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Abstract

The existing literature on large dynamic factor models invariably assumes that the cross sectional co-

variance matrix is diagonal. This is due to the curse of dimensionality which means that many parameters

need to be estimated for large data sets. This paper introduces a novel maximum likelihood approach

which relaxes this diagonal assumption. All of the parameters are concentrated out so the parameters are

jointly estimated with the factors. Importantly, the cross sectional covariance matrix is concentrated out

so does not need to be explicitly estimated. The approach uses a neat simplification of the log-likelihood

which makes estimation for large dimensional data feasible. Implementation of the general covariance

approach is by numerical optimisation of the concentrated log-likelihood with respect to the factors. A

diagonal version of the general covariance approach is also introduced, mainly for comparative reasons.

Out of sample tests using Monte Carlo simulations shows the new general approach performs well, with

smaller prediction errors overall compared to a range of existing diagonal approaches. Understandably,

the general approach does particularly well for high cross sectional covariance. This is most apparent for

low numbers of factors. This paper opens up the literature to new ways of estimating dynamic factor

models and improvements in inference and forecasting for big data.

1 Introduction

With more data ever available, interest in modelling big data sets has grown accordingly and computing power

has made this increasingly feasible. One branch of the big data literature is that of factor models, which

has a broad set of uses, for example psychology, genetics or market research. The latent factors account

for unobserved latent variables in the data which represent trends or traits. These factors are aimed at

being maximally correlated with the observable variables. Principal components is by far the most common

approach employed to estimate such models due to its simplicity. Factor models are generic models which

do not require a structure to the data to be specified as in a typical panel data model although the cross

sectional errors in panel data models are often modelled by factors.

In their usual static form factor models only model contemporaneous cross sectional relationships and so

they are restrictive and not very useful for forecasting. The time series extension is dynamic factor models

(DFM) where the factors themselves are dynamic, i.e autocorrelated. This means DFMs are able to capture

dynamic interactions and are inherently useful for forecasting. In economics, DFMs are used for example

in business cycle analysis, housing and inflation modelling and in finance some applications are CAPM and
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yield curve modelling. The present paper adds to the large wealth of literature on factor models and their

dynamic extension.

Factor models aim to capture a large portion of the correlation and variance within the data using the

latent factors. The cross sectional errors of the individual series are usually assumed to be independent.

This is a convenient assumption but is not realistic in all practical situations. For example in applications

which have a sectoral structure, one may expect the error terms in a each sector to be correlated. Estimating

the latent factors under this diagonality assumption is not ideal, since the estimated factors would try to

naturally account for as much of the correlation within the data as possible, and some of this may in reality be

coming from the cross sectional errors. Hence allowing the cross sectional errors to be correlated should give

more appropriate factors, which in turn should make inference more robust and forecasting more accurate.

This paper introduces a novel approach which relaxes this diagonal assumption by concentrating out the

parameters so the cross sectional covariance matrix is concentrated out and does not need to be explicitly

estimated. The parameters are jointly estimated with the factors and they can be recovered once the new

factors have been estimated using relevant formulae. The approach uses a simplification of the log-likelihood

which makes estimation feasible for large cross sectional size. This simplification is common in the vector

autoregression literature but is rare in the factor models literature.

The approach is implemented by numerical optimisation of the concentrated log-likelihood with respect

to the factors, so does not require Kalman filter or Expectation Maximisation algorithms. As a result the

approach is actually very simple and can be implemented with very little code. The results look promising

for the direct optimisation approach with overall improved forecasting power in terms of root mean squared

error of predictions compared to principal components. This is demonstrated using out of out of sample tests

on simulated data sets.

The literature on DFMs largely assumes that the data and factors are I(0) and that the parameters are

constant in time. These assumptions are maintained in the present paper for simplicity.

The remainder of the paper is set out as follows. Section 2 introduces notation and discusses existing

popular approaches to estimating dynamic factor models. Section 3 explains the new general covariance

approach and the diagonal equivalent, which is a restricted version of the general covariance approach.

Section 4 describes the out of sample test set up and Section 5 outlines the results of the out of sample test

and discusses them. Section 6 gives concluding remarks.

The present paper only considers the case where the time dimension, T , is larger than the cross sectional

dimension, N . This is for convenience, and the approach can be easily extended to the case where N > T as

alluded to in Section 3.1. Also, testing on larger real world data sets, e.g. macroeconomic or financial data,

is not covered in the present paper, but is anticipated to be covered in a later paper.

2 Background

2.1 Overview of DFMs

This section reviews the existing literature on DFMs, with particular regard to the diagonal cross sectional

error covariance assumption. For simplicity, it is assumed that the factor dynamics are of autoregressive

order 1 and that there are no lags of the factors in the cross sectional equation. The data generating process

is assumed to be such that the cross section of N observed individuals xt load onto the K unobserved factors

ft as follows:
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xt = Λft + ηt, (1)

for t = 1, ..., T where xt and ηt are N × 1, Λ is N ×K and ft is K × 1. ηt is assumed to be i.i.d., normally

distributed ηt ∼ N(0,Σ) and independent of ft. Estimation of Λ is feasible for large N from a practical point

of view since only a few factors are used in the equation for each individual time series.

The factors are assumed to be dynamic and follow a vector autoregression (VAR):

ft = Φft−1 + εt, (2)

where Φ is K ×K and such that {ft}t=1,...,T is stable, i.e. that the roots r of |IK − rΦ| = 0 lie outside the

unit circle. εt is K × 1, normally distributed as εt ∼ N(0,Σf ) and uncorrelated with ft−1. Σ and Σf are

assumed to be positive definite. ηt and εt are usually assumed to have no serial correlation. ηt and εt are

assumed to be independent as is standard. Eqs. (1) and (2) are referred to in this paper as the measurement

and state equation respectively to align with state space modelling terminology.

Transposing and stacking Eqs. (1) and (2) gives:

X = FΛ′ + η (3)

and:

F = F−Φ′ + ε, (4)

where X = (x1, x2 . . . xT )
′and (η1, η2 . . . ηT )

′ are T ×N , ε = (ε1, ε2 . . . εT )
′, F = (f1, f2 . . . fT )

′ and F− is the

lagged F , i.e. F− = (f0, f1 . . . fT−1)
′. ε, F and F− are all T ×K.

2.2 Estimation

Currently it seems the most accurate way of estimating large scale (i.e. large N) dynamic factor models

is by quasi-maximum likelihood (QML) estimation such as Doz et al. (2012). The precursor to the QML

approach is the two step approach of Doz et al. (2011). The two step approach uses initial estimates of the

factors obtained by principal components (PCs). During the first step the parameters (including covariances)

of Eqs. (1) and (2) are estimated by OLS, and then the second step uses the Kalman filter & smoother to

obtain better estimates of the factors given the parameters. The QML approach extends this by iterating

between calculating the factors given the parameters, then calculating the parameters given the factors, in

an Expectation Maximisation (EM) algorithm. The EM algorithm in this context obtains better and better

estimates of factors given parameters (E step) and parameters given factors (M step) until convergence.

The QML approach assumes that the covariance Σ of the idiosyncratic term ηt is diagonal (see assumption

R2 of Doz et al. (2012)). The reason for this diagonal assumption is discussed below. Nonetheless, the QML

approach is consistent for largeN and T along any path ofN and T tending to infinity. The rate of consistency

for estimating the factors is min(
√
T , n

log(n) )(see Doz et al. (2012)). PCs are also consistent however the QML

approach can provide efficiency improvements over PCs in finite samples.

2.3 Current reasoning on the diagonal assumption

For small N DFMs, maximum likelihood estimation using a general cross sectional covariance matrix is not

an issue (see e.g. Diebold et al. (2021)). Large N DFMs however are known to suffer from the curse of
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dimensionality. There is a wealth of literature that mentions that the diagonal assumption is adopted due to

the very high number of parameters which need to be estimated, for example Poncela et al. (2021). However,

in depth technical reasons for this are not easy to find. Overall, the literature indicates that the curse of

dimensionality in DFMs is because firstly the QML type approaches need to invert N×N covariance matrices

in the Kalman filter, and secondly that estimating the covariance matrices adds to the number parameters

making estimation unfeasible. Some examples where this is discussed in the literature are given below.

Barigozzi (2018) states that Σ is assumed to be diagonal since there are problems with the Kalman

smoother when inverting the matrix if N is large. This mis-specification does not affect consistency however

may lead to loss of efficiency in finite samples. Indeed it is well known that in general the Kalman filter is

subject to the curse of dimensionality since it involves taking the inverse of N ×N terms such as ΛPΛ′ +Σ

where P (K×K) is the estimated covariance of the state (see e.g. Hamilton (1994) Eq. 13.2.16). Taking the

inverse of this N×N matrix during factor estimation is problematic for large N . Bai and Li (2016) states that

the number of variables is comparable or even greater than the sample size, this is because the covariances are

included as parameters which need to be estimated. Bai and Li (2012) shows consistency of quasi-maximum

likelihood estimators under different identifying restrictions / normalisations in the context of static factor

models. They assume diagonal idiosyncratic error covariance as the analysis would be too complex otherwise.

Bai and Li (2016) adopts a similar approach but allowing for dynamics in the factors. They state that the

model is not identifiable for large N with unrestricted Σ because the number of parameters to be estimated is

too large. Doz et al. (2012) also states that parsimony is achieved by restricting to diagonal Σ, but that once

this restriction is relaxed there is no obvious way to model the measurement equation correlation because

there is no natural order to the correlations.

None of these methods are feasible for large N and a general Σ matrix. Bayesian approaches also seem

to rely on Kalman type approaches or band (i.e sparse) matrices (see e.g. Chan et al. (2019) chapter 18)

when estimating factors for example in Gibbs sampling. Attempts to incorporate non-diagonal idiosyncratic

covariance matrix are not common in the literature. These approaches seem to focus on penalised likelihood

methods (see Doz and Fuleky (2019) and Barigozzi and Luciani (2022)).

3 New general and diagonal covariance approaches

3.1 Likelihood derivation for the general approach

The general covariance approach aims to relax the assumption of diagonal Σ. This is desirable intuitively

as some of the correlation in xt may be attributed to the dynamic factors and some may be attributed

to the measurement equation error term, which is not dynamic. The non-diagonal Σ aims more towards

full maximum likelihood since fewer assumptions are required compared to existing approaches such as the

Doz et al. (2012) quasi-maximum likelihood (QML) approach, which is named “quasi” due to the diagonal

assumption. Non-diagonal Σ should lead to more optimal estimates of the factors, having a higher log-

likelihood and leading to better forecasts in finite samples. The model assumptions are the same as Section

2 except that the approach here relaxes the assumption that Σ is diagonal.

The log-likelihood for the full sample can be calculated as follows. The likelihood is based on the innova-

tions in xt (i.e. xt − E(xt|xt−1, xt−2, ..., x1)) which is common in the literature, see e.g. Watson and Engle

(1983) and Doz et al. (2012). Substituting Eq. (2) into Eq. (1) gives:

xt = Λ(Φft−1 + εt) + ηt = ΛΦft−1 + Λεt + ηt, (5)
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so can be written:

xt = ΛΦft−1 + wt, (6)

where wt = Λεt + ηt ∼ N(0,Ω) is N × 1 and Ω is N × N . Given initial estimates of the parameters, the

covariance matrices can be estimated as

Σ̂ =
1

T
η̂′η̂ =

1

T
(X − F̂ Λ̂′)′(X − F̂ Λ̂′) (7)

and

Σ̂f =
1

T
ε̂′ε̂ =

1

T
(F̂ − F̂−Φ̂)′(F̂ − F̂−Φ̂). (8)

Given the parameter and factor estimates, ŵt is estimated as ŵt = Λ̂ε̂t + η̂t where η̂t = xt − Λ̂f̂t and

ε̂t = f̂t − Φ̂f̂t−1. The log-likelihood can then be written:

L(F̂ , Λ̂, Φ̂) =
1

2
(T log |Ω̂−1| − TN log(2π)−

T∑
t=1

ŵ′
tΩ̂

−1ŵt), (9)

where Ω̂ is the the estimated N ×N covariance matrix of wt, i.e. Ω̂ = 1
T ŵ

′ŵ where ŵ = ε̂Λ̂′ + η̂ is T ×N .

Ω̂ is assumed to be positive definite, hence the present paper only the covers the case where T > N .

It is assumed that ε and η are independent, i.e. orthogonal to each other. They could in principle be

allowed to be correlated but the benefit of doing so is unclear and existing literature invariably assumes they

are uncorrelated.

Under the assumption that ε and η are orthogonal to each other, Ω is estimated by

Ω̂ =
1

T
ŵ′ŵ =

1

T
(ε̂Λ̂′ + η̂)′(ε̂Λ̂′ + η̂) =

1

T
(Λ̂ε̂′ε̂Λ̂′ + η̂′η̂ + Λ̂ε̂′η̂ + η̂′ε̂Λ̂′) (10)

= Σ̂ + Λ̂Σ̂f Λ̂
′ + Λ̂Σ̂εη + (Λ̂Σ̂εη)

′ = Σ̂ + Λ̂Σ̂f Λ̂
′, (11)

where Σ̂εη = 1
T ε̂

′η̂ (K×N) is a matrix of the covariances between ε and η which is zero under the assumption

that ε and η are orthogonal to each other. The last term of Eq. (9) can be simplified (see Hamilton (1994)

Eqs. 11.1.32 & 11.1.33):

T∑
t=1

ŵ′
tΩ̂

−1ŵt = trace(

T∑
t=1

ŵ′
tΩ̂

−1ŵt) (12)

= trace(

T∑
t=1

Ω̂−1ŵtŵ
′
t) (13)

= trace(Ω̂−1(T Ω̂)) (14)

= trace(TIN ) = TN , (15)

where IN is the identity matrix. This simplification is well known in the context of vector autoregression,

however it is rare for dynamic factor models. Eq. (14) is obtained since Ω̂ = 1
T ŵ

′ŵ = Σ̂+̂ΛΣ̂f Λ̂
′ using

the orthogonality assumption. The simplification is hence mathematically valid under the orthogonality

assumption. Forming the likelihood under a certain null hypothesis in this way is standard.
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Noting that log |Ω̂−1| = − log |Ω̂| the log-likelihood then simplifies to:

L(F̂ , Λ̂, Φ̂) =
1

2
(−T log |Ω̂| − TN log(2π)− TN), (16)

where Ω̂ = Σ̂ + Λ̂Σ̂f Λ̂
′. Note that the calculation of the log-likelihood in this way avoids the need to invert

Ω̂ .

Evaluation of Eq. (16) is not feasible when N > T . This is because the determinant of the N ×N matrix

Ω̂ = 1
T ŵ

′ŵ is zero since Ω̂ is of rank T which is less than N . The general covariance approach should be

easily adapted to handle this by estimating |Ω̂| as the product of the non-zero eigenvalues of Ω̂, as advocated

by Srivastava and von Rosen (2002). The Moore-Penrose pseudo inverse can be used to show that the log-

likelihood summation term simplification shown above still holds in this case with the difference that the

summation term equals T 2 instead of TN . The N > T case is not a focus of the present paper but would be

an interesting topic for further research.

3.2 Likelihood derivation for the diagonal approach

The parameters can also be concentrated out using a diagonal cross sectional covariance matrix to form a

restricted version of the general covariance approach above. This restriction is the only difference between

the new general covariance approach and the new diagonal covariance approach. In the same way that the

general covariance case assumes zero correlation between η and ε, so too does the diagonal equivalent.

Recall from section 3.1 above, we had (see Eq. (16)) for the full log-likelihood:

L(F̂ , Λ̂, Φ̂) =
1

2
(−T log |Ω̂| − TN log(2π)− TN), (17)

where Ω was estimated by

Ω̂ = Σ̂ + Λ̂Σ̂f Λ̂
′. (18)

In the same way as the cross-equation error correlations were set to zero to implement the independent η

and ε assumption in Eq. (11) for the general approach, the off diagonal elements of Ω can be set to zero to

implement the diagonal assumption, i.e. Ω is estimated by

Ω̂ = D̂ + Λ̂Σ̂f Λ̂
′, (19)

where D is a diagonal matrix containing the diagonal elements of Σ̂. The log-likelihood simplification (see

Eqs. (12) - (15)) works out in a similar manner.

3.3 Concentrating out the parameters and solving for the factors

For both the new general covariance and diagonal covariance approaches, the coefficients are estimated by

maximum likelihood. This enables concentrating out the parameters from the log-likelihood so that it only

depends on the factors.

The formulae for the coefficients for the general covariance approach are:

Λ̂ = X ′F̂ (ε̂′ε̂+ F̂ ′F̂ )−1 (20)
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Φ̂ = F̂ ′F̂−(F̂−′F̂−)−1 (21)

So the formula for Φ̂ is the same as the OLS formula, but Λ̂ includes an additional ε̂′ε̂ term which is an

interaction term coming from the measurement and state equation being linked through the log-likelihood.

The diagonal model also uses Φ̂ = F̂ ′F̂−(F̂−′F̂−)−1 but is more complicated for Λ̂ which is solved for

iteratively. See the Appendix for derivations and further details. Based on the estimated coefficients, the

covariance matrices are also concentrated out using Eqs. (7) & (8)

Concentrating out is well known in optimisation problems in general and involves rewriting one or more of

the parameters to be optimised as a function of a different variable. In the case here, the coefficient matrices

are concentrated out as functions of the factors, by maximum likelihood as explained above. The covariance

matrices are also concentrated out through the resulting residuals, so Ω itself is also concentrated out.

Mathematically,

L(Ω(F,Λ,Φ)) = L(Ω(F,Λ(F ),Φ(F ))) = l(Ω(F )) = l(F ), (22)

where l(F ) is now the concentrated log-likelihood. The task at hand is to solve:

F̂updated = argmax
F

(l(F )), (23)

where l(F ) is as per Eq. (16) and F̂updated is the new value of F given the initial (e.g. PCs) factors.

The parameters can be recovered once the new factors have been estimated, using the maximum likelihood

coefficients explained above.

An identifying normalisation is required in order to identify Eq. (3), since rotating the factors should have

no impact on the resulting common component FΛ′. Mathematically, FΛ′ = FRR−1Λ′ for any invertible

K ×K matrix R. Identifying normalisations are common in factor estimation in general and there are many

available (see e.g Bai and Li (2012) & Bai and Li (2016)). The new diagonal and general approaches here

adopt the common normalisation F ′F/T = Ik.

The optimisation algorithm used is Matlab’s fminunc function. This is a gradient based method which

uses finite difference derivates. fminsearch, which uses the derivative free simplex method, seems to give

gives nearly identical results but fminunc is faster. The tolerance is set to 0.0001 in terms of the first-order

optimality measure, which is the maximum absolute value in the gradient vector, i.e. the optimisation stops

when the gradient is nearly zero.

4 Out of sample Monte Carlo simulation test set-up

4.1 Simulation model

The simulation model is based as much as is reasonably possible on Doz et al. (2012)1. The main difference

is that Doz et al. (2012) has autocorrelation in the idiosyncratic term. No autocorrelation is assumed here

because none of the new approaches outlined here account for this autocorrelation, and in reality if there

were autocorrelation, more (lagged) factors would likely be added until there was minimal autocorrelation.

The models would be mis-specified if there was significant autocorrelation in the simulation model. Hence

the simulation model here has no autocorrelation of the idiosyncratic term.

1A similar set up is used in Stock and Watson (2002).
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Factors ft and data xt are simulated according to the following sequence:

Λij ∼ i.i.d.N(0, 1) for i = 1...N, j = 1..K (24)

αi =
βi

1− βi

1

1− ρ2

k∑
j=1

Λ2
ij with βi ∼ i.i.d. U(u, 1− u) (25)

Tij = τ |i−j|(1− d2)
√
αiαj for i, j = 1...N (26)

Φ = diag(ρ) (27)

ft = Φft−1 + εt where et ∼ i.i.d. N(0, Ik) (28)

xt = Λft + ηt where ηt ∼ i.i.d. N(0, T ) (29)

where diag(ρ) is a diagonal matrix with all diagonal elements equal to ρ, Tij is the i, j element of T and

U(u, 1 − u) means uniformly distributed between u and 1 − u. Note that the simulated measurement and

state equation coefficient matrices are Λ and Φ as defined by Eqs. (24) & (27) respectively. The simulation

model is defined by the 4 parameters ρ, τ, u & k. The Toeplitz matrix τ |i−j| defines the correlation matrix

and the other two terms in the Tij matrix are for scaling the covariance matrix according to signal to noise

ratio parameters. For example, for τ = 0.5 as used in the baseline test case below, the correlation τ |i−j| of

ηt is

1 1
2

1
4 . . . 1

2N−1

1
2 1 1

2
1
4

1
2 1

...
. . .

1
2N−1 1


and for τ = 0 the correlation of ηt is the identity matrix. The u parameter

controls the signal to noise ratio since βi represents the ratio between the variance of the idiosyncratic

component for individual i and the total variance in the data for individual i. For example for u = 0.1, as

used in the test cases below, the βi terms are uniformly distributed between 0.1 and 0.9 so the idiosyncratic

component accounts for an average of 50% of the variance of the total data. The parameter ρ controls the

autoregressive coefficients of the state equation and k is the number of dynamic factors.

The data is simulated 500 times (the same number as in Doz et al. (2012)) for each set of simulation

parameters and the the correct number of factors is assumed to be known in advance.

Note that for a given τ as N → ∞, more and more low correlations are added to the Toeplitz correlation

matrix τ |i−j| so the average off-diagonal correlation tends to zero. This is to ensure that the degree of cross

sectional dependence (i.e. correlation) is weak. However, this means that the model in some sense tends

towards a strict factor model error structure as N → ∞. The direct approach, however should be robust

when the degree of cross sectional dependence is strong.

4.2 Out of sample methodology

For each simulated data set the number of out of sample periods, T oos, is chosen to be 30. In four of the

results figures in Section 5.2, the in sample (i.e. calibration) period, T , is 100, and for one of the test cases,

it is 200. For out of sample tests in general, sufficient out of sample data should be used in order to form

meaningful conclusions. In machine learning, it seems 15-30% of the data is expected, and this is followed

here. However the number of out of sample periods is fairly arbitrary here since as long as enough simulations

are performed, very similar results should be produced if the number of out of sample periods is increased
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because the parameters are all fixed. An expanding in sample window is chosen for advancing through the

out of sample period. Note that forecasting is only ever performed one period ahead, which is in line with

the structure of the models in this paper (i.e. the factors have autoregressive order 1).

PCs are used as initial factors for the diagonal and general covariance approaches. PCs requires that

input data is standardised, in order not to bias the estimated factors due to differences in variance of the

individual time series. The input data for the in sample PCs calculation for each out of sample point is

standardised using the in sample mean and variance of the in sample period as required. Out of sample

data is standardised according to leave-one-out standardisation, this is explained further along with reported

metrics below.

4.3 Approaches tested

The following five approaches are compared:

� PCs plus VAR in the factors (labelled as “PCVAR” in the charts) - factors are estimated by PCs, then

a VAR in the PC factors is formed using OLS.

� Two step approach (labelled as “TwoStep” in the charts) - the Doz et al. (2011) approach (see Section

2.2)

� QML (labelled as “QML” in the charts) - the Doz et al. (2012) approach (see Section 2.2)

� New diagonal correlation approach (labelled as “NewDiagonal” in the charts) - this is the new approach

which assumes diagonal cross sectional covariance (see Section 3.2).

� New general correlation approach (labelled as “NewGeneral” in the charts) - this is the new approach

which assumes general cross sectional covariance (see Section 3.1).

In summary, there are five approaches tested in this paper, three existing diagonal approaches, one new

diagonal approach (which has the same assumptions as the existing diagonal approaches but a different

estimation approach) and one new general covariance approach (which has a different estimation approach

to the existing diagonal approaches and relaxes the diagonal assumption). Note that for the two step and

QML approaches, the code was downloaded from the authors’ website2.

4.4 Reported metrics

The most relevant metric for the diagonal and general approaches is the log-likelihood, however out of sample

likelihoods are not common in the literature. Instead the approaches are compared by the prediction errors.

The metrics employed are not the objective function of any of the approaches tested, so are unbiased in

the sense that they relate to no model in particular. They are simply a diagnostic tool which have obvious

practical relevance.

In sample root mean squared prediction error (RMSPE): The in sample root mean square pre-

diction error (RMSPE) of the predictions is formed by using the measurement and state dynamics equations.

It is the equivalent of the standard root mean square error (RMSE) but in the context of the dynamic factor

model structure. This is calculated as follows. First, given the model-estimated factors f̂t, the measurement

equation and state equation parameters are obtained using the full data sample. Second, for t = 1 . . . T , f̂t−1

2See https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZKNTUA
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is used in the state dynamics equation (Eq. (2)) to get the model estimate of ft given information available

at t− 1, denoted f̂t|t−1. Third, the estimated f̂t|t−1 (obtained via the second step) for t = 1 . . . T are used to

calculate an estimate of the data xt according to the measurement equation (Eq. (1)). The resulting estimate

of xt uses only information up to time t− 1 (aside from the parameter estimates which use the full data from

the relevant in sample period). This estimate is denoted x̂t|t−1. Lastly, the final RMSPE is formed as the

average over individuals i of the square root of the time average of the squared deviations of x̂t|t−1 and xt+1.

Mathematically, for a certain model:

RMSPE =
1

N

N∑
i=1

√√√√ 1

T

T∑
t=1

(Xti − X̂ti)2, (30)

for i = 1, . . . , N and t = 1, . . . , T where:

X̂ti = (F̂−Φ̂Λ̂′)ti, (31)

which incorporates both the second and third step explained above in the calculation of X̂ti. In the same

way as in earlier sections of this paper, X̂ is the stacked version of of x̂t|t−1. What is reported in the results

is the in sample RMSPE corresponding to the in sample period of the first out of sample point.

Out of sample root mean squared prediction error (RMSPE): This is the out of sample equivalent

of the in sample RMSPE explained above. The input data for the in sample PCs calculation for each out of

sample point is standardised using the in sample mean and variance of the in sample period as usual. Each

out of sample point is standardised according to the mean and variance of the in sample period corresponding

to the out of sample point. If the in sample period is 100, so the 101th data point is “standardised” using

the mean and variance of the period t = 1, . . . , 100. The 102nd data point is standardised using the mean

and variance of the period t = 1, . . . , 101 etc.. Each out of sample point within the out of sample period is

standardised according to a slightly different mean and variance. This leave-one-out standardisation has the

benefit of using only in sample data to calculate the mean and variance which is used for standardisation so

is more aligned to what would be the case in reality if models were re-estimated on a periodic basis during

the out of sample period. Also, the input data for calculation of PCs is always correctly standardised, so

there is no bias due to differences in variance of the individual time series. The resulting standardised data

for the out of sample period is denoted Xoos and is T oos ×K.

The forecast for a certain out of sample point is formed by using the relevant in sample coefficient matrices

multiplied by the estimated factors for just the last time point of the in sample period. Mathematically, for

out of sample point t:

x̂oos
t|t−1 = Λ̂Φ̂f̂t−1, (32)

where f̂t−1 is the estimated value of the factors at the end of the in sample period corresponding to out of

sample point t, and Λ̂ and Φ̂ are the coefficients calculated using the in sample period corresponding to out

of sample point t. A separate calibration is used for each out of sample point within the out of sample period.

The final RMSPE is formed as the average over individuals i of the square root of the time average of the

squared deviations of x̂oos
t|t−1 and Xoos

ti . Mathematically, for a certain model:

RMSPEoos =
1

N

N∑
i=1

√√√√ 1

T

T oos∑
t=1

(Xoos
ti − X̂oos

ti )2, (33)
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where X̂oos is the stacked version of x̂oos
t|t−1.

5 Out of sample results and discussion

5.1 Overview of results charts

The out of sample test results are presented below. The figures plot the in sample and out of sample RMSPE

metrics (which are explained above) on the y axis as a function of the idiosyncratic correlation parameter (τ

in the simulation model) on the x axis. This is obviously the most interesting parameter to look at for the

general covariance approach. The other set of simulation parameters are set as ρ = 0.9 and u = 0.1, these

are the same as some of the test cases in Doz et al. (2012). The values of τ (the x axis in the charts) are

0, 0.25, 0.5, 0.7 and 0.9.3 For figures 1-3, the in sample T is 100 and N is 10 which is line with Doz et al.

(2012). The number of simulations per simulation run is 500 which is the same as in Doz et al. (2012). The

results are produced for K = 1, 2 and 3, where K is the number of factors both in the simulation and used by

the models (see figures 1-3). Also included are the cases for K = 3 but with N = 20 and in sample T = 200

respectively, so N and T are each doubled in turn (see figures 4 and 5).

Figure 1: Results for K = 1

30.9 is perhaps of less practical relevance as if the cross sectional correlation seems to be that high, it is likely a practitioner
would add an extra factor to try to absorb some of the correlation.
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Figure 2: Results for K = 2

Figure 3: Results for K =3
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Figure 4: Results for K = 3,N = 20,T = 100

Figure 5: Results for K = 3,N = 10,T = 200

5.2 Discussion of results

From a theoretical point of view, note that the focus here should be on comparing the new diagonal approach

against the new general approach, since these are like for like, the only difference being that the latter allows

for general cross sectional covariance. The existing three diagonal approaches (PCVAR, TwoStep and QML)

are only included for comparing these new approaches to existing approaches.

The in sample RMSPEs for the new diagonal and general approaches are around the same compared

to out of sample RMSPEs. The shape of these graphs are similar as well. These features indicate well a

well specified model although one must bear in mind that RMSPE is not the objective function of any of

the approaches, it is simply a diagnostic tool which has practical relevance. The combination low in sample

RMSPEs and lack of overfitting suggest that the new general approach should be very useful for inference.

For the in sample RMSPE, QML is usually better (i.e. lower) than TwoStep which in turn is better than

PCVAR. The new diagonal approach is around the same as QML and the general approach does best.

13



For the out of sample RMSPE, QML is usually better than TwoStep which in turn is better than PCVAR.

The new diagonal approach is usually between QML and TwoStep but closer to QML. The new general

approach is usually slightly worse than the new diagonal approach for very low values of the idiosyncratic

correlation parameter (τ in the simulation model), but does much better for high values of τ , most notably

for K = 1 (see Figure 1). This makes sense because in general, approaches which relax a certain restriction

should perform better when the restriction is invalid. Similarly, the new general approach is worse than QML

for low values of τ , most notably for K = 3 (see Figure 3) but better than QML for high values of τ , most

notably for K = 1. The new diagonal and the new general approaches perform less well overall compared

to QML as the number of factors increases. This may plausibly be due to the approaches being less able to

distinguish between the additional factor and cross sectional correlation, since each factor accounts for less

of the total common component as more factors are added.

The N = 20 case (Figure 4) looks very similar to the N = 10 case (see Figure 3) but the new general

approach does slightly worse relative to the other approaches for medium to high values of τ compared to

when N = 10. This is likely because as N increases, the average of the off diagonal correlations decreases

because of the Toepliz structure of the simulation model (see the comments at the end of Section 4.1). This

means there is less cross sectional correlation for the general approach to utilise. The T = 200 case (see

Figure 5) shows that the general model does slightly better relative to the other approaches compared to the

K = 3 case, which has T = 100. This makes sense because more general approaches usually benefit from

more historic data for estimation.

6 Conclusion

The main contribution of this paper to the literature is the introduction of a novel maximum likelihood

approach which relaxes the assumption of diagonal cross sectional covariance matrix. The parameters are

concentrated out so are jointly estimated along with the factors. Importantly, the cross sectional covariance

matrix is also concentrated out so does not need to be explicitly estimated. The approach uses a neat sim-

plification of the log-likelihood which makes estimation for large dimensional data feasible. Implementation

of the general covariance approach is by numerical optimisation of the concentrated log-likelihood with re-

spect to the factors. Also introduced is an equivalent model which assumes diagonal covariance, mainly for

comparative reasons.

Out of sample tests using Monte Carlo simulations show the new general covariance approach performs

well, with smaller prediction errors overall compared to a range of existing diagonal approaches. Understand-

ably, the general approach does particularly well for high cross sectional covariance. This is most apparent

for low numbers of factors. The general correlation approach benefits from a longer of history of data. This

makes sense because more general approaches usually require more historic data for estimation.

This paper opens up the literature to new ways of estimating dynamic factor models and further im-

provements in inference and forecasting for big data. The approach introduced here is in its infancy so there

are likely many improvements which could be made. There are also many possible extensions, for example

allowing for more lags in the factor dynamics or new approaches to estimate the number of factors taking

into account the cross sectional correlation. Testing on larger real world data sets, e.g. macroeconomic or

financial data would be interesting and is anticipated to be covered in a subsequent paper.
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7 Appendix - Concentrating out the coefficients using maximum

likelihood

7.1 Cross sectional coefficient, Λ

The coefficients are estimated by the first order conditions of the log-likelihood. Since we are looking at a

maximum, we can ignore the log and only need to find the N × K matrix Λ which sets ∂|Ω|
∂Λ to zero. A

useful result here is the Jacobi formula that the derivative of the determinant is the adjoint. Mathematically,
∂|M(q)|

∂q = trace(adj(M(q))∂M(q)
∂q ) where M is a square matrix and q is a scalar (see e.g. Magnus and

Neudecker (1999)). In the case where M is symmetric, the adjoint is the same as the cofactor matrix, since

the adjoint is the transpose of the cofactor matrix. Note that in this Appendix, the hat accents denoting

estimates are dropped for notational convenience.

For the general covariance case, we have, by the chain rule, where i = 1, . . . N and j = 1, . . . ,K:

∂|Ω|
∂Λij

= trace(
∂|Ω|
∂Ω

∂Ω

∂Λij
) = trace(C

∂Ω

∂Λij
) (34)

=
1

T
trace(C

∂

∂Λij
(η′η + g′g)), (35)

where C is the cofactor matrix of Ω. Looking first at the g′g part, where g = εΛ′ :

∂g′g

∂Λij
=

∂

∂Λij
(Λε′εΛ′) = Jij ε

′εΛ′ + Λε′εJij
′, (36)

where Jij is a N ×K matrix a matrix of zeros except with a one in the i, j position. For η′η:

∂

∂Λij
(η′η) =

∂

∂Λij
((X − FΛ′)′(X − FΛ′)) (37)

=
∂

∂Λij
(X ′X + ΛF ′FΛ′ − ΛF ′X −X ′FΛ′) (38)

= JijF
′FΛ′ + ΛF ′FJij

′ − JijF
′X −X ′FJij

′ . (39)

Putting this together, and noting that some of the terms are the transpose of each other so are equivalent

once the trace is taken:

∂|Ω|
∂Λij

=
2

T
trace(C(Λε′εJij

′ + ΛF ′FJij
′ −X ′FJij

′)). (40)

It can easily be seen that arranging these elements into an N ×K matrix gives:

∂|Ω|
∂Λ = 2

T C(Λε′ε+ ΛF ′F −X ′F ). (41)

Solving for Λ, we obtain:

Λ = X ′F (ε′ε+ F ′F )−1. (42)

In the diagonal case, Ω = 1
T (diag(η

′η) + g′g) = 1
T (IN ◦ (η′η) + g′g), where the diag() operator sets the

off-diagonal elements to zero, and ◦ is the Hadamard or element-wise product and IN is the N ×N identity
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matrix. Similarly:
∂|Ω|
∂Λij

=
2

T
trace(C(Λε′εJij

′ + IN ◦ (ΛF ′FJij
′ −X ′FJij

′))). (43)

Unfortunately it seems this does not have a straightforward analytical solution like for the general covariance

case due to the element-wise product. However instead each ∂|Ω|
∂Λij

is solved for separately holding all of the

other Λij fixed. This is iterated until reasonable convergence.

In order to solve for each ∂|Ω|
∂Λij

in the diagonal case, the trace terms are written in matrix index notation:

∂|Ω|
∂Λij

=
2

T
trace(C(Λε′εJij

′ + IN ◦ (ΛF ′FJij
′ −X ′FJij

′))) (44)

=
2

T

N∑
n=1

(C(Λε′εJij
′ + IN ◦ (ΛF ′FJij

′ −X ′FJij
′)))nn (45)

=
2

T

N∑
n=1

(C(Jijε
′εΛ′ + IN ◦ (JijF ′FΛ′ −X ′FJij

′)))nn (46)

=
2

T

N∑
n=1

{−(C ◦X ′FJij
′)nn +

K∑
m=1

(CJijε
′ε)nmΛnm +

K∑
m=1

Cnn(JijF
′F )nmΛnm}. (47)

This is linear in Λij and the only parts of ∂|Ω|
∂Λij

which depend on Λij are contained in the double summation

terms, where n = i and m = j, i.e. 2
T (C(Jij ε

′ε))ijΛij and 2
T Cii(JijF

′F )ijΛij . Hence ∂|Ω|
∂Λij

can be written as
∂|Ω|
∂Λij

= A+BΛij where:

B =
2

T
(C(Jij ε

′ε))ij +
2

T
Cii(JijF

′F )ij . (48)

A could be calculated as the sums of the remaining terms but instead, for speedier calculation, A is calculated

here as A = ∂|Ω|
∂Λij

−BΛij . When A is calculated in this way it does not depend on Λij because by construction

BΛij contains all the parts of ∂|Ω|
∂Λij

which depend on Λij . Finally, the solved-for value of Λij can then be

calculated as Λij = −A
B .

7.2 State coefficient, Φ

Similarly, with respect to element i, j of Φ, where i = 1, . . .K and j = 1, . . . ,K, noting that η does not

depend on Φ:

∂|Ω|
∂Φij

=
1

T

∂

∂Φij
|η′η + g′g| = 1

T

∂

∂Φij
|Λ(F − F−Φ)′(F − F−Φ)Λ′| (49)

=
1

T

∂

∂Φij
|Λ(F ′F +ΦF−′F−Φ′ − ΦF−′F − F ′F−Φ′)Λ′| (50)

=
1

T
trace(CΛ(JijF

−′F−Φ′ +ΦF−′F−Jij
′ − JijF

−′F − F ′F−Jij
′)Λ′) (51)

=
2

T
trace(CΛ(ΦF−′F−J ij

′ − F ′F−J ′
ij)Λ

′) (52)

=
2

T
trace(Λ′CΛΦF−′F−Jij

′ − Λ′CΛF ′F−J ′
ij), (53)
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where Jij is a 3× 3 matrix of zeros except a 1 in the i, j position. As before, arranging the i, j elements in

to a K ×K matrix gives:

∂|Ω|
∂Φ

= Λ′CΛΦF−′F− − Λ′CΛF ′F−. (54)

Finally, solving this for Φ:

Φ = F ′F−(F−′F−)−1, (55)

which is the OLS estimator. Note that because the derivative of the η′η term with respect to Φ is zero, the

same formula for Φ applies for both the general and diagonal approaches.
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