LPF value and the corresponding position in the end.

Case I: LPFposS [y] ≥ d := |S| − 10⌈
√

n⌉, so y > d. We compute the LPFS′ and LPFposS′

arrays for S′ = S[d . . |S|) in O(
√

n log n) time (Theorem 6). For each y ∈ Y with y > d,
we have a candidate LPFS′ [y − d] for LPFS [y] along with candidate LPFposS′ [y − d] for
LPFposS [y].

Case II: LPFposS [y] + LPFS [y] < |S| − x. (Let us note that, however, y + LPFS [y] can be as
large as |S| in this case.) Our main aim is to compute, for each y ∈ Y , the locus of the longest
prefix Ly of S[y . . |S|) that occurs in S[0 . . |S| − x). Let the elements of Y in increasing order
be y0, y1, . . .; we process them in this order. Starting from the locus of S[y0 . . |S| − x) which
we compute in O(1) time using a weighted ancestor query, we go down in the suffix tree letter
by letter with the aim of computing Ly0 . Note that we follow an edge as long as the node
we reach corresponds to a factor of S[0 . . |S| − x) (and not just of Z); this can be checked
in constant time after a linear-time bottom-up preprocessing of the suffix tree. When we
have found the locus of Ly0 we do the following. From the suffix tree, we obtain an index i

such that Ly0 = Z[i . . i + |Ly0 |). In constant time, using a weighted ancestor query, we go to
the locus of Z[i + (y1 − y0) . . i + |Ly0 |) and start the search for Ly1 from there; and so on.
We process |Y | suffixes and only have x = O(

√
n) letters to extend them by. The total time

required for the described process is thus O(|Y | +
√

n log log n) assuming that the children

CPM 2024



19:8 Maintaining the Size of LZ77 on Semi-dynamic Strings

of a node in the suffix tree of Z are stored using the predecessor data structure of Fact 7.
We then use Corollary 10 to compute a pair of candidates for LPFS [y] and LPFposS [y] for
each y ∈ Y , spending O(logϵ n) time for each y.

Case III: LPFposS [y] < |S| − 10
√

n and LPFposS [y] + LPFS [y] ≥ |S| − x. We have

y ≤ |S| − LPFS [y] ≤ LPFposS [y] + x ≤ LPFposS [y] + 2
√

n, and

LPFS [y] ≥ |S| − x − LPFposS [y] > 10
√

n − x ≥ 8
√

n.

Hence, factors S[y . . y + LPFS [y]) and S[LPFposS [y] . . LPFposS [y] + LPFS [y]) start at
most 2

√
n positions apart and overlap by more than 6

√
n positions. This means that

S[LPFposS [y] . . y + LPFS [y]) is periodic with period at most 2
√

n. In particular, due to
the periodicity lemma (Lemma 4), the period of this factor must be equal to the period of
S[|S| − ⌊8

√
n⌋ . . |S| − x).

We can compute the period p of S[|S| − ⌊8
√

n⌋ . . |S| − x) in O(
√

n) time using the
Morris-Pratt algorithm [41]. If p ≤ 2

√
n, we compute the maximal factor S[ℓ . . r] of S that

contains S[|S| − ⌊8
√

n⌋ . . |S| − x) and has the same period; the periodicity can be extended
to the left in constant time after a linear-time preprocessing of Z (using longest common
extension queries [9]) and to the right in O(

√
n) time using letter comparisons. Then, for

each y ∈ [ℓ + p . . r], we have a candidate r − y + 1 for LPFS [y] along with candidate y − p for
LPFposS [y]. ◀

▶ Remark 12. For the purposes of Sliding Window LZ Compression Size problem for
a string S, instead of Lemma 11, one could simply build the data structure encapsulated
in Lemma 9 for S and use it to compute all required values LPFS [y] and LPFposS [y] in the
implied instance of the Semi-dynamic Batch LPF problem.

4 Properties of Longest Previous Factors and LPF-Tree

We next show two properties of the LPF and LPFpos arrays. The first of them bounds the
number of zeroes in the LPFposU array.

To prove the lemma, we show that the values LPFU [i] for increasing positions i such that
LPFposU [i] = 0 are strictly increasing. This, together with the fact that no three factors of
the form U [i . . i + LPFU [i]) for these positions overlap, shows that there are O(

√
n) such

positions. The aforementioned fact follows by periodicity.

▶ Lemma 13. For a string U of length n, the number of positions i ∈ [0 . . n) such that
LPFposU [i] = 0 is O(

√
n).

Proof. Let I = {i ∈ [1 . . n) : LPFposU [i] = 0}. First, let us note that, for any i, i′ ∈ I

with i < i′, we have LPFU [i] < LPFU [i′]. Indeed, if we had LPFU [i] ≥ LPFU [i′], then, for
ℓ = LPFU [i′], we would have U [i . . i + ℓ) = U [0 . . ℓ) = U [i′ . . i′ + ℓ), which would imply
LPFposU [i′] ≥ i > 0, yielding a contradiction.

By the above, to prove the statement of the lemma, it suffices to show that if i ∈ I, then
there is at most one element i′ ∈ I ∩ (i . . i + ⌊ 1

2 LPFU [i]⌋].
Assume that such elements i and i′ exist. The setting is illustrated in Figure 1. We will

show that then i′ is determined uniquely for i. For ℓ = LPFU [i], we have that U [i . . i + ℓ) =
U [i′ . . i′ + ℓ) is a border of U [i . . i′ + ℓ). Hence, U [i . . i′ + ℓ) has a period p := i′ − i ≤ ℓ/2
and is thus periodic. Let q be the smallest period of U [i . . i′ + ℓ). By the periodicity lemma
(Lemma 4), q divides p.
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Figure 1 An illustration of the proof of Lemma 13. For i = 11 and i′ = 13, we have LPFposU [i] =
LPFposU [i′] = 0, ℓ = LPFU [i] = 8 and ℓ′ = LPFU [i′] = 10. In this example, we have q = 2.

By definition, U [i . . i + ℓ) = U [0 . . ℓ), so U [0 . . ℓ) has period q. Moreover, U [i + ℓ] =
U [i + ℓ − q] = U [ℓ − q], where the first equality follows from the fact that position i + ℓ is
within the factor U [i . . i′ + ℓ). Therefore, U [ℓ] ̸= U [ℓ − q], because otherwise we would have
U [i . . i + ℓ] = U [0 . . ℓ] and LPFU [i] > ℓ. This means that U [0 . . ℓ] does not have period q, i.e.,
U [i′ . . i′ + ℓ] does not have period q (as LPFU [i′] > ℓ).

Let r be the smallest position such that r ≥ i + q and U [i . . r] does not have period q.
We must have i′ = r − ℓ. All in all, i′ is uniquely determined by i in U . ◀

▶ Remark 14. The bound from Lemma 13 is tight. Let a1, . . . , am be distinct letters and
consider strings Si = a1a2 · · · ai. Then the string U = SmS1S2 · · · Sm has length Θ(m2) and
for each starting position j > 0 of some Si, for i = 1, . . . , m, we have LPFposU [j] = 0.

Let us define LPFpos′
S [i] = i − LPFposS [i].

The next lemma characterizes the positions i such that i + LPFU [i] = |U |. There can
be many such positions, even Θ(n), say, for a unary string U = an. However, there are
only O(

√
n) different values LPFpos′

U [i] for such positions. Here, we need to consider the
LPFpos′

U array and not the LPFposU array, as the latter can have Θ(n) different values for
the positions of the considered type; the unary string U = an, for which LPFposU [i] = i − 1
for each i ∈ [0 . . n), is an example.

In the proof it suffices to consider positions i ≤ n −
√

n such that i + LPFU [i] = |U |.
Each such position implies an occurrence of a length-⌊

√
n⌋ suffix V of U in V . In turn, the

occurrence of V determines the value of LPFpos′
U [i]. We consider all possible occurrences of

V in U as O(
√

n) arithmetic progressions (cf. Lemma 5) and use periodicity to show that
O(1) occurrences in each progression can be implied in the aforementioned sense.

▶ Lemma 15. For a string U of length n, among all positions i ∈ [0 . . n) for which
i + LPFU [i] = n, there are O(

√
n) different values LPFpos′

U [i].

Proof. We denote s = n − ⌊
√

n⌋. Obviously, there are at most ⌊
√

n⌋ − 1 different values
LPFpos′

U [i] for i ∈ (s . . n).
Let V = U [s . . n). Note that if LPFposU [i] = j for some i ∈ [0 . . s] with i + LPFU [i] = n,

then there is an occurrence of V in U at position j + (s − i). In this case, we say that the
occurrence of V in U at position j + (s − i) is implied by position i or that position i implies
the occurrence.

By Lemma 5, the set of occurrences of V in U consists of O(
√

n) maximal arithmetic
progressions with common difference per(V ). Let J be one of these arithmetic progressions.
We will show that there are at most two elements p ∈ J such that the occurrence of V at
position p is implied by any position i ∈ [0 . . s]. This will conclude the proof, as for all
positions i that imply an occurrence of V at position p, the value LPFpos′

U [i] = s − p is the
same. Let U [n − d . . n) be the longest suffix of U with period per(V ). Figure 2 contains an
illustration of possible cases considered below.

Let J0 be the arithmetic progression containing position s. Assume first that position
i ∈ [0 . . s] implies an occurrence of V at a position p in J = J0. We must have |J0| > 1.
If i ≥ n − d, then U [i . . n) has period per(V ). We have U [j . . j + LPFU [i]) = U [i . . n), so
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Figure 2 An illustration of the proof of Lemma 15. Let V = abab. We have n − d = 16 and
{i ∈ [0 . . 23] : i + LPFU [i] = 24} = [14 . . 23]. Let J = {2, 4, 6, 8, 10} be an arithmetic progression of
occurrences of V in U . Positions 14 and 15 imply the occurrence of V at position 6; the corresponding
equality U [0 . . 9] = U [14 . . 23] is illustrated using the blue top rectangles. Positions 16 and 17 imply
the occurrence of V at position 10; the corresponding equality U [6 . . 13] = U [16 . . 23] is illustrated
using the red bottom rectangles. For each position i ∈ [18 . . 23], we have LPFpos′

U [i] = per(V ) = 2.

j ≥ n − d, as otherwise U [j . . j + LPFU [i]) would not have period per(V ). One cannot
have j ∈ (i − per(V ) . . i), as this would imply an additional occurrence of V that is not in
the progression. We always select the rightmost position, so p = s − per(V ) is determined
uniquely (and j = i−per(V )). Now we need to note that the case that i < n−d is impossible.
Indeed, in this case the longest suffix of U [i . . n) that has period per(V ) has length d, the
longest suffix of U [j . . j + LPFU [i]) that has period per(V ) has length d − (i − j), i.e., smaller
than d, but U [j . . j + LPFU [i]) = U [i . . n).

Henceforth we assume that J ̸= J0. For r = max J + |V |, let U [r − d′ . . r) be the
longest suffix of U [0 . . r) with period per(V ). Assume that position i ∈ [0 . . s] implies an
occurrence of V at a position in J . If n − i ≤ min(d, d′), we have i ∈ [n − d . . n) and
U [i . . n) = U [max J + |V | − (n − i) . . max J + |V |). Hence, since LPFposU [i] stores the
rightmost value in case of ties, the implied occurrence of V is the one starting at position
max J . Otherwise, the factor equality implied by i+LPFU [i] = n means that d ≤ d′. Thus we
have i < n − d and U [i . . n) does not have period per(V ). Now, there is exactly one position
p ∈ J such that U [p+ |V |−d . . p+ |V |) has period per(V ), but U [p+ |V |−d−1 . . p+ |V |) does
not have this period. Namely, p = max J − (d′ − d) and we must have d′ ≡ d (mod per(V )).
The occurrence of V at position p is the one implied by position i in this case. This concludes
the proof that at most two occurrences of V in J can be implied by any position i ∈ [0 . . s],
and hence the whole proof. ◀

▶ Remark 16. The bound from Lemma 15 is tight. Let a1, . . . , am be distinct letters and
consider strings S′

i = aiai−1 · · · a1. Then the string U = S′
mS′

m−1 · · · S′
1S′

m has length Θ(m2),
j +LPFU [j] = |U | for all j ∈ [|U |−m . . |U |) and all values LPFpos′

U [j], for j ∈ [|U |−m . . |U |),
are different.

4.1 LPF-tree
Let us define LPF′

S [i] = max(1, LPFS [i]). We define an LPF-tree for a string S as a tree with
nodes [0 . . |S|], among which |S| is the root, and edges {(i, i + LPF′

S [i]) : i = 0, . . . , |S| − 1}.
The single edge outgoing from i has label equal to LPFpos′

S [i]; see Figure 3.
From Theorem 6 we obtain the following.

▶ Corollary 17. The LPF-tree of a string S of length n can be constructed in O(n
√

log n)
time.

The LZ77 parsing of a string S can be computed straightforwardly from the LPFS and
LPFposS arrays in a greedy manner; cf. [16, 17]. We make the following simple observation.

▶ Observation 18. Let π be the 0-to-|S| path in the LPF-tree of S. Then, |LZ(S)| equals the
number |π| of edges of π. Additionally, for k ≤ |π|, if the k-th edge on π is (i, i + LPF′

S [i]),
then the k-th phrase of LZ(S) is equal to S[i . . i + LPF′

S [i]).
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Figure 3 Example of an LPF-tree for the string abbbababb.

We need to extend the definition of an LPF-tree to the semi-dynamic setting. Let U be
a semi-dynamic string that was obtained from an initial string by using a = deletions(U)
first-letter deletions and some number of append operations. The nodes and edges of a
semi-dynamic LPF-tree for U are, respectively, [a . . a + |U |], among which a + |U | is the root,
and {(i, i + LPF′

U [i − a]) : i ∈ [a . . a + |U |)}. The single edge outgoing from i has label equal
to LPFpos′

U [i − a].

▶ Lemma 19. Let us consider any string U and the semi-dynamic LPF-tree T of U . The
sources of all edges of T that enter a given node form a set of consecutive integers.

Proof. Let a = deletions(U). It suffices to show that for any i ∈ [0 . . |U | − 2], we have
i + LPF′

U [i] ≤ i + 1 + LPF′
U [i + 1] (equivalently, i + a + LPF′

U [i] ≤ i + 1 + a + LPF′
U [i + 1]).

The conclusion is obvious if LPF′
U [i] = 1. Hence, we assume that LPF′

U [i] > 1, so LPF′
U [i] =

LPFU [i]. Let ℓ = LPFU [i] and p = LPFposU [i] < i. We have U [p . . p + ℓ) = U [i . . i + ℓ) and
hence U [p + 1 . . p + ℓ) = U [i + 1 . . i + ℓ). Consequently, i + 1 + LPF′

U [i + 1] ≥ i + ℓ, as
required. ◀

5 Updating a Semi-dynamic LPF-tree

We start by introducing an abstract data structure that will be used to store labels of edges
of an LPF-tree. The data structure stores key-value pairs such that, for each pair, the value
is smaller than the key. The set of keys at any time is a set of consecutive integers and is
denoted by I. The size of I is denoted by n and the set of values is a subset of [0 . . n). The
following operations are supported:
(a) insertion of a pair with key max I + 1, where I is the current interval of keys, or deletion

of a pair with key min I,
(b) setting the value of all keys in a specified interval [k1 . . k2] to a given integer v, knowing

that their values were all equal to an integer v′,
(c) reporting all key-value pairs for which the difference between the key and the value is

minimal.
Let us call this data structure D. Let πn = (log log n)2/ log log log n.

▶ Lemma 20. Data structure D can be implemented in O(n) space so that each operation
(a), (b) is performed in O(πn) time and each pair in operation (c) is reported in O(log log n)
time.

Proof. For each value, we store the set of keys with this value as a collection of maximal
intervals in a dynamic predecessor data structure. The predecessor data structures are stored
in dynamic predecessor data structure indexed by values 0 through n − 1.

CPM 2024
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Moreover, for each value, the minimum key with this value is determined and such
key-value pairs are stored in a min-type priority queue ordered by the difference between
the key and the value. Whenever an operation is performed on one of the predecessor data
structures, the priority queue is updated accordingly.

Insertion in operation (a) requires to insert a singleton interval {max I + 1} to the
predecessor data structure for its value, possibly merging the interval with the previous one.
Deletion in operation (a) requires to remove the first element of the first interval in the
predecessor data structure for this value.

In operation (b) we identify the (at most one) interval I in the predecessor data structure
for value v′ that contains [k1 . . k2] as a sub-interval. Then I is replaced by the at most two
intervals I \ [k1 . . k2], and the interval [k1 . . k2] is inserted into the predecessor data structure
for v, possibly being merged with any adjacent intervals.

In operation (c), elements are removed from the priority queue one by one and reported
until the next element has a different priority. Afterwards they are reinserted to the priority
queue.

We use the dynamic predecessor data structure [5] that requires O(m) space on m

elements and supports queries in O(πn) time. The priority queue requires O(log log n) time
per operation [65]. ◀

Let U be a semi-dynamic string with deletions(U) = a. The labels of edges of a semi-
dynamic LPF-tree for U will be stored as a set of key-value pairs with keys i ∈ [a . . a + |U |)
and values LPFpos′

U [i − a] using data structure D. Only edges for which LPFposU [i − a] ̸= −1
are stored in D.

In the two lemmas below, we use the data structure D together with the Semi-dynamic
Batch LPF data structure (Lemma 11) to efficiently compute the updates that need to
be performed on the semi-dynamic LPF-tree upon each of the single-letter updates on the
string considered in the semi-dynamic setting. The actual operations on the LPF-tree will
be performed in Section 5.1 when we define the data structure representing the LPF-tree.

▶ Lemma 21. Let U be a semi-dynamic string of length n and U ′ be U after the deletion of
its first letter. The semi-dynamic LPF-tree for U ′ can be obtained from the semi-dynamic
LPF-tree for U by updating O(

√
n) edges.

The set of edges to be updated, as well as their new labels, can be computed in O(
√

n log n)
time. Data structure D can be updated in O(

√
nπn) time.

Proof. Let a = deletions(U). First, the edge from a needs to be removed. No operation on
D is required, as LPFposU [0] = −1.

Then, let us note that if LPFposU [i − a] > 0 for i ∈ (a . . a + n), then LPF′
U [i − a] =

LPF′
U ′ [i−(a+1)] and LPFposU [i−a]+a = LPFposU ′ [i−(a+1)]+(a+1), so LPFpos′

U [i−a] =
LPFpos′

U ′ [i − (a + 1)]. Hence, only edges (i, i + LPF′
U [i − a]) with LPFposU [i − a] = 0, i.e.,

LPFpos′
U [i − a] = i − a, remain to be updated. The bound on the number of such edges

follows by Lemma 13.
The edges to be updated can be retrieved in O(

√
n log log n) time using data structure D.

Indeed, for such an edge, the difference of the key and the value of the corresponding pair
in D satisfies i−LPFpos′

U [i−a] = a. Moreover, if LPFposU [i−a] > 0 for i ∈ (a . . a+n), then
i − LPFpos′

U [i − a] = a + LPFposU [i − a] > a. Therefore, the sought edges can be obtained
via operation (c) on data structure D.

For each edge (i, i + LPF′
U [i − a]) with label LPFpos′

U [i − a] = i − a that we remove, we
have to insert edge (i, i + LPF′

U ′ [i − (a + 1)]) with label LPFpos′
U ′ [i − (a + 1)]. (The edge

is inserted to D as well only if LPFposU ′ [i − (a + 1)] ̸= −1.) We compute the targets and



H. Bannai, P. Charalampopoulos, and J. Radoszewski 19:13

labels of these edges in O(
√

n log n) time using Lemma 11. According to Lemma 20, data
structure D can be updated in O(

√
nπn) total time via O(

√
n) calls to operation (b), each

with a singleton interval. ◀

▶ Lemma 22. Let U be a semi-dynamic string of length n and U ′ = Uc, for some letter c.
The semi-dynamic LPF-tree for U ′ can be obtained from the semi-dynamic LPF-tree for U by
adding a new root and an edge from the old root to the new root, as well as redirecting some
number of edges with consecutive sources that lead to the old root to point to the new root.

The set of edges to be updated, represented as O(
√

n) groups of edges with consecutive
sources, equal old label and equal new label, can be computed in O(

√
n log1.5 n) time. Data

structure D can be updated in O(
√

nπn) time.

Proof. Let a = deletions(U). We first create a new node a + n + 1, designate it to be the
root, and insert an edge (a + n, a + n + 1) with label decided by an invocation of Lemma 11
in O(

√
n log n) time. (The edge is inserted to D if only LPFposU ′ [n] ̸= −1.) Then, since

i + LPFU [i − a] ≤ i + LPFU ′ [i − a] ≤ i + LPFU [i − a] + 1,

for all i, all we need to do is compute the nodes i such that i + LPFU [i − a] = a + n and
i + LPFU ′ [i − a] = a + n + 1. Due to Lemma 19, these nodes form a set R of consecutive
integers and, in particular, R = (r . . a + n) for some r ∈ [a . . a + n).

We can compute r in O(
√

n log1.5 n) time using binary search and Lemma 11. It remains
to partition R into sub-intervals with the same LPFpos′

U ′ and LPFpos′
U values. Note that

the LPFpos′
U ′ and LPFpos′

U values in R are non-decreasing since an occurrence of a length-ℓ
suffix of U or U ′ at a position p, implies an occurrence of any suffix of length ℓ − µ for a
positive integer µ at position p + µ.

By Lemma 15, there are O(
√

n) possible values of LPFpos′
U ′ [i], for i ∈ R. We next show

how to compute the partition of R by values LPFpos′
U ′ [i] in Õ(

√
n) time using Lemma 11.

We maintain a set of disjoint active intervals whose union is the set of positions for which
we have not yet computed the value of LPFpos′

U ′ . Initially, our set of active intervals
is {R}. Then, until there are no active intervals left, for each active interval J , in the
order of decreasing size, we do the following. We compute LPFpos′

U ′ for min J , max J ,
and the midpoint j = ⌊(min J + max J)/2⌋ of J . If the interval is of size at most three,
we partition it to three singletons which are marked as inactive and labeled with the
corresponding LPFpos′

U ′ values. Else, for the most distant x, y ∈ {min J, j, max J} such that
LPFpos′

U ′ [x − a] = LPFpos′
U ′ [y − a], if they exist, we designate [x . . y] as inactive and label it

with LPFpos′
U ′ [x − a]. The remaining positions yield at most two active intervals, by splitting

J at its midpoint j. We can think of this algorithm proceeding in levels, where at level λ we
process those active intervals that have been obtained via λ splits. At each level, we sweep
the intervals in a left-to-right manner, repeatedly merging consecutive intervals with the
same label, so that the resulting interval inherits that label. Since in each level other than
the first one each active interval contains an endpoint of the sought partition of R, we have
at most O(

√
n) active intervals in each level. As the sizes of active intervals decrease by a

constant factor in each level, we have O(log n) levels. We batch the O(
√

n) queries for each
level and answer them using Lemma 11. The total time required for partitioning R is thus
O(

√
n log1.5 n).

Next, we partition R by values LPFpos′
U [i] using the same algorithm in Õ(

√
n) time.

Finally, we compute an intersection of the two partitions, as desired, in O(
√

n) time.
To update the data structure D using Lemma 20, we insert the edge from the old root to

the new root using operation (a) and then perform the operation (b) on each of the O(
√

n)
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groups of edges that are being redirected. In total, the data structure is updated in O(
√

nπn)
time, as desired. ◀

5.1 Implementation of a Semi-Dynamic LPF-tree using Link-cut Trees
and Joinable Balanced BSTs

A link-cut tree is a classic data structure [61] that represents a forest of rooted trees
containing n nodes in total. Each node stores an integer weight. The data structure has size
O(n) and supports the following operations in amortized O(log n) time:

add a tree consisting of a single node to the forest;
remove a tree consisting of a single node from the forest;
attach a root node to another node as its child (link operation);
given a node in one of the trees, disconnect it (and its subtree) from the tree of which it
is part to form a separate tree (cut operation);
add a given value α to the weights of all the descendants of a node;
return the weight of a given node.

For implementations of operations including weights, see for example [40, Appendix: Splay
trees and link-cut trees].

It is well-known (cf. [64, pp. 45-56]) that a collection of red-black trees (RB trees)
containing n integer keys in total can support the following operations, each in O(log n) time:

insert an element to an RB tree;
delete a given element from an RB tree;
join two RB trees into one RB tree, provided that all keys in one of the trees are smaller
than all keys in the other (the arguments of the join operation are not kept);
split an RB tree into two RB trees, one containing all keys smaller than a specified
parameter k and the other containing the remaining keys (again, the initial RB tree is
not kept).

We note that every operation on an RB tree (adding a new leaf, removing a leaf, rotation)
can be simulated using O(1) link and cut operations. We obtain the following observation.

▶ Observation 23. A collection of RB trees on n nodes can be simulated using link-cut trees.
The amortized cost of every operation on an RB tree is then O(log2 n).

The semi-dynamic LPF-tree is represented using link-cut trees. A straightforward
implementation would be sufficient to cover first-letter deletions (Lemma 21). However, when
a new letter is appended to the string, the total number of single-edge updates could be Θ(n).
To guarantee efficiency, edges need to be redirected in batches (Lemma 22). To this end, we
use joinable balanced BSTs, such as RB trees, to represent all edges leading to a single node.

More formally, the whole LPF-tree is stored in one link-cut tree. There is a 1-to-1
correspondence between nodes of the LPF-tree and nodes of the link-cut tree. Assume node v

of the LPF-tree is not a leaf and that the sources of all edges with target v are u1, u2, . . . , up,
with u1 < u2 < · · · < up. Then the link-cut tree arranges the nodes u1, u2, . . . , up into an
RB-tree and the root of this tree is joined with an edge with v.

In Lemma 21, we need to make O(
√

n) single edge updates. Each of them requires
the move of a node from one RB tree to another RB tree in our link-cut tree, which gives
O(

√
n log2 n) time by Observation 23. In Lemma 22, in addition to operations on O(1)

nodes and edges on the link-cut tree, we need to move a batch of consecutive nodes from
an RB tree to a new RB tree leading to the new root. By Observation 23, the operations
on the link-cut tree in this lemma require only O(log2 n) time. The resulting update time
complexity O(

√
n log2 n) dominates the remaining operations from Lemmas 21 and 22.
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We assume that edges inside RB trees have weight 0 and all the remaining edges have
weight 1. Then, in the data structure the weights of nodes will be updated so that at each
moment, the weight of a node will be equal to the sum of weights of edges on the path to the
root. Then, for a node i ∈ [a . . a + |U |], where a = deletions(U), the weight will correspond
to the length of the path in the LPF-tree from a to a + |U |. The weights can be maintained
with O(1) “add” and “query” operations (which gives O(log n) amortized time) per link or
cut operation to satisfy this definition of weights. Indeed, no changes to weights are required
in link or cut operations implementing a rotation on an RB tree; when moving a batch of
edges to a different RB tree, we first query for the weights of the roots of the old RB tree and
the new RB tree and then add the difference of these weights to the whole moved subtrees;
adding a new root requires incrementing the weights of all the existing nodes.

By Lemmas 21 and 22, we obtain the following result, which together with Observation 18
implies our main result, Theorem 1.

▶ Lemma 24. A semi-dynamic LPF-tree of a string of length at most n can be maintained
in O(

√
n log2 n) amortized time per update operation, such that the length of the path from

the root to any node can be retrieved in O(log n) amortized time.

6 Additive Sensitivity of LZ77 for Rotations

Note that as each rotation can be emulated with two edit operations, the work of Akagi et
al. [2, Section 8] implies that, for any string S, 1

6 |LZ(rot(S))| ≤ |LZ(S)| ≤ 6|LZ(rot(S))|.

▶ Fact 25. There are infinitely many strings S for which |LZ(rot(S))| ≥ |LZ(S)| + Θ(
√

|S|)
and |LZ(rot(S))| ≥ 3

2 |LZ(S)| − 2.

Proof. Let a1, . . . , am be distinct letters and let Si = a1a2 · · · ai. Now, consider the string
S = SmS1S2 · · · Sm, which is of length Θ(m2).

We have that |LZ(S)| = 2m since the phrases of LZ(S) are:

(a1, a2, . . . , am, S1, S2, . . . , Sm).

Let S′ = rot(S) = a2a3 · · · amS1S2 · · · Sma1. Then, we have |LZ(S′)| = 3m − 2 since the
phrases of LZ(S′) are:

(a2, a3, . . . , am, a1, S1, a2, S2, a3, S3, a4, . . . , Sm−2, am−1, Sm−1, ama1). ◀

The next fact provides a corresponding upper bound on |LZ(rot(S))|. Further, let us
note that the rot operation can decrease the number of LZ phrases by one; for example,
|LZ(abaa)| = 4 and |LZ(baaa)| = 3. Fact 26 also shows that a larger decrease is not possible.

▶ Fact 26. For every string S, we have |LZ(S)| − 1 ≤ |LZ(rot(S))| ≤ |LZ(S)| + Θ(
√

|S|) and
|LZ(rot(S))| ≤ 2|LZ(S)|.

Proof. The second inequality follows by Lemma 13. Indeed, let us consider the LZ parsing
of S into phrases F1, F2, . . . , Fk. We have |F1| = 1. We can transform it into a parsing of
rot(S) as follows: move F1 to the end and for each phrase Fi whose previous occurrence was
only at the leftmost position of S, partition Fi into a one-letter phrase and the remaining
phrase. By Lemma 13, O(

√
|S|) phrases will be partitioned. The resulting parsing cannot

have fewer phrases than the LZ parsing of rot(S) by the fact that greedy is optimal in this
case. The parsing has size |LZ(S)| + Θ(

√
|S|) and, simultaneously, size at most 2|LZ(S)|, as

required.
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Let us prove the first inequality. Let S′ be S without its first letter. If suffices to show
that |LZ(S′)| ≥ |LZ(S)| − 1, as appending letters can only increase the number of phrases.

For a position a in S, by nextS(a) we denote the smallest ending position b of a phrase
in LZ(S) such that b ≥ a. We show by induction that if i is the ending position of a phrase
in LZ(S′), then |LZ(S′[0 . . i])| ≥ |LZ(S[0 . . j])| − 1 for j = nextS(i + 1).

The base case for i = 0 holds with equality for j = nextS(1). Assume that |LZ(S′[0 . . i])| ≥
|LZ(S[0 . . j])| − 1 holds for i being an ending position of a phrase in S′ and j = nextS(i + 1).
Let i′ > i be the next ending position of a phrase in S′ and j′ = nextS(i′ + 1). If j′ = j,
then the desired inequality holds as |LZ(S′[0 . . i′])| = |LZ(S′[0 . . i])| + 1 and |LZ(S[0 . . j′])| =
LZ(S[0 . . j])|. Otherwise, we have that j′ = j′′, where j′′ = nextS(j + 1): Indeed, if j′ > j′′,
then S′[j . . j′ − 1] would have an earlier occurrence in S′, so S[j + 1 . . j′] = S′[j . . j′ − 1]
would have an earlier occurrence in S, which contradicts the greediness of the algorithm
computing the parsing. By the inductive assumption, this concludes that

|LZ(S′[0 . . i′])| = |LZ(S′[0 . . i])|+1 ≥ |LZ(S[0 . . j])| = |LZ(S[0 . . j′′])|−1 = |LZ(S[0 . . j′])|−1,

as required. ◀

7 Conclusions

We have shown that the size of the Lempel-Ziv-Storer-Szymanski factorization (LZSS) with
self-references of a length-n semi-dynamic string S can be updated in Õ(

√
n) time. The

same approach with minor adaptations can store the size of the classic LZ77 parsing (with
self-references), in which the phrase of S starting at position i is S[i . . min(i+LPFS [i], |S|−1)]
(i.e., it includes the position that immediately follows the longest previous factor), also with
Õ(

√
n) update time. Future work includes storing the size of other types of compression in

the semi-dynamic setting. The main open problems are, however, if the update time can be
decreased and if strictly sublinear update time is possible in the fully dynamic setting.
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