
BIROn - Birkbeck Institutional Research Online

Sakr, S. and Bonifati, A. and Voigt, H. and Iosup, A. and Ammar, K. and
Angles, R. and Aref, W. and Arenas, M. and Besta, M. and Boncz, P.A. and
Daudjee, K. and Valle, E.D. and Dumbrava, S. and Hartig, O. and Haslhofer,
B. and Hegeman, T. and Hidders, Jan and Hose, K. and Iamnitchi, A. and
Kalavri, V. and Kapp, H. and Martens, W. and Özsu, M.T. and Peukert, E.
and Plantikow, S. and Ragab, M. and Ripeanu, M.R. and Salihoglu, S. and
Schulz, C. and Selmer, P. and Sequeda, J. F. and Shinavier, J. and Szárnyas,
G. and Tommasini, R. and Tumeo, A. and Uta, A. and Varbanescu, A.L. and
Wu, H.-Y. and Yakovets, N. and Yan, D. and Yoneki, E. (2021) The future is
big graphs. Communications of the ACM 64 (9), pp. 62-71. ISSN 0001-0782.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53522/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/53522/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

BIROn - Birkbeck Institutional Research Online

Sakr, Sherif and Bonifati, Angela and Voigt, Hannes and Iosup, Alexandru
and Ammar, Khaled and Angles, Renzo and Aref, Walid G. and Arenas,
Marcelo and Besta, Maciej and Boncz, Peter A. and Daudjee, Khuzaima
and Valle, Emanuele Della and Dumbrava, Stefania and Hartig, Olaf and
Haslhofer, Bernhard and Hegeman, Tim and Hidders, Jan and Hose, Katja
and Iamnitchi, Adriana and Kalavri, Vasiliki and Kapp, Hugo and Martens,
Wim and and Eric Peukert and Stefan Plantikow and Mohamed Ragab and
Mate, M. Tamer \"zsu and Yakovets, Nikolay and Yan, Da and Yoneki, Eiko
(2021) The future is big graphs: a community view on graph processing
systems. Commun. ACM 64 (9), pp. 62-71.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53508/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/53508/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

62 COMMUNICATIONS OF THE ACM | SEPTEMBER 2021 | VOL. 64 | NO. 9

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 A
L

L
I

 T
O

R
B

A
N

GRAPHS ARE, BY nature, ‘unifying abstractions’ that
can leverage interconnectedness to represent, explore,
predict, and explain real- and digital-world phenomena.
Although real users and consumers of graph instances
and graph workloads understand these abstractions,
future problems will require new abstractions and
systems. What needs to happen in the next decade for
big graph processing to continue to succeed?

The Future
Is Big Graphs:
A Community
View on Graph
Processing
Systems

DOI:10.1145/3434642

Ensuring the success of big graph processing
for the next decade and beyond.

BY SHERIF SAKR, ANGELA BONIFATI,
HANNES VOIGT, AND ALEXANDRU IOSUP

CONTRIBUTORS
KHALED AMMAR

Borialis AI
RENZO ANGLES

University of Talca
WALID AREF

Purdue University
MARCELO ARENAS

PUC & IMFD
MACIEJ BESTA

ETH Zürich
PETER A. BONCZ

CWI
KHUZAIMA DAUDJEE
University of Waterloo

EMANUELE DELLA VALLE
Polytechnic University of Milan

STEFANIA DUMBRAVA
ENSIIE

OLAF HARTIG
Linköping University

BERNHARD HASLHOFER
Austrian Institute of Technology

TIM HEGEMAN
VU University Amsterdam

JAN HIDDERS
Birkbeck, University of London

KATJA HOSE
Aalborg University

ADRIANA IAMNITCHI
University of South Florida

VASILIKI KALAVRI
Boston University

HUGO KAPP
Oracle Labs Switzerland

WIM MARTENS
Universität Bayreuth

M. TAMER ÖZSU
University of Waterloo

ERIC PEUKERT
Universität Leipzig

STEFAN PLANTIKOW
Neo4j

MOHAMED RAGAB
University of Tartu

MATEI R. RIPEANU
University of British Columbia

SEMIH SALIHOGLU
University of Waterloo
CHRISTIAN SCHULZ

Heidelberg University and Universität Wien
PETRA SELMER

Neo4j
JUAN F. SEQUEDA

data.world
JOSHUA SHINAVIER

Uber Engineering
GÁBOR SZÁRNYAS

Budapest Univ. of Technology and Economics
RICCARDO TOMMASINI

University of Tartu
ANTONINO TUMEO

Pacific Northwest National Lab
ALEXANDRU UTA

VU University Amsterdam
ANA LUCIA VARBANESCU

University of Amsterdam
HSIANG-YUN WU

TU Wien
NIKOLAY YAKOVETS

TU Eindhoven
DA YAN

The University of Alabama
EIKO YONEKI

University of Cambridge

http://dx.doi.org/10.1145/3434642
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3434642&domain=pdf&date_stamp=2021-08-24

C
R

E
D

I
T

 T
K

SEPTEMBER 2021 | VOL. 64 | NO. 9 | COMMUNICATIONS OF THE ACM 63

64 COMMUNICATIONS OF THE ACM | SEPTEMBER 2021 | VOL. 64 | NO. 9

contributed articles

We are witnessing an unprecedent-
ed growth of interconnected data,
which underscores the vital role of
graph processing in our society. In-
stead of a single, exemplary (“killer”)
application, we see big graph process-
ing systems underpinning many
emerging but already complex and di-
verse data management ecosystems,
in many areas of societal interest.a

To name only a few recent, remark-
able examples, the importance of this
field for practitioners is evidenced by
the large number (more than 60,000) of
people registeredb to download the
Neo4j book Graph Algorithmsc in just
over one-and-a-half years, and by the
enormous interest in the use of graph
processing in the artificial intelligence
(AI) and machine learning (ML) fields.d

a As indicated by a user survey12 and by a
systematic literature survey of 18 applica-
tion domains, including biology, security,
logistics and planning, social sciences,
chemistry, and finance. See http://arxiv.org/
abs/1807.00382

b See https://app.databox.com/datawall/551f30
9602080e2b2522f7446a20adb705cabbde8

c See https://www.oreilly.com/library/view/
graph-algorithms/9781492047674/

d Many highly cited articles support this state-
ment, including “Inductive Representation
Learning on Large Graphs” by W. Hamilton
et al. (2017) and “DeepWalk: Online Learn-
ing of Social Representations” by B. Perozzi
et al. (2014); https://arxiv.org/pdf/1403.6652.
pdf

Furthermore, the timely Graphs 4 COV-
ID-19 initiativee is evidence of the im-
portance of big graph analytics in allevi-
ating the pandemic.

Academics, start-ups, and even big
tech companies such as Google, Face-
book, and Microsoft have introduced
various systems for managing and pro-
cessing the growing presence of big
graphs. Google’s PageRank (late 1990s)
showcased the power of Web-scale
graph processing and motivated the de-
velopment of the MapReduce program-
ming model, which was originally used
to simplify the construction of the data
structures used to handle searches, but
has since been used extensively outside
of Google to implement algorithms for
large-scale graph processing.

Motivated by scalability, the 2010
Google Pregel “think-like-a-vertex”
model enabled distributed PageRank

e See https://neo4j.com/graphs4good/covid-19/

 key insights
 ˽ Graphs are ubiquitous abstractions

enabling reusable computing tools for
graph processing with applications in
every domain.

 ˽ Diverse workloads, standard models and
languages, algebraic frameworks, and
suitable and reproducible performance
metrics will be at the core of graph
processing ecosystems in the next
decade.

The authors of this article met in Dec.
2019 in Dagstuhl for Seminar 19491
on Big Graph Processing Systems.a The
seminar gathered a diverse group of 41
high-quality researchers from the data
management and large-scale-systems
communities. It was an excellent
opportunity to start the discussion
about next-decade opportunities and
challenges for graph processing.

This is a community publication
The first four authors co-organized
the community event leading to this
article and coordinated the creation
of this manuscript. All other authors
contributed equally to this research.
Unfortunately, Sherif Sakr passed away
during the period following the event
and the completion of this article. This
article is published in memoriam.

a https://www.dagstuhl.de/en/program/
calendar/semhp/?semnr=19491

A Joint
Effort by the
Computer
Systems
and Data
Management
Communities

Figure 1. Illustration of a complex data pipeline for graph processing.

Data flows left to right, from data source to output, via a series of functionally different processing steps.
Feedback and loopbacks flow mainly through the blue (highlighted) arrows.

Processing
Formalism

Non-Graph
Data Sources

Relational
Database

Graph
Extraction

ETL for
Graph Data

Graph
Database

Graph
Data

Data
Model

Graph
Workflow

Graph
Algorithm

Processed
Output

Graph Analytics
Engine

Machine
Learning

Scientific
Computing

Business
Intelligence

Augmented Reality
and Visualization

Graph-Based Engines

Graph OL TP Operations

Graph OLAP Operations
Extracted
Graphs

SEPTEMBER 2021 | VOL. 64 | NO. 9 | COMMUNICATIONS OF THE ACM 65

contributed articles

ML libraries and processing frame-
works; business intelligence (BI), such
as report generating and planning tools;
scientific computing; visualization; and
augmented reality (for inspection and
interaction by the user). Note that this is
not typically a purely linear process and
hybrid OLTP/OLAP processes can
emerge. Considerable complexity stems
from (intermediate) results being fed
back into early-process steps, as indi-
cated by the blue arrows.

As an example, to study coronavi-
ruses and their impact on human and
animal populations (for example, the
COVID-19 disease), the pipeline de-
picted in Figure 1 could be purposed
for two major kinds of analysis: net-
work-based ‘omics’ and drug-related
search, and network-based epidemiol-
ogy and spread-prevention. For the for-
mer, the pipeline could have the fol-
lowing steps:

1. Initial genome sequencing leads
to identifying similar diseases.

2. Text (non-graph data) and struc-
tured (database) searches help identify
genes related to the disease.

3. A network treatment coupled with
various kinds of simulations could re-
veal various drug targets and valid in-
hibitors, and might lead to effective
prioritization of usable drugs and
treatments.

For the latter, social media and loca-
tion data, and data from other privacy-
sensitive sources, could be combined
into social interaction graphs, which
could be traversed to establish super-
spreaders and super-spreading events
related to them, which could result in
the establishment of prevention poli-
cies and containment actions. However,
the current generation of graph pro-
cessing technology cannot support
such a complex pipeline.

For instance, on the COVID-19
knowledge graph,g useful queries can
be posed against individual graphsh in-
specting the papers, patents, genes,
and most influential COVID-19 au-
thors. However, inspecting several data
sources in a full-fledged graph process-
ing pipeline across multiple graph da-
tasets, as illustrated in Figure 1, raises
many challenges for current graph da-

g See https://covidgraph.org/
h See https://github.com/covidgraph/documen-

tation/blob/master/helpful-queries.md

computation, while Facebook, Apache
Giraph, and ecosystem extensions sup-
port more elaborate computational
models (such as task-based and not al-
ways distributed) and data models
(such as diverse, possibly streamed,
possibly wide-area data sources) useful
for social network data. At the same
time, an increasing number of use cas-
es revealed RDBMS performance prob-
lems in managing highly connected
data, motivating various startups and
innovative products, such as Neo4j,
Sparksee, and the current Amazon
Neptune. Microsoft Trinity and later
Azure SQL DB provided an early distrib-
uted database-oriented approach to
big graph management.

The diversity of models and systems
led initially to the fragmentation of the
market and a lack of clear direction for
the community. Opposing this trend,
we see promising efforts to bring to-
gether the programming languages,
ecosystem structure, and performance
benchmarks. As we have argued, there
is no killer application that can help to
unify the community.

Co-authored by a representative
sample of the community (see the side-
bar, “A Joint Effort by the Computer
Systems and Data Management Com-
munities”), this article addresses the
questions: What do the next-decade
big-graph processing systems look like
from the perspectives of the data man-
agement and the large-scale-systems
communities?f What can we say today
about the guiding design principles of
these systems in the next 10 years?

Figure 1 outlines the complex pipe-
line of future big graph processing sys-
tems. Data flows in from diverse sources
(already graph-modeled as well as non-
graph-modeled) and is persisted, man-
aged, and manipulated with online
transactional processing (OLTP) opera-
tions, such as insertion, deletion, up-
dating, filtering, projection, joining,
uniting, and intersecting. The data is
then analyzed, enriched, and con-
densed with online analytical process-
ing (OLAP) operations, such as group-
ing, aggregating, slicing, dicing, and
rollup. Finally, it is disseminated and
consumed by a variety of applications,
including machine learning, such as

f The summary of the Dagstuhl seminar. See
https://www.dagstuhl.de/19491

What needs
to happen in
the next decade
for big graph
processing
to continue
to succeed?

66 COMMUNICATIONS OF THE ACM | SEPTEMBER 2021 | VOL. 64 | NO. 9

contributed articles

principles of graph data extraction, ex-
change, processing, and analysis, as il-
lustrated in Figure 1.

A second important element, as
we will discuss, is the vision of an
ecosystem governing big graph pro-
cessing systems and enabling the
tuning of various components, such
as OLAP/OLTP operations, work-
loads, standards, and performance
needs. These aspects make the big
processing systems more complicat-
ed than what was seen in the last de-
cade. Figure 1 provides a high-level

perception of this complexity in
terms of inputs, outputs, processing
needs, and final consumption of
graph data.

A third element is how to under-
stand and control performance in
these future ecosystems. We have im-
portant performance challenges to
overcome, from methodological as-
pects about performing meaningful,
tractable, and reproducible experi-
ments to practical aspects regarding
the trade-off of scalability with porta-
bility and interoperability.

tabase technology. In this article, we
formulate these challenges and build
our vision for next-generation, big-
graph processing systems by focusing
on three major aspects: abstractions,
ecosystems, and performance. We pres-
ent expected data models and query
languages, and inherent relationships
among them in lattice of abstractions
and discuss these abstractions and the
flexibility of lattice structures to ac-
commodate future graph data models
and query languages. This will solidify
the understanding of the fundamental

Figure 2. Example lattice shows graph data model variants with their model characteristics.8

ISO/IEC GQL
Property Graph Model

Neo4j/Oracle PGQL
Property Graph Model

Gremlin / MS Cosmos Property
Graph Model

W3C RDF Graph

Data Graph
(used for e.g. Page rank, Connected

component)

W3C RDF Dataset

Directed Graph

Simple Graph

Weighted Graph
(used for e.g. Shortest path,

Louvain modularity)

Pregel/Giraph Graph
(used for e.g. Node2vec)

Multiple edge labels

Direction

Multiple edges between
a pair of nodes,

single edge label

Edge dataVertex data

Multiple vertex labels

Single vertex labels, vertex properties, edge properties

Hyper vertices

SEPTEMBER 2021 | VOL. 64 | NO. 9 | COMMUNICATIONS OF THE ACM 67

contributed articles

tions across concepts in different data
models) or with direct translations (for
instance, W3C’s R2RML). Are there
general ways or building blocks for ex-
pressing such mappings (category the-
ory, for example)?

Studying (1) requires foremost inves-
tigators working with data and data
models, which is uncommon in the data
management field and should be con-
ducted collaboratively with other fields,
such as human-computer interaction
(HCI). Work on HCI and graphs exists,
for example, in HILDA workshops at Sig-
mod. However, these are not exploring
the search space of graph data models.

Studying (2) and (3) can build on ex-
isting work in database theory, but can
also leverage findings from neighbor-
ing computer science communities on
comparison, featurization, graph sum-
marization, visualization, and model
transformation. As an example, graph
summarization22 has been widely ex-
ploited to provide succinct representa-
tions of graph properties in graph min-
ing1 but they have seldom been used by
graph processing systems to make pro-
cessing more efficient, more effective,
and more user centered. For instance,
approximate query processing for
property graphs cannot rely on sam-
pling as done by its relational counter-
part and might need to use quotient
summaries for query answering.

Logic-based and declarative for-
malisms. Logic provides a unifying
formalism for expressing queries, op-
timizations, integrity constraints, and
integration rules. Starting from
Codd’s seminal insight relating logi-
cal formulae to relational queries,12
many first order (FO) logic fragments
have been used to formally define que-
ry languages with desirable properties
such as decidable evaluation. Graph
query languages are essentially a syn-
tactic variant of FO augmented with
recursive capabilities.

Logic provides a yardstick for rea-
soning about graph queries and graph
constraints. Indeed, a promising line
of research is the application of for-
mal tools, such as model checking,
theorem proving,15 and testing to es-
tablish the functional correctness of
complex graph processing systems, in
general, and of graph database sys-
tems, in particular.

The influence of logic is pivotal not

Abstractions
Abstractions are widely used in pro-
gramming languages, computational
systems, and database systems, among
others, to conceal technical aspects in
favor of more user-friendly, domain-
oriented logical views. Currently, users
have to choose from a large spectrum
of graph data models that are similar,
but differ in terms of expressiveness,
cost, and intended use for querying
and analytics. This ‘abstraction soup’
poses significant challenges to be
solved in the future.

Understanding data models. Today,
graph data management confronts
many data models (directed graphs,
RDF, variants of property graphs, and
so on) with key challenges: deciding
which data model to choose per use
case and mastering interoperability of
data models where data from different
models is combined (as in the left-
hand side of Figure 1).

Both challenges require a deeper un-
derstanding of data models regarding:

1. How do humans conceptualize
data and data operations? How do data
models and their respective operators
support or hinder the human thought
process? Can we measure how “natu-
ral” or “intuitive” data models and their
operators are?

2. How can we quantify, compare,
and (partially) order the (modeling and
operational) expressive power of data
models? Concretely, Figure 2 illus-
trates a lattice for a selection of graph
data models. Read bottom-up, this lat-
tice shows which characteristic has to
be added to a graph data model to ob-
tain a model of richer expressiveness.
The figure also underlines the diversity
of data models used in theory, algo-
rithms, standards, and relevanti indus-
try systems. How do we extend this
comparative understanding across
multiple data model families, such as
graph, relational, or document? What
are the costs and benefits of choosing
one model over another?

3. Interoperability between differ-
ent data models can be achieved
through mappings (semantic asser-

i The figure does not aim to provide a complete
list of Graph DBMS products. Please consult,
for example, https://db-engines.com/en/rank-
ing/graph+dbms and other market surveys for
comprehensive overviews.

We are witnessing
an unprecedented
growth of
interconnected
data, which
underscores
the vital role
of graph processing
in our society.

68 COMMUNICATIONS OF THE ACM | SEPTEMBER 2021 | VOL. 64 | NO. 9

contributed articles

beddings such as Node2vecd to produce
better insights than on non-connected
data). However, both happen to be iso-
lated. Combining both techniques can
lead to crucial advancements.

As an example, deep learning (un-
supervised feature learning) applied to
graphs allows us to infer structural
regularities and obtain meaningful
representations for graphs that can be
further leveraged by indexing and que-
rying mechanisms in graph databases
and exploited for logical reasoning. As
another example, probabilistic models
and causal relationships can be natu-
rally encoded in property graphs and
are the basis of advanced-graph neural
networks.k Property graphs allow us to
synthesize more accurate models for
ML pipelines, thanks to their inherent
expressivity and embedded domain
knowledge.

These considerations unveil im-
portant open questions as follows:
How can statistical learning, graph
processing, and reasoning be com-
bined and integrated? Which underly-
ing formalisms make this possible?
How can we weigh between the two
mechanisms?

Algebraic operators for graph pro-
cessing. Currently, there is no stan-
dard graph algebra. The outcome of
the Graph Query Language (GQL)
Standardization Project could influ-
ence the design of a graph algebra
alongside existing and emerging use
cases.25 However, next-generation
graph processing systems should ad-
dress questions about their algebraic
components.

What are the fundamental opera-
tors of this algebra compared to other
algebras (relation, group, quiver or
path, incidence, or monadic algebra
comprehensions)? What core graph
algebra should graph processing sys-
tems support? Are there graph analyti-
cal operators to include in this alge-
bra? Can this graph algebra be
combined and integrated with an al-
gebra of types to make type-systems
more expressive and to facilitate type
checking?

A “relational-like” graph algebra
able to express all the first-order que-
ries11 and enhanced with a graph pat-

k “A Comprehensive Survey on Graph Neural
Networks” by Z. Wu et al, 2019; abs/1901.00596.

tern-matching operator16 seems like a
good starting point. However, the
most interesting graph-oriented que-
ries are navigational, such as reach-
ability queries, and cannot be ex-
pressed with limited recursion of
relational algebra.3,8 Furthermore, re-
lational algebra is a closed algebra;
that is, input(s) and output of each op-
erator is a relation, which makes rela-
tional algebra operators composable.
Should we aim for a closed-graph alge-
bra that encompasses both relations
and graphs?

Current graph query engines com-
bine algebra operators and ad hoc
graph algorithms into complex work-
loads, which complicates implementa-
tion and affects performance. An imple-
mentation based on a single algebra
also seems utopic. A query language
with general Turing Machine capabili-
ties (like a programming language),
however, entails tractability and feasi-
bility problems.2 Algebraic operators
that work in both centralized and dis-
tributed environments, and that can be
exploited by both graph algorithms and
ML models such as GNNs, graphlets,
and graph embeddings, could be highly
desirable for the future.

Ecosystems
Ecosystems behave differently from
mere systems of systems; they couple
many systems developed for different
purposes and with different processes.
Figure 1 exemplifies the complexity of
a graph processing ecosystem through
high-performance OLAP and OLTP
pipelines working together. What are
the ecosystem-related challenges?

Workloads in graph processing
ecosystems. Workloads affect both
the functional requirements (what a
graph processing ecosystem will be
able to do) and the non-functional
(how well). Survey data25 points to
pipelines, as in Figure 1: complex
workflows, combining heterogeneous
queries and algorithms, managing
and processing diverse datasets, with
characteristics summarized in the
sidebar “Known Properties of Graph
Processing Workloads.”

In Figure 1, graph processing links
to general processing, including ML,
as well as to domain-specific process-
ing ecosystems, such as simulation
and numerical methods in science

only to database languages, but also as
a foundation for combining logical rea-
soning with statistical learning in AI.
Logical reasoning derives categorical
notions about a piece of data by logical
deduction. Statistical learning derives
categorical notions by learning statisti-
cal models on known data and applying
it to new data. Both leverage the topo-
logical structure of graphs (ontologies
and knowledge graphsj or graph em-

j A recent practical example is the COVID-19
Knowledge Graph: https://covidgraph.org/

Graph workloads may exhibit several
properties:

1. Graph workloads are useful for
many, vastly diverse domains.24,25,26
Notable features include edge
orientation, such as properties/
timestamps for edges and nodes; graph
methods (neighborhood statistics,
pathfinding and traversal, and subgraph
mining); programming models (think-
like-a-vertex, think-like-an-edge, and
think-like-a-subgraph); diverse graph
sizes, including trillion-edge graphs;26
and query and process selectivities.9

2. Graph workloads can be highly
irregular, mixing (short-term) data-
intensive and compute-intensive
phases.26 The source of irregularity, such
as different datasets, algorithms, and
computing platforms, greatly affects
performance. Their interdependency
forms the Hardware-Platform-
Algorithm-Dataset (HPAD) Law.29

3. Graph processing uses a complex
pipeline, combining a variety of tasks
other than querying and algorithms.1,24
From traditional data management,
workloads include: transactional (OLTP)
workloads in multi-user environments,
with many short, discrete, likely
atomic transactions; and analytical
(OLAP) workloads with fewer users
but complex and resource-intensive
queries or processing jobs, with longer
runtime (minutes). Popular tasks also
include extract, transform, load (ETL);
visualization; cleaning; mining; and
debugging and testing, including
synthetic graph generation.

4. Scalability, interactivity, and
usability affect how graph users
construct their workloads.24

Known
Properties
of Graph
Processing
Workloads

SEPTEMBER 2021 | VOL. 64 | NO. 9 | COMMUNICATIONS OF THE ACM 69

contributed articles

ment, and deployment of cloud and
grid computing solutions.13

For big graph processing, our main
insight is that many graph processing
ecosystems match the common refer-
ence architecture of datacenters,18
from which Figure 3 derives. The Spark
ecosystem depicted here is one among
thousands of possible instantiations.
The challenge is to capture the evolving
graph processing field.

Beyond scale-up vs. scale-out. Many
graph platforms focus either on scale-up
or scale-out. Each has relative advantag-
es.27 Beyond merely reconciling scale-up
and scale-out, we envision a scalability
continuum: given a diverse workload, the
ecosystem would automatically decide
how to run it, and on what kind of het-
erogeneous infrastructure, meeting ser-
vice-level agreements (SLAs).

Numerous mechanisms and tech-
niques exist to enforce scale-up and
scale-out decisions, such as data and
work partitioning, migration, offload-
ing, replication, and elastic scaling.
All decisions can be taken statically or
dynamically, using various optimiza-
tion and learning techniques.

and engineering, aggregation and
modeling in business analytics, and
ranking and recommendation in so-
cial media.

Standards for data models and
query languages. Graph processing
ecosystem standards can provide a
common technical foundation, there-
by increasing the mobility of applica-
tions, tooling, developers, users, and
stakeholders. Standards for both OLTP
and OLAP workloads should standard-
ize the data model, the data manipula-
tion and data definition language, and
the exchange formats. They should be
easily adoptable by existing implemen-
tations and also enable new imple-
mentations in the SQL-based techno-
logical landscape.

It is important that standards reflect
existing industry practices by following
widely used graph query languages. To
this end, ISO/IEC started the GQL Stan-
dardization Project in 2019 to define
GQL as a new graph query language.
GQL is backed by 10 national stan-
dards bodies with representatives from
major industry vendors and support
from the property graph community as

represented by the Linked Data Bench-
marks Council (LDBC).l

With an initial focus on transaction-
al workloads, GQL will support com-
posable graph querying over multiple,
possibly overlapping, graphs using en-
hanced regular path queries (RPQs),3
graph transformation (views), and
graph updating capabilities. GQL en-
hances RPQs with pattern quantifica-
tion, ranking, and path-aggregation.
Syntactically, GQL combines SQL style
with visual graph patterns pioneered
by Cypher.14

Long-term, it would also be worth-
while to standardize building blocks of
graph algorithms, analytical APIs and
workflow definitions, graph embed-
ding techniques, and benchmarks.28
However, broad adoption for these as-
pects requires maturation.

Reference architecture. We identify
the challenge of defining a reference
architecture for big graph processing.
The early definition of a reference ar-
chitecture has greatly benefited the
discussion around the design, develop-

l See http://ldbcouncil.org/

Figure 3. A reference architecture for graph processing ecosystems.

Layer 1, the infrastructure layer, provides physical and virtual resources. Layer 2, the operating services
layer, provides services across resources, including data streaming and synchronization. Resource
managers, in layer 3, provide static and dynamic resource management and scheduling across resources.
Back-end and front-end layers (layers 4 and 5, respectively) represent specialization efforts. Conversely,
layers 2 and 3 may generalize techniques initially developed in layers 4 and 5.

Resource
Managers

Operating
Services

Development
Platforms
(Front-End
Services)

Engines
(Back-End
Services)

Infrastructure Physical Virtual

Execution

Memory &
Storage

Network

Programming
Models

High-Level Languages
(Query, Domain-Specific, etc.)

Portals

2

3

1

5

4

Spark SQL

DevOps

6GraphX

SparkData structure / model / format / meta

Spark

HDFS

YARNMesosKubernetes

ZookeeperKafka

Notebook CLIDesktop App

70 COMMUNICATIONS OF THE ACM | SEPTEMBER 2021 | VOL. 64 | NO. 9

contributed articles

challenges become even more daunt-
ing for graph processing ecosystems.

Benchmarks, performance mea-
surement, and methodological as-
pects. Graph processing suffers from
methodological issues similar to oth-
er computing disciplines.5,24 Running
comprehensive graph processing ex-
periments, especially at scale, lacks
tractability9—that is, the ability to im-
plement, deploy, and experiment
within a reasonable amount of time
and cost. As in other computing disci-
plines,5,24 we need new, reproducible,
experimental methodologies.

Graph processing also raises unique
challenges in performance measure-
ment and benchmarking related to
complex workloads and data pipelines
(Figure 1). Even seemingly minute HPAD
variations, for example the graph’s de-
gree distribution, can have significant
performance implications.17,26 The lack
of interoperability hinders fair compari-
sons and benchmarking. Indexing and
sampling techniques might prove useful
to improve and predict the runtime and
performance of graph queries,8,21,30 chal-
lenging the communities of large-scale
systems, data management, data min-
ing, and ML.

Graph processing systems rely on
complex runtimes that combine soft-
ware and hardware platforms. It can be
a daunting task to capture system-un-
der-test performance—including par-
allelism, distribution, streaming vs.
batch operation—and test the opera-
tion of possibly hundreds of libraries,
services, and runtime systems present
in real-world deployments.

We envision a combination of ap-
proaches. As in other computing dis-
ciplines,5,24 we need new, reproduc-
ible experimental methodologies.
Concrete questions arise: How do we
facilitate quick yet meaningful per-
formance testing? How do we define
more faithful metrics for executing a
graph algorithm, query, program, or
workflow? How can we generate work-
loads with combined operations, cov-
ering temporal, spatial, and stream-
ing aspects? How do we benchmark
pipelines, including ML and simula-
tion? We also need organizations
such as the LDBC to curate bench-
mark sharing and to audit bencmark
usage in practice.

Specialization vs. portability and

Dynamic and streaming aspects.
Future graph processing ecosystems
should cope with dynamic and stream-
ing graph data. A dynamic graph ex-
tends the standard notion of a graph to
account for updates (insertions, chang-
es, deletions) such that the current and
previous states can be seamlessly que-
ried. Streaming graphs can grow indef-
initely as new data arrives. They are
typically unbounded, thus the underly-
ing systems are unable to keep the en-
tire graph state. The sliding window
semantics6 allow the two notions to be
unified, with insertions and deletions
being considered as arrivals and re-
movals from the window.

Since current streaming process-
ing technologies are fairly simple, for
instance aggregations and projections
as in industrial graph processing li-
braries (such as Gelly on Apache
Flink), the need for “complex graph
data streams” is evident, along with
more advanced graph analytics and
ML ad hoc operators. Another re-
search challenge is to identify the
graph-query processing operators that
can be evaluated on dynamic and
streaming graphs while taking into ac-
count recursive operators7,23 and path-
oriented semantics, as needed for
standard query languages such as
GQL and G-Core.4

Graph processing platforms are also
dynamic; discovering, understanding,
and controlling the dynamic phenome-
na that occur in complex graph pro-
cessing ecosystems is an open chal-
lenge. As graph processing ecosystems
become more mainstream and are em-
bedded in larger data-processing pipe-
lines, we expect to increasingly observe
known systems phenomena, such as
performance variability, the presence
of cascading failures, and autoscaling
resources. What new phenomena will
emerge? What programming abstrac-
tions20 and systems techniques can re-
spond to them?

Performance
Graph processing raises unique perfor-
mance challenges, from the lack of a
widely used performance metric other
than response time to the methodolog-
ical problem of comparing graph pro-
cessing systems across architectures
and tuning processes to performance
portability and reproducibility. Such

Instead of a single,
exemplary (“killer”)
application, we
see big graph
processing systems
underpinning many
emerging but
already complex
and diverse data
management
ecosystems.

SEPTEMBER 2021 | VOL. 64 | NO. 9 | COMMUNICATIONS OF THE ACM 71

contributed articles

challenges. ACM Comput. Surv. 53, 2 (2020),
36:1–36:30.

10. Castellana, V.G. et al. In-memory graph databases for
web-scale data. IEEE Computer 48, 3 (2015), 24-35.

11. Chandra, A.K. Theory of database queries. PODS
(1988), 1–9.

12. Codd, E.F. A relational model of data for large shared
data banks. Commun. ACM 13, 6 (June 1970), 377-387.

13. Foster, I. and Kesselman, C. The Grid 2: Blueprint for a
New Computing Infrastructure. Elsevier (2003).

14. Francis, N. et al. Cypher: An evolving query language
for property graphs. SIGMOD Conference (2018),
1433- 1445.

15. Gonthier, G. et al. A machine-checked proof of the odd
order theorem. Intern. Conf. Interactive Theorem
Proving (2013), 163-179.

16. He, H. and Singh, A.K. Graphs-at-a-time: Query
language and access methods for graph databases.
SIGMOD Conference (2008), 405–418.

17. Iosup, A. et al. LDBC Graphalytics: A benchmark for
large-scale graph analysis on parallel and distributed
platforms. In Proc. VLDB Endow. 9, 13 (2016),
1317–1328.

18. Iosup, A. et al. Massivizing computer systems: A
vision to understand, design, and engineer computer
ecosystems through and beyond modern distributed
systems. ICDCS (2018), 1224–1237.

19. Iosup, A. et al. The AtLarge vision on the design of
distributed systems and ecosystems. ICDCS (2019),
1765–1776.

20. Kalavri, V., Vlassov, V., and Haridi, S. High-level
programming abstractions for distributed graph
processing. IEEE Trans. Knowl. Data Eng. 30, 2 (2018),
305–324.

21. Leskovec, J. and Faloutsos, C. Sampling from large
graphs. KDD (2006), 631-636.

22. Liu, Y., Safavi, T., Dighe, A., and Koutra, D. Graph
summarization methods and applications: A survey.
ACM Comput. Surv. 51, 3 (2018) 62:1-62:34.

23. Pacaci, A., Bonifati, A., and Özsu, M.T. Regular path
query evaluation on streaming graphs. SIGMOD Conf.
(2020), 1415-1430

24. Papadopoulos, A.V. et al. Methodological principles
for reproducible performance evaluation in cloud
computing. IEEE Trans. Software Engineering (2020),
93–94.

25. Sahu, S. et al. The ubiquity of large graphs and
surprising challenges of graph processing: Extended
survey. Proc. VLDB Endow. J. 29, 2 (2020), 595-618.

26. Saleem, M. et al. How representative is a SPARQL
benchmark? An analysis of RDF triplestore
benchmarks. WWW Conf. (2019), 1623–1633.

27. Salihoglu, S. and Özsu, M.T. Response to “Scale up
or scale out for graph processing.” IEEE Internet
Computing 22, 5 (2018), 18–24.

28. Siek, J.G., Lee, L.Q., and Lumsdaine, A. The boost
graph library: User guide and reference manual.
Addison-Wesley (2002).

29. Uta, A., Varbanescu, A.L., Musaafir, A., Lemaire, C., and
Iosup, A. Exploring HPC and big data convergence:
A graph processing study on Intel Knights Landing.
CLUSTER (2018), 66–77.

30. Zhao, P. and Han, J. On graph query optimization in
large networks. In Proc. VLDB Endow. 3, 1 (2010),
340–351.

Sherif Sakr was a professor at the Institute of Computer
Science at University of Tartu, Estonia. He passed away on
March 25, 2020 at the age of 40.

Angela Bonifati (angela.bonifati@univ-lyon1.fr) is
a professor at Lyon 1 University and Liris CNRS in
Villeurbanne, France.

Hannes Voigt is a software engineer at Neo4j, Germany.

Alexandru Iosup is a professor at Vrije Universiteit
Amsterdam and a visiting professor at Delft University of
Technology, The Netherlands.

This work is licensed under a https://
creativecommons.org/licenses/by-nc-sa/4.0/

interoperability. There is considerable
tension between specializing graph
processing stacks for performance rea-
sons and enabling productivity for the
domain scientist, through portability
and interoperability.

Specialization, through custom
software and especially hardware ac-
celeration, leads to significant perfor-
mance improvements. Specialization
to graph workloads, as noted in the
sidebar, focuses on diversity and ir-
regularitym in graph processing: sheer
dataset-scale (addressed by Pregel
and later by the open source project,
Giraph), the (truncated) power-law-
like distributions for vertex degrees
(PowerGraph), localized and commu-
nity-oriented updates (GraphChi), di-
verse vertex-degree distributions
across datasets (PGX.D, PowerLyra),
irregular or non-local vertex access
(Mosaic), affinity to specialized hard-
ware (the BGL family, HAGGLE, rap-
ids.ai), and more.

The high-performance computing
domain proposed specialized abstrac-
tions and C++ libraries for them, and
high-performance and efficient run-
times across heterogeneous hardware.
Examples include BGL,28 CombBLAS,
and GraphBLAS. Data management
approaches, including Neo4j, GEMS,10
and Cray’s Urika, focus on convenient
query languages such as SPARQL and
Cypher to ensure portability. Ongoing
work also focuses on (custom) accel-
erators.

Portability through reusable com-
ponents seems promising, but no stan-
dard graph library or query language
currently exists. More than 100 big
graph processing systems exist, but
they do not support portability: graph
systems will soon need to support con-
stantly evolving processes.

Lastly, interoperability means inte-
grating graph processing into broad-
er workflows with multi-domain
tools. Integration with ML and data
mining processes, and with simula-
tion and decision-making instru-
ments, seems vital but is not supported
by existing frameworks.

A memex for big graph processing
systems. Inspired by Vannevar Bush’s

m Irregularity could be seen as the opposite of
the locality principle commonly leveraged in
computing.

1940s concept of personal memex,
and by a 2010s specialization into a
Distributed Systems Memex,19 we pos-
it that it would be both interesting and
useful to create a Big Graph Memex
for collecting, archiving, and retriev-
ing meaningful operational informa-
tion about such systems. This could
be beneficial for learning about and
eradicating performance and related
issues, to enable more creative de-
signs and extend automation, and for
meaningful and reproducible testing,
such as feedback building-block in
smart graph processing.

Conclusion
Graphs are a mainstay abstraction in
today’s data-processing pipelines. How
can future big graph processing and
database systems provide highly scal-
able, efficient, and diversified querying
and analytical capabilities, as demand-
ed by real-world requirements?

To tackle this question, we have un-
dertaken a community approach. We
started through a Dagstuhl Seminar
and, shortly after, shaped the struc-
tured connections presented here. We
have focused in this article on three
interrelated elements: abstractions,
ecosystems, and performance. For
each of these elements, and across
them, we have provided a view into
what’s next.

Only time can tell if our predictions
provide worthwhile directions to the
community. In the meantime, join us
in solving the problems of big graph
processing. The future is big graphs.

References
1. Aggarwal, C.C. and Wang, H. Managing and mining

graph data. Advances in Database Systems 40.
Springer, (2010).

2. Aho, A.V. and Ullman, J.D. Universality of data
retrieval languages. In Proceedings of the 6th ACM
SIGACT–SIGPLAN Symposium on Principles of
Programming Languages (1979) 110–119.

3. Angles, R. et al. Foundations of modern query
languages for graph databases. ACM Computing
Surveys 50, 5 (2017), 68:1–68:40.

4. Angles, R. et al. G-CORE: A core for future graph
query languages. SIGMOD Conf. (2018), 1421–1432.

5. Angriman, E. et al. Guidelines for experimental
algorithmics: A case study in network analysis.
Algorithms 12, 7 (2019), 127.

6. Babcock, B., Babu S., Datar, M., Motwani, R., and
Widom, J. Models and issues in data stream
systems. PODS (2002), 1-16.

7. Bonifati, A., Dumbrava, S., and Gallego Arias, E.J.
Certified graph view maintenance with regular
datalog. Theory Pract. Log. Program. 18, 3–4
(2018), 372–389.

8. Bonifati, A., Fletcher, G.H.L., Voigt, H., and Yakovets,
N. Querying graphs. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers
(2018).

9. Bonifati, A., Holubová, I., Prat-Pérez, A., and Sakr,
S. Graph generators: State of the art and open

Watch the authors discuss
this work in the exclusive
Communications video.
https://cacm.acm.org/videos/the-
future-is-big-graphs

