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Extremely high levels of plant diversity in the American tropics are derived from multiple 
interactions between biotic and abiotic factors. Previous studies have focused on 
macro-evolutionary dynamics of the Tropical Andes, Amazonia, and Brazil’s Cerrado 
and Atlantic forests during the last decade. Yet, other equally important Neotropical 
biodiversity hotspots have been severely neglected. This is particularly true for the Chocó 
region on the north-western coast of South and Central America. This geologically 
complex region is Earth’s ninth most biodiverse hotspot, hosting approximately 3% 
of all known plant species. Here, we test Gentry’s [1982a,b] hypothesis of a northern 
Andean-Central American Pleistocene origin of the Chocoan flora using phylogenetic 
reconstructions of representative plant lineages in the American tropics. We show that 
plant diversity in the Chocó is derived mostly from Andean immigrants. Contributions 
from more distant biogeographical areas also exist but are fewer. We also identify a 
strong floristic connection between the Chocó and Central America, revealed by multiple 
migrations into the Chocó during the last 5 Ma. The dated phylogenetic reconstructions 
suggest a Plio-Pleistocene onset of the extant Chocó flora. Taken together, these 
results support to a limited extend Gentry’s hypothesis of a Pleistocene origin and of a 
compound assembly of the Chocoan biodiversity hotspot. Strong Central American–
Chocoan floristic affinity may be partly explained by the accretion of a land mass derived 
from the Caribbean plate to north-western South America. Additional densely sampled 
phylogenies of Chocoan lineages also well represented across the Neotropics could 
enlighten the role of land mass movements through time in the assembly of floras in 
Neotropical biodiversity hotspots.
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INTRODUCTION
“Geologically the Chocó represents a recent emergence formed 
as a part of the main Andean uplift, perhaps only in the mid-
Pleistocene” (Gentry, 1982b).

The American tropics (a.k.a. the Neotropical realm) extends from 
central Mexico to southern South America including the Caribbean 
(Antonelli et al., 2018a) and are home to six of the most species-
rich biodiversity hotspots on Earth (Mittermeier et al., 2011). The 
origin of plant Neotropical megadiversity and the processes driving 
this diversification have been studied over the past four decades 
(e.g. Gentry, 1982b; Gentry, 1992; Antonelli et al., 2009, Antonelli 
et al., 2018b; Hoorn et al., 2010). As a result, several biotic (plant–
organism interactions) and abiotic factors (e.g. climate, orogeny, and 
plant migration dynamics) have been posited to have influenced the 
diversification of plant lineages in the region (Hughes and Eastwood, 
2006; Antonelli and Sanmartín, 2011a; Uribe-Convers and Tank, 
2015; Lagomarsino et al., 2016; Pérez-Escobar et al., 2017a).

Historically, phylogenetic-based studies have heavily focused 
on a restricted subset of biogeographical regions or biodiversity 
hotspots within the American tropics (e.g. Amazonia, tropical 
Andes, Central America, Brazil’s Cerrado and Atlantic forests, and 
Seasonally Dry Forests) and their most prominent plant groups, 
including Annonaceae (Erkens et al., 2007; Pirie et al., 2018), 
Arecaceae (Bacon et al., 2013; Cano et al., 2018), Campanulaceae 
(Lagomarsino et al., 2016), Fabaceae (Richardson et al., 2001; 
Hughes and Eastwood, 2006; Nevado et al., 2016; Schley et al., 
2018), Myrtaceae (Vasconcelos et al., 2019), and Orchidaceae 
(Martins et al., 2018; Pérez-Escobar et al., 2017a, Pérez-Escobar 
et al., 2017c). This is likely due to the possibilities of producing 
relatively well sampled phylogenies for such groups, built upon 

decades of plant collection and documentation in biogeographical 
regions that are relatively easy to access (Eiserhardt et al., 2017).

BIOGEOGRAPHY, CLIMATE 
AND DIVERSITY OF THE CHOCÓ
Perhaps one of the least understood biodiversity hotspots in terms 
of species diversity and evolution in the American tropics is the 
Chocó biogeographic region (A.K.A. Tumbes-Chocó-Magdalena, 
henceforth referred as the “Chocó”; Cano et al., 2017). The Chocó 
is the world’s ninth most biodiverse hotspot and hosts nearly 3% 
(~11,000 species) of all plant species (Christenhusz et al., 2017), 
including ~2,750 endemic species, in less than 0.2% of the Earth’s 
land surface (Gentry, 1982b; Myers et al., 2000; Mittermeier et al., 
2011). Thus, the Chocoan landscape is as rich as other megadiverse, 
but considerably larger biogeographical regions such as Central 
America. Yet, substantial knowledge gaps in the mode and tempo 
of evolution of the Chocoan flora still exist. These mainly stem 
from the notably limited availability of comprehensively sampled 
phylogenies of plant groups prominent in the region but also 
distributed across the American continent (Jaramillo, 2006). 
To our knowledge, no study has yet specifically attempted to 
disentangle the origin and drivers of diversification of the hyper 
diverse flora of this region using phylogenetic frameworks. Those 
who have sampled plant Chocoan diversity often include, at most, 
a handful of species that are distributed and/or restricted to the 
Chocó (e.g. Pérez-Escobar, 2016; Pirie et  al., 2018; Canal et al., 
2019; Thode et al., 2019).

Phytosociological communities in the Chocó broadly occur in 
20 ecosystems types, including lowland wet forests (the dominant 

FIGURE 1 | Geographical extent of the Chocó biogeographic region (highlighted in blue) in Central and South America as defined by Myers (2000) and its 
compound geological origin. The geological extensions of the Chucunaque, Atrato, and Tumaco basins are indicated with colour coded polygons. The location of 
the Uramita suture and the Garrapatas fault are also provided. (A) Lowland wet forest in north-western Colombia in Purricha (Chocó Department); (B) Pre-montane 
gallery forest in central-western Colombia, near Queremal town (Valle del Cauca department). Photos: R. Cámara-Leret and O. Pérez]
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ecosystem), forest swamps, grasslands, coastal mangroves, and 
montane cloud forests (Rangel-Chui, 2011; Cano et al., 2017). The 
precise northern extent and delimitation of the Chocó into the 
Darien Gap remain contentious. Different delimitations have been 
employed in biogeographical studies (e.g. Gentry, 1986; Morrone, 
2006; Antonelli et al., 2009; Rangel-Chui, 2011; Pérez-Escobar 
et al., 2017b; Cano et al., 2018), but most of these encompass the 
area between Central Panama (the geographical limit between 
Colombia and Panama) or from Southern Nicaragua to north-
western Venezuela (Morrone, 2006). The southern fringes are less 
debated, usually marked by the wet forests of the Pacific coast of 
northern Ecuador (Esmeraldas Province; Figure 1).

A particular aspect of the Chocó is its extreme precipitation 
and humidity, which renders this region one of the “wettest places 
on earth” (Gentry, 1986). With a recorded annual precipitation 
of 3,000–11,700 mm, the Chocó stands as the second rainiest 
place after Cherrapunjee (India), which receives an annual mean 
precipitation of 12,000 mm (Banerjee et al., 2012). Detailed 
floristic studies led by Gentry (1986) in 0.1 ha plots in areas with 
different levels of rainfall in the Chocó revealed differences in 
species diversity correlated with precipitation. A strikingly similar 
correlation between species richness, individual abundancy 
and precipitation was found more recently to occur in palms 
(Copete et al., 2019). More species have been recorded from 
plots located in wetter areas of the Chocó than in plots situated 
in drier localities, even though all sites present higher individual 
densities compared with most other continental ecosystems 
around the world (Gentry, 1986).

THE INTRICATE CLIMATIC AND 
GEOLOGICAL HISTORY OF CENTRAL 
AMERICA AND ITS INFLUENCE ON THE 
ORIGIN AND DIVERSIFICATION OF THE 
CHOCOAN FLORA
The geological formation of the Chocó entailed very complex 
processes, but is mostly the by-product of interactions between 
the Nazca, Cocos, and South American plates during the past 
100 million years (see Borrero et al., 2012; Montes et al., 2015; 
Cardona et al., 2018; León et al., 2018 for extensive reviews on the 
tectonic evolution of the region). The Chocó is composed of two 
geological blocks, the Chucunaque–Atrato to the north and the 
Tumaco to the south (Figure 1). The Chucunaque–Atrato block 
belongs to the Panama microplate, which is a piece of the trailing 
edge of the Caribbean plate. It is an intra-arc sedimentary basin 
bounded by magmatic arcs, which extends from central Panama 
to the middle part of the Chocó region (Duque-Caro, 1990a; 
Duque-Caro, 1990b; Coates et al., 2004; Wegner et al., 2011; 
Figure 1). In other words, the geological origin of the Chocó is 
Central American rather than South American.

The collision of the Chucunaque–Atrato basin and its 
associated magmatic arc with South America commenced 
during the late Miocene. By ~10 Ma, the collision had fused the 
Panamanian magmatic arc with the western Andes of Colombia 
along the Uramita suture (Montes et al., 2015; León et al., 2018). 

Paleogeographic reconstructions indicate that at 10 Ma, most 
of the Chucunaque–Atrato basin comprised shallow marine 
environments. Thus, by the late Miocene, in the region currently 
occupied by the Chocó land existed only in a) the Panamanian 
magmatic eastern arc that fused together with the western Andes 
along the Uramite suture and b) in the western arc (i.e. the Baudo 
range; Coates et al., 2004; Jaramillo, 2018).

A second developmental phase of the Chocó began following 
the onset of the collision of South America with the trailing edge 
of the Caribbean plate (the Panama microplate) prompting a 
progressive shallowing of the Chucunaque–Atrato basin, which 
transformed marine settings into terrestrial landscapes. The 
collision appears to have segmented the basin into two blocks, 
Chucunaque in Panama and Atrato in Colombia (Figure 1). In 
the Atrato basin, this shallowing probably moved from south to 
north, with fully terrestrial environments no older than 3.1 Ma 
(Duque-Caro, 1990a, Duque-Caro, 1990b), although the precise 
dating of the onset is still unknown and could be much younger. 
The southern boundary of the Atrato basin is bounded by the 
Garrapatas fault (Figure 1). South of Garrapatas lies the Tumaco 
forearc basin (Borrero et al., 2012), which covers the southern 
segment of the Chocó. The Tumaco forearc basin formed in an 
island arc setting (Borrero et al., 2012) and seems also to be 
part of the Caribbean plate, having collided earlier with South 
America compared to the Chucunaque-Atrato basin, although 
additional studies are needed to confirm the time of collision. 
Fully terrestrial environments are no older than 4.2 Ma (Borrero 
et al., 2012) but more precise dating of the onset of terrestrial 
landscape is still required as it could be younger.

Modern rainfall patterns in the Chocó are amongst the 
highest in the world and are driven by the Chocó jet stream 
centred around 5° N (Poveda and Mesa, 2000). The strength of 
the stream is related to temperature surface gradients between 
western Colombia and the tropical east Pacific (El Niño 1 + 2 
geographical regions) with precipitation over the Chocó related 
to the high elevation of the western Cordillera, which acts as a 
barrier to the jet stream. The temperature gradient along the 
tropical Pacific intensified with the onset of the Pleistocene 
(Fedorov et al., 2013). Therefore, the origin of the modern Chocó 
jet stream may be linked with the onset of the Pleistocene.

Taken together, the geological history of the Chocó suggests 
that the modern landscape (i.e. fully terrestrial with high rates 
of precipitation) was only established by the early Pleistocene  
(i.e. ~2.7 Ma). The closest source areas of plant migrants to 
populate this newly developed terrestrial set of ecosystems could 
have been the lowlands of Panama to the north, and the montane 
habitats of the western Cordillera to the east. In contrast, the 
region south of Chocó highly increased its aridity during the late 
Neogene, thus being an unlikely source of Chocoan plant lineages.

HYPOTHESES ON THE MODE AND 
TEMPO OF EVOLUTION OF THE 
CHOCOAN FLORA
One peculiarity of the floristic composition of the Chocó is its high 
endemism that appears restricted to species, as there is only one 
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endemic genus in the region (the recently described Sabinaria in the 
Arecaceae; Bernal and Galeano, 2013). To date, no endemic plant 
families have been found. Such curious patterns of endemism have 
attracted the attention of botanists for decades (Gentry, 1982b; Forero 
and Gentry, 1989; Galeano et al., 1998). Gentry’s seminal floristic 
work (1986) and the geological evidence available already nearly 50 
years ago (Haffer, 1970), led him (Gentry, 1982a) to conclude that: 
a) extremely high levels of rainfall in the Chocó are linked to its 
rich plant diversity (Jaramillo, 2006) and its maintenance (Behling 
et al., 1998): b) Chocoan plant lineages may have derived from the 
Northern Andean region with possible contributions from Central 
America; c) the geological origin of the Chocó dates back to the 
middle Pleistocene and was part of the mountain building processes 
of the Colombian Andes. Thus, the floristic assembly of the Chocó, 
which benefitted from the biotic exchange between the actively 
rising Northern Andes and Central America, was supposedly 
formed Chocó from around 1 Mya onwards.

To test the scenarios postulated by Gentry, phylogenetic 
comparative methods based on densely sampled and representative 
phylogenies could reveal the age, direction and frequency of biotic 
exchanges between the Chocó and other regions (Pennington et al., 
2004). In addition, they could inform on the role of geographical 
events that have shaped the diversification of the Chocoan flora 
(Winterton et al., 2014). A similar approach has been used to 
investigate the evolution of the savanna-adapted lineages in the 

South American Cerrado, which for plants is also very rich in 
species but is similarly depauperate at higher taxonomic levels of 
genera and families (Simon et al., 2009).

Few robust phylogenies for Chocoan plant species exist, and 
virtually all of them have sparse regional taxon sampling. Those 
available include Annonaceae [Cremastosperma (29 species/82% 
sampled - one Chocoan species) and Mosannona (14 species/78% 
sampled — one Chocoan species); Pirie et al., 2018], Bignoniaceae 
[Amphilophium (47 species/70% sampled — one Chocoan 
species); Thode et al., 2019], the two most species-rich groups 
of Neotropical orchids [tribe Cymbidieae (~3,300 species/26% 
sampled — five Chocoan species) and subtribe Pleurothallidinae 
(~5,100 species/11% sampled – four Chocoan species); Pérez-
Escobar et al., 2017a] and Philodendron (Araceae, 560 species/30% 
sampled — 16 Chocoan species; Canal et al., 2019). These studies 
provide an excellent opportunity to test Gentry’s ideas of a 
Pleistocene Northern Andean–Central American origin for the 
Chocó flora as they include different levels of sampling (i.e. 10% 
to ~80% of the known species diversity of each clade; the exact 
proportion of species diversity sampled is provided in Figure 2).

Ancestral area estimations in Cymbidieae and Pleurothallidinae 
(Figures S1A, B–S2A and B) revealed eleven migrations to the 
Chocó, which could be classified into two patterns: a) Northern 
Andes to Chocó and b) Central America to Chocó. The first 
migration pattern included four dispersals from the late Miocene 

FIGURE 2 | Temporal migration dynamics of selected Neotropical plant lineages represented in the Chocó and their diversification patterns. (A) Mean ages and 
their corresponding 95% High Density Probabilities (HDP) of Most Recent Common Ancestors (MRCA) of plant species/clades distributed in the Chocó. Ages 
estimates are colour coded by family and were obtained from published phylogenies of Cymbidieae and Pleurothallidinae (Orchidaceae: Pérez-Escobar et al., 
2017a), Amphilophium (Bignoniaceae: Thode et al., 2019), Philodendron (Araceae: Canal et al., 2019), Cremastosperma and Mosannona (Annonaceae: Pirie et al., 
2018). Boxplots representing mean values and quartiles were computed whenever four or more observations per plant family were available. [Inset: The proportion 
of species sampled vs the total known of species diversity in each surveyed phylogeny is provided with a picture of the corresponding plant family (Orchidaceae: 
Pleurothallis pierryi; Bignoniaceae: Anemopaegma orbiculatum; Araceae: Philodendron sp.; Annonaceae: Cremastosperma sp.)]. The green bar represents the 
approximate age of the terrestrial ecosystem onset in the Chocó. (B) A schematic phylogeny representing the two most prominent diversification patterns of 
Chocoan lineages, all of which appear to have occurred during the last ~8 Ma: 1) migration from adjacent or distant biogeographical areas into the Chocó followed 
by in-situ diversification (blue arrows); 2) migration into the Chocó without subsequent diversification. Photos: O. Pérez.
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(~6 Mya) to as recently as 2 Mya (Figures S1B and S2B). The 
second pattern consisted of four migrations from the adjacent 
Central America region towards the Chocó. Notably, most of these 
migrations occurred recently (~2 Mya) and no recolonizations 
from the Chocó back to the Northern Andes or Central America 
were detected (Figures S1B and S2B). Ancestral character 
estimations of altitude as a continuous character indicated that 
most of the Northern Andean migrants were originally adapted 
to montane elevations, between elevations of ~1,200 to 1,700 m. 
In contrast, most Central American migrants were probably first 
adapted to lowland environments. Descendent branches from 
Northern Andean migrants subsequently adapted to pre-montane 
environments (i.e. elevations below ~500 m; Figures S1C and 
S2C). The putative montane-to-lowland adaptations into the 
Chocoan premontane environments revealed by our ACE analyses 
are striking, reflecting results reported for Chloranthaceae 
(Hedyosmum scaberrimum) and Magnoliaceae (e.g. Magnolia 
calimaensis) in the Chocó (Gentry, 1986; Galeano et al., 1998; 
Antonelli and Sanmartín, 2011b). Nevertheless, understanding 
how frequent the out-of-the-mountains migration pattern has been 
across Chocoan orchid lineages deserves further investigation.

Species level phylogenies of Cremastosperma, Mosannona, and 
Philodendron revealed similar modes and tempos of migration 
into the Chocó (Figure 2). Lineage colonizations occurred mostly 
after divergences from Central American and Andean ancestors 
between ~7 and 1 Ma. Less frequent, alternative migration routes 
were recovered in Amphilophium and in the predominantly 
lowland epiphytic orchid Cycnoches (Pérez-Escobar et al., 2017b; 
Pérez-Escobar et al., 2017c). These are lineages from far-away 
biogeographical regions such as Amazonia which are, or have 
been, isolated from the Chocó by major geographical barriers (e.g. 
the Northern Andes). Here, a single migration from Amazonia 
towards the Chocó took place ~1 Mya in Cycnoches (Pérez-
Escobar et al., 2017c), whilst an older colonization (~3 Ma) also 
from Amazonia occurred in Amphilophium (Thode et al., 2019).

The most common pattern of diversification across all surveyed 
lineages is that of colonization of the Chocó without subsequent 
in-situ speciation. Of the studies considered here, only two cases 
of migration followed by in-situ diversification were recovered, 
one in Anthurium (~ 5 Mya, three species; Canal et al., 2019) and 
one in Cycnoches (~1 Mya, two species; Pérez-Escobar, 2016). This 
apparent lack of in-situ plant diversification in the region might be 
explained by the very recent Pleistocene setting of the Chocoan 
modern landscape or alternatively, by the incomplete sampling 
of these phylogenies. However, the stark contrast between the 
high levels of species endemism and very limited number of 
genera restricted to the Chocó reflects the limited morphological 
divergence among lineages diversifying in the Chocó. Migrations 
without subsequent diversification is a remarkable pattern that is 
unusual in biodiversity hotspots [e.g. Tropical Andes, Seasonally 
Dry Forests and Indo-Pacific coral triangle (Pennington et al., 
2009; DRYFLOR, 2016; Huang et al., 2017; Pérez-Escobar et al., 
2018; Testo et al., 2019; Vasconcelos et al., 2019)] and deserves 
further study, for instance to investigate the possibility of cryptic 
species and on-going speciation. Additional phylogenies with 
representative sampling at species and population level in groups 
with disparate life histories and diversification rates could reveal 

how frequent in-situ diversification is and it is restricted to rapidly 
diversifying groups or not.

A COMPOUND ORIGIN OF THE 
CHOCOAN FLORA
Phylogenetic comparative analyses of early Miocene lineages support 
Gentry’s idea of a Northern Andean–Central American origin of the 
Chocoan flora (Pérez-Escobar et al., 2017a). The proximity of the 
Northern Andean and Central American biogeographical regions 
to the Chocó could explain the mixed origin of the Chocó flora. 
However, phylogenetic frameworks of plant clades with a Pliocene 
age suggest that contributions from more distant biogeographical 
areas are also relevant for the assembly of the Chocó flora (Pérez-
Escobar et al., 2017c). More recently, an example of a palm species 
with a cross-Chocoan distribution range and constant gene flow 
(Escobar et al., 2018) also support this migration pattern, indicating 
that the Chocó is a permeable, accessible region, not totally isolated 
from either adjacent or more distant biogeographical areas.

Late Miocene and Pliocene migrations into the Chocó might 
at first seem unlikely given that the modern lowland landscape of 
the Chocó region is not older than ~3 Ma. However, the foothills 
of the Baudo in west Chocó and western Cordillera (west of the 
Uramita suture), also considered to be part of the Chocó region, 
are terrestrial landscapes established already by 6 Ma. As such, 
they could have served as a host area for plant migrants since 
the late Miocene. Thus, the timing of migrations into the Chocó, 
irrespective of the source biogeographical area, provides strong 
support for a predominantly Pleistocene geological onset of the 
region in South America, hence largely supporting Gentry’s 
assumption of a Pleistocene origin of the Chocó.

Taken together, these spatio-temporal dynamics suggest that 
a) allopatric speciation in plants promoted by the Andean uplift 
seems unlikely to have played a role in the formation of the Chocoan 
flora given the very recent age of migrations from biogeographical 
regions isolated by the Northern Andes and the older age (~10 Ma) 
of formation of montane–alpine environments in the Northern part 
of the Cordillera (Hoorn et  al., 2010; Hoorn and Wesselingh, 2010); 
b) Certain elements of Chocoan plant diversity have an earlier 
origin than Gentry thought, as evidenced by the early Pliocene 
migrations from the Northern Andes to the Chocó accounted in 
Pleurothallidinae; c) there has been strong biotic exchange between 
Central America and Chocó, particularly evident during the 
Pleistocene and seemingly unlinked with the timing of the closure 
of the Central American Seaway.

The current proximity of Central America to Chocó and/or the 
ability of orchid seeds to remain airborne for prolonged periods 
(Arditti and Ghani, 2000) and thus cover huge distances (Murren and 
Ellison, 1998) could explain the high frequency of biotic exchange 
between Central America and the Chocó for this family. The timing 
of the onset of modern Chocoan landscapes in turn could account 
for the similar age of these migrations (ranging from ~5–2 Mya). 
Moreover, biotic contributions from other biogeographical areas 
like Amazonia also took place, suggesting that the Chocoan flora 
could be derived as well, but to a lesser extent, from other regions 
than just the Northern Andes and Central America.
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GEOLOGICAL HISTORY AND FLORISTIC 
SIMILARITIES OF CENTRAL AMERICA 
AND THE CHOCÓ BLOCK
The floristic affinities of the Chocó and Central America have 
puzzled botanists for decades. Gentry’s notion of Central American 
contributions to the origin of the Chocoan flora was based on his 
observations of the striking resemblance of the species diversity shared 
between both regions in key family groups, including Annonaceae 
and Rubiaceae (Gentry, 1982b; Gentry, 1986). The composition of the 
orchid diversity in Central America mirrors in part that of the Chocó. 
Particularly, groups from the subtribe Zygopetalinae (e.g. Houlletia, 
Huntleya) and Maxillariinae (e.g. Camaridium) that peak in species-
richness in the lowland and premontane regions of Central America, 
are also well represented in the Chocó (Urreta, 2005; Bogarín et al., 
2015; Kirby, 2016). Comparative floristic studies focused on selected 
Araceae genera and pteridophytes in general (Lellinger, 1975) are 
in line with these findings (Mora et al., 2006), and an older idea of 
a more expansive Chocó region that extended to the Nicaraguan–
Costa Rican border has received some support (Lellinger and de la 
Sota, 1978). However, distribution patterns of palms revealed that 
the Darien Gap on the Panama–Colombian border is an effective 
dispersal barrier for bidirectional exchange between South and 
Central America, at least for lineages that are dependent on other 
organisms for dispersal (Cano et al., 2017).

The Central American origin of one part of the Chocó region might 
provide a more plausible explanation for the strong floristic affinity 
between Central America and the Chocó. Here, the few chronograms 
of plant lineages available provide evidence of floristic admixture 
between Central and South America triggered by the accretion of 
the Chocó block. Comparable admixture has been suggested for 
other merging landmasses, such as the Indian subcontinent colliding 
with Asia (Thornhill et al., 2015). Intermingled clades of Dussia in 
the Leguminosae distributed in Central America and the Chocó 
suggest a nearly simultaneous migration from Central America 
into the Chocó, with concomitant diversification towards the late 
Miocene (Winterton et al., 2014). A similar late Pliocene migration 
pattern has been reported in Cremastosperma (Annonaceae), 
where a Central American common ancestor appears to have 
given rise to an endemic Central American and Chocoan species 
pair (C. westrae and C. novogranatense, respectively; Pirie et al., 
2018). However, whether similar diversification patterns occur 
in other prominent plant lineages with more localized modes of  
dispersal remains to be tested.

NEW RESEARCH QUESTIONS AND 
FUTURE DIRECTIONS
Our detailed evaluation of migrations-through-time of selected 
Neotropical plant lineages between Neotropical regions and the 
Chocó reveals that the assembly of the Chocó flora is more complex 
than first proposed by Gentry. Whilst the timing of the onset of 
modern Chocoan landscapes could explain the poor endemism of 
genera and families in the Chocó, the influence of other biotic and 
abiotic variables in the diversification of the Chocoan flora remains 
unclear and begs further investigation. These include evaluating 

a potential role of extinction (within and between clades, and in 
relation to landscape changes) in shaping the endemicity of the 
Chocó region and understanding the influence of historical changes 
in humidity and precipitation on speciation. Moreover, future studies 
should focus on understanding the diversity and affinity of poorly 
studied but prominent plant lineages of the Central American floras, 
to facilitate comparison of floristic affinities and biotic interchange. 
Detailed floristic studies in the northern and southern fringes 
of the Chocó could further clarify the delimitation of the Chocó 
biogeographic region by comparing similarities in distribution 
patterns across plant groups (Vilhena and Antonelli, 2015).

Solid phylogenomic frameworks coupled with reliable 
distribution data of plant groups well represented in Central 
America and the Chocó (such as Araceae, Fabaceae, Myrtaceae, 
Melastomataceae, Moraceae, Rubiaceae, and Urticaceae) should 
help tease apart the role of modes of dispersal, plant habit, or life-
form in determining the mode and tempo of plant migrations into 
the Chocó. For example, biogeographical studies of densely species 
level phylogenies could distinguish the roles of montane areas in 
the Northern Andean cordilleras and the Panamanian magmatic 
arcs (i.e. the western Cordillera in South America) as source of 
migrants into the Chocó lowlands. Furthermore, it would be 
particularly interesting to investigate in more detail the impact of 
the accretion of the Chocó Block to the South American plate. That 
event must not only have facilitated plant dispersal (Bacon et al., 
2015) but also led to important climatic and edaphic changes in the 
Chocó. The direction and frequency of migrations across multiple 
plant lineages, coupled with changes in diversification rates and 
their relation to environmental changes, would shed further light 
onto the assembly of the Chocoan flora and its dynamics.
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FIGURE S1 | Spatio-temporal macro-evolutionary dynamics of the orchid 
clade Pleurothallidinae in the American tropics (adapted from Pérez-Escobar 
et al., 2017a). (A) Bayesian chronogram of the Pleurothallidinae, with ancestral 
areas estimated at nodes using the Dispersal, Extinction and Cladogenesis 
and the founder speciation event models as implemented in the R package 
BioGeoBEARS. Branches are colour coded according to the ancestral area 
estimated at the parent node. The distribution of the species sampled in 
the phylogeny is shown as horizontal colour coded bars in front of the tree 
terminals. Four clades with nested migration events to the Chocó region are 
highlighted in grey and labelled with roman numerals (I–IV). (B). Zoom-in on 
clades with nested migrations to the Chocó region (highlighted with pink arrows) 
(Inset: a: Anathallis funerea, b: Anathallis lewisiae, c: Dracula sp., d: Specklinia 
pereziana, e: Specklinia berolinensis). Letters at nodes represent inferred 
ancestral areas. (C) Maximum Likelihood Ancestral State Estimation analyses of 
altitude as a continuous variable of clades I-IV using a Brownian motion model 
as implemented in the R package phytools. Branches are colour coded as a 
function of estimated ancestral altitude values. [Inset: mean paleo-elevation 
of Central, Northern and Venezuelan Andes during the last 11 Ma (modified 
from Hoorn et al., 2010); biogeographical regions employed for ancestral area 
estimation analyses. The delimitation of the Chocó follows that of (Antonelli et al., 
2009)]. Photos: D. Bogarín, A. Karremans, O. Pérez-Escobar.

FIGURE S2 | Spatio-temporal macro-evolutionary dynamics of the orchid clade 
Cymbidieae in the American tropics (adapted from Pérez-Escobar et al., 2017a). 
(A) Bayesian chronogram of the Pleurothallidinae, with ancestral areas estimated 
at nodes using the Dispersal, Extinction and Cladogenesis and the founder 
speciation event models as implemented in the R package BioGeoBEARS. 
Branches are colour coded according to the ancestral area estimated at the 
parent node. The distribution of the species sampled in the phylogeny is shown 
as horizontal colour coded bars in front of the tree terminals. Three clades with 
nested migration events to the Chocó region are highlighted in grey and labelled 
with roman numerals (I–III). (B). Zoom-in of clades with nested migrations to 
the Chocó region (highlighted with pink arrows) (Inset: a: Cycnoches lehmannii, 
b: Dichaea globosa, c: Euryblema andreae, d: Chaubardiella pubescens, e: 
Gongora sp.). Letters at nodes represent inferred ancestral areas. (C) Maximum 
Likelihood Ancestral State Estimation analyses of altitude as a continuous 
variable of clades I-III using a Brownian motion model as implemented in the 
R package phytools. Branches are colour coded as a function of estimated 
ancestral altitude values. [Inset: mean paleo-elevation of Central, Northern and 
Venezuelan Andes during the last 11 Ma (modified from Hoorn et al., 2010); 
biogeographical regions employed for ancestral area estimation analyses. The 
delimitation of the Chocó follows that of (Antonelli et al., 2009)]. Photos: D. 
Bogarín, O. Pérez-Escobar.
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