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Abstract
Copepods are important ecologically and represent a large amount of aquatic biomass in both freshwater and marine systems. 
Despite this, the taxonomy of copepods and other meiofauna is not well understood, hampered by tiny sizes, cryptic taxa, 
intraspecific polymorphisms and total specimen destruction where DNA methods are employed. In this article we highlight 
these issues and propose a more up-to-date approach for dealing with them. Namely, we recommend non-destructive DNA 
extraction methods, coupled with high-throughput sequencing (HTS). Whilst DNA yields may be low, they should still be 
sufficient for HTS library preparation and DNA sequencing. At the same time morphological specimens can be preserved 
and the crucial link between morphology and DNA sequence is maintained. This is critical for an integrative taxonomy and 
a fuller understanding of biodiversity patterns as well as evolutionary processes in meiofauna.

Keywords Non-destructive DNA extraction · Genome skimming · Mitogenomics · Systematics · High-throughput 
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Subclass Copepoda are often called “insects of the sea”, 
one of the most important and diverse aquatic crustacean 
groups on the planet in terms of total biomass. They domi-
nate plankton and can be found in aquatic (freshwater to 
deep-sea) sediments and from ground waters, forest litter, 
moss, moist soils and wet packed leaves, to Himalayan gla-
cier lakes. Some copepods are free-living and some are asso-
ciated with a wide range of animals (Walter and Boxshall 
2019). The orders Siphonostomatoida and Monstrilloida 
are exclusively parasites (Fogel et al. 2017; Suárez-Morales 
2018), and only some species of the orders Calanoida, 
Cyclopoida, Canuelloida, and Harpacticoida are parasites 
or associated with a wide variety of organisms (Boxshall 
et al. 2016; Ho 2001; Huys 2016). The orders Platycopioida, 

Misophrioida, Mormonilloida, and Gelyelloida are com-
pletely free-living (Varela and Lalana 2015). Order Cala-
noida comprises the most diverse and widely distributed 
group that is the dominant component in zooplankton sam-
ples (Huys and Boxshall 1991). Currently, 10,000 valid spe-
cies of copepods have been recorded and described (Walter 
and Boxshall 2019), of which 2814 species are reported from 
freshwaters (Boxshall and Defaye 2008). The approximate 
number of valid taxa among ten orders is depicted in Fig. 1. 
It has also been estimated that a large number of species 
remain undescribed (Humes 1994).

Copepods have tremendous ecological significance and 
also commercial value: in aquatic food webs and carbon 
flux (Legendre and Rivkin 2002); control of mosquito-
borne diseases by consuming mosquito larvae (Marten 
et al. 2000); they are prey for higher trophic levels, thus 
are used in aquaculture (Zeng et al. 2018); considered as 
a possible food for human consumption (Eysteinsson et al. 
2018); as bioindicators of water quality (Annabi-Trabelsi 
et al. 2019); and a good model to study ecological changes 
(Grieve et al. 2017). Despite this, copepod species are still 
a difficult taxonomic group and need to be identified accu-
rately, which is the basic criterion of biodiversity assess-
ment. Cryptic species are frequently encountered from ter-
restrial to aquatic animals and copepods are no exception 
(Gomes et al. 2015; Pulido-Santacruz et al. 2018; Ramos 
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et al. 2019; Vakati et al. 2019). Since such species are 
genetically divergent while morphologically homogenous, 
classical taxonomy underestimates their diversity (Lajus 
et al. 2015; Vakati et al. 2019). Cryptic taxa are often 
characterised by allopatric distribution patterns (Dodson 
et al. 2003; Garlitska et al. 2012), however, some cryptic 
taxa among benthic copepods exist sympatrically (Schizas 
et al. 2002; Vakati et al. 2019). Although cryptic taxa are 
morphologically similar, each species may have a different 
ecological significance, economic value, and interactions 
with ecosystems (Eisenring et al. 2016), thus, it is crucial 
to identify these species accurately.

Sometimes the incorrect pairing of sexes can occur 
among closely related species; for example, N. minutus and 
N. dimorphicus are morphologically different but could 
be misidentified by incorrectly pairing their sexes using 
classical taxonomy alone (Vakati et al. 2019). Overall, the 
underestimation of cryptic taxa, plus the inverse problem 
of variable species being erroneously split are both highly 
problematic, and especially so if only traditional taxonomic 
approaches are followed. A more relevant taxonomy is best 
achieved with an integrative molecular and morphological 
approach, and newer molecular methods (e.g. non-destruc-
tive genome skimming) provide a clear advantage (Fig. 2).

Several works have discussed the importance of integra-
tive taxonomy for meiofauna, with reciprocal illumination 
based on genetic and morphological identification (Castro-
Romero et al. 2016; Garraffoni et al. 2019). In the past, 
specimens have typically been destroyed to extract DNA for 
molecular analyses and morphological data is thus obtained 
from different specimens (Di Capua et al. 2017; Karanovic 
et al. 2015). However, this approach is not effective when 
several cryptic taxa live sympatrically (Schizas et al. 2002; 
Vakati et al. 2019). In contrast to macrofauna, meiofauna are 
extremely small (50–1000 μm), so it is difficult to extract 
genomic DNA (gDNA) from a part of the specimen to obtain 
genetic and morphological information from the same indi-
vidual. Recently, non-destructive DNA extraction methods 
have been suggested as a way to deal with cryptic taxa in 

copepods (Cornils 2015), whereby specimens are preserved 
after DNA extraction for morphological studies.

The largest copepod thus far reported grows up to 32 cm, 
which is Pennella balaenopterae, an ectoparasite of fin 
whale (Vecchione and Aznar 2014); the smallest copepod 
thus far reported grows to only to 0.11 mm, males of Sphae-
ronella monothrix, a parasite of marine ostracods (Bowman 
and Kornicker 1967). Despite this range of sizes, most cope-
pods are typically small-sized, between 1 and 2 mm (Walter 
and Boxshall 2019). A recent study has demonstrated the 
usefulness of non-destructive DNA extraction, successfully 
identifying and describing several species of Nannopus 
from the Yellow Sea (Vakati et al. 2019). In this approach, 
specimens are first washed in distilled water and subjected 
to gDNA extraction in lysis buffer, and then subsequently 
specimens are placed in ethanol for morphological analyses, 
without damage. Due to their small sizes the concentration 
of gDNA from a single copepod will be low (< 10 ng/μl) and 
mostly extracted in approximately 20–50 μl buffer. Copep-
ods have fragile exoskeletons so care must be taken here. It 
is not appropriate to extract gDNA from several specimens 
together to obtain higher concentrations of gDNA, as this 
heterogeneous mixture of specimens could potentially lead 
to analytical discrepancies.

Some of the most widely used markers for molecular sys-
tematics of copepods are mtCOI, mtCYTB, 18S and 28S 
rDNA, and occasionally ITS2, H3, 12S and, 16S rDNA 
(Braga et al. 1999; Blanco-Bercial et al. 2011; Cornils and 
Blanco-Bercial 2013; Figueroa 2011; Hirai et al. 2013; Huys 
et al. 2007; Jørgensen et al. 2010; Khodami et al. 2017; Mar-
rone et al. 2013; Marszalek et al. 2008; Thum 2004; Thum 
and Harrison 2009; Vakati et al. 2019; von Reumont et al. 
2012; Wyngaard et al. 2010). Often universal primers do not 
effectively amplify both highly variable protein coding genes 
and conserved ribosomal genes (Cepeda et al. 2012; Lv et al. 
2014), and attempting several PCR reactions with ineffective 
primer combinations can result in wasting gDNA extracts. 
As an example, we failed to amplify mtCOI even after sev-
eral attempts using several universal primer combinations 

Fig. 1  An approximate number 
of total valid taxa in amongst 
ten orders of Copepoda, 
subdivided into (i) families and 
subfamilies; (ii) genera and 
subgenera, and (iii) species and 
subspecies. The numbers of taxa 
are estimated from Walter and 
Boxshall (2019) and also follow 
Suárez-Morales (2015)
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for two species of Nannopus, and consequently used all of 
the gDNA extracts with no additional specimens available 
(Vakati and Lee in press). An additional problem is that 

universal primers often amplify pseudogenes (Machida and 
Lin 2017; Song et al. 2008), which can lead to an over-
estimation of species and is highly problematic, hindering 

Fig. 2  Summary of gDNA extraction and high-throughput sequenc-
ing (HTS) methods applied to evolutionary and ecological studies 
of meiobenthic animals. Integrative methods involve genetics and 
morphological observations from the same specimens. Traditional 
methods demonstrate that results from both morphology-alone or 
genetics-alone can lead to confusion or discrepancies such as: (i) no 
guarantee that separate specimens belong to the same species in the 
case of cryptic taxa; (ii) molecular phylogeny will not have morpho-

logical data support and vice versa; (iii) classical taxonomy cannot 
accurately identify cryptic species; (iv) sometimes incorrect pair-
ing of sexes and overestimation of species can happen with classical 
taxonomy; (v) phylogeny, population genetics, and DNA barcoding 
based on single genes are often insufficient to resolve relationships; 
and (vi) single genes often do not amplify effectively with ‘universal’ 
primers. Figure adapted from Vakati et al. (2019)
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accurate estimates of biodiversity (Song et al. 2008). High-
throughput sequencing (HTS) methods (e.g. genome skim-
ming) are potentially powerful tools to overcome these 
issues. For example, we employed genome skimming using 
Illumina technology from approximately 100 ng of DNA 
(< 5 ng/μl), non-destructively extracted from a single speci-
men of Nannopus ganghwaensis (Vakati et al. 2016), a ben-
thic harpacticoid copepod. The results yielded a complete 
mitochondrial genome with good coverage (Vakati et al. 
unpublished).

Genome skimming is a term coined by Straub et  al. 
(2012), and such approaches consist of shallow shotgun 
sequencing to obtain genomic data from eukaryotic taxa. 
Scientists have already employed this method in several ter-
restrial and aquatic animals, as well as plants and protists, 
for a range of biodiversity research questions (Miller et al. 
2011; Richter et al. 2015). However, using such an approach 
on meiofaunal specimens is currently uncommon, especially 
for non-model benthic copepods. Although DNA concentra-
tions can be very low, HTS libraries can be prepared rou-
tinely from 50 ng of DNA, and theoretically from as little 
as a few picograms of DNA. Another advantage is that HTS 
libraries overcome problems associated with less-effective 
amplification from ‘universal’ primers, as total DNA is 
sequenced without the need for specific primer combina-
tions. Genome skimming permits the efficient sequencing of 
the high-copy portion of nuclear DNA as well as high-copy 
organellar DNA from a single specimen. This method can 
therefore be utilized to deal with cryptic taxa even when only 
one specimen is available.

Phylogenetic relationships of copepod orders have thus 
far been resolved based only on partial gene sequences 
(mtCOI, H3, 28S, and 18S rDNA), whereas genome skim-
ming would also help to construct phylogenies based on 
complete mitogenomes of all orders (and larger stretches of 
nuclear ribosomal DNA). At the current time, approximately 
15 copepod species have complete mitogenomes avail-
able and 5 have draft nuclear genome sequences (Jørgensen 
et al. 2019). Employing genome skimming techniques for 
meiofauna will also improve genomic databases, which 
would eventually help further studies in metagenomics and 
environmental DNA (eDNA) analyses, reducing reliance of 
such studies on traditional barcode regions. Combining non-
destructive DNA extraction with genome skimming, one can 
identify species and construct phylogenetic relationships 
more efficiently. This approach has wider implications for 
species identification, molecular ecology (metabarcoding/
eDNA), DNA barcoding, phylogenomics, and population 
genetics, and would be a significant step forward for biodi-
versity research on copepods and meiofauna more broadly.
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