
BIROn - Birkbeck Institutional Research Online

Sakr, S. and Bonifati, A. and Voigt, H. and Iosup, A. and Ammar, K. and
Angles, R. and Aref, W. and Arenas, M. and Besta, M. and Boncz, P.A. and
Daudjee, K. and Valle, E.D. and Dumbrava, S. and Hartig, O. and Haslhofer,
B. and Hegeman, T. and Hidders, Jan and Hose, K. and Iamnitchi, A. and
Kalavri, V. and Kapp, H. and Martens, W. and Özsu, M.T. and Peukert, E.
and Plantikow, S. and Ragab, M. and Ripeanu, M.R. and Salihoglu, S. and
Schulz, C. and Selmer, P. and Sequeda, J. F. and Shinavier, J. and Szárnyas,
G. and Tommasini, R. and Tumeo, A. and Uta, A. and Varbanescu, A.L. and
Wu, H.-Y. and Yakovets, N. and Yan, D. and Yoneki, E. (2021) The future is
big graphs. Communications of the ACM 64 (9), pp. 62-71. ISSN 0001-0782.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53522/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/53522/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


BIROn - Birkbeck Institutional Research Online

Sakr, Sherif and Bonifati, Angela and Voigt, Hannes and Iosup, Alexandru
and Ammar, Khaled and Angles, Renzo and Aref, Walid G. and Arenas,
Marcelo and Besta, Maciej and Boncz, Peter A. and Daudjee, Khuzaima
and Valle, Emanuele Della and Dumbrava, Stefania and Hartig, Olaf and
Haslhofer, Bernhard and Hegeman, Tim and Hidders, Jan and Hose, Katja
and Iamnitchi, Adriana and Kalavri, Vasiliki and Kapp, Hugo and Martens,
Wim and and Eric Peukert and Stefan Plantikow and Mohamed Ragab and
Mate, M. Tamer \"zsu and Yakovets, Nikolay and Yan, Da and Yoneki, Eiko
(2021) The future is big graphs: a community view on graph processing
systems. Commun. ACM 64 (9), pp. 62-71.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53508/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/53508/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


62    COMMUNICATIONS OF THE ACM   |   SEPTEMBER 2021  |   VOL.  64  |   NO.  9

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 A
L

L
I

 T
O

R
B

A
N

GRAPHS ARE, BY nature, ‘unifying abstractions’ that 
can leverage interconnectedness to represent, explore, 
predict, and explain real- and digital-world phenomena. 
Although real users and consumers of graph instances 
and graph workloads understand these abstractions, 
future problems will require new abstractions and 
systems. What needs to happen in the next decade for 
big graph processing to continue to succeed?
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We are witnessing an unprecedent-
ed growth of interconnected data, 
which underscores the vital role of 
graph processing in our society. In-
stead of a single, exemplary (“killer”) 
application, we see big graph process-
ing systems underpinning many 
emerging but already complex and di-
verse data management ecosystems, 
in many areas of societal interest.a

To name only a few recent, remark-
able examples, the importance of this 
field for practitioners is evidenced by 
the large number (more than 60,000) of 
people registeredb to download the 
Neo4j book Graph Algorithmsc in just 
over one-and-a-half years, and by the 
enormous interest in the use of graph 
processing in the artificial intelligence 
(AI) and machine learning (ML) fields.d 

a As indicated by a user survey12 and by a 
systematic literature survey of 18 applica-
tion domains, including biology, security, 
logistics and planning, social sciences, 
chemistry, and finance. See http://arxiv.org/
abs/1807.00382

b See https://app.databox.com/datawall/551f30
9602080e2b2522f7446a20adb705cabbde8

c See https://www.oreilly.com/library/view/
graph-algorithms/9781492047674/

d Many highly cited articles support this state-
ment, including “Inductive Representation 
Learning on Large Graphs” by W. Hamilton 
et al. (2017) and “DeepWalk: Online Learn-
ing of Social Representations” by B. Perozzi 
et al. (2014);  https://arxiv.org/pdf/1403.6652.
pdf

Furthermore, the timely Graphs 4 COV-
ID-19 initiativee is evidence of the im-
portance of big graph analytics in allevi-
ating the pandemic.

Academics, start-ups, and even big 
tech companies such as Google, Face-
book, and Microsoft have introduced 
various systems for managing and pro-
cessing the growing presence of big 
graphs. Google’s PageRank (late 1990s) 
showcased the power of Web-scale 
graph processing and motivated the de-
velopment of the MapReduce program-
ming model, which was originally used 
to simplify the construction of the data 
structures used to handle searches, but 
has since been used extensively outside 
of Google to implement algorithms for 
large-scale graph processing.

Motivated by scalability, the 2010 
Google Pregel “think-like-a-vertex” 
model enabled distributed PageRank 

e See https://neo4j.com/graphs4good/covid-19/

 key insights
 ˽ Graphs are ubiquitous abstractions 

enabling reusable computing tools for 
graph processing with applications in 
every domain. 

 ˽ Diverse workloads, standard models and 
languages, algebraic frameworks, and 
suitable and reproducible performance 
metrics will be at the core of graph 
processing ecosystems in the next 
decade.

The authors of this article met in Dec. 
2019 in Dagstuhl for Seminar 19491 
on Big Graph Processing Systems.a The 
seminar gathered a diverse group of 41 
high-quality researchers from the data 
management and large-scale-systems 
communities. It was an excellent 
opportunity to start the discussion 
about next-decade opportunities and 
challenges for graph processing. 

This is a community publication 
The first four authors co-organized 
the community event leading to this 
article and coordinated the creation 
of this manuscript. All other authors 
contributed equally to this research.
Unfortunately, Sherif Sakr passed away 
during the period following the event 
and the completion of this article. This 
article is published in memoriam.

a https://www.dagstuhl.de/en/program/
calendar/semhp/?semnr=19491

A Joint 
Effort by the 
Computer 
Systems 
and Data 
Management 
Communities 

Figure 1. Illustration of a complex data pipeline for graph processing. 

Data flows left to right, from data source to output, via a series of functionally different processing steps. 
Feedback and loopbacks flow mainly through the blue (highlighted) arrows.
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ML libraries and processing frame-
works; business intelligence (BI), such 
as report generating and planning tools; 
scientific computing; visualization; and 
augmented reality (for inspection and 
interaction by the user). Note that this is 
not typically a purely linear process and 
hybrid OLTP/OLAP processes can 
emerge. Considerable complexity stems 
from (intermediate) results being fed 
back into early-process steps, as indi-
cated by the blue arrows.

As an example, to study coronavi-
ruses and their impact on human and 
animal populations (for example, the 
COVID-19 disease), the pipeline de-
picted in Figure 1 could be purposed 
for two major kinds of analysis: net-
work-based ‘omics’ and drug-related 
search, and network-based epidemiol-
ogy and spread-prevention. For the for-
mer, the pipeline could have the fol-
lowing steps:

1. Initial genome sequencing leads 
to identifying similar diseases.

2. Text (non-graph data) and struc-
tured (database) searches help identify 
genes related to the disease.

3. A network treatment coupled with 
various kinds of simulations could re-
veal various drug targets and valid in-
hibitors, and might lead to effective 
prioritization of usable drugs and 
treatments.

For the latter, social media and loca-
tion data, and data from other privacy-
sensitive sources, could be combined 
into social interaction graphs, which 
could be traversed to establish super-
spreaders and super-spreading events 
related to them, which could result in 
the establishment of prevention poli-
cies and containment actions. However, 
the current generation of graph pro-
cessing technology cannot support 
such a complex pipeline.

For instance, on the COVID-19 
knowledge graph,g useful queries can 
be posed against individual graphsh in-
specting the papers, patents, genes, 
and most influential COVID-19 au-
thors. However, inspecting several data 
sources in a full-fledged graph process-
ing pipeline across multiple graph da-
tasets, as illustrated in Figure 1, raises 
many challenges for current graph da-

g See https://covidgraph.org/
h See https://github.com/covidgraph/documen-

tation/blob/master/helpful-queries.md

computation, while Facebook, Apache 
Giraph, and ecosystem extensions sup-
port more elaborate computational 
models (such as task-based and not al-
ways distributed) and data models 
(such as diverse, possibly streamed, 
possibly wide-area data sources) useful 
for social network data. At the same 
time, an increasing number of use cas-
es revealed RDBMS performance prob-
lems in managing highly connected 
data, motivating various startups and 
innovative products, such as Neo4j, 
Sparksee, and the current Amazon 
Neptune. Microsoft Trinity and later 
Azure SQL DB provided an early distrib-
uted database-oriented approach to 
big graph management.

The diversity of models and systems 
led initially to the fragmentation of the 
market and a lack of clear direction for 
the community. Opposing this trend, 
we see promising efforts to bring to-
gether the programming languages, 
ecosystem structure, and performance 
benchmarks. As we have argued, there 
is no killer application that can help to 
unify the community.

Co-authored by a representative 
sample of the community (see the side-
bar, “A Joint Effort by the Computer 
Systems and Data Management Com-
munities”), this article addresses the 
questions: What do the next-decade 
big-graph processing systems look like 
from the perspectives of the data man-
agement and the large-scale-systems 
communities?f What can we say today 
about the guiding design principles of 
these systems in the next 10 years?

Figure 1 outlines the complex pipe-
line of future big graph processing sys-
tems. Data flows in from diverse sources 
(already graph-modeled as well as non-
graph-modeled) and is persisted, man-
aged, and manipulated with online 
transactional processing (OLTP) opera-
tions, such as insertion, deletion, up-
dating, filtering, projection, joining, 
uniting, and intersecting. The data is 
then analyzed, enriched, and con-
densed with online analytical process-
ing (OLAP) operations, such as group-
ing, aggregating, slicing, dicing, and 
rollup. Finally, it is disseminated and 
consumed by a variety of applications, 
including machine learning, such as 

f The summary of the Dagstuhl seminar. See 
https://www.dagstuhl.de/19491

What needs  
to happen in  
the next decade 
for big graph 
processing  
to continue  
to succeed?
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principles of graph data extraction, ex-
change, processing, and analysis, as il-
lustrated in Figure 1.

A second important element, as 
we will discuss, is the vision of an 
ecosystem governing big graph pro-
cessing systems and enabling the 
tuning of various components, such 
as OLAP/OLTP operations, work-
loads, standards, and performance 
needs. These aspects make the big 
processing systems more complicat-
ed than what was seen in the last de-
cade. Figure 1 provides a high-level 

perception of this complexity in 
terms of inputs, outputs, processing 
needs, and final consumption of 
graph data.

A third element is how to under-
stand and control performance in 
these future ecosystems. We have im-
portant performance challenges to 
overcome, from methodological as-
pects about performing meaningful, 
tractable, and reproducible experi-
ments to practical aspects regarding 
the trade-off of scalability with porta-
bility and interoperability.

tabase technology. In this article, we 
formulate these challenges and build 
our vision for next-generation, big-
graph processing systems by focusing 
on three major aspects: abstractions, 
ecosystems, and performance. We pres-
ent expected data models and query 
languages, and inherent relationships 
among them in lattice of abstractions 
and discuss these abstractions and the 
flexibility of lattice structures to ac-
commodate future graph data models 
and query languages. This will solidify 
the understanding of the fundamental 

Figure 2. Example lattice shows graph data model variants with their model characteristics.8
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tions across concepts in different data 
models) or with direct translations (for 
instance, W3C’s R2RML). Are there 
general ways or building blocks for ex-
pressing such mappings (category the-
ory, for example)?

Studying (1) requires foremost inves-
tigators working with data and data 
models, which is uncommon in the data 
management field and should be con-
ducted collaboratively with other fields, 
such as human-computer interaction 
(HCI). Work on HCI and graphs exists, 
for example, in HILDA workshops at Sig-
mod. However, these are not exploring 
the search space of graph data models.

Studying (2) and (3) can build on ex-
isting work in database theory, but can 
also leverage findings from neighbor-
ing computer science communities on 
comparison, featurization, graph sum-
marization, visualization, and model 
transformation. As an example, graph 
summarization22 has been widely ex-
ploited to provide succinct representa-
tions of graph properties in graph min-
ing1 but they have seldom been used by 
graph processing systems to make pro-
cessing more efficient, more effective, 
and more user centered. For instance, 
approximate query processing for 
property graphs cannot rely on sam-
pling as done by its relational counter-
part and might need to use quotient 
summaries for query answering.

Logic-based and declarative for-
malisms. Logic provides a unifying 
formalism for expressing queries, op-
timizations, integrity constraints, and 
integration rules. Starting from 
Codd’s seminal insight relating logi-
cal formulae to relational queries,12 
many first order (FO) logic fragments 
have been used to formally define que-
ry languages with desirable properties 
such as decidable evaluation. Graph 
query languages are essentially a syn-
tactic variant of FO augmented with 
recursive capabilities.

Logic provides a yardstick for rea-
soning about graph queries and graph 
constraints. Indeed, a promising line 
of research is the application of for-
mal tools, such as model checking, 
theorem proving,15 and testing to es-
tablish the functional correctness of 
complex graph processing systems, in 
general, and of graph database sys-
tems, in particular.

The influence of logic is pivotal not 

Abstractions
Abstractions are widely used in pro-
gramming languages, computational 
systems, and database systems, among 
others, to conceal technical aspects in 
favor of more user-friendly, domain-
oriented logical views. Currently, users 
have to choose from a large spectrum 
of graph data models that are similar, 
but differ in terms of expressiveness, 
cost, and intended use for querying 
and analytics. This ‘abstraction soup’ 
poses significant challenges to be 
solved in the future.

Understanding data models. Today, 
graph data management confronts 
many data models (directed graphs, 
RDF, variants of property graphs, and 
so on) with key challenges: deciding 
which data model to choose per use 
case and mastering interoperability of 
data models where data from different 
models is combined (as in the left-
hand side of Figure 1).

Both challenges require a deeper un-
derstanding of data models regarding:

1. How do humans conceptualize 
data and data operations? How do data 
models and their respective operators 
support or hinder the human thought 
process? Can we measure how “natu-
ral” or “intuitive” data models and their 
operators are?

2. How can we quantify, compare, 
and (partially) order the (modeling and 
operational) expressive power of data 
models? Concretely, Figure 2 illus-
trates a lattice for a selection of graph 
data models. Read bottom-up, this lat-
tice shows which characteristic has to 
be added to a graph data model to ob-
tain a model of richer expressiveness. 
The figure also underlines the diversity 
of data models used in theory, algo-
rithms, standards, and relevanti indus-
try systems. How do we extend this 
comparative understanding across 
multiple data model families, such as 
graph, relational, or document? What 
are the costs and benefits of choosing 
one model over another?

3. Interoperability between differ-
ent data models can be achieved 
through mappings (semantic asser-

i The figure does not aim to provide a complete 
list of Graph DBMS products. Please consult, 
for example, https://db-engines.com/en/rank-
ing/graph+dbms and other market surveys for 
comprehensive overviews.

We are witnessing 
an unprecedented 
growth of 
interconnected 
data, which 
underscores  
the vital role  
of graph processing 
in our society.
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beddings such as Node2vecd to produce 
better insights than on non-connected 
data). However, both happen to be iso-
lated. Combining both techniques can 
lead to crucial advancements.

As an example, deep learning (un-
supervised feature learning) applied to 
graphs allows us to infer structural 
regularities and obtain meaningful 
representations for graphs that can be 
further leveraged by indexing and que-
rying mechanisms in graph databases 
and exploited for logical reasoning. As 
another example, probabilistic models 
and causal relationships can be natu-
rally encoded in property graphs and 
are the basis of advanced-graph neural 
networks.k Property graphs allow us to 
synthesize more accurate models for 
ML pipelines, thanks to their inherent 
expressivity and embedded domain 
knowledge.

These considerations unveil im-
portant open questions as follows: 
How can statistical learning, graph 
processing, and reasoning be com-
bined and integrated? Which underly-
ing formalisms make this possible? 
How can we weigh between the two 
mechanisms?

Algebraic operators for graph pro-
cessing. Currently, there is no stan-
dard graph algebra. The outcome of 
the Graph Query Language (GQL) 
Standardization Project could influ-
ence the design of a graph algebra 
alongside existing and emerging use 
cases.25 However, next-generation 
graph processing systems should ad-
dress questions about their algebraic 
components.

What are the fundamental opera-
tors of this algebra compared to other 
algebras (relation, group, quiver or 
path, incidence, or monadic algebra 
comprehensions)? What core graph 
algebra should graph processing sys-
tems support? Are there graph analyti-
cal operators to include in this alge-
bra? Can this graph algebra be 
combined and integrated with an al-
gebra of types to make type-systems 
more expressive and to facilitate type 
checking?

A “relational-like” graph algebra 
able to express all the first-order que-
ries11 and enhanced with a graph pat-

k “A Comprehensive Survey on Graph Neural 
Networks” by Z. Wu et al, 2019; abs/1901.00596.

tern-matching operator16 seems like a 
good starting point. However, the 
most interesting graph-oriented que-
ries are navigational, such as reach-
ability queries, and cannot be ex-
pressed with limited recursion of 
relational algebra.3,8 Furthermore, re-
lational algebra is a closed algebra; 
that is, input(s) and output of each op-
erator is a relation, which makes rela-
tional algebra operators composable. 
Should we aim for a closed-graph alge-
bra that encompasses both relations 
and graphs?

Current graph query engines com-
bine algebra operators and ad hoc 
graph algorithms into complex work-
loads, which complicates implementa-
tion and affects performance. An imple-
mentation based on a single algebra 
also seems utopic. A query language 
with general Turing Machine capabili-
ties (like a programming language), 
however, entails tractability and feasi-
bility problems.2 Algebraic operators 
that work in both centralized and dis-
tributed environments, and that can be 
exploited by both graph algorithms and 
ML models such as GNNs, graphlets, 
and graph embeddings, could be highly 
desirable for the future.

Ecosystems
Ecosystems behave differently from 
mere systems of systems; they couple 
many systems developed for different 
purposes and with different processes. 
Figure 1 exemplifies the complexity of 
a graph processing ecosystem through 
high-performance OLAP and OLTP 
pipelines working together. What are 
the ecosystem-related challenges?

Workloads in graph processing 
ecosystems. Workloads affect both 
the functional requirements (what a 
graph processing ecosystem will be 
able to do) and the non-functional 
(how well). Survey data25 points to 
pipelines, as in Figure 1: complex 
workflows, combining heterogeneous 
queries and algorithms, managing 
and processing diverse datasets, with 
characteristics summarized in the 
sidebar “Known Properties of Graph 
Processing Workloads.”

In Figure 1, graph processing links 
to general processing, including ML, 
as well as to domain-specific process-
ing ecosystems, such as simulation 
and numerical methods in science 

only to database languages, but also as 
a foundation for combining logical rea-
soning with statistical learning in AI. 
Logical reasoning derives categorical 
notions about a piece of data by logical 
deduction. Statistical learning derives 
categorical notions by learning statisti-
cal models on known data and applying 
it to new data. Both leverage the topo-
logical structure of graphs (ontologies 
and knowledge graphsj or graph em-

j A recent practical example is the COVID-19 
Knowledge Graph: https://covidgraph.org/

Graph workloads may exhibit several 
properties:

1. Graph workloads are useful for 
many, vastly diverse domains.24,25,26 
Notable features include edge 
orientation, such as properties/
timestamps for edges and nodes; graph 
methods (neighborhood statistics, 
pathfinding and traversal, and subgraph 
mining); programming models (think-
like-a-vertex, think-like-an-edge, and 
think-like-a-subgraph); diverse graph 
sizes, including trillion-edge graphs;26 
and query and process selectivities.9

2. Graph workloads can be highly 
irregular, mixing (short-term) data-
intensive and compute-intensive 
phases.26 The source of irregularity, such 
as different datasets, algorithms, and 
computing platforms, greatly affects 
performance. Their interdependency 
forms the Hardware-Platform-
Algorithm-Dataset (HPAD) Law.29

3. Graph processing uses a complex 
pipeline, combining a variety of tasks 
other than querying and algorithms.1,24 
From traditional data management, 
workloads include: transactional (OLTP) 
workloads in multi-user environments, 
with many short, discrete, likely 
atomic transactions; and analytical 
(OLAP) workloads with fewer users 
but complex and resource-intensive 
queries or processing jobs, with longer 
runtime (minutes). Popular tasks also 
include extract, transform, load (ETL); 
visualization; cleaning; mining; and 
debugging and testing, including 
synthetic graph generation.

4. Scalability, interactivity, and 
usability affect how graph users 
construct their workloads.24

Known 
Properties 
of Graph 
Processing 
Workloads 
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ment, and deployment of cloud and 
grid computing solutions.13

For big graph processing, our main 
insight is that many graph processing 
ecosystems match the common refer-
ence architecture of datacenters,18 
from which Figure 3 derives. The Spark 
ecosystem depicted here is one among 
thousands of possible instantiations. 
The challenge is to capture the evolving 
graph processing field.

Beyond scale-up vs. scale-out. Many 
graph platforms focus either on scale-up 
or scale-out. Each has relative advantag-
es.27 Beyond merely reconciling scale-up 
and scale-out, we envision a scalability 
continuum: given a diverse workload, the 
ecosystem would automatically decide 
how to run it, and on what kind of het-
erogeneous infrastructure, meeting ser-
vice-level agreements (SLAs).

Numerous mechanisms and tech-
niques exist to enforce scale-up and 
scale-out decisions, such as data and 
work partitioning, migration, offload-
ing, replication, and elastic scaling. 
All decisions can be taken statically or 
dynamically, using various optimiza-
tion and learning techniques.

and engineering, aggregation and 
modeling in business analytics, and 
ranking and recommendation in so-
cial media.

Standards for data models and 
query languages. Graph processing 
ecosystem standards can provide a 
common technical foundation, there-
by increasing the mobility of applica-
tions, tooling, developers, users, and 
stakeholders. Standards for both OLTP 
and OLAP workloads should standard-
ize the data model, the data manipula-
tion and data definition language, and 
the exchange formats. They should be 
easily adoptable by existing implemen-
tations and also enable new imple-
mentations in the SQL-based techno-
logical landscape.

It is important that standards reflect 
existing industry practices by following 
widely used graph query languages. To 
this end, ISO/IEC started the GQL Stan-
dardization Project in 2019 to define 
GQL as a new graph query language. 
GQL is backed by 10 national stan-
dards bodies with representatives from 
major industry vendors and support 
from the property graph community as 

represented by the Linked Data Bench-
marks Council (LDBC).l

With an initial focus on transaction-
al workloads, GQL will support com-
posable graph querying over multiple, 
possibly overlapping, graphs using en-
hanced regular path queries (RPQs),3 
graph transformation (views), and 
graph updating capabilities. GQL en-
hances RPQs with pattern quantifica-
tion, ranking, and path-aggregation. 
Syntactically, GQL combines SQL style 
with visual graph patterns pioneered 
by Cypher.14

Long-term, it would also be worth-
while to standardize building blocks of 
graph algorithms, analytical APIs and 
workflow definitions, graph embed-
ding techniques, and benchmarks.28 
However, broad adoption for these as-
pects requires maturation.

Reference architecture. We identify 
the challenge of defining a reference 
architecture for big graph processing. 
The early definition of a reference ar-
chitecture has greatly benefited the 
discussion around the design, develop-

l See http://ldbcouncil.org/

Figure 3. A reference architecture for graph processing ecosystems. 

Layer 1, the infrastructure layer, provides physical and virtual resources. Layer 2, the operating services 
layer, provides services across resources, including data streaming and synchronization. Resource 
managers, in layer 3, provide static and dynamic resource management and scheduling across resources. 
Back-end and front-end layers (layers 4 and 5, respectively) represent specialization efforts. Conversely, 
layers 2 and 3 may generalize techniques initially developed in layers 4 and 5.
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challenges become even more daunt-
ing for graph processing ecosystems.

Benchmarks, performance mea-
surement, and methodological as-
pects. Graph processing suffers from 
methodological issues similar to oth-
er computing disciplines.5,24 Running 
comprehensive graph processing ex-
periments, especially at scale, lacks 
tractability9—that is, the ability to im-
plement, deploy, and experiment 
within a reasonable amount of time 
and cost. As in other computing disci-
plines,5,24 we need new, reproducible, 
experimental methodologies.

Graph processing also raises unique 
challenges in performance measure-
ment and benchmarking related to 
complex workloads and data pipelines 
(Figure 1). Even seemingly minute HPAD 
variations, for example the graph’s de-
gree distribution, can have significant 
performance implications.17,26 The lack 
of interoperability hinders fair compari-
sons and benchmarking. Indexing and 
sampling techniques might prove useful 
to improve and predict the runtime and 
performance of graph queries,8,21,30 chal-
lenging the communities of large-scale 
systems, data management, data min-
ing, and ML.

Graph processing systems rely on 
complex runtimes that combine soft-
ware and hardware platforms. It can be 
a daunting task to capture system-un-
der-test performance—including par-
allelism, distribution, streaming vs. 
batch operation—and test the opera-
tion of possibly hundreds of libraries, 
services, and runtime systems present 
in real-world deployments.

We envision a combination of ap-
proaches. As in other computing dis-
ciplines,5,24 we need new, reproduc-
ible experimental methodologies. 
Concrete questions arise: How do we 
facilitate quick yet meaningful per-
formance testing? How do we define 
more faithful metrics for executing a 
graph algorithm, query, program, or 
workflow? How can we generate work-
loads with combined operations, cov-
ering temporal, spatial, and stream-
ing aspects? How do we benchmark 
pipelines, including ML and simula-
tion? We also need organizations 
such as the LDBC to curate bench-
mark sharing and to audit bencmark 
usage in practice.

Specialization vs. portability and 

Dynamic and streaming aspects. 
Future graph processing ecosystems 
should cope with dynamic and stream-
ing graph data. A dynamic graph ex-
tends the standard notion of a graph to 
account for updates (insertions, chang-
es, deletions) such that the current and 
previous states can be seamlessly que-
ried. Streaming graphs can grow indef-
initely as new data arrives. They are 
typically unbounded, thus the underly-
ing systems are unable to keep the en-
tire graph state. The sliding window 
semantics6 allow the two notions to be 
unified, with insertions and deletions 
being considered as arrivals and re-
movals from the window.

Since current streaming process-
ing technologies are fairly simple, for 
instance aggregations and projections 
as in industrial graph processing li-
braries (such as Gelly on Apache 
Flink), the need for “complex graph 
data streams” is evident, along with 
more advanced graph analytics and 
ML ad hoc operators. Another re-
search challenge is to identify the 
graph-query processing operators that 
can be evaluated on dynamic and 
streaming graphs while taking into ac-
count recursive operators7,23 and path-
oriented semantics, as needed for 
standard query languages such as 
GQL and G-Core.4

Graph processing platforms are also 
dynamic; discovering, understanding, 
and controlling the dynamic phenome-
na that occur in complex graph pro-
cessing ecosystems is an open chal-
lenge. As graph processing ecosystems 
become more mainstream and are em-
bedded in larger data-processing pipe-
lines, we expect to increasingly observe 
known systems phenomena, such as 
performance variability, the presence 
of cascading failures, and autoscaling 
resources. What new phenomena will 
emerge? What programming abstrac-
tions20 and systems techniques can re-
spond to them?

Performance
Graph processing raises unique perfor-
mance challenges, from the lack of a 
widely used performance metric other 
than response time to the methodolog-
ical problem of comparing graph pro-
cessing systems across architectures 
and tuning processes to performance 
portability and reproducibility. Such 

Instead of a single, 
exemplary (“killer”) 
application, we 
see big graph 
processing systems 
underpinning many 
emerging but 
already complex 
and diverse data 
management 
ecosystems.
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interoperability. There is considerable 
tension between specializing graph 
processing stacks for performance rea-
sons and enabling productivity for the 
domain scientist, through portability 
and interoperability.

Specialization, through custom 
software and especially hardware ac-
celeration, leads to significant perfor-
mance improvements. Specialization 
to graph workloads, as noted in the 
sidebar, focuses on diversity and ir-
regularitym in graph processing: sheer 
dataset-scale (addressed by Pregel 
and later by the open source project, 
Giraph), the (truncated) power-law-
like distributions for vertex degrees 
(PowerGraph), localized and commu-
nity-oriented updates (GraphChi), di-
verse vertex-degree distributions 
across datasets (PGX.D, PowerLyra), 
irregular or non-local vertex access 
(Mosaic), affinity to specialized hard-
ware (the BGL family, HAGGLE, rap-
ids.ai), and more.

The high-performance computing 
domain proposed specialized abstrac-
tions and C++ libraries for them, and 
high-performance and efficient run-
times across heterogeneous hardware. 
Examples include BGL,28 CombBLAS, 
and GraphBLAS. Data management 
approaches, including Neo4j, GEMS,10 
and Cray’s Urika, focus on convenient 
query languages such as SPARQL and 
Cypher to ensure portability. Ongoing 
work also focuses on (custom) accel-
erators.

Portability through reusable com-
ponents seems promising, but no stan-
dard graph library or query language 
currently exists. More than 100 big 
graph processing systems exist, but 
they do not support portability: graph 
systems will soon need to support con-
stantly evolving processes.

Lastly, interoperability means inte-
grating graph processing into broad-
er workflows with multi-domain 
tools. Integration with ML and data 
mining processes, and with simula-
tion and decision-making instru-
ments, seems vital but is not supported 
by existing frameworks.

A memex for big graph processing 
systems. Inspired by Vannevar Bush’s 

m Irregularity could be seen as the opposite of 
the locality principle commonly leveraged in 
computing.

1940s concept of personal memex, 
and by a 2010s specialization into a 
Distributed Systems Memex,19 we pos-
it that it would be both interesting and 
useful to create a Big Graph Memex 
for collecting, archiving, and retriev-
ing meaningful operational informa-
tion about such systems. This could 
be beneficial for learning about and 
eradicating performance and related 
issues, to enable more creative de-
signs and extend automation, and for 
meaningful and reproducible testing, 
such as feedback building-block in 
smart graph processing.

Conclusion
Graphs are a mainstay abstraction in 
today’s data-processing pipelines. How 
can future big graph processing and 
database systems provide highly scal-
able, efficient, and diversified querying 
and analytical capabilities, as demand-
ed by real-world requirements?

To tackle this question, we have un-
dertaken a community approach. We 
started through a Dagstuhl Seminar 
and, shortly after, shaped the struc-
tured connections presented here. We 
have focused in this article on three 
interrelated elements: abstractions, 
ecosystems, and performance. For 
each of these elements, and across 
them, we have provided a view into 
what’s next.

Only time can tell if our predictions 
provide worthwhile directions to the 
community. In the meantime, join us 
in solving the problems of big graph 
processing. The future is big graphs. 
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