BIROn - Birkbeck Institutional Research Online

Anenburg, M. and Panikorovskii, T.L. and Jennings, Eleanor S. and Shendrik, R.Y. and Antonov, A.A. and Gavrilenko, V. (2024) An Apatite-Group Praseodymium Carbonate Fluoroxybritholite: hydrothermal synthesis, crystal structure, and implications for natural and synthetic Britholites. Inorganic Chemistry, ISSN 0020-1669.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53587/

Usage Guidelines: Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively contact lib-eprints@bbk.ac.uk.

Supporting Information

An apatite-group praseodymium carbonate fluoroxybritholite: hydrothermal synthesis, crystal structure, and implications for natural and synthetic britholites

Michael Anenburg^{1*}, Taras L. Panikorovskii², Eleanor S. Jennings^{3*}, Roman Yu. Shendrik⁴, Andrey A. Antonov², Veronika Gavrilenko⁴

¹ Research School of Earth Sciences, Australian National University, 8 Canberra 2600, Australia

² Laboratory of Nature-Inspired Technologies and Environmental Safety of the Arctic, Kola Science Centre, Russian Academy of Sciences, 184200 Apatity, Russia

³ School of Natural Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom

⁴ Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of 15 Sciences, 664033 Irkutsk, Russia

*Corresponding authors: michael.anenburg@anu.edu.au and e.jennings@bbk.ac.uk

Table S1. Atom coordinates and equivalent displacement parameters (U_{EQ} , Å²) and site occupancies in the britholite structure.

Site	Occupancy	X	У	Z	$U_{\rm eq}$ (Å ²)	Wyckoff
						site
<i>M</i> 1	Ca _{0.54} Pr _{0.46}	2/3	1/3	0.50283(12)	0.0120(3)	4f
<i>M</i> 2	Pr _{0.85} Ca _{0.15}	0.76410(5)	0.75257(5)	1⁄4	0.0113(2)	6h
<i>T</i> 1	Si _{0.95}	0.3727(2)	0.4014(2)	1⁄4	0.0099(6)	6h
C1	C _{0.05}	0.322(4)	0.434(5)	1⁄4	0.0082(6)	6h
01	0	0.4886(7)	0.3220(7)	1⁄4	0.0164(13)	6h
02	0	0.4716(7)	0.5961(7)	1⁄4	0.0240(16)	6h
O3	0	0.2546(6)	0.3427(8)	0.4332(7)	0.0358(15)	12 <i>i</i>
<i>X</i> 1	F _{0.54} O _{0.46}	0	0	0.3200	0.053(4)	4e

Table S2. Anisotropic displacement parameters (Å²) for britholite.

Site	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂
<i>M</i> 1	0.0141(4)	0.0141(4)	0.0079(5)	0.000	0.000	0.00703(18)
M2	0.0150(3)	0.0139(3)	0.0067(3)	0.000	0.000	0.0083(2)
<i>T</i> 1	0.0095(10)	0.0112(11)	0.0046(11)	0.000	0.000	0.0057(9)
C1	0.0095(10)	0.0112(11)	0.0046(11)	0.000	0.000	0.0057(9)
01	0.020(3)	0.029(3)	0.012(3)	0.000	0.000	0.019(3)
02	0.017(3)	0.016(3)	0.039(4)	0.000	0.000	0.006(2)
O3	0.029(3)	0.075(4)	0.019(3)	0.028(3)	0.013(2)	0.035(3)
<i>X</i> 1	0.050(4)	0.050(4)	0.060(6)	0.000	0.000	0.025(2)

Table S3. Selected bond distances (Å) in the britholite crystal structure.

Bond	Bond	Bond	Bond	
	distance (Å)		distance (Å)	
<i>M</i> 1–O1	2.420(4)	<i><m< i="">2–O></m<></i>	2.481	
x3				
<i>M</i> 1–O2	2.467(4)			
x3				
<i>M</i> 1–O3	2.831(6)	<i>T</i> 1–O1	1.626(5)	
x3				
<i><m< i="">1–O></m<></i>	2.573	T1–O2	1.610(6)	
		T1–O3 x2	1.612(5)	
<i>M</i> 2–O1	2.701(6)	< <i>T</i> 1–O>	1.615	
<i>M</i> 2–O2	2.425(5)			
<i>M</i> 2–O3	2.378(5)	C1-O3 x2	1.50(2)	
x2				
<i>M</i> 2–O3	2.561(5)	C1-O2	1.49(4)	
x2				
M2–X1	2.364(4)	<c1–o></c1–o>	1.497	

Table S4. Atomic coordinates for the DFT-optimised structure.

Atom	Label	x/a	y/b	z/c
C:1	1	0.674811	0.500000	0.105240
C:1	2	0.570391	1.000000	0.674804
C:1	3	0.105981	1.000000	0.431059
O:1	1	0.341788	0.684210	0.253294
O:1	2	0.911780	0.683898	0.658327
O:1	3	0.743808	0.675367	0.090273
O:1	4	0.653229	1.175392	0.743828
O:1	5	0.090250	1.176234	0.346351

O:1	6	0.253389	1.184239	0.911341
O:1	7	0.341788	-0.684210	0.253294
O:1	8	0.911780	-0.683898	0.658327
O:1	9	0.743808	-0.675367	0.090273
O:1	10	0.653229	-1.175392	0.743828
O:1	11	0.090250	-1.176234	0.346351
O:1	12	0.253389	-1.184239	0.911341
O:1	13	0.321395	0.500000	0.488699
O:1	14	0.597609	0.500000	0.471998
O:1	15	1.167118	0.500000	0.677761
O:1	16	0.874476	0.500000	0.402226
O:1	17	0.509675	0.500000	-0.169174
O:1	18	0.535426	0.500000	0.125935
O:1	19	0.678335	1.000000	0.510058
O:1	20	0.409491	1.000000	0.535403
O:1	21	-0.168743	1.000000	0.320767
O:1	22	0.125912	1.000000	0.590857
O:1	23	0.488413	1.000000	1.166541
O:1	24	0.471955	1.000000	0.874073
F:1	1	0.000022	0.500000	0.000159
F:1	2	0.000044	1.000000	0.000101
Si:1	1	0.401251	0.500000	0.373742
Si:1	2	0.972387	0.500000	0.599523
Si:1	3	0.373586	1.000000	0.973145
Ca:1	1	0.334628	0.748866	0.668478
Ca:1	2	0.668047	0.247530	0.335226
Ca:1	3	0.334628	-0.748866	0.668478
Ca:1	4	0.668047	-0.247530	0.335226
Ca:2	1	0.749700	0.500000	0.762351
Ca:2	2	0.011877	0.500000	0.249470
Ca:2	3	0.237565	0.500000	0.987849
Ca:2	4	0.249970	1.000000	0.237219
Ca:2	5	0.986110	1.000000	0.748979

Ca:2	6	0.763020	1.000000	0.013804
Pr:1	1	0.334628	0.748866	0.668478
Pr:1	2	0.668047	0.247530	0.335226
Pr:1	3	0.334628	-0.748866	0.668478
Pr:1	4	0.668047	-0.247530	0.335226
Pr:2	1	0.749700	0.500000	0.762351
Pr:2	2	0.011877	0.500000	0.249470
Pr:2	3	0.237565	0.500000	0.987849
Pr:2	4	0.249970	1.000000	0.237219
Pr:2	5	0.986110	1.000000	0.748979
Pr:2	6	0.763020	1.000000	0.013804