
BIROn - Birkbeck Institutional Research Online

Bentert, M. and Crane, A. and Drange, P.G. and Reidl, Felix and Sullivan,
B.D. (2024) Correlation clustering with vertex splitting. Leibniz International
Proceedings in Informatics (LIPIcs) 294 , 8:1-8:17. ISSN 1868-8969.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/53689/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/53689/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Correlation Clustering with Vertex Splitting
Matthias Bentert !

University of Bergen, Norway

Alex Crane !

University of Utah, USA

Pål Grønås Drange !

University of Bergen, Norway

Felix Reidl !

Birkbeck, University of London, UK

Blair D. Sullivan !

University of Utah, USA

Abstract
We explore Cluster Editing and its generalization Correlation Clustering with a new operation
called permissive vertex splitting which addresses finding overlapping clusters in the face of uncertain
information. We determine that both problems are NP-hard, yet they exhibit significant differences
in terms of parameterized complexity and approximability. For Cluster Editing with Permissive
Vertex Splitting, we show a polynomial kernel when parameterized by the solution size and
develop a polynomial-time 7-approximation. In the case of Correlation Clustering, we establish
para-NP-hardness when parameterized by the solution size and demonstrate that computing an n1−ε-
approximation is NP-hard for any constant ε > 0. Additionally, we extend an established link
between Correlation Clustering and Multicut to the setting with permissive vertex splits.

2012 ACM Subject Classification Theory of computation→ Facility location and clustering; Theory
of computation → Parameterized complexity and exact algorithms; Mathematics of computing →
Approximation algorithms; Theory of computation → Problems, reductions and completeness

Keywords and phrases graph modification, cluster editing, overlapping clustering, approximation,
parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.SWAT.2024.39

Funding
Alex Crane, Felix Reidl, and Blair D. Sullivan: Gordon & Betty Moore Foundation’s Data Driven
Discovery Initiative under award GBMF4560 to Blair D. Sullivan.
Matthias Bentert: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 819416).

1 Introduction

Discovering clusters, or communities, is a core task in understanding the vast amounts of
relational data available. One limitation of many traditional clustering algorithms is the
necessity of specifying a desired number of clusters as part of the input. The problem
known as Cluster Editing avoids this by instead aiming to minimize the number of edge
insertions and removals necessary to transform the input into a cluster graph (a disjoint
union of cliques). This problem has been heavily studied in the graph-algorithms community,
and was first proved to be fixed-parameter tractable with respect to the number of edge
modifications (k) by Cai in 1996 [12]. The running time has significantly improved since,
with the best known algorithm running in O(1.62k(n + m)) time [11]. The problem also
admits a polynomial kernel with 2k vertices [16].

© M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan;
licensed under Creative Commons License CC-BY 4.0

19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024).
Editor: Hans L. Bodlaender; Article No. 39; pp. 39:1–39:0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@uib.no
mailto:alex.crane@utah.edu
https://orcid.org/0009-0004-5466-3181
mailto:Pal.Drange@uib.no
https://orcid.org/0000-0001-7228-6640
mailto:f.reidl@bbk.ac.uk
https://orcid.org/0000-0002-2354-3003
mailto:sullivan@cs.utah.edu
https://orcid.org/0000-0001-7720-6208
https://doi.org/10.4230/LIPIcs.SWAT.2024.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Correlation Clustering with Vertex Splitting

Formally in Cluster Editing, we consider a complete graph where each edge is labeled
as positive (which we imagine as colored blue) or negative (colored red) and we ask for the
minimum number of edges whose color must be changed so that there is a partition of the
vertex set where all edges within each part are blue, and all edges between parts are red.
This convention of an edge-labeled complete graph will be useful in our setting and easily
maps onto the more common formalism for Cluster Editing with an incomplete, uncolored
graph as input (imagine the graph edges as blue and its non-edges as red). We also note
that other conventions for labelling positive/negative edges exist in the literature, e.g. using
labels like 〈+〉 and 〈−〉.

In practice, the positive or negative association between objects is usually computed using
a similarity metric which we can think of as an oracle function which, given two objects,
computes a score that expresses the (dis)similarity of the inputs. For large-scale data, the
assumption of complete information is then unrealistic for two reasons: First, the quadratic
complexity of computing all pairwise associations is prohibitively expensive. Second, the
similarity oracle may be unable to provide a clear answer for certain pairs—suggesting that
objects can either be grouped together or kept separate, depending on other parts of the
data or even external domain context.

Consequently, we should also consider cases in which the input is an incomplete graph
with positive and negative labels on the existing edges and no information about pairs not
joined by an edge. This scenario has previously been investigated by Demaine et al. [20]
by allowing “0-weight edges” (zero-edges) in their cluster-editing framework1. For clarity,
we will refer to the problem where zero-edges (non-edges) are allowed as Correlation
Clustering and to the problem where the input graph is complete—i.e. every vertex pair
is connected either by a blue or a red edge—as Cluster Editing.

The approximability of both Cluster Editing and Correlation Clustering are
well-studied. First considered by Bansal, Blum, and Chawla [8], under the name correlation
clustering2, Cluster Editing admits a 1.73-approximation [17] when minimizing the number
of disagreements (red edges within and blue edges between clusters). Other variants of
Cluster Editing which maximize the number of agreements or the correlation (agreements
minus disagreements) admit a PTAS (polynomial-time approximation scheme) and a Ω(logn)-
approximation, respectively [8, 14]. In the more general setting of minimizing disagreements
for Correlation Clustering (i.e., when zero-edges are present but never constitute a
disagreement), an O(logn)-approximation is known [20]. This result arises from the strong
relation between Correlation Clustering and Multicut3. The connection was first
observed with Multiway Cut by Bansal, Blum, and Chawla [8], before an approximation-
preserving reduction from Multicut to Correlation Clustering was given independently
by both Charikar, Guruswami, and Wirth [13] and Demaine et al. [20]. The connection to
Multicut also implies that no constant-factor approximation is possible for Correlation
Clustering, unless the Unique Games Conjecture is false [15].

These algorithmic advances provide a positive outlook on applying these clustering
variants in practice, however, we need to also investigate whether the proposed clustering

1 In the version discussed by Demaine et al. [20], real weights are assigned to edges, reflecting the certainty
level of the oracle in determining the similarity between objects. We only consider weights in {−1, 0, 1},
a common restriction in the literature.

2 There is significant inconsistency in the literature regarding the nomenclature of these problems; as
stated, we reserve the name Correlation Clustering for the problem where the input is incomplete.

3 Given a set of pairs of terminals, (s1, t1), (s2, t2), . . . , (sp, tp), find a set of at most k edges such that
after removing these edges, every pair (si, ti) is disconnected

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:3

v1 v2

y

w

v

y

w

v1 v2

y

w

v1 v2

y

w

Blue edge
Red edge

Figure 1 A vertex v in an (incomplete) correlation graph (top). The bottom row gives toy
examples of exclusive (left), inclusive (center), and permissive (right) vertex splits of v into v1 and v2.
For clarity, some red edges incident to v1 and v2 are omitted from each figure on the bottom row.

model could be improved. In particular, we need to question the underlying assumption
that real-world data segregates into neat, disjoint clusters. The following domain examples
illustrate why this assumption is probably too optimistic:

Document classification: Individual documents often span multiple topics and should
therefore belong to multiple topic-clusters;
Sentiment analysis: A single piece of text can express very different emotions (e.g. sadness
mixed with humor);
Community detection: Individuals typically participate in multiple communities, such as
family, professional, and hobbyist groups.
Language processing: Homonyms like “bat” should belong both to an “animal” cluster as
well as a “sports-equipment” cluster.

Hence, the emphasis in clustering has recently shifted towards algorithms for overlapping
clustering [3, 4, 5, 6, 7, 9, 10, 18, 19, 22, 23, 24, 25, 26, 27, 28]. These models move away
from the requirement that data must be partitioned into disjoint subsets by considering a
variety of definitions for clusters which may intersect. One natural approach is to edit to a
more general target graph class (instead of a cluster graph, consider minimizing the number
of edge modifications required to achieve some more complex structure that exhibits strong
community structure but allows overlap), but it is difficult to define generalizations that
align with many applications.

Motivated by this, Abu-Khzam et al. [3] proposed an alternative model for overlapping
clustering based on the concept of splitting a vertex into two new vertices, representing an
object having two distinct roles within a dataset. This approach led to the problem Cluster
Editing with Vertex Splitting, where edges can be added or deleted, and vertices can
be split. Here, splitting a vertex v means replacing it with two copies, v1 and v2, ensuring
the union of their (blue) neighbor sets equals the original vertex’s (blue) neighbor set. In
fact, Abu-Khzam et al. [3] propose two different vertex splitting operations: one (exclusive
splitting) where v1 and v2 are required to have disjoint (blue) neighborhoods, and another
(inclusive splitting) where they are allowed to share (blue) neighbors. See Figure 1 for an
example. Abu-Khzam et al. [1] show that Cluster Editing with Vertex Splitting is
NP-hard and has a 6k-vertex kernel, where k is the number of edits (edge modifications/vertex
splits) allowed. The approximability of this problem remains unknown.

SWAT 2024

39:4 Correlation Clustering with Vertex Splitting

A significant limitation of both existing notions of vertex splitting is that they require
red edges to be preserved by both copies of a split vertex. For example, consider a red
edge uv in data arising from word classification, where u and v correspond to “bat” and “cat”,
respectively. It could be that the edge was produced by our oracle as a result of “bat” being
interpreted as a piece of sports equipment, not an animal. However, when “bat” is split
so that each meaning has its own vertex, we wish to retain the red edge only on one of
the copies of v (the one not corresponding to the small flying mammal, as this does have
similarities with a cat). Motivated by this, we introduce a new operation called permissive
vertex splitting which allows replacing a vertex v with two copies v1 and v2 with the restriction
that if uv is a blue edge (or red edge, respectively), then at least one of uv1 and uv2 is
a blue edge (red edge, respectively). Beyond that, we are free to choose what to do with
the newly-created neighborhoods. We call the new problem variant, where edges can be
added or deleted and vertices can be permissively split, Correlation Clustering with
Permissive Vertex Splitting (CCPVS). We show that sequences of permissive vertex
splits solving this problem correspond directly to a natural notion of overlapping clustering
(see Definition 4), adding to the motivation for this definition of splitting.

Extending the prior work relating Correlation Clustering to Multicut, we show
that CCPVS can be reduced to the new problem Multicut with Vertex Splitting
(MCVS) and vice versa, meaning that the computational complexities of these problems
are essentially the same. We then show that MCVS, and hence also CCPVS, are para-NP-
hard (with respect to solution size), and NP-hard to approximate within an n1−ε factor for
any ε > 0. Because of the inherent hardness of CCPVS, we then turn our attention to the
setting where there are no zero-edges, i.e., to Cluster Editing with Permissive Vertex
Splitting (CEPVS). We show that this problem remains NP-hard, but on the positive
side admits a polynomial kernel (and thus is fixed-parameter tractable). Finally, we give a
polynomial-time algorithm which provides a 7-approximation for CEPVS.

2 Preliminaries

We refer the reader to the textbook by Diestel [21] for standard graph-theoretic definitions
and notation. A star is a tree with exactly one internal vertex. In particular, a star has at
least two leaves. A red clique is a clique in which all edges are red. A blue clique is defined
similarly. For a positive integer n, we denote by [n] = {1, 2, . . . n} the set of all positive
integers up to n. An incomplete correlation graph is a simple, unweighted, and undirected
graph G = (V,B,R) with two disjoint edge relations B (blue) and R (red). If such a graph
is complete, i.e., B ∪ R =

(
V
2
)
, then we call it a correlation graph. For a vertex v ∈ V

we write NR(v) to denote the set of neighbors adjacent to v via red edges (red neighbors)
and NB(v) for those adjacent via blue edges (blue neighbors). A cluster graph is a correlation
graph in which the blue edges form vertex-disjoint cliques (and thus all edges between the
cliques are red). We can now formally define our vertex-splitting operation.

I Definition 1. A permissive vertex split of a vertex v in an (incomplete) correlation graph G
is the replacement of v in G with two new vertices v1 and v2 such that

NR(v) ⊆ NR(v1) ∪NR(v2), and
NB(v) ⊆ NB(v1) ∪NB(v2),

In other words, we create a new graph where every red (blue) neighbor of v is a red (blue)
neighbor of at least one of v1 or v2. All other “edges” incident to v1 and v2 can be chosen
arbitrarily. In particular, in incomplete correlation graphs, we can assume that all these
other edges are neutral (i.e., the “edges” do not exist), while in correlation graphs, it is

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:5

usually simpler to make these edges either red or blue to keep the graph complete. Notably,
the edge v1v2 can always be assumed to be a red edge as splitting a vertex into two vertices
that end up in the same (blue) connected component is never advantageous. For the
remainder of this text, unless otherwise specified all vertex splits are permissive. Given a
sequence σ = (σ1, σ2, . . . , σk) of k vertex splits performed on an (incomplete) correlation
graph, we denote the resulting (incomplete) correlation graph by G|σ. Each vertex u in G|σ
corresponds to exactly one vertex v in G. We say that v is u’s ancestor, and that u is a
descendant of v. If u = v, then u and v are unsplit vertices. Otherwise we say that v is a
split vertex and that u is the descendant of a split vertex.

I Definition 2. An erroneous cycle is a simple cycle that contains exactly one red edge. An
(incomplete) correlation graph G contains an erroneous cycle if it contains a subgraph that is
an erroneous cycle. A bad triangle is an erroneous cycle of length 3.

Erroneous cycles are the canonical obstruction in Correlation Clustering [13, 20], and
bad triangles are the canonical obstruction in Cluster Editing. Usually, these problems
are formulated as edge editing problems, i.e., delete a minimum number of edges (blue or
red) such that the resulting graph has no erroneous cycles/bad triangles. Previous work on
Cluster Editing with (inclusive or exclusive) vertex splitting has allowed both edge edits
and vertex splits as editing operations [3, 2, 1, 5]. However, we note that permissive vertex
splitting is flexible enough to capture all editing operations. First, note that in the setting
with blue and red edges, each edge-editing operation can be seen as changing the color of an
edge. Now, consider any solution σ in which the color of an edge uv is changed. Then, we
construct a new sequence of the same length where this edge edit is replaced by a vertex
split. We choose one endpoint (without loss of generality v) and split it into v1 and v2. The
neighborhood of v1 is exactly the neighborhood of the initial vertex v except that the edge
towards u has the other color. If the edge uv was initially red, then the vertex v2 has all
vertices in the graph as red neighbors. If the edge uv was blue, then we add blue edges
between v2 and all vertices that end up in the same (blue) connected component as (one
descendant of) u in G|σ. The result of the edge edit is now modeled exactly by v1 and the
operation is safe because v2 cannot participate in any erroneous cycle as it is a twin of (one
descendant of) u. Moving forward, we assume that all editing operations are vertex splits,
and we say that a sequence σ of vertex splits clusters an (incomplete) correlation graph G if
G|σ has no erroneous cycles. We now state the problems that we study:

Input: An (incomplete) correlation graph G and a non-negative integer k.
Problem: Does there exist a sequence σ of at most k vertex splits which clusters G?

Correlation Clustering with Permissive Vertex Splitting (CCPVS)

Cluster Editing with Permissive Vertex Splitting (CEPVS) is the same problem
restricted to correlation graphs. We conclude this section with our main structural insight,
which is that clustering an (incomplete) correlation graph G via a sequence of vertex splits is
equivalent to performing a very natural notion of overlapping clustering on the vertices of G.

I Definition 3. A covering of an (incomplete) correlation graph G = (V,E) is a set
family F ⊆ 2V such that

⋃
F = V . The cost of the covering F is

costG(F) =
∑
v∈V

(#F(v)− 1),

where #F(v) := |{X | v ∈ X ∈ F}| counts the number of sets in F which contain v.

SWAT 2024

39:6 Correlation Clustering with Vertex Splitting

I Definition 4. An overlapping clustering of an (incomplete) correlation graph G is a
covering F with the following two properties:

for every blue edge uv ∈ B, there exists at least one cluster X ∈ F with {u, v} ⊆ X, and
for every red edge uv ∈ R, there exists two distinct clusters X,Y ∈ F with u ∈ X

and v ∈ Y .
For a specific edge uv, we say that a clustering covers the edge if it is blue and the first
condition holds and we say that it resolves the edge if it is red and the second condition holds.

I Lemma 5. An (incomplete) correlation graph G can be clustered with k vertex splits if
and only if G has an overlapping clustering of cost k.

Proof. For the first direction, let σ be a sequence of k vertex splits clustering G = (V,B,R),
i.e., σ produces a graph G|σ = (V|σ, E|σ) with no erroneous cycles. We will construct
an overlapping clustering F of cost at most k. We note that it is easy to extend any
such overlapping clustering to one of cost exactly k. We begin by choosing an arbitrary
vertex v ∈ V|σ. We denote by v∗ the ancestor of v in V . Let Cv ⊆ V|σ be the vertices of the
connected component of v in the subgraph of G|σ induced by all blue edges, and Cv∗ be the
set of corresponding ancestor vertices in V . We add Cv∗ to F and remove Cv from G|σ. We
repeat this process exhaustively. The resulting F is a covering of G, as each vertex in V
has at least one descendant in V|σ. Moreover, our construction guarantees that each vertex
in V|σ is considered exactly once. Consequently, for each vertex v ∈ V we have that #F(v)
is no greater than the number of descendants of v in V|σ. Thus, F has cost at most k. Each
blue edge is covered by construction.

For the final step, we show how to augment F such that all red edges are resolved while
maintaining that costG(F) ≤ k. We begin by identifying some red edge uv which is not
resolved by F . This implies that each of u and v are contained in exactly one cluster X ∈ F .
The red edge uv implies that there is some red edge u1v1 in G|σ, where u1 is a descendant
of u and v1 is a descendant of v. Moreover, the construction of F guarantees that there
is some blue path between v1 and a descendant of u, but this latter descendant cannot
be u1 or else we have identified an erroneous cycle in G|σ. Thus, u has multiple descendants
in G|σ and is therefore a split vertex. Since u is a split vertex but is only contained in one
cluster X in F , we can add the cluster {u} to F , thereby resolving uv, while maintaining
that costG(F) ≤ k. We repeat this process until all red edges are resolved.

For the other direction, let F be an overlapping clustering of G with cost k. For
each vertex v that is contained in more than one cluster set in F , we split v a total
of #F(v)− 1 times. We assign each descendant to one set X ∈ F with v ∈ X and we create
blue edges towards all other vertices that are contained in X (or to the specific descendant of
a vertex in X that was also assigned to X). All other edges incident to the descendant of v
are red. We first show that this construction indeed corresponds to a series of vertex splits.
For each blue edge uv, we have that there is some cluster set X ∈ F with u, v ∈ X. Hence,
if u and/or v are split, then the blue edge uv corresponds to the blue edge between the two
copies of u and v that are assigned to X. For each red edge uv, we have that there are some
cluster sets X 6= Y ∈ F with u ∈ X and v ∈ Y . Hence, if u and/or v are split, then the red
edge uv corresponds to the red edge between (the descendant of) u assigned to X and (the
descendant of) v that is assigned to Y . Moreover, we did exactly cost(F) splits.

It remains to show that the sequence of splits results in a graph that contains no erroneous
cycles. Suppose that an erroneous cycle (u = v0, v1, . . . , vp = w, u) with red edge uw remains.
Note that each vertex is assigned to exactly one cluster set in F as each unsplit vertex is
contained in exactly one set in F and each descendant of a split vertex is assigned to a

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:7

cluster set by construction. We will show that there is no blue edge between vertices that are
assigned to different clusters and no red edge between vertices that are assigned to the same
cluster set. This finishes the proof as u and w are then assigned to different cluster sets as
they share a red edge, but wi and wi−1 are assigned the same cluster set for each i ∈ [p],
a contradiction. First, assume that there is a blue edge xy where x and y are assigned to
different cluster sets. If x and y are both unsplit vertices, then the blue edge between them is
not covered by F , a contradiction. Hence, at least one of the two vertices is the descendant of
a split vertex and by construction, all edges to vertices that are assigned to different cluster
sets are red. Now assume that there is a red edge xy where x and y are assigned to the same
cluster set X ∈ F . Again, if x and y are both unsplit vertices, then they are only contained
in X in F and hence the red edge between them is not resolved by F , a contradiction. So at
least one of the two vertices is the descendant of a split vertex and by construction, all edges
to vertices that are assigned to X are blue, a final contradiction. This concludes the proof.

J

3 Incomplete Information

We first consider the more general problem, Correlation Clustering with Permissive
Vertex Splitting, which allows for incomplete information. Without vertex splits, it has
long been known that Correlation Clustering is in fact equivalent to Multicut [20],
which is the problem of deleting a minimum number of edges from a graph G = (V,E)
such that every terminal pair of distinct vertices in a set S ⊆

(
V
2
)
is separated in the

resulting graph. We define Multicut with Vertex Splitting (MCVS) and show that it
is equivalent to CCPVS. We believe that this result is of independent interest, but it will
also prove immediately useful as it facilitates the main results of this section. Specifically,
CCPVS and MCVS are both para-NP-hard when parameterized by the number of vertex
splits, and for any ε > 0 it is NP-hard to approximate either problem within a n1−ε factor.

First we must define our new Multicut variant. In this context we use standard graph
terminology, i.e., we discuss simple, unweighted, and undirected graphs with a single edge
relation E. Note that this is equivalent to a correlation graph where edges in E are blue
and all other vertex pairs are red, so permissive vertex splits are still well-defined. However,
in the Multicut context we can safely assume that all vertex splits are exclusive, i.e.,
whenever splitting a vertex v into descendants v1 and v2 we have that N(v1)∪N(v2) = N(v)
and N(v1) ∩N(v2) = ∅. The reason is that in Multicut it is never advantageous to assign
more edges than required. Note that in the classic version of Multicut, it does not make
sense to have an edge between two vertices of a terminal pair. We decided to keep this
restriction as it streamlines some of the following arguments. A related technical detail to
discuss is what happens to a terminal pair when one of its two vertices is split. We work
with the variant where the terminal pair is simply removed in this case. Note that this
is equivalent to the variant where we can choose either of the descendants to replace the
original vertex in the terminal pair, since, as previously mentioned, we may always assume
that any two descendants of the same vertex end up in different connected components.

Input: A graph G = (V,E), an integer k, and a set S ⊆
(
V
2

)
of terminal pairs

with S ∩ E = ∅.
Problem: Does there exist a sequence σ of at most k (exclusive) vertex splits such that

each pair in S is separated in G|σ?

Multicut with Vertex Splitting (MCVS)

SWAT 2024

39:8 Correlation Clustering with Vertex Splitting

We now show that CCPVS and MCVS are equivalent problems. Let (G = (V,B,R), k) be
an instance of CCPVS. We construct an equivalent instance (H = (V ′, E′), S, k) of MCVS
as follows. For each vertex v ∈ V we create a vertex v′ in V ′. Additionally, for each blue
edge uw ∈ B we add the edge u′w′ to E′. Finally, for each red edge uw ∈ R we add the
terminal pair (u′, w′) to S. This completes the construction of H.

I Theorem 6. For any integer k ≥ 0, (G, k) is a yes-instance of Correlation Clustering
with Permissive Vertex Splitting if and only if (H,S, k) is a yes-instance of Multicut
with Vertex Splitting.

Proof. For the first direction, let σ = (σ1, σ2, . . .) be a sequence of vertex splits clustering G.
We will construct a sequence σ′ of the same length which separates each pair in S by
considering each σi in order. If σi splits vertex v ∈ V into v1 and v2 then σ′i splits v′ into v′1
and v′2. By construction, each neighbor u′ of v′ corresponds to a blue neighbor u of v. If u is
a blue neighbor of v1, then we create the edge v′1u′. Otherwise, we create the edge v′2u′. This
completes the construction of σ′. Now, we assume toward a contradiction that some terminal
pair (v′, u′) is connected in H|σ′ . Then there is some path (v′ = w′0, w1, . . . , w

′
p = u′) in H|σ′ .

Note that our construction ensures that this path contains at least two edges, and that there
is a corresponding blue path (v = w0, w1, . . . , wp = u) in G|σ. Moreover, because (v′, u′)
is a terminal pair in H|σ′ , vu is a red edge in G|σ. Thus, we have identified an erroneous
cycle (v = w0, w1, . . . , wp = u, v) in G|σ, contradicting that σ clusters G.

For the other direction, let σ′ = (σ′1, σ′2, . . .) be a sequence of vertex splits such that no
terminal pair is connected in H|σ′ . As before, we will construct a solution σ of the same
length by considering each σ′i in order. If σ′i splits v′ into v′1 and v′2, then we split the
corresponding vertex v into v1 and v2 as follows. If v′ is a terminal with partner u′, then
our construction guarantees that vu is a red edge in G. We create the red edge v1u if v′1
(or one of its descendants) is in a different component from u (or one of its descendants)
in H|σ′ . Otherwise, we create the red edge v2u. We mark the relevant pair of descendants
so that, when performing subsequent splits, the red edge is always assigned such that its
endpoints in Gσ correspond to vertices in different connected components of H|σ′ . Next,
for each u′ ∈ N(v′), we create the blue edge v1u if σ′i assigns u′ to N(v′1). Otherwise,
we create the blue edge v2u. We now assume toward a contradiction that there is an
erroneous cycle (v = w0, w1, . . . , wp = u, v) in G|σ, with vu being the red edge. The blue
path (v = w0, w1, . . . , wp = u) guarantees that there is a path (v′ = w′0, w

′
1, . . . , w

′
p = u′)

from v′ to u′ in H|σ′ , and this together with the red edge vu implies that (v′, u′) is a terminal
pair. This contradicts that no terminal pair is connected in H|σ′ . J

To reduce MCVS to CCPVS, we simply reverse the previous reduction of CCPVS
to MCVS. Formally, let (G = (V,E), S, k) be an instance of MCVS. We create an in-
stance (H = (V ′, B,R), k) of CCPVS as follows. For each vertex v ∈ V we add vertex v′
to V ′, for each edge uw ∈ E we add the blue edge u′w′ to B, and finally for each terminal
pair (u, v) ∈ S, we add the red edge u′v′ to R. Note that B and R are disjoint, as by
definition no terminal pair in S is also an edge in E.

I Theorem 7. For any integer k ≥ 0, (G,S, k) is a yes-instance of Multicut with
Vertex Splitting if and only if (H, k) is a yes-instance of Correlation Clustering
with Permissive Vertex Splitting.

Proof. Note that applying the reduction behind Theorem 6 toH results in the instance (G,S, k).
Thus, Theorem 6 already shows that the two instances are equivalent. J

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:9

Theorems 6 and 7, together with the observation that both reductions exactly preserve the
number of vertices, allow us to state the following strong notion of equivalence between
CCPVS and MCVS.

I Corollary 8. For any function f , CCPVS admits a kernel of size f(k) if and only
if MCVS does. Furthermore, the minimization variant of CCPVS admits a polynomial-time
f(n)-approximation algorithm if and only if the minimization variant of MCVS does.

Now that we have established the equivalence of MCVS and CCPVS, we are ready to show
the hardness of both problems.

I Theorem 9. MCVS is NP-hard even if k = 2 Additionally, for any ε > 0 it is NP-hard to
approximate MCVS to within a factor of n1−ε.

Proof. Let G = (V,E) be the input graph for k-Colorability with k ≥ 3. We will construct
an equivalent input instance (H,S, k−1) for MCVS. We construct the graph H and terminal
set S from G as follows. We add V to H and for each edge uv ∈ E, we add (u, v) to S. We
then add a new vertex a to H, and create edges from a to all other vertices. This completes
the construction.

We first argue that we may assume that any solution of (H,S, k− 1) only splits a. To see
this, let σ be a sequence of vertex splits of length at most k − 1 such that all terminal pairs
are disconnected in H|σ. Suppose that some vertex v 6= a is split. Before this split, v only has
one neighbor a∗, which is either equal to a or a descendant of a. We simply replace the split
of v with a split of a∗ into a∗1 and a∗2 such that N(a∗1) = {v} and N(a∗2) = N(a∗) \ {v}. In
the resulting graph, v is disconnected from all other vertices in V , and so it is disconnected
from all of its terminal partners. We proceed with the assumption that in any solution a is
the only split vertex.

Assume that (H,S, k − 1) is a yes-instance. We show that then G is k-colorable. By the
above, H|σ contains k descendants a1, . . . , ak of a and these vertices naturally partition the
set V into k sets Ci = N(ai) for i ∈ [k]. No terminal-pair can appear with both endpoints in
one of these sets so the same holds for E ⊆ S. Hence, C1, . . . , Ck is a valid k-coloring of G.

In the other direction, assume that G has a k-coloring with the color partition C1, . . . , Ck.
Then we can split a ∈ H a total of k−1 times into descendants a1, . . . , ak such thatN(ai) = Ci.
Since {a1, . . . , ak} is independent it is easy to verify that these k − 1 splits separate every
terminal pair in S.

We conclude that MCVS is already NP-hard with parameter k = 2 as the above provides
a reduction from 3-Colorability. The approximation hardness follows directly from the
facts that, given any constant ε > 0, computing an n1−ε-approximation for Chromatic
Number is NP-hard [29], and that our constructed instance of MCVS has only n + 1
vertices. J

Taken together with Corollary 8, Theorem 9 gives us the same result for CCPVS.

I Corollary 10. CCPVS is NP-hard even if k = 2 Additionally, for any ε > 0 it is NP-hard
to approximate CCPVS to within a factor of n1−ε.

4 Complete Information

We now restrict our study to correlation graphs, i.e., we study Cluster Editing with
Permissive Vertex Splitting. Our main results are NP-hardness (Section 4.1), a polyno-
mial kernel (Section 4.2), and a polynomial-time 7-approximation (Section 4.3). We begin by

SWAT 2024

39:10 Correlation Clustering with Vertex Splitting

introducing a new structure and subsequent lemmas which will be helpful in attaining the
latter two results.

I Definition 11. A bad star S in a correlation graph G is a set {v0, v1, . . . , v|S|−1} of vertices
where all edges in {{v0, vi} | i ∈ [|S|−1]} are blue and all edges in {{vi, vj} | i 6= j ∈ [|S|−1]}
are red. The vertex v0 is called the center and all other vertices are called leaves. The weight
of a bad star weight(S) is the number of leaves in the star minus one. A bad star forest is a
collection T of vertex-disjoint bad stars. We write weight(T) :=

∑
S∈T weight(S) to denote

the sum of weights of its members. A correlation graph G contains a bad star forest if it
contains a subgraph which is a bad star forest.

The first lemma states a useful lower bound in terms of bad stars.

I Lemma 12. If G contains a bad star forest of weight k then we need at least k vertex splits
to cluster G.

Proof. We begin by showing that if G = (V,B,R) contains a (not necessarily induced)
subgraph H = (VH , BH , RH) and at least k vertex splits are needed to separate each pair
in S, then at least k vertex splits are needed to cluster G. Suppose otherwise. Then,
using Lemma 5, there is some overlapping clustering F of G with cost less than k. We
will construct an overlapping clustering FH of H with cost less than k. We begin by
setting FH = {X ∩ VH | X ∈ F}. It is clear that this is a covering of H, that every blue
edge is covered, and that #FH(v) ≤ #F(v) for every vertex v ∈ VH . We now ensure that
each red edge is resolved. Let uv be a red edge which is not resolved, so each of u and v
belong to only a single cluster X ∈ FH . In this case we claim that F contains two distinct
clusters Y 6= Z such that Y ∩ VH = Z ∩ VH = X. Otherwise, either F does not resolve uv or
one of u or v is contained in multiple clusters of FH , both contradictions. Thus, we can safely
add the cluster {u} (chosen without loss of generality) to FH , thereby resolving uv while
maintaining that #FH(u) ≤ #F(u). We repeat this process iteratively until all red edges
are resolved. In doing so, we produce an overlapping clustering FH of H with costH(FH) ≤
costG(F) < k, a contradiction.

It remains to show that a bad star forest of weight k requires at least k vertex splits to
cluster. We begin by showing that a bad star S of weight k requires at least k vertex splits.
Let x be the center vertex of S and let F be an overlapping clustering of S. Let the clusters
in F which contain x be C1, C2, . . . , Cp. Moreover for each 1 ≤ i ≤ p, let Ĉi = Ci \{x}. Note
that we may assume each Ĉi is nonempty, as the cluster {x} covers no blue edges and resolves
no red edges in S, and can therefore be safely removed from F . Observe also that each leaf v
of S must be contained in some set Ĉi since the edge xv is blue. Now suppose that some
leaf v is contained in two sets Ĉi 6= Ĉj . We remove v from the cluster Cj (chosen arbitrarily)
and add the cluster {v} to F . The blue edge xv is still covered by Ci, the cluster {v} ensures
that all red edges incident to v are still resolved, and we have not increased the cost of the
clustering. Thus, we may safely assume that the sets Ĉ1, Ĉ2, . . . Ĉp are a partition of the
leaves of S. Consider one such set Ĉi. These leaves induce a red clique and none of these
red edges is resolved by Ci, so we have that at least |Ĉi| − 1 of these leaves are contained in
multiple clusters in F . Since we also know that #F(x) = p, we conclude

costS(F) ≥ (|Ĉ1| − 1) + (|Ĉ2| − 1) + . . .+ (|Ĉp| − 1) + #F(x)− 1

= |Ĉ1|+ |Ĉ2|+ · · ·+ |Ĉp| − p+ p− 1 = |S \ {x}| − 1 = weight(S) = k

Finally, let T be a bad star forest made up of t bad stars S1, S2, . . . , St. Let k be the weight
of T and suppose toward a contradiction that T admits an overlapping clustering F of cost

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:11

less than k. Then, we repeat the technique from earlier in this proof to construct overlapping
clusterings FS1 ,FS2 , . . .FSt

of the bad stars. Because the bad stars are vertex-disjoint, we
have that costS1(FS1) + costS2(FS2) + . . .+ costSt

(FSt
) ≤ costT (F) < k. This implies that

there is some Si such that costSi(FSi) is less than the weight of Si, but we have already
proven that this is impossible. J

The second lemma states that every optimal solution contains a cluster that contains all
vertices of a sufficiently large blue clique.

I Lemma 13. If a correlation graph G contains a blue clique C of size at least k + 1, then
any overlapping clustering F of cost at most k contains a set X ∈ F with C ⊆ X.

Proof. Let C be a blue clique in G of size at least k + 1 and let F be any overlapping
clustering of cost at most k. Assume towards a contradiction that F does not contain a set X
with C ⊆ X. Since F has cost at most k, there exists a vertex v ∈ C that is contained in
exactly one set Y ∈ F . Moreover, since Y does not contain all vertices of C by assumption,
there exists a vertex u ∈ C \ Y . Since C is a blue clique, the edge uv is blue and is covered
by some set Z ∈ F . Observe that Y 6= Z as u ∈ Z and u /∈ Y . Since Z covers the edge uv,
it holds that v ∈ Z, a contradiction to the assumption that v is only contained in Y . J

4.1 NP-hardness
We now show that Cluster Editing with Permissive Vertex Splitting is NP-hard.

I Proposition 14. Deciding whether a given correlation graph admits an overlapping clus-
tering of cost at most k is NP-hard.

Proof. We reduce from Vertex Cover. Let (G = (V,E), k′) be an instance of Vertex
Cover. We construct a correlation graph H as follows. Let U be a set of k′ + 1 vertices
(not contained in V). The vertex set of H is U ∪ V . For each edge e = uv ∈ E, we add a
red edge uv to H. All other edges (including all edges incident to a vertex in U) are blue.
Finally, we set k = k′.

We next show that the reduction is correct. First assume that there is an overlapping
clustering F of H of cost at most k. By Lemma 13, for each vertex v ∈ V , there exists
a set Xv ∈ F with U ∪ {v} ⊆ Xv. Note that U ⊂ Xu ∩ Xv for any pair u, v ∈ V and
therefore Xu = Xv as otherwise the cost of F is at least |U | > k. Hence, there exists a
set X ∈ F with U ∪V ⊆ X. Since all blue edges are covered by X, we next focus on resolving
all red edges. Note that since X contains all vertices in H and the cost of F is at most k, all
remaining sets in F ′ = F \X contain at most k vertices combined. If for some red edge uv
none of the two vertices u or v is contained in a set in F ′, then this red edge is not resolved
by F . Thus for each red edge, at least one of the two endpoints is contained in a set in F ′.
Note that this immediately implies that G contains a vertex cover of size at most k (all
vertices that are contained in a set in F ′).

For the other direction, assume that G contains a vertex cover S of size at most k. We
construct an overlapping clustering F of H of cost at most k as follows. The family F
contains one set X = U ∪ V and for each vertex v ∈ S, it contains a set Xv = {v}. Note
that the cost of F is at most k and all blue edges in H are covered by X. Moreover, each
red edge uw in H is resolved as by construction it holds that F contains the set Xu = {u}
or Xw = {w}. Without loss of generality, let F contain Xu. Then, the red edge uw is
resolved as w is contained in X and u is contained in Xu 6= X. This concludes the proof. J

SWAT 2024

39:12 Correlation Clustering with Vertex Splitting

4.2 Polynomial Kernel
We next show that Cluster Editing with Permissive Vertex Splitting parameterized
by k admits a polynomial kernel. Note that this is in stark contrast to the para-NP-hardness
of Correlation Clustering with Permissive Vertex Splitting parameterized by k.

I Theorem 15. Cluster Editing with Permissive Vertex Splitting parameterized
by the number of vertex splits admits a kernel with O(k3) vertices.

Proof. Let (G = (V,B,R), k) be the input instance of CEPVS. We begin by computing an
inclusion-maximal bad star forest T in G. If weight(T) ≥ k, then we conclude, according to
Lemma 12, that (G, k) is a no-instance and output an appropriate trivial kernel.

Otherwise let S be the vertices of T and note that |S| ≤ 3 weight(T) ≤ 3k. Since T is
inclusion-maximal, we know that G \ S cannot contain any bad stars and in particular no
bad triangles. We conclude that G \ S is therefore a cluster graph. Let C1, C2, . . . , Cp be
these clusters. We next exhaustively apply the following simple reduction rule.

I Reduction rule 1. If G contains a blue clique C such that all edges with one endpoint
in C are red, then remove C from G.

Next, we bound the number p of cliques in G \ S as follows. Assume that G \ S contains
at least 4k + 1 cliques. Note that by application of Reduction Rule 1, all clusters in G \ S
have at least one blue edge towards S. Pick for each clique C in G \ S one such blue edge
towards S and let vC be the endpoint in C of this edge. Note that these chosen edges form a
collection of vertex-disjoint stars with all centers in S (but not necessarily all vertices in S
being centers). Moreover, since the vertices vC and vC′ belong to different cliques for each
pair C 6= C ′ of cliques in G \ S, the edge between the two is red. Hence, all stars with at
least two leaves in V \ S are bad stars. Let S′ ⊆ S be the set of vertices in S that are not
the center of such bad stars, that is, vertices in S for which we chose at most one incident
blue edge as a representative for a clique. Let S∗ = S \ S′. Since we chose at most one blue
edge svC for each vertex s ∈ S′, the number of chosen blue edges included in bad stars is at
least

(4k + 1)− |S′| ≥ (4k + 1)− |S|+ |S∗| ≥ (4k + 1)− 3k + |S∗| = k + 1 + |S∗|.

Hence, the weight of the constructed collection of bad stars is at least k+1 and by Lemma 12,
we conclude that (G, k) is a no-instance. Thus, if G \ S contains at least 4k + 1 cliques after
applying Reduction Rule 1 exhaustively, we can return a trivial no-instance. Otherwise, the
number p of cliques is bounded by 4k.

We are now left with the task of bounding the size of each individual cluster Ci to
arrive at a polynomial kernel. To that end, we apply the following marking and deletion
procedure to each cluster: For a fixed cluster Ci, begin with an initially empty set Mi.
For each vertex v ∈ S, arbitrarily mark k + 1 red and k + 1 blue neighbors of v in Ci by
adding them to Mi (or all red/blue neighbors if there are at most k). Note that we mark at
most |Mi| ≤ |S|(2k + 2) ≤ 6k2 + 6k vertices this way.

I Reduction rule 2. For any cluster Ci, delete all (unmarked) vertices in Ci \Mi from G.

Let Ĝ be the graph obtained after applying the reduction rule to some cluster Ci. We now
need to show that this reduction rule is safe and sound. Let Ri := Ci \Mi be the vertices
removed by the reduction rule.

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:13

First note that if F is an overlapping clustering of G, then F \ Ri (interpreted as
a multiset4, that is, the same cluster might appear multiple times in it) is trivially an
overlapping clustering of Ĝ and costĜ(F \Ri) ≤ costG(F). Thus, the reduction rule is safe.

To prove soundness, let F̂ be an overlapping clustering of Ĝ with costĜ(F̂) ≤ k. Let u ∈ Ri
be one of the removed vertices. We argue that we can include u in the clustering without
increasing the cost. Note that since we removed a vertex, the size of Ci was initially at
least 2k + 2 and hence, by Lemma 13, we have that F̂ contains a set Ĉ with Ci ⊆ Ĉ. We
add u to this cluster and now argue that u does not have to be included in any further
clusters if (G, k) is a yes-instance. To that end, we show that every edge incident to u is
already covered/resolved by this new clustering.

Let uv be any blue edge incident to u. Note that if v ∈ Ci then uv is covered by Ĉ, so
we may assume that v ∈ S. Then v has at least k + 2 blue neighbors in Ci as otherwise we
would have marked u. Let N be a set of k + 1 neighbors of v in Ci that were marked. By
Lemma 13, there exists a cluster set X ∈ F̂ with N ∪ {v} ⊆ X. Hence, X = Ĉ as otherwise
the cost of F̂ would be at least k + 1 as each vertex in N would appear in at least two sets.
Thus, uv is covered by Ĉ ∪ {u} in the constructed overlapping clustering.

Now let uv be any red edge incident to u. Again, we claim that because u was unmarked,
v must have at least k + 2 red neighbors in Ci. Either v ∈ S, in which case the argument
is the same as before, or v ∈ V \ (S ∪ Ci). In this case, all of Ci is contained in v’s red
neighborhood, and we have already observed that Ci has at least 2k + 2 vertices. Let N
be a set of k + 1 red neighbors of v in Ci that were marked. Note that v is contained in
a set X 6= Ĉ ∈ F̂ as otherwise each vertex in N would be contained in at least two sets
and cost(F̂) ≥ k + 1. Hence, uv is resolved as u ∈ Ĉ ∪ {u} and v ∈ X.

We conclude that the resulting clustering covers all blue edges incident to u and resolves
all red edges incident to u at the same cost as the clustering F̂ . By repeating the procedure
for the remaining vertices of Ri we conclude that there exists a clustering F which clusters G
and costG(F) = costĜ(F̂). Repeating this argument for every cluster demonstrates that
Rule 2 is indeed sound.

Finally, note that after application of Rule 1 and Rule 2 to a yes-instance, we have p ≤ 4k
clusters of size at most |S|2(k+ 1) ≤ 6k2 + 6k each and therefore the total number of vertices
in the end is at most |S|+ 4k(6k2 + 6k) = 24k3 + 24k2 + 3k ∈ O(k3). This concludes the
proof. J

4.3 Constant-Factor Approximation
We conclude this section with a constant-factor approximation for Cluster Editing
with Permissive Vertex Splitting. Again, this is in stark contrast to Correlation
Clustering with Permissive Vertex Splitting.

I Theorem 16. Cluster Editing with Permissive Vertex Splitting admits a 7-
approximation in polynomial time.

Proof. Let G = (V,E) be a correlation graph. We again begin by computing an inclusion-
maximal bad star forest T in G. By Lemma 12, the weight of T is at most opt (the minimum
cost of an overlapping clustering of G). Since the number of vertices in a bad star is at most
thrice its weight (a bad triangle has weight one and contains three vertices), the set S of

4 Technically an overlapping clustering cannot be a multiset. We refer the reader to the proof of Lemma 12,
in which we formally show how to adapt this construction into an overlapping clustering with cost
bounded by costG(F).

SWAT 2024

39:14 Correlation Clustering with Vertex Splitting

vertices in T is at most 3 opt. Since T is inclusion-maximal, the graph induced by V \S does
not contain any bad star, that is, the blue edges form a cluster graph. Let C be the set of
(blue) cliques in this graph. If |C| ≤ 1, then we find a simple 3-approximation by putting
each vertex v ∈ S into its own cluster set Xv and adding one cluster set XS = V . Note that
the cost of this overlapping clustering is |S| ≤ 3 opt. Hence, we assume for the remainder of
the proof that |C| ≥ 2.

Next, we restrict our search to a solution that contains one cluster set XS with S ⊆ XS

and for each vertex v ∈ S one cluster set Xv = {v}. Note that we can add these sets to any
solution (if they are not already present within the solution) to get a new solution whose cost
is at most 2|S| ≤ 6 opt larger than the original. We call overlapping clusterings that satisfy
the above simple solutions and we denote the minimum cost of a simple solution by opt′.

We next show that there is always a simple solution of cost opt′ that contains for each
clique C ∈ C a cluster set XC with C ⊆ XC . Start with any simple solution F of cost opt′
and any clique C ∈ C and assume that F does not contain a cluster set containing C. We
prove that in this case each vertex in C is contained in at least two cluster sets in F . Assume
towards a contradiction that some vertex v ∈ C is contained in exactly one cluster set Y
(note that by definition of overlapping clusterings, each vertex is contained in at least one
cluster set). Since we assumed that no cluster set completely contains C, there exists a
vertex u ∈ C \ Y . However, since u and v are contained in the same clique C, the edge
between them is blue and has to be covered by some cluster set Z ∈ F (and hence Z has
to contain both u and v). Note that Z 6= Y since u ∈ Z but u /∈ Y . This contradicts the
assumption that v is only contained in cluster set Y .

We construct a new simple solution F ′ of cost opt′ by removing all vertices in C from all
cluster sets in F and adding them all to XS . In addition, we add one new cluster set XC = C.
Note that the cost of F ′ is at most the cost of F as we removed each vertex in C from
at least two cluster sets and added them to exactly two cluster sets. Moreover, the new
solution is indeed an overlapping clustering as all blue edges incident to a vertex in C are
covered by XS as all blue neighbors are either in S or in C. Since no red neighbors of any
vertex in C are contained in C, the new cluster set XC ensures that all red edges incident to
vertices in C are resolved. Repeating the above for all cliques in C yields a simple solution of
cost opt′ that contains for each clique C ∈ C a cluster set XC with C ⊆ XC .

The next step is to show that there is always an optimal simple solution (a simple
solution of cost opt′) in which XC 6= XC′ for any pair C 6= C ′ ∈ C. Start with any optimal
simple solution F that contains a cluster set XC ⊇ C for each clique C ∈ C and assume
that XC1 = XC2 for some cliques C1 6= C2. Observe that all vertices from at least one of
the two cliques are contained in at least two cluster sets each as if there are vertices u ∈ C1
and v ∈ C2 that are only contained in XC1 = XC2 , then the red edge between them is not
resolved by F . Without loss of generality, let all vertices of C1 be contained in at least two
cluster sets each. Then, we construct a new simple solution F ′ of cost opt′ by removing all
vertices in C1 from all cluster sets in F and adding them all to XS and adding one new
cluster set XC1 = C1. The proof that this is correct is exactly the same as before. The cost
of F ′ is at most the cost of F as we removed each vertex in C1 from at least two cluster
sets and added them to exactly two cluster sets. Moreover, the new solution is indeed an
overlapping clustering as all blue edges incident to a vertex in C1 are covered by XS and
the new cluster set XC1 ensures that all red edges incident to vertices in C are resolved.
Repeating the above for all cliques in C yields an optimal simple solution that contains for
each clique C ∈ C a cluster set XC ⊇ C such that XC 6= XC′ for all C 6= C ′ ∈ C.

Next, we guess which clique C∗ ∈ C satisfies XC∗ = XS in an optimal simple solution

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:15

satisfying all of the above.5 By that, we mean that we try all possibilities of the following
and return the best solution found. For each clique C ∈ C \ {C∗}, we compute a minimum
vertex cover KC of the blue edges between C and S in O(n3) time using Kőnig’s theorem
(note that the considered graph is bipartite by construction). We add each vertex in KC ∩ S
to XC and each vertex in KC ∩ C to XS .

We claim that
∑
C∈C\{C∗} |KC | ≤ opt′−|S|. By the above arguments, we can start with

an overlapping clustering F consisting of one cluster set XS = S∪C∗, one cluster set XC = C

for each C ∈ C \ {C∗}, and one cluster set Xv = {v} for each v ∈ S. Note that all red edges
are resolved and all blue edges except for those between S and V \ (S ∪ C∗) are covered.
To cover a blue edge uv with u ∈ S and v ∈ C for some C ∈ C \ {C∗}, there are three
possibilities: We can add u to XC , we can add v to XS , or there exists a different cluster
set Y ∈ F with {u, v} ⊆ Y . Note that in the third case, we can remove v from Y and add
it to XS and still get an optimal simple solution. Moreover, the optimal way to cover all
blue edges between S and V \ (S ∪ C∗) using the first two possibilities corresponds exactly
to
∑
C∈C\{C∗} |KC |. Since now all red edges are resolved and all blue edges are covered and

the cost of the constructed overlapping clustering is

|S|+
∑

C∈C\{C∗}

|KC | ≤ opt′ ≤ 7 opt,

we successfully computed a factor-7 approximation in polynomial time. J

We leave it as an open problem to improve the approximation factor. We conjecture that a
refined concept of a simple solution might yield an approximation factor of 4.

5 Conclusion

We have introduced permissive vertex splitting, which generalizes the earlier exclusive and
inclusive vertex splitting notions by allowing symmetry with respect to “positive” and
“negative” pairwise similarity data. Our type of vertex splitting turns out to be quite
satisfying, as it corresponds to a natural definition of overlapping clustering. Unfortunately,
the general case of Correlation Clustering with Permissive Vertex Splitting is
rather intractable, as it is para-NP-hard and admits no n1−ε approximation in polynomial
time for any ε > 0 (unless P = NP). On the positive side, when restricted to datasets with
complete data we obtain a kernel with O(k3) vertices and a polynomial time 7-approximation.
Interesting questions remain, for example whether one can reduce our approximation factor
to 4 (or even lower), whether a kernel with only linearly many vertices exists (as is the case
when only inclusive splits and edge-edits are allowed [1]), or whether refined lower bounds
in terms of running time or approximation factor can be found. Future work might also
consider the parameterized complexity of Correlation Clustering with Permissive
Vertex Splitting and Cluster Editing with Permissive Vertex Splitting with
respect to structural parameters of the input, or with restrictions on the number of clusters
which contain any given node.

Finally, we would like to amplify the call of Abu-Khzam et al. [1] to extend the study of
vertex splitting (exclusive, inclusive, or permissive) to other classes of target graphs, many of
which (e.g., bicluster graphs, s-cliques, s-clubs, s-plexes, k-cores, and γ-quasi-cliques) have
been proposed as alternatives to cliques in clustering applications.

5 We can assume that one such clique always exists, but even if this was not the case, the following proof
still works if the guess {C∗} = ∅ yields an optimal simple solution.

SWAT 2024

39:16 Correlation Clustering with Vertex Splitting

References
1 Faisal N. Abu-Khzam, Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Judith Egan,

Serge Gaspers, Alexis Shaw, Peter Shaw, Blair D. Sullivan, and Petra Wolf. Cluster editing
with vertex splitting. arXiv preprint arXiv:1901.00156, 2023.

2 Faisal N. Abu-Khzam, Joseph R. Barr, Amin Fakhereldine, and Peter Shaw. A greedy heuristic
for cluster editing with vertex splitting. In Proceedings of the 4th International Conference on
Artificial Intelligence for Industries (AI4I), pages 38–41. IEEE, 2021.

3 Faisal N. Abu-Khzam, Judith Egan, Serge Gaspers, Alexis Shaw, and Peter Shaw. Cluster edit-
ing with vertex splitting. In Proceedings of the 5th International Symposium on Combinatorial
Optimization (ISCO), pages 1–13. Springer, 2018.

4 Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck. Finding overlapping
communities in social networks: Toward a rigorous approach. In Proceedings of the 13th ACM
Conference on Electronic Commerce (EC), pages 37–54. Association for Computing Machinery,
2012.

5 Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D. Sullivan, and Petra
Wolf. Cluster editing with overlapping communities. In Proceedings of the 18th International
Symposium on Parameterized and Exact Computation (IPEC), pages 2:1–2:12. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2023.

6 Gard Askeland. Overlapping community detection using cluster editing with vertex splitting.
Master’s thesis, University of Bergen, Bergen, Norway, 2022.

7 Sanghamitra Bandyopadhyay, Garisha Chowdhary, and Debarka Sengupta. FOCS: Fast
overlapped community search. IEEE Transactions on Knowledge and Data Engineering,
27(11):2974–2985, 2015.

8 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56(1-3):89–113, 2004.

9 Jeffrey Baumes, Mark Goldberg, and Malik Magdon-Ismail. Efficient identification of overlap-
ping communities. In Proceedings of the 2005 IEEE International Conference on Intelligednce
and Security Informatics (ISI), pages 27–36. Springer, 2005.

10 Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowledge and Information Systems, 35(1):1–32, 2013.

11 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012.

12 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

13 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71(3):360–383, 2005.

14 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending
Grothendieck’s inequality. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 54–60. IEEE, 2004.

15 Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the
hardness of approximating multicut and sparsest-cut. Computational Complexity, 15(2):94–114,
2006.

16 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012.

17 Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated
rounding error via preclustering: A 1.73-approximation for correlation clustering. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1082–1104.
IEEE, 2023.

18 Alex Crane, Brian Lavallee, Blair D. Sullivan, and Nate Veldt. Overlapping and robust edge-
colored clustering in hypergraphs. In Proceedings of the 17th ACM International Conference
on Web Search and Data Mining, pages 143–151, 2024.

M. Bentert, A. Crane, P. G. Drange, F. Reidl, B. D. Sullivan 39:17

19 George B. Davis and Kathleen M. Carley. Clearing the FOG: Fuzzy, overlapping groups for
social networks. Social Networks, 30(3):201–212, 2008.

20 Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering
in general weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

21 Reinhard Diestel. Graph Theory. Springer, 2012.
22 Nan Du, Bai Wang, Bin Wu, and Yi Wang. Overlapping community detection in bipartite

networks. In Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT), pages 176–179, 2008.

23 Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Overlapping community detection in
labeled graphs. Data Mining and Knowledge Discovery, 28(5-6):1586–1610, 2014.

24 Reynaldo Gil-García and Aurora Pons-Porrata. Dynamic hierarchical algorithms for document
clustering. Pattern Recognition Letters, 31(6):469–477, 2010.

25 Mark Goldberg, Stephen Kelley, Malik Magdon-Ismail, Konstantin Mertsalov, and Al Wal-
lace. Finding overlapping communities in social networks. In Proceedings of the 2nd IEEE
International Conference on Social Computing (SC), pages 104–113, 2010.

26 Steve Gregory. An algorithm to find overlapping community structure in networks. In
Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD), pages 91–102. Springer, 2007.

27 Qinna Wang and Eric Fleury. Uncovering overlapping community structure. In Proceedings
of the 2nd International Workshop on Complex Networks (COMPLEX NETWORKS), pages
176–186. Springer, 2010.

28 Xufei Wang, Lei Tang, Huiji Gao, and Huan Liu. Discovering overlapping groups in social
media. In Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM),
pages 569–578, 2010.

29 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(1):103–128, 2007.

SWAT 2024

	1 Introduction
	2 Preliminaries
	3 Incomplete Information
	4 Complete Information
	4.1 NP-hardness
	4.2 Polynomial Kernel
	4.3 Constant-Factor Approximation

	5 Conclusion

