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Summary

� Seed size shapes plant evolution and ecosystems, and may be driven by plant size and archi-

tecture, dispersers, habitat and insularity. How these factors influence the evolution of giant

seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant

seeds.
� We generated DNA and seed size data for the palm tribe Borasseae (Arecaceae) and its rela-

tives, which show a wide diversity in seed size and include the double coconut (Lodoicea

maldivica), the largest seed in the world. We inferred their phylogeny, dispersal history and

rates of change in seed size, and evaluated the possible influence of plant size, inflorescence

branching, habitat and insularity on these changes.
� Large seeds were involved in 10 oceanic dispersals. Following theoretical predictions, we

found that: taller plants with fewer-branched inflorescences produced larger seeds; seed size

tended to evolve faster on islands (except Madagascar); and seeds of shade-loving Borasseae

tended to be larger.
� Plant size and inflorescence branching may constrain seed size in Borasseae and their rela-

tives. The possible roles of insularity, habitat and dispersers are difficult to disentangle. Evolu-

tionary contingencies better explain the gigantism of the double coconut than unusually high

rates of seed size increase.

Introduction

Seed size is a major determinant of seed dispersal and seedling
establishment (Moles, 2018). Knowing the rates and drivers of
seed size evolution is therefore essential to improve predictions of
species’ responses to changing ecological conditions. Seed size
varies by orders of magnitude in almost all angiosperm orders
(Linkies et al., 2010). This lability has been related to many fac-
tors, such as disperser availability, plant size and habitat shadiness
(Willson & Traveset, 2010; Leishman et al., 2000; Moles et al.,
2006). The challenge of disentangling these factors impedes
understanding of seed size variation within lineages and is an
obstacle to a predictive understanding of seed size evolution. The
evolution of extreme seed sizes, which define the boundaries of
the global seed size distribution, remains particularly unclear.

One of the most extreme examples of seed size variation is
found in the ‘syncarpous clade’ of the fan palm subfamily

Coryphoideae (Arecaceae). This clade consists of 16 genera in
four tribes restricted to the Old World tropics (Dransfield et al.,
2008; Baker & Dransfield, 2016): Borasseae, Corypheae, Cary-
oteae and Chuniophoeniceae, and is supported by all taxa having
a syncarpous gynoecium (Rudall et al., 2011) and by molecular
studies (Baker et al., 2009; Barrett et al., 2016). Species of the
syncarpous clade occur in diverse habitats (dry or wet, open or
forested) on islands and continents (Fig. 1a). Seed length in the
clade varies from a few millimetres (Caryoteae, Chunio-
phoeniceae and Corypheae) up to several centimetres (Borasseae)
and culminates in the Seychelles endemic Lodoicea maldivica
(J.F.Gmel.) Pers. that produces the famous ‘double coconut’ or
‘coco de mer’ (Fig. 1b,c), the world’s largest seed, which can
reach almost 0.5 m in length (17–48 cm according to Morgan
et al. (2017a)) and is said to weigh up to 25 kg (Tomlinson,
2006; Dransfield et al., 2008). The double coconut belongs to
the large-seeded tribe Borasseae, suggesting that the drivers of its
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Fig. 1 Distribution and seed morphology of selected lineages in the syncarpous clade. (a) Distribution of the syncarpous tribes and of Borasseae species. (b)
Examples of fruit, pyrene and seeds of Chuniophoeniceae and Borasseae. I, Lodoicea maldivica (picture by J. Dransfield); II, Borassodendron borneense
J.Dransf. (picture from https://plants.jstor.org); III, Nannorrhops ritchieana (Griff.) Aitch. (picture by S. Bellot). F, fruit; P, pyrene; S, seed. Bar, 1 cm. (c)
L. maldivica germinating in its native habitat in the Seychelles (picture by D. Gower).
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large size may also have acted on the tribe’s ancestors. Thus, the
giant seed size of Lodoicea must be explored within the context of
Borasseae and the broader syncarpous clade.

The factors responsible for seed size diversity in the syncarpous
clade have never been investigated. The large seeds (> 4 cm) of
some Borasseae species are assumed to be an adaptation to disper-
sal by megafauna (> 1000 kg) (Guimar~aes et al., 2008; Onstein
et al., 2018), and this is supported by their current dispersal by
large mammals as reviewed in Zona & Henderson (1989) (see
also Discussion section). However, the availability of large dis-
persers does not explain differences in seed size among the large-
seeded species or between them and co-occurring species with
smaller seeds, and it is well known that large animals also disperse
small seeds (Chen & Moles, 2015). A previous study (Edwards
et al., 2002) suggested that the giant seed of Lodoicea could result
from it lacking a dispersal agent and/or from increased forest
cover, but other Borasseae were not considered. Occurring only
in the Seychelles, Lodoicea is considered to be a case of island
gigantism, but it is unknown if insularity promoted seed size
change in this lineage and in its island relatives in Madagascar,
New Guinea and the Mascarenes (Fig. 1a). Seed size is likely to
have also influenced the dispersal of Borasseae around the Indian
Ocean, but this has not been investigated formally. A positive
correlation between seed mass and seed dispersal distance has
been demonstrated (Thomson et al., 2011; Onstein et al., 2019).
However, this has not been tested for the much larger seeds of
Borasseae, which are all dispersed by animals (except for
Lodoicea, which has no known disperser) and appear not to sur-
vive dispersal by floating in sea water (Gunn & Dennis, 1976;
Zona & Henderson, 1989).

There are at least six published hypotheses that could explain
the seed size of Lodoicea and/or seed size change in the syncarpous
clade. Although certainly not exhaustive, these hypotheses can be
evaluated because clade-wide data are available. The allometry
hypothesis (H1) stipulates that change in plant size will trigger
seed size change in the same direction, due to physiological and/
or physical constraints (Moles et al., 2005a, 2006; Rees & Ven-
able, 2007). Related to H1, Corner’s (1949) rule of axial confor-
mity provides a further hypothesis (H2) that less-branched axes
can carry larger appendages (Tomlinson, 2006), in this instance
larger fruits with the ability to contain larger seeds. The dispersal
agent hypothesis (H3), which is a generalisation of the megafauna
idea, stipulates that change in dispersal agent size will trigger seed
size change in the same direction, to maximise dispersal
(Eriksson, 2008; Galetti et al., 2013, 2018). The sibling competi-
tion hypothesis (H4) proposes that loss of dispersal agent will
result in fewer seeds and a seed size increase, to avoid competition
under the mother tree (Edwards et al., 2002). The island syn-
drome hypothesis (H5), which is a generalisation of the island
gigantism idea, specifies that arrival on an island leads to increases
or decreases in seed size, in response to new selective pressures
(Carlquist, 1974; Kavanagh & Burns, 2014; Biddick et al.,
2019). Finally, the shade hypothesis (H6) states that increase or
decrease in habitat shadiness will trigger seed size increase or
decrease, in response to lower or higher light availability for the
seedling (Leishman et al., 2000; Edwards et al., 2002). These

possible drivers of seed size evolution are not mutually exclusive
and may be acting in concert, for instance if disperser availability
changes because of changes in habitat.

Hypotheses such as these that might explain the evolution of
the extraordinary double coconut have never been formally
tested, either separately or in relation to each other. To achieve
this, a well supported phylogeny of the double coconut and its
relatives is required, as well as supporting data from key charac-
ters and environmental variables. Borasseae and the syncarpous
clade have never been studied phylogenetically beyond genus-
level and synthetic analyses (Baker et al., 2009; Faurby et al.,
2016). Seed size data are incomplete for palms, notwithstanding
a recent trait dataset for the family (Kissling et al., 2019). These
knowledge gaps must be filled in order to understand how
Borasseae achieved their current distributions and seed sizes, and
to clarify the origin of the double coconut.

Here, we present a macroevolutionary study of the biogeogra-
phy and possible drivers that led to the origin of the double
coconut. First, we inferred a new phylogeny of tribe Borasseae
(including the double coconut) in the broader context of the syn-
carpous clade based on novel DNA sequence data from two
nuclear genes and five plastid regions. Second, we completed
molecular dating and ancestral range inferences to establish a bio-
geographic framework and examine the frequency and age of
oceanic dispersals. Thirdly, we generated a novel seed trait dataset
from which ancestral seed sizes were estimated and their variation
correlated with changes in key variables (plant size, architecture,
insularity and habitat). We then discussed our results in the con-
text of the six hypotheses outlined above. In this way, we lay the
foundations for future ecological and evolutionary research to
address one of the most remarkable phenomena in the plant
kingdom.

Materials and Methods

Taxon sampling, DNA extraction, PCR amplification and
sequencing

We sequenced the DNA of 60 palm specimens, representing all
palm subfamilies, all tribes of subfamily Coryphoideae, all genera
of the syncarpous clade and 80% of Borasseae species (Support-
ing Information Table S1). Seven DNA loci were chosen for phy-
logenetic inference from among regions that had already proven
to be informative for palms (Baker et al., 2009). The selected
regions comprised two low-copy nuclear regions, prk (entire
intron 4, partial exons 4 and 5) and rpb2 (intron 23), and five
plastid regions: the intergenic spacers atpB–rbcL, trnD–trnT and
trnL–trnF, the intron of rps16 and the protein-coding gene rbcL.

Total genomic DNA was extracted from fresh or silica-dried
leaf material using a CTAB protocol modified from Doyle &
Doyle (1990) or a DNeasy Plant Mini Kit (Qiagen, Crawley,
West Sussex, UK). Extracted DNAs were cleaned and concen-
trated using the QIAquick PCR Purification Kit (Qiagen). PCR
and sequencing of atpB–rbcL, rbcL, rps16, trnD–trnT and trnL–
trnF followed Demesure et al. (1995), Asmussen & Chase
(2001), Oxelman et al. (1997), Manen et al. (1994) and Taberlet
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et al. (1991) respectively. For the nuclear genes, primers pub-
lished by Lewis & Doyle (2002) and Roncal et al. (2005) were
used following a PCR protocol set out by Norup et al. (2006).
PCR products were purified using the QIAquick PCR Purifica-
tion Kit (Qiagen). Cycle-sequencing protocols are described in
Norup et al. (2006). Cleaned cycle-sequencing products were
sequenced using either an ABI Prism 377 or an ABI Prism 3100
automated sequencer (Applied Biosystems, Foster City, CA,
USA) according to the manufacturer’s protocols. Sequences were
submitted to the GenBank database (see accession numbers in
Table S1).

Sequence alignment and phylogenetic analyses

Sequences were checked using SEQUENCHER 4.1.2 (Gene Codes,
Ann Arbor, MI, USA), and aligned using the CLUSTALW algo-
rithm implemented in MEGALIGN 5.00 (Clewley & Arnold,
1997). Individual alignments were concatenated in a supermatrix
totalling 7311 nucleotide sites.

A maximum likelihood (ML) phylogenetic analysis was per-
formed for each DNA region separately, using RAXML 8.2.10
(Stamatakis, 2014) with a GTR +G model of evolution and 500
bootstrap replicates. The most likely trees were rooted using
Calamus aruensis (Calamoideae) as the outgroup and then com-
pared. Some conflicts supported by more than 70% of the boot-
strap replicates could be identified but running downstream
analyses after excluding sequences of taxa involved in these con-
flicts resulted in the same topology and similar ages, so we present
only results based on all sequences.

To obtain a ML phylogeny, the concatenated matrix was parti-
tioned following the best scheme of evolutionary models found
by PARTITIONFINDER2 (Lanfear et al., 2017) and analysed with
RAXML 8.2.10 (Stamatakis, 2014) including 1000 bootstrap
replicates.

Molecular dating and biogeography

Ages of divergence were estimated using BEAST 1.8.4 (Drummond
et al., 2012). We used a GTR +G model with four rate categories
and an uncorrelated lognormal relaxed clock to model the
nucleotide substitution rate. A birth–death model with incomplete
sampling (Stadler, 2009) was used as the speciation prior after that
path-sampling estimations of marginal likelihoods and Bayes fac-
tors calculations showed strong evidence (Kass & Raftery, 1995)
for this prior over a Yule prior. The inference was run indepen-
dently two times for 50 million generations, resulting in effective
sampling sizes > 200 for all parameters and convergence towards
the same posterior distributions (visualised using TRACER v.1.7
software; Rambaut et al., 2018). A burn-in fraction of 25% of the
trees was discarded before reporting median posterior ages on the
maximum clade credibility tree using TREE ANNOTATOR v.1.8.4
(Drummond et al., 2012). Absolute ages were obtained by cali-
brating the clock with three fossils. The first fossil, Sabalites
carolinensis (Berry, 1914) characterises the stem of Coryphoideae,
and was found in the Black Creek formation, near Langley, Aiken
County, South Carolina, USA, and dated from the Santonian

(83.4–86.8million years ago (Ma)) (Iles et al., 2015) to the late
Coniacian age (86.8–90.1Ma) (Berry, 1914), so we calibrated the
crown node of the clade formed by Ceroxyloideae, Coryphoideae
and Arecoideae with a prior age following an exponential distribu-
tion of mean 5Ma, with an offset of 83Ma. The second fossil has
been reliably attributed to Sabaleae (Manchester et al., 2010;
Cano, 2018), and was found in the Aguja formation of the Big
Bend National Park, Texas, USA, and dated to the Campanian
age (71.9–83.8Ma), so we calibrated the crown node Sabal-
Coccothrinax with a prior age following an exponential distribu-
tion of mean 5Ma, with an offset of 72Ma, to take into account
the possibility that the fossil would be more recent than the diver-
gence of Sabaleae and Coccothrinax. The third fossil,
Hyphaenocarpon indicum (Matsunaga et al., 2019), characterises
the crown of Hyphaeninae, was found in the Deccan Intertrap-
pean Beds of the Shahpura Mandla District, Madhya Pradesh,
India, and dated to the Late Maastrichtian to early Danian (64–
67Ma), so we calibrated the crown node of Hyphaeninae with a
prior age following an exponential distribution of mean 5Ma,
with an offset of 64Ma.

We inferred ancestral ranges using BIOGEOBEARS (Matzke,
2013). As summarised in Table S2, seven areas were defined
based on current and past geographic isolation, and the present
occurrence of each taxon in those areas was recorded using the
World Checklist of Selected Plant Families (WCSP, 2017). We
compared DEC, BAYESAREALIKE and DIVALIKE models, including
or not founder-event speciation (j parameter; Matzke, 2014), and
including or not the possibility for a range out of the specified
areas (‘null range’; Massana et al., 2015).

Plant size, inflorescence branching and habitat data

To investigate their relationship with seed size, plant maximum
reported height and inflorescence branching order were recorded
from the literature (Table S2). To characterise the habitat of each
species, their distributions were assessed using georeferenced data
from GBIF (https://www.gbif.org/occurrence/search?taxon_key=
7681, accessed on 14 November 2016), RAINBIO (Dauby et al.,
2016; Sosef et al., 2017), the herbarium of the Royal Botanic
Gardens, Kew, and the literature (Henderson, 2009; Stauffer
et al., 2014). Data were cleaned to exclude occurrences out of the
native range of the species (based on the World Checklist of
Selected Plant Families (WCSP, 2017) and Palmweb (Palmweb,
2019)), except for Hyphaene petersiana, for which a few points in
neighbouring countries of its known native range were kept
because they represented plausible occurrences and did not
change habitat inferences. One occurrence per grid cell of the
MODIS land cover dataset (Friedl et al., 2010; Channan et al.,
2014) was then sampled for each species, and the habitat of each
occurrence was defined as closed if the land cover was a type of
forest (values 1–6) or otherwise open (values 7–14). Species with
more than 50% of occurrences falling in a given habitat (closed
or open) were classified as occurring in this habitat, whereas three
species with exactly 50% of occurrences in each habitat were clas-
sified as occurring in a closed habitat, based on the literature
(Table S2).
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Seed data and ancestral state estimations

To obtain robust and comprehensive data on seed size variation
in Borasseae and other syncarpous tribes, we analysed specimens
in the collections of the Royal Botanic Gardens, Kew (herbarium
and the Millennium Seed Bank), and data from the literature.
Borasseae fruits contain one to three seeds, and each seed is sur-
rounded by an endocarp, which can be very thick (Fig. 1b). These
endocarps protect the seed when it is dispersed, and thus the seed
plus its endocarp, hereafter termed the pyrene, is the relevant unit
to consider for questions related to dispersal. Up to 10 collections
per species were sampled, from which the length of up to 10
fruits and of their pyrenes and seeds were measured using a set of
digital callipers. Table S3 summarises the number of collections
and fruits, pyrenes and seeds measured per species. When possi-
ble, we calculated for each collection the ratios of fruit length and
pyrene length, fruit length and seed length, and pyrene length
and seed length. To increase our seed and pyrene datasets, we
then used those ratios to estimate seed or pyrene length from
other collections of the same species that had only fruits and/or
pyrenes available to measure (Table S3). Fruit, pyrene and seed
width and height were also collected and used to estimate vol-
umes, but as our results were qualitatively identical to these
obtained using only lengths (not shown) and as most studies on
seed size rely only on length, we only used the latter in our final
analyses.

Ancestral plant heights, pyrene lengths and seed lengths were
estimated using the fastAnc function in the package CONTMAP
(Revell, 2012, 2013), which assumes trait evolution under a
Brownian motion model. This model had the smallest AICc
when fitted to our data, compared with the other models avail-
able in the GEIGER package (Harmon et al., 2008). The effects of
plant size, inflorescence branching order (low, high), insularity
(island, continent), and habitat (open, closed) on seed or pyrene
size (log-transformed to achieve normality and equal variances)
were tested by fitting linear models with all variables and their
interactions. A stepwise model reduction procedure was used to
remove nonsignificant terms and the model with the lowest cor-
rected AIC was selected using the AICCMODAVG R package
(Mazerolle, 2019). The procedure was repeated with models
including phylogenetic structure, using the phylogenetic gener-
alised least squares (pgls) function from the CAPER R package
(Orme et al., 2018). All analyses were performed in R 3.5 (R
Core Team, 2018), using the packages APE (Popescu et al., 2012),
GGPLOT2 (Wickham, 2016), GGPUBR (https://rpkgs.datanovia.c
om/ggpubr/), GGREPEL (http://github.com/slowkow/ggrepel),
GRIDEXTRA (https://cran.r-project.org/web/packages/gridExtra/in
dex.html), PHYTOOLS (Revell, 2012), and RCOLORBREWER

(https://CRAN.R-project.org/package=RColorBrewer). Analyses
were repeated without Lodoicea to assess its influence on the
results.

Data availability

The DNA sequence data underlying this study are available in
the GenBank database at https://www.ncbi.nlm.nih.gov/genba

nk/ (accession numbers in Table S1) and the morphological mea-
surements and collection information are available in Table S3.

Results

Phylogenetic relationships in the syncarpous clade are
largely resolved

The syncarpous clade, the four tribes that constitute it, and all
their genera were resolved as monophyletic, and identical rela-
tionships were recovered by the ML (Fig. 2) and Bayesian
(Fig. S1) inferences, with bootstrap supports and posterior proba-
bilities generally ≥ 90% and ≥ 0.97 respectively (Fig. 2).
Borasseae and Corypheae were recovered as sister tribes and were
more closely related to Caryoteae than to Chuniophoeniceae. In
the latter, Tahina was sister to Kerriodoxa, and Chuniophoenix sis-
ter to this clade (but see the Discussion section). In Caryoteae,
Wallichia and Arenga were sister taxa and in Corypheae,
C. umbraculifera was sister to C. taliera. In borassoid subtribe
Hyphaeninae, two sister pairs were resolved, the first comprising
Bismarckia and Satranala, the second Hyphaene and Medemia.
Hyphaene dichotoma and H. petersiana were sister species and
more closely related to H. thebaica than to H. coriacea. In boras-
soid subtribe Lataniinae, Borassodendron and Borassus were sister
genera, and this clade in turn was sister to Lodoicea. The position
of Lodoicea was, however, only supported by 78% bootstrap sup-
port and a posterior probability of 0.9, reflecting the short
branches that separated Lataniinae ancestors from one another
(Fig. 2). African Borassus formed a clade more closely related to
the Indo-Asian B. flabellifer than to the New Guinean
B. heineanus. Borassus aethiopum was recovered as paraphyletic,
with accessions from Burkina Faso, Cameroon, Kenya and
Madagascar intermixed with B. madagascariensis (from Madagas-
car) and B. akeassii (from West Africa; Fig. 2).

Borasseae dispersed across oceans and long distances
multiple times

According to the selected biogeographic model (see Notes S1 for
the rationale behind model selection, and Fig. S2 for results with
alternative models), the ancestors of the syncarpous clade were
most likely to have occurred in Asia 110Ma (see Fig. S1 for 95%
highest posterior densities of ages), from where they dispersed
multiple times around the Indian Ocean (Fig. 3a,b). A minimum
of 19 dispersals was required to achieve this distribution: at least
four dispersals over land (one in each syncarpous tribe), at least
13 dispersals over sea (10 in Borasseae and one in each other
tribe), and two uncertain dispersals (in Borasseae). The spatio-
temporal location and the direction of these events is described
below.

Tribes Caryoteae, Chuniophoeniceae and Corypheae diversi-
fied mostly in Asia and experienced at least six dispersals. Corypha
ancestors reached India by land between 55Ma, when both con-
tinents became connected (Fig. 3b), and 30Ma, when the current
Corypha lineages started to diversify. The ancestors of
Nannorrhops are likely to have expanded their range by land into
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the Arabic Peninsula by 30Ma, when it became connected to
Asia (Fig. 3b). These lineages might also have dispersed as early
as 92Ma and 74Ma, respectively, when they diverged from their

sister lineages, but this would have required unlikely 40Ma-last-
ing transoceanic gene flows. The ancestor of Tahina crossed the
Indian Ocean to disperse from Asia to Madagascar by 41Ma,

Borassus heineanus Cult

Borassus flabellifer Thailand
Borassus flabellifer Indonesia

Borassus aethiopum Burkina Faso
Borassus aethiopum Cameroon
Borassus aethiopum Kenya

Borassus madagascariensis

Borassus akeassii
Borassus aethiopum Madagascar

Borassodendron machadonis
Borassodendron borneense

Satranala decussilvae
Bismarckia nobilis

Medemia argun
Hyphaene coriacea

Hyphaene petersiana
Hyphaene dichotoma

Hyphaene thebaica

Corypha utan
Corypha taliera

Corypha umbraculifera

Caryota mitis
Caryota ophiopellis

Wallichia disticha
Wallichia densiflora

Arenga hookeriana
Arenga undulatifolia

Pseudophoenix vinifera
Cyrtostachys renda

Calamus aruensis
Nypa fruticans
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Fig. 2 Phylogeny of the syncarpous clade obtained by maximum likelihood analysis of two nuclear and three plastid regions. Numbers at nodes are
bootstrap support percentages and Bayesian posterior probabilities (the latter obtained from the Bayesian analysis of the same dataset).
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and the ancestors of Caryota ophiopellis and Corypha utan both
dispersed across seas from Asia to Vanuatu and New Guinea
40Ma and 30Ma onwards respectively (Fig. 3b). Finally,
Wallichia disticha expanded its range by land from Asia to India
by 24Ma.

Borasseae experienced a minimum of 12 dispersals. The first
one happened when the ancestor of Hyphaeninae crossed the
Indian Ocean to go from Asia to Africa or Madagascar 77–65Ma
(Fig. 3b). This was followed at the latest 45Ma by a second
oceanic dispersal between Madagascar and Africa, the direction
of which remains unclear. Then, the Hyphaene +Medemia clade
mostly diversified in Africa with two exceptions: the ancestor of
H. coriacea crossed the Mozambique Channel and reached Mada-
gascar by 23Ma and the ancestor of H. dichotoma dispersed to
India by 11Ma, either by crossing the Indian Ocean or by land
through the Middle East (Fig. 3b). The ancestors of Lataniinae
dispersed from Asia to the Mascarenes and the Seychelles in two
independent, most likely oceanic, dispersals that occurred by
63Ma and 58Ma, and respectively gave rise to Latania and
Lodoicea (Fig. 3b). After reaching the Mascarenes, Latania dis-
persed from Rodrigues to Mauritius by 14Ma, and then from
there to La Reunion by 7Ma. Borassodendron apparently diversi-
fied only in Asia 26Ma, and the ancestor of Borassus was also
Asian (Fig. 3a). The latter dispersed across seas to New Guinea
by 33Ma, and then the most recent common ancestor (MRCA)

of B. flabellifer and African Borassus expanded by land to India
from 24Ma. Finally, the MRCA of African Borassus dispersed to
Madagascar or Africa from 15Ma, by sea or possibly by land via
the Middle East (Fig. 3b). Two oceanic dispersal events between
Madagascar and Africa subsequently happened, leading to the
divergence of B. akeassii and the Madagascan B. aethiopum 9Ma,
and to the divergence of the African B. aethiopum and
B. madagascariensis 3Ma. It was not possible to infer the direc-
tion of these dispersals.

Large pyrenes crossed oceans in the ancestors of Borasseae

Median seed and pyrene lengths were similar within species of
the syncarpous clade, except in Borassodendron, Borassus,
Hyphaene petersiana and Satranala, where they differed by 9–
53 mm (Fig. 4a). The pyrene, and not the seed, is the dispersing
unit (see the Materials and Methods section), so we mostly pre-
sent results based on pyrene size. Lodoicea’s ancestor was esti-
mated to have pyrenes between 55.3 (Fig. S3a; Lodoicea excluded
from the analyses) and 100 mm long (Fig. 4b; Lodoicea included)
by the time it diverged and dispersed to the Seychelles. The
ancestors of B. heineanus and B. madagascariensis had similarly
large pyrenes involved in oceanic dispersals, with
lengths ≥ 82 mm (Figs 4b, S3). The ancestors with the largest
pyrenes involved in continental dispersals were those of B.

Fig. 3 Biogeography of the syncarpous clade. (a) Ancestral range probabilities obtained using the BAYESAREALIKE model including founder-event speciation
and excluding the possibility of a ‘null’ range implemented in BIOGEOBEARS. Numbers on branches refer to the dispersal events illustrated in (b), with
continental dispersals represented by numbers and branches in bold grey, oceanic dispersals in bold black, and ambiguous dispersals in regular black. (b)
Approximate location and direction of dispersal events. Numbers refer to the events indicated on (a). When a dispersal could have happened during
multiple time slices it is indicated on all of them. Dashed lines, continental dispersals; full lines, oceanic dispersals. Question marks indicate uncertainty
regarding what lineage dispersed. Maps obtained from the PALEOMAP project (Scotese, 2016).
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flabellifer, with pyrene lengths ≥ 85 mm (Figs 4b, S3). There was
no difference in ancestral pyrene size between oceanic and conti-
nental dispersals (Fig. 5).

Pyrene size increased and decreased multiple times and at
varied rates

Change in pyrene size was significantly positively correlated with
change in seed size (Pearson’s r > 0.96, P-value < 2.45e-37;
Fig. S3b), so we only present the former. The ancestor of the syn-
carpous clade had pyrenes 27–35 mm long and we inferred a
minimum of 10 or 8 subsequent size increases and 11 or 13 sub-
sequent size decreases, depending whether Lodoicea was included
or not in the analyses (Figs 4b, S3a). From the ancestral state,
pyrene sizes followed opposite trends at each divergence event,
increasing in a lineage while decreasing in its sister (Fig. 4b). This
pattern was conserved when excluding Lodoicea (Fig. S3a), except
for Borassodendron + Borassus whose ancestors either sustained a
continuous increase (excl. Lodoicea, Fig. S3a) or decrease (incl.
Lodoicea, Fig. 4b), depending on the analysis.

Rates of increase were on average higher than rates of decrease,
and more variable, but the most extreme rates of increase and

decrease were similar in intensity (Fig. S3c). Lodoicea had the
highest rate of increase with 3.4 mmMa�1 (Fig. 4b) and a 193%
increase (3.3% per Ma) compared with its ancestor (Fig. S4).
The Madagascan B. aethiopum had the highest rate of decrease
with 4 mmMa�1 (Fig. 4b) and a 5.8% per Ma decrease com-
pared with its ancestor (Fig. S4b), but Arenga hookeriana showed
the highest absolute percentage of decrease with 63% (Fig. S4a).
Results did not change qualitatively when removing Lodoicea
from the analyses (right panels on Fig. S4).

Relationships between seed size and plant size,
inflorescence branching, insularity and habitat

The allometry and axial conformity hypotheses (H1 and H2)
explain size changes in the dispersal unit, that is the pyrene, while
the shade hypothesis (H6) explains size changes in the resource-
storing unit, that is the seed, and the island syndrome hypothesis
(H5) explains changes in both (see the Introduction section). We
focused therefore on both pyrene and seeds to evaluate the evi-
dence supporting these hypotheses. Plotting current and ancestral
sizes suggested the existence of a positive linear relationship
between plant size and pyrene size for plants < 20 m tall and

Fig. 4 Seed and pyrene sizes in the syncarpous clade. (a) Current seed and pyrene sizes. In the boxplots, the bold line represents the median value, the box
spans values from the first to the third quartile, and the lines outside the box extend until the smallest and largest values respectively, no further than 1.5
times the distance between the first and third quartiles. (b) Ancestral pyrene sizes and rates of change in mmMa�1 obtained when including Lodoicea in
the analyses.
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revealed that all past and present taxa smaller than 15 m had
pyrenes shorter than 50 mm (Fig. 6a). Plant size could not
explain all the variation observed in pyrene size: some of the
tallest taxa had some of the smallest pyrenes, and the pyrene
length of Lodoicea was approximately three times larger than lin-
early expected from its height (Fig. 6a). Reflecting this, the best
statistical model was the one with pyrene size as a function of the
interaction between plant size and inflorescence branching (ad-
justed R2 = 0.6624, P-value = 1.295e-07; Fig. 6b; Table S4a).
There was a significant positive linear relationship between log
(pyrene size) and plant size in species with low inflorescence
branching (P-value = 0.00025 or 0.00067 without Lodoicea;
Table S4a,b), but not in species with highly branched inflores-
cences (P-value = 0.83653 or 0.836567 without Lodoicea;
Table S4a,b). The effects of plant size and/or inflorescence
branching on pyrene size were nonsignificant when accounting
for phylogenetic relationships (P-values > 0.05; Table S4c,d).
Throughout the evolution of the syncarpous clade, plant size
increases were accompanied by both increases or decreases in
pyrene size, whereas plant size decreases were mostly accompa-
nied by decreases in pyrene size (Fig. 6c). This was however not
the case in the lineages leading to Lodoicea, B. akeassii,
B. flabellifer and L. loddigesii, where pyrenes became longer
despite plants becoming smaller (Fig. 6c).

Borasseae species living in closed habitats tended to have larger
seeds than species living in open habitats (even when excluding
Lodoicea), but this was not the case in the remainder of the syn-
carpous clade (Fig. 6d). Finally, island lineages tended to show
higher rates of change in pyrene size than continental lineages
when considering Madagascar as a continent, but not when con-
sidering it as an island (Fig. 6e). Statistical tests did not reveal sig-
nificant effects of habitat or isolation on seed or pyrene size, even

in interaction with plant size and inflorescence branching, and
best models consistently excluded these two variables (P-val-
ues > 0.05; Table S4).

Discussion

Oceans are no barrier to dispersal for the world’s largest
seeds

Our study provided a highly supported hypothesis for the rela-
tionships in Borasseae and for their ancestral ranges, allowing us
to draw inferences on the evolution and dispersal of the largest-
seeded plants in the world. There were some signs of genetic
incongruence in our data (see the Materials and Methods section)
and although these did not affect our results, further population
and phylogenomic studies in the syncarpous clade are likely to
reveal complex past gene flow, especially in Chuniophoeniceae.
Such studies may also inform species delimitation, for example,
in Borassus in which B. aethiopum (as defined by Bayton (2007))
was found to be paraphyletic (Fig. 2). Our biogeographic infer-
ences and Borasseae, Caryoteae and Corypheae fossils from UK
and India (Harley, 2006; Matsunaga et al., 2019) suggest that
current syncarpous taxa could be relicts of more diverse and
widely distributed lineages. The syncarpous clade is likely to have
originated in Asia in the mid-Cretaceous age, and then, during
the Paleogene and the Neogene, recurrently dispersed across land
and sea around the Indian Ocean (Fig. 3). These timescales are
much older than previously thought (Baker & Couvreur, 2013)
due to new fossil evidence in Borasseae (Matsunaga et al., 2019).
A global revision of palm ages and biogeography will be required
to confirm our findings and discuss their implications regarding
the evolution of palms and past biomes.

We found that the large seed (and therefore pyrene) size in
Borasseae ancestors was no obstacle to recurrent oceanic disper-
sal events (Fig. 5). These dispersals could have been facilitated
by the continuous existence of islands in the Seychelles and
Mascarene regions since 70Ma (Chatterjee et al., 2013), and by
trade winds from the mid-Eocene onwards (Samonds et al.,
2012). Migratory birds, which may have existed since the Cre-
taceous (Berthold, 1999), could have dispersed the smallest-
seeded syncarpous ancestors. The dispersals of Borassus and
H. coriacea across the Mozambique Channel, of Borassus across
the Wallace line, and of Latania between the Mascarene islands
involved pyrenes > 40 mm long (Figs 4b, S3a) that most likely
dispersed on floating islands since they cannot germinate after a
prolonged exposure to sea water (Gunn & Dennis, 1976). The
direction of dispersals across the Mozambique Channel could
not be inferred from our results but sea currents of the last 15–
20Ma suggested that the ancestors of African Borassus dispersed
twice from Madagascar to Africa (Ali & Huber, 2010). Giant
Cylindraspis tortoises could have dispersed Latania between the
Mascarene islands, while the giant tortoises (Aldabrachelys) that
colonised the Seychelles > 23Ma (Austin & Arnold, 2001;
Cheke et al., 2017) appear not to have dispersed Lodoicea
around the archipelago, perhaps because its pyrenes were
already too large by then.

25

50

75

100

Pyrene size (mm)

Including Lodoicea Excluding Lodoicea

Borasseae OthersBorasseae Others

Overseas dispersalNo overseas dispersal

Fig. 5 Relationship between pyrene size and oceanic dispersal for the
ancestors of the current syncarpous clade species. In the boxplots, circles
represent all the data points, the bold line represents the median value, the
box spans values from the first to the third quartile, and the lines outside
the box extend until the smallest and largest values respectively, no further
than 1.5 times the distance between the first and third quartiles.
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Seed size may not increase at unusually high rates in
Borasseae, not even in Lodoicea

Unusually high rates of evolution are not required to explain the
large seed sizes of Borasseae or even Lodoicea. Based on the diver-
gence times inferred here for Borasseae species, only low rates of
seed size increase would be required to evolve very large seeds.
Few studies have quantified change in seed size over time on
macroevolutionary scales (Ackerly, 2009) but one recent study
reports changes in the palm Euterpe edulis (Galetti et al., 2013)
that are three orders of magnitude faster than the rate we inferred
in Lodoicea or other syncarpous lineages (Fig. 4b). Variations in
regulatory genes can modify resource accumulation and cell size/
number, which could result in relatively quick and large changes

in seed size (Linkies et al., 2010). The large seeds of Borasseae
could therefore have evolved more rapidly than estimated here, in
a punctuated manner. Comparing models of gradual or punctu-
ated seed size change informed by plant size, insularity, dispersers
or habitat data could elucidate the tempo and drivers of seed size
evolution in a statistical framework. This approach could not be
used here due to the scarcity of paleo-ecological data and to the
small size of the syncarpous clade.

Uncertainty regarding the mode and tempo of trait evolution
is a long-standing problem in ancestral trait inferences that can
be alleviated by incorporating fossils in the analyses (Slater et al.,
2012). There is only one well identified seed fossil available for
Borasseae, and its precise placement remains unclear (Matsunaga
et al., 2019). This fossil is half of the seed size that we inferred for
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the MRCA of Borasseae, suggesting that we may have overesti-
mated the seed size of some Borasseae ancestors and underesti-
mated their subsequent rate of increase. We nevertheless
refrained from informing our analyses with the size of the fossil
because it could represent a derived state only present in some
Hyphaeninae (Matsunaga et al., 2019).

Large plants and little-branched inflorescences allowed
larger seeds to evolve

Consistent with the allometry hypothesis (H1), plant size seems
to have constrained pyrene (and therefore seed) size in that small
plants did not carry large pyrenes (Fig. 6a), and plant size change
was enough to explain pyrene size change in many cases (Fig. 6c).
In agreement with the axial conformity hypothesis (H2), some
large palms such as Corypha do not carry large pyrenes, because
they evolved highly branched inflorescences (Fig. 6b) that could
not support large appendages. Both tendencies have been found
in other lineages (Grubb et al., 2005; Moles et al., 2005b). The
combination of large plant size and unbranched or scarcely
branched inflorescences may therefore have been decisive in
allowing the evolution of large pyrenes in Borasseae. However,
some Borasseae, including Lodoicea, have smaller or larger pyre-
nes than predicted by their plant size and inflorescence structure
(Fig. 6a,c), suggesting that additional factors drove seed and
pyrene size change in these species.

The roles of dispersal agents, habitat and insularity cannot
easily be disentangled

We could not detect a significant effect of habitat and/or insular-
ity on the seed size of Borasseae and their relatives. This result
should be interpreted with caution because our sampling was
small and unbalanced between categories (Fig. 6d,e). However, it
could also be that the effects of habitat or insularity depend on
dispersal agent availability and therefore would only be detected
when including the latter in the statistical analyses. Palaeontologi-
cal data are too scarce to formally investigate the role of past dis-
persers in the evolution of seed size in the syncarpous clade, but
comparing our results with available information on past and
present dispersers reveals a possibly important role of the latter in
interaction with both habitat and insularity.

Today, large primates (Papio, Pongo pygmeus), megabats
(Eidolon and Pteropus), elephants (Loxodonta africana) and ratites
(Casuarius) disperse Borasseae (Zona & Henderson, 1989; Pan-
gau-Adam & M€uhlenberg, 2014), allowing them to have large
seeds, and possibly selecting for them, in agreement with the dis-
persal hypothesis (H3). The heaviest Eurasian herbivorous mam-
mal was already 663 kg c. 57Ma (Smith et al., 2010) and large
flightless birds evolved in the last 25Ma (Mitchell et al., 2014),
suggesting that large animals (including megafauna (Guimar~aes
et al., 2008)) could also have selected for large-seeded Borasseae
in the past. The increase in pyrene and seed size observed in
Borasseae since their divergence from other tribes (Fig. 4b) is
consistent with a global increase in seed size observed in
angiosperms from the Upper Cretaceous onwards. The latter has

been attributed to global faunal and climatic changes that, respec-
tively, may have facilitated the evolution of large seeds (dispersal
hypothesis H3) and resulted in more closed habitats where large
seeds were advantageous (shade hypothesis H6) (Tiffney, 1984;
Eriksson et al., 2000; Eriksson, 2008). The co-occurrence in time
and global nature of these changes in fauna and climate makes it
difficult to differentiate their respective influences on seed size
evolution, in Borasseae as in other angiosperms.

The roles of dispersers and insularity are also difficult to distin-
guish from each other because islands often have different habi-
tats and smaller guilds of dispersers than continents. Giant
tortoises (Cylindraspis) were present in the Mascarenes for the
past 17–23Ma (Cheke et al., 2017). They have been shown to
act as seed dispersers (Griffiths et al., 2011) and even smaller tor-
toises can ingest seeds of the size of Latania pyrenes (Jerozolimski
et al., 2009), so they may have selected for the pyrene size
decrease observed in Latania after its arrival in the archipelago.
Out of the four lineages that arrived in Madagascar (Fig. 3), three
decreased in pyrene size (Figs 4b, S3a), suggesting parallel adapta-
tions to a smaller guild of dispersers. This finding is supported by
the large herbivorous fauna of Madagascar (comprising giant
lemurs and elephant birds) being smaller than the largest Asian
or African fauna (Godfrey et al., 2008).

On the origin of the double coconut

The double coconut is one of the most celebrated and mysterious
phenomena in the natural world. The evolution of a giant seed
on so remote an island poses many enduring questions. How did
it get there? Did it occur anywhere else in the past? Why is it so
big? What are the consequences of its size? Our study sheds light
on some of these questions, which we summarise here.

The ancestors of the double coconut occurred in mainland
Asia, were massive and bore large fruits that were likely adapted
to dispersal by megafauna (Guimar~aes et al., 2008; Onstein et al.,
2018). Large fruits could be sustained by these palms on account
of their great size and unbranched (or sometimes once-branched)
inflorescences, reflecting Corner’s rule (Corner, 1949) that large
axes are required to bear large appendages. Thus, these ancestors
were well placed to evolve even larger seeds. In the Palaeocene,
Lodoicea’s ancestors reached the Seychelles, which at that time
was a large archipelago influenced by oceanic currents and trade
winds. Paradoxically, fresh seeds of modern Lodoicea and its rela-
tives do not float and are likely to be killed by long exposure to
sea water (Gunn & Dennis, 1976). One or more freak dispersal
events are required to explain the double coconut’s arrival in the
Seychelles. For example, it is possible that ancestral Lodoicea dis-
persed on a floating vegetation mat, which protected it from sea
water.

There is no evidence that animals capable of dispersing
megafaunal fruits have ever occurred in the Seychelles, except for
giant tortoises (Aldabrachelys). Our inferences suggest that seeds
produced by the Lodoicea lineage were already too large to be
consumed by these tortoises when the latter arrived in the Sey-
chelles > 23Ma (Austin & Arnold, 2001; Cheke et al., 2017).
Lacking a disperser, ancestral Lodoicea plants producing fewer
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seeds were likely more successful than plants producing more
seeds that would compete with each other (Edwards et al.,
2002). Thus, more resources could be allocated to each seed,
which, unchecked, led to gigantism. We do not know if
Lodoicea continues to evolve towards even larger seeds even
now, or indeed what the biophysical limits of this phenomenon
might be. Other than rolling down hill (Morgan et al., 2017b),
the long cotyledonary axis (the ‘rope’) is the only intrinsic dis-
persal strategy that allows a seedling to establish some distance
from the mother plant. In addition to reducing the impact of
sibling competition, giant fruits likely sustain the establishment
of young palms in a shady environment, until they are capable
of producing the immensely long petioles that are characteristic
of Lodoicea juveniles (Fig. 1c), permitting the leaf blade to reach
the light of the canopy (Edwards et al., 2002). It is unlikely
however that this alone drove the gigantism of Lodoicea since
some smaller seeded relatives in Borasseae occur in habitats that
are at least as shady.

Following past population reduction due to habitat loss, the
double coconut has been over-exploited as a medicinal plant and
for souvenirs. Lodoicea is now rated as Endangered on the IUCN
Red List of Threatened Species (Fleischer-Dogley et al., 2011),
and the remaining populations, amounting to c. 8000 wild
mature individuals, are partly protected in national parks. The
unique gigantism of the double coconut among its large-seeded
relatives reminds us that, even in the presence of genetic predis-
position, time and contingency are necessary to evolve diverse
structures and properties that will benefit humanity, be it by gen-
erating awe or medicinal remedies. The extinction from the wild
of other palms of the syncarpous clade, such as Latania, Medemia
or Tahina, is imminent (IUCN, 2020) and their loss could be
equally, if not more detrimental to us in the long run, given the
numerous services that they provide to nature and humanity
(Dransfield et al., 2008).
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Borassus madagascariensis
Hyphaene compressa
Hyphaene coriacea
Hyphaene dichotoma
Hyphaene guineensis
Hyphaene petersiana
Hyphaene reptans
Hyphaene thebaica
Latania loddigesii

Latania lontaroides
Latania verschaffeltii
Lodoicea maldivica
Medemia argun
Satranala decussilvae

(a)

P

S

Borassodendron borneense Nannorrhops ritchiana

F

(b)

Chuniophoeniceae
Corypheae

Caryoteae

P
S

Lodoicea maldivica (C)

Bismarckia nobilis
Borassodendron borneense
Borassodendron machadonis
Borassus aethiopum Africa
Borassus aethiopum Madagascar
Borassus akeassii
Borassus flabellifer
Borassus heineanus
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