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� Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may
influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour
can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution.
� Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa)
based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order
to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of
their progenitors to evaluate whether hybridization has resulted in floral colour shifts.
� Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the
evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their
progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble
one or both of their progenitors.
� Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur
in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has
arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype
like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts.
However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically
not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.

Key words: Evolution, floral colour, hybridization, Nicotiana, flower pigmentation, pollinator shifts, polyploidy,
Solanaceae, spectral reflectance, transgressive traits.

INTRODUCTION

Polyploidy, or whole-genome multiplication, has played an
important role in the evolution of flowering plants (Soltis et al.,
2009, 2014). Allopolyploidy, arising from interspecific
hybridization and polyploidy, can cause ‘genomic shock’
(McClintock, 1984), which may trigger a suite of genetic
changes, including (retro)transposition, differential gene ex-
pression, chromosome rearrangements and epigenetic changes
(Leitch and Leitch, 2008). These events and novel cis–trans
interactions between progenitor genomes may generate varia-
tion, including transgressive phenotypes, and facilitate rapid

divergence of both homoploid and allopolyploid hybrids
(Wittkopp et al., 2004; Chen, 2007; Gaeta et al., 2007; Anssour
et al., 2009; Tirosh et al., 2009; Clare et al., 2013).

Speciation in angiosperms can be accompanied by, or per-
haps driven by, changes in floral colour that may influence pol-
linator preference and reproductive isolation. Many pollinators,
such as bumblebees and hummingbirds, visit a range of flower
colours (Waser et al., 1996). Several species of flower-naive
bumblebees have an innate colour preference for violet and
blue shades, although preferences in experienced foragers are
largely determined by learned associations between colours and
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rewards (Raine et al., 2006). Hummingbirds appear to have no
innate preferences for particular colours, but are likewise good
at forming associations between flower visual displays and re-
wards (Goldsmith and Goldsmith, 1979; Chittka and Waser,
1997). Hummingbirds have red receptors, whereas many insects
do not. Consequently, red flowers are poorly detectable by bee
pollinators, but conspicuous for hummingbirds. Therefore,
hummingbird-visited flowers are often red, whereas those polli-
nated by bees typically have a range of other colours
(Rodriguez-Girones and Santamaria, 2004; Shrestha et al.,
2013). Flowers visited by nocturnal pollinators are more often
white than those pollinated in full daylight, probably to maxi-
mize their detectability in dim light conditions (Kevan et al.,
1996). Because of such differences in affinities of various polli-
nator classes to certain flower colours, differences in flower
colour can contribute to restricting gene flow between pheno-
types, although they will rarely result in complete reproductive
isolation; for this, differences in multiple traits are typically es-
sential. In Aquilegia (Ranunculaceae), blue-, red- and white/
yellow-flowered species are primarily pollinated by bees, hum-
mingbirds and hawkmoths, respectively (Grant, 1952; Whittall
and Hodges, 2007). In Petunia axillaris (Solanaceae), hawk-
moths prefer white flowers to pink flowers transformed to ex-
press ANTHOCYANIN2, whereas bumblebees prefer pink
ANTHOCYANIN2 flowers to white flowers, demonstrating that
expression of a single gene can cause differences in pollinator
visitation (Hoballah et al., 2007). Similarly, manipulation of a
single locus controlling carotenoid production in Mimulus flow-
ers (Phrymaceae) results in a pollinator shift, reaffirming the
importance of floral colour in determining pollinator behaviour
(Bradshaw and Schemske, 2003).

To analyse floral colour in the context of pollination, it is
necessary to consider both colour theory and pollinator visual
systems. There are several important differences between the
colour vision systems of humans and those of various pollinator
types. Humans and many insects are trichromatic, having
three discrete photoreceptor types; however, humans possess
red- (with peak sensitivity (kmax) near 560 nm), green-
(kmax¼ 535 nm) and blue-sensitive (kmax¼ 420 nm) photore-
ceptors (Bowmaker and Dartnall, 1980), whereas many insects
have ultraviolet- (UV-, kmax � 350 nm), blue- (kmax � 440 nm)
and green-sensitive (kmax � 530 nm) receptors (Peitsch et al.,
1992; Briscoe and Chittka, 2001; Kelber et al., 2003). Many
birds (Bowmaker, 1998) and some butterflies (Kelber, 2001)
have tetrachromatic colour vision. In birds, photoreceptors are
sensitive to red, green, blue and either violet or UV wave-
lengths (Hart and Hunt, 2007). Hummingbirds have four single
cone types with peak sensitivities in the UV (kmax¼ 370 nm),
blue (kmax¼ 440 nm), blue–green (kmax¼ 508 nm) and yellow
(kmax¼ 560 nm); the sensitivity of the last extends significantly
into the red (Herrera et al., 2008). Hummingbirds can learn to
distinguish near-UV light (370 nm) from darkness, confirming
that they use their UV receptors for colour vision at a behaviou-
ral level (Goldsmith, 1980). We will take into account these dif-
ferences in pollinator perception as we examine floral colour in
the genus Nicotiana (Solanaceae).

We investigate the evolution of floral colour across
Nicotiana (Solanaceae) in the context of polyploidy and hybrid-
ization. Nicotiana is an excellent group in which to study the ef-
fects of hybridization as nearly half of the 76 species are

allotetraploids of different ages (Chase et al., 2003;
Clarkson et al., 2004, 2005; Leitch et al., 2008; Kelly et al.,
2013), and several putative homoploid (diploid) hybrids have
also been detected (Clarkson et al., 2010; Kelly et al., 2010),
which add to the reticulate nature of the genus. These phyloge-
netic studies have also been used to predict the closest living
descendent species of the parents that formed the homoploid
hybrid and allopolyploid species, hereafter called progenitor
species, as shown in Fig. 1. Some synthetic polyploids
made from these progenitor species are also available,
providing insight into the immediate effects of polyploidy and
hybridization. We compare floral colours of Nicotiana
polyploid and homoploid hybrids with those of their diploid
progenitors.

Because various animal groups have different sensitivities
to colour, it is necessary to model colour perception of
specific pollinator classes to understand the significance of
floral colour signals. Here, we consider floral colours from a
bee perspective (Chittka, 1992), which can also be used to rep-
resent other trichromatic insects, such as hawkmoths, due to
similarities in photoreceptor sensitivities (Kelber et al., 2003),
and a hummingbird perspective (Herrera et al., 2008; Restrepo,
2013). Hummingbirds and hawkmoths are known to
visit Nicotiana species (Aigner and Scott, 2002; Kaczorowski
et al., 2005; Kessler and Baldwin, 2006; Nattero and Cocucci,
2007).

Pigments typically determine floral colour; however, few
studies have examined the specific pigments present in
Nicotiana petals. Aharoni et al. (2001) confirm the presence of
anthocyanin pigmentation in N. tabacum, which seems to be
predominantly cyanidin derivatives. Spectral colour shifts can
occur in anthocyanins due to hydroxylation and methylation,
which result in different types of anthocyanins (Castaneda-
Ovando et al., 2009; Andersen and Jordheim, 2010), and differ-
ences in pH as well as copigmentation with other pigments,
including carotenoids and colourless flavonoids, or metal ions,
can also cause spectral shifts in the same anthocyanin
compound (Grotewold, 2006; Andersen and Jordheim, 2010).
The yellow flower colour of Nicotiana glauca is due to caroten-
oid pigmentation (Zhu et al., 2007). Crossing experiments
between diploid Nicotiana species suggest that the presence of
chlorophyll in corolla tissue is dominant (Brieger, 1935),
and similar results corroborate this in the carnation Dianthus
caryophyllus (Caryophyllaceae; Ohmiya et al., 2014).

In this paper, we seek to determine what types of spectral
reflectance are found within Nicotiana, and how they appear to
bee and hummingbird pollinators. We focus on the conse-
quences of polyploidy and interspecific hybridization on floral
colour evolution. Specifically, we aimed to test the hypotheses
that: (1) polyploid and homoploid hybrids will have floral
colours that will resemble at least one of their progenitors in
discrete spectral, bee and hummingbird floral colour categories
obtained from cluster analyses; (2) polyploid and homoploid
hybrids will be positive for chlorophyll pigmentation in corolla
tissue if at least one progenitor has chlorophyll present in its
petals (due to evidence of the dominance of chlorophyll pig-
mentation); (3) increased cell size potentially associated with
polyploidy affects the concentration of pigments and, in turn,
colour intensity; and (4) floral colour evolution is constrained
by phylogeny.
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FIG. 1. Floral colour, as perceived by humans, of polyploid and homoploid hybrid Nicotiana and their diploid progenitors. Polyploid ages were estimated using a mo-
lecular clock calibrated with the geological age of volcanic islands with endemic Nicotiana species (Clarkson et al., 2005). Absolute dates (millions of years, m.y.o.)
estimated by the clock should be treated with caution; however, relative ages of different polyploid sections should reflect the true sequence of polyploidization
events. (A) Natural and synthetic polyploids of N. tabacum. (B) Synthetic polyploid TH32. (C) Natural and synthetic N. rustica polyploids. Synthetic hybrids include
a homoploid from a reciprocal cross and a polyploid series (F1 homoploid and S0 and S1 polyploids) of the same parentage as natural N. rustica. (D) Nicotiana are-
ntsii. (E) Natural polyploids of section Polydicliae. Synthetic N.� obtusiata polyploid lines were made from a cross between the N. obtusifolia and N. attenuata ac-
cessions studied here. (F) Section Repandae. (G) Section Suaveolentes contains 26 polyploid species (six included in this study). Biogeographical analyses suggest
that section Suaveolentes originated�15 million years ago (m.y.a.), before the aridification of Australia (Ladiges et al., 2011), and this seems to be relatively congru-
ent with the molecular clock results, which place its origin at �10 m.y.a. (H) Homoploid hybrids N. glauca and N. linearis. (I) Homoploid hybrid N. glutinosa.

Photographs are scaled to the same size.
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MATERIALS AND METHODS

Petal cell area measurements

To assess whether an increase in ploidy results in larger petal
cells, cell area was measured from a subset of polyploids and
their progenitors. For Nicotiana sylvestris A04750326,
Nicotiana rustica var. asiatica, Nicotiana rustica var. pavonii,
Nicotiana paniculata, Nicotiana undulata and Nicotiana nudi-
caulis, mature flowers were taken from plants and the adaxial
petal surface was imprinted in Elite HD vinylpolysiloxane im-
pression material (dental wax, supplied by Zhermack,
Harrogate, UK). The wax was left to set, and then used as a
mould for making epoxy petal casts. Devcon high-strength ep-
oxy was mixed according to the manufacturer’s instructions,
poured into the mould and allowed to set for 12 h. The epoxy
relief was removed and coated with gold using a Quorum
K756X sputter coater. The samples were then imaged using a
FEI Philips XL30 FEGSEM scanning electron microscope. For
Nicotiana obtusifolia var. obtusifolia TW143, Nicotiana
repanda and Nicotiana stocktonii, only fixed material was
available; whole mature flowers were fixed in formalin–acetic
acid–alcohol (FAA) (60 % ethanol; 6 % formaldehyde; 5 %
acetic acid) for 72 h before being transferred to a 70 % ethanol
(EtOH) wash for 24 h. The samples were then dehydrated
through an ethanol series of 2 h each in 70, 80 and 90 % and
two washes in 100 % EtOH. The samples were dissected and
then dried in an Autosamdri 815B critical point dryer. These
samples were sputter-coated and imaged as described above.
For all samples, images were taken mid-petal from an angle
perpendicular to the surface, to minimize parallax error. Cell
size measurements were carried out in ImageJ (http://imagej.
nih.gov/ij). The circumference of the cell base was drawn free-
hand and area was calculated for �100–150 cells until the cu-
mulative mean stabilized. One-way ANOVA and Tukey’s
honest significance tests were performed in RStudio version
0.98.490 (http://www.rstudio.org) to compare cell area of poly-
ploids with those of their progenitors, repeating the tests for
each polyploid section.

Spectral reflectance measurements

Spectral reflectance measurements were recorded for 60
Nicotiana accessions (41 taxa; Supplementary Data Table S1);
three flowers from different plants, where possible, were used
for each accession. Reflectance spectra from three Nicotiana
otophora accessions were pooled because the spectra were
similar.

Spectral reflectance of flowers at anthesis was measured
from 300 to 700 nm using an Avantes AvaSpec-2048 spectro-
photometer with an Avantes AvaLight-DHS light source and
calibrated with a barium sulphate white standard from lab-
sphereVR . Nicotiana mutabilis was also measured later, as flow-
ers change from white to pink when mature; pink flowers are
less likely to have a nectar reward, but add to the attraction of
the overall floral display, and therefore are still relevant to pol-
linators (R. Kaczorowski, University of Haifa, Israel, pers.
comm.). Reflectance spectra express the proportion of light
reflected by the flower at any given wavelength. Spectra were
visualized and exported in increments of 1 nm using the

program AvaSoft version 7.0.3 Full (Avantes BV, Eerbeek, The
Netherlands) and imported into Excel.

Spectra for each accession or colour morph were averaged
and then smoothed three times, using a rolling average over
9 nm. Spectra for all accessions were submitted to the Floral
Reflectance Database (FReD; www.reflectance.co.uk; Arnold
et al., 2010).

Some spectra had a spike at �656 nm, which corresponded
to a narrow peak in the light source spectrum, suggesting that
the spectra were saturated at �656 nm; however, smoothing
served to neutralize this spike. Several spectra (Nicotiana are-
ntsii, N. mutabilis, Nicotiana suaveolens and Nicotiana wigan-
dioides) included an anomalous reflectance minimum from 475
to 500 nm, which could not be explained by the light source
spectrum. Remeasured spectra of N. arentsii, N. suaveolens and
N. wigandioides lacked this minimum, but further material of
N. mutabilis was unavailable, so these spectra were included
despite the anomalies.

Calculation of colour loci in the bee colour hexagon

A reflectance spectrum can be represented as a single point
in the bee colour hexagon space (a graphical representation of a
bee’s colour visual experience) based on the relative excitation
of UV-, blue- and green-sensitive photoreceptor types (Chittka,
1992). Vertices of this hexagon represent theoretical states
where one or two photoreceptor types are at maximal excitation
whereas at least one receptor type is at zero excitation (e.g. the
top vertex of the hexagon corresponds to maximal blue receptor
excitation and zero signal from UV and green receptors,
whereas the top right vertex corresponds to maximal signal in
both blue and green receptors, but no signal in the UV receptor,
and so forth; see Supplementary Data Fig. S1). The centre or
origin of the hexagon is achromatic. Hue corresponds to angu-
lar position around the origin, whereas spectral purity or satura-
tion increases with distance from the origin.

Bee colour hexagon coordinates were calculated for all
Nicotiana spectra. Illumination was assumed to be sunlight
(D65; Wyszecki and Stiles, 1982); the background was repre-
sented by an average leaf spectrum (Gumbert et al., 1999).
Honeybee photoreceptor spectral sensitivity functions were
used to determine bee colour hexagon coordinates; these are
similar to bumblebee and hawkmoth photoreceptor sensitivity
functions, so the bee colour hexagon can be used to approxi-
mate the colour vision of these insects as well (Menzel et al.,
1986; Peitsch et al., 1992; Briscoe and Chittka, 2001; Kelber
et al., 2003 and references therein; Skorupski et al., 2007). The
equations used to determine colour hexagon coordinates are as
follows, where EG, EB and EUV represent the excitation of the
green, blue and UV bee photoreceptors, respectively, elicited
by a spectrum (Chittka, 1992):

x ¼
ffiffiffi
3
p

=2ðEG � EUVÞ

y ¼ EB � 0�5ðEUV þ EGÞ

Because the colour loci of Nicotiana flowers were mostly
close to the centre of the colour space, all colour hexagon dis-
plays presented are scaled so that only the central 40 % is

1120 McCarthy et al. — Floral colour evolution in Nicotiana polyploids

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/115/7/1117/173374 by guest on 19 Septem

ber 2024

in
Nicotinia
Nicotinia
Nicotinia
Nicotinia
Nicotinia
Nicotinia
Nicotinia
Nicotinia
http://imagej.nih.gov/ij
http://imagej.nih.gov/ij
http://www.rstudio.org
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv048/-/DC1
3
www.reflectance.co.uk
4
http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcv048/-/DC1


shown; the outline is therefore drawn as a dashed line. This re-
sults in a clearer spread of the colour loci to facilitate visual in-
spection. For a diagram explaining the colour hexagon, see
Supplementary Data Fig. S1.

Calculation of colour loci in hummingbird colour space

For tetrachromatic hummingbirds, we chose to model flower
colours in a 3-D colour opponent space because n – 1 colour
opponent dimensions are necessary to code the information
from n colour receptors (Chittka, 1996). The hummingbird
colour space can be displayed as a rhombic dodecahedron with
14 vertices (Restrepo, 2013). Like the bee colour hexagon,
vertices of the space represent states where one, two or three
photoreceptor types are at maximal excitation and at least one
receptor type is at zero excitation.

Hummingbird colour space coordinates were calculated for
all Nicotiana spectra. Illumination was again assumed to be
sunlight (D65; Wyszecki and Stiles, 1982) and the background
an average leaf spectrum (Gumbert et al., 1999) as was used
for the bee colour hexagon. Photoreceptor spectral sensitivity
functions from the green-backed firecrown hummingbird
(Sephanoides sephanoides; Herrera et al., 2008) were used to
determine hummingbird colour space coordinates using
the following equations (Restrepo, 2013), where ER, EG,
EB and EUV represent excitation of red, green, blue and
UV hummingbird photoreceptors, respectively, elicited by a
spectrum:

x ¼
ffiffiffiffiffiffiffiffi
3=4

p
EB �

ffiffiffiffiffiffiffiffiffiffi
1=12

p
ðEUV þ EG þ ERÞ

y ¼
ffiffiffiffiffiffiffiffi
2=3

p
EG �

ffiffiffiffiffiffiffiffi
1=6

p
ðEUV þ ERÞ

z ¼
ffiffiffiffiffiffiffiffi
1=2

p
ðEUV � ERÞ

RStudio was used to make 3D plots of the hummingbird col-
our space, and ImageJ version 1.48 (http://imagej.nih.gov/ij)
was used to create an animation of the Nicotiana flower loci in
the hummingbird colour space. Again, Nicotiana flower colour
loci are close to the origin in the hummingbird colour space, so
the graphs presented display only the central portion (either 25
or 50 %) of the colour space for clarity. To further facilitate
interpretation of these graphs, vertices representing individual
excitation of the red, green, blue and UV photoreceptor types,
as well as their excitation vectors from the origin, are shown
in red, green, blue and black, respectively. Other vertices
(representing excitation of two or three photoreceptor types) are
shown in grey.

Cluster analyses

Cluster analyses were used to group spectra based on spectral
shape (corresponding to pigmentation) and their position in
both bee and hummingbird colour spaces. For spectral colour
categories, spectra were normalized to the same integral under
the curve in order to compare combinations of pigments, not
the concentration of pigments. A distance matrix was calculated
from the normalized spectral data in R version 3.0.2 (http://

www.R-project.org/) using the dist() function. For the bee and
hummingbird colour categories, the input data were the (x, y) or
(x, y, z) coordinates of the spectra in the bee and hummingbird
colour spaces, respectively.

Data were first imported into R. The function hclust() was
used to perform agglomerative hierarchical clustering based on
the average pairwise distances between groups. With this algo-
rithm, the observed points, which are initially all deemed to be
distinct, are iteratively assigned to groups until eventually all
points belong to the same group. At each step, the average dis-
tance between all groups (i.e. the mean distance from all points
in group A to all points in group B; if either one of these is a
single point then no averaging is needed) is calculated, and the
two groups with the smallest average distance are merged. The
order in which groups are merged can be used to construct a
dendrogram showing the spatial relationship between all data
points. We can also look at the distribution of merge distances
at each step in the algorithm and use this distribution to esti-
mate how many groups are present in the data. Points at which
there is a steep increase in the average between-group distance
(‘elbow’ points) highlight the spatial scale(s) at which there is
clustering present in the data. By using one of these elbow
points as a cutoff in the algorithm, we can arrive at a distance
grouping that captures the spatial clustering. It should be noted
that the determination of where to draw the threshold in a clus-
ter analysis is arbitrary, but the use of one of these elbow points
does yield meaningful clusters. The determination of the spe-
cific point from the elbow region to be used to define clusters
was further informed by visual inspection of reflectance spec-
tra, as well as distributions of colour loci in the perceptual col-
our spaces. It should be noted that the dendrograms relate to
similarities in spectral reflectance, as well as colour relation-
ships perceived by bees and hummingbirds; they do not show
phylogenetic relationships.

Ancestral state reconstruction

To examine the evolution of colour within a phylogenetic
context, ancestral state reconstructions were performed on trees
inferred from plastid sequence data. Only species for which flo-
ral character data are available were included in these analyses.
Because polyploid and homoploid hybrids originate via reticu-
late evolutionary processes and therefore lack a history of
tree-like evolution, ancestral characters were reconstructed us-
ing only non-hybrid diploid species. The states observed in
hybrid species were then compared with the ancestral state re-
constructions. Since sections Repandae and Suaveolentes have
diversified to form several species following polyploidization,
characters were reconstructed for these sections separately to
examine colour evolution subsequent to their origin. For
non-hybrid diploid species, individual gene trees yield
some conflicting topologies; nevertheless, key nodes for the
purposes of interpreting character evolution in hybrids are
recovered in multiple gene trees and are supported by
supernetwork analyses (Kelly et al., 2010). Therefore, plastid
data from previously published studies are suitable for these
analyses.

Previously published sequences (Clarkson et al., 2004) from
four plastid regions (matK, ndhF, trnL-F and trnS-G) were
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aligned separately using PRANKþF (Löytynoja and Goldman,
2008) and then concatenated to create a combined plastid data-
set before further optimization by eye in Mesquite version 2.74
(Maddison and Maddison, 2008). For Nicotiana attenuata, we
used GenBank accessions AB040009 and AY098697 for the
matK and trnL-F regions, respectively (due to likely misidenti-
fication of N. attenuata material used in Clarkson et al., 2004;
see Clarkson et al., 2010); the other two regions were scored as
missing data. Phylogenetic reconstruction by Bayesian infer-
ence was performed as described in Kelly et al. (2013) with the
exception that BayesTrees v.1.3 (www.evolution.reading.ac.uk/
BayesTrees.html) was used to construct 95 % majority rule
consensus trees. For sections Repandae and Suaveolentes, se-
quences representing their putative maternal progenitors were
included during Bayesian inference to allow rooting of trees but
were pruned from the trees prior to ancestral state
reconstruction.

Ancestral states for spectral reflectance colour categories and
presence/absence of chlorophyll in petals (data in
Supplementary Data Table S2) were reconstructed using the
parsimony reconstruction method in Mesquite version 2.74, un-
der the unordered states assumption. To account for topological
uncertainty, character states were reconstructed over all 36 000
post-burn-in trees using the Trace Character Over Trees option
and summarized on the 95 % majority rule consensus tree from
the Bayesian analysis. Ancestral states were not calculated for
bee or hummingbird colour categories because these are per-
ceptual systems and the same colour category can result from
different combinations of pigments (e.g. both human pink and
human white flowers, which are positive and negative, respec-
tively, for anthocyanin pigmentation, are both classified as bee
blue–green); thus, a single colour category does not necessarily
have a shared evolutionary history.

Estimating expected polyploid and homoploid hybrid floral
colour

Polyploid and homoploid hybrid floral colours for each ac-
cession were compared with those of their diploid progenitors
for the spectral, bee and hummingbird colour categories defined
by cluster analyses. Floral colour was classified as ‘expected’ if
it fell in the colour category of at least one progenitor, or ‘unex-
pected’ if it was different from both progenitors. Polyploid and
homoploid hybrids were also compared with their diploid pro-
genitors for the presence or absence of chlorophyll in corolla
tissue. Chlorophyll absorbs at 675 nm in vivo (Haardt and
Maske, 1987); therefore, the presence of chlorophyll can be in-
ferred from reflectance spectra if there is a reflectance mini-
mum at 675 nm. The presence of chlorophyll in petal tissue
appears to be dominant (Brieger, 1935; Ohmiya et al., 2014).
Thus, hybrids were classified as expected if they showed chlo-
rophyll pigmentation and as unexpected if they did not because
at least one progenitor possessed chlorophyll in all diploid pro-
genitor combinations. For natural homoploid hybrids and poly-
ploid section Suaveolentes, where progenitors can only be
defined to Nicotiana section level, comparisons were made
with reconstructed ancestral characters; thus only spectral col-
our categories and the presence/absence of chlorophyll were
examined.

Phylogenetic signal in floral traits

In order to statistically test for phylogenetic signal in the phe-
notypic trait data (spectral reflectance, bee and hummingbird
colour perception), we used Mantel tests to examine the corre-
lation between phylogenetic distance and each of the respective
continuous multidimensional traits (e.g. Cubo et al., 2005;
Muchhala et al., 2014). Analyses were restricted to diploid spe-
cies, excluding homoploid and polyploid hybrids. Trees were
edited in Newick format to include additional tips with zero
branch lengths for taxa that are multiple in the trait datasets,
either due to colour polymorphism (N. otophora) or multiple
accessions (N. sylvestris and N. obtusifolia var. obtusifolia).

Statistical analyses were performed in R version 3.1.0.
Phenotypic distance matrices were first calculated for the three
trait datasets using Euclidean distance, and phylogenetic dis-
tance matrices were calculated (1) as genetic distance from the
plastid alignment and (2) for each of 36 000 post-burn-in
Bayesian trees using cophenetic.phylo(), part of the APE pack-
age version 3.1-2 (Paradis et al., 2004). The second Bayesian
set of tests was performed in order to account for evolutionary
processes such as saturation and to estimate how phylogenetic
uncertainty affects the correlation. Mantel tests were performed
using Pearson’s product-moment correlation coefficient, with
10 000 permutations of each distance matrix to test for signifi-
cance; the mean P value and its standard deviation were calcu-
lated for each set of 36 000 Mantel tests from the Bayesian
trees, along with the percentage of trees that gave significant
correlations. The function mantel() from the vegan package
was used (Oksanen et al., 2013).

RESULTS

Petal cell area

Petal cell area was measured to determine whether an increase
in ploidy results in larger floral cells. Polyploid petal cell area
was significantly larger than in both progenitors in N. rustica
(ANOVA: F¼ 371, d.f.¼ 3, P< 2� 10–16) accessions, but was
intermediate between progenitors in section Repandae poly-
ploids (ANOVA: F¼ 249�2, d.f.¼ 4, P< 2� 10–16; Fig. 2).
Accessions that were significantly different in cell area (within
polyploid sections and their progenitors) are represented by
different letters above the bars in Fig. 2; results from Tukey’s
honest significance tests can be found in Supplementary Data
Table S3.

Cluster analyses

Nicotiana reflectance spectra were grouped into categories
based on spectral shape and position in the bee and humming-
bird colour spaces using cluster analyses. Bees and humming-
birds have different photoreceptor sensitivities, and we expect
our cluster analyses to reflect these differences in sensory
equipment. The analysis based on spectral shape yielded eight
colour categories, which roughly corresponded to flowers per-
ceived by human observers as magenta, red, pink, UV–white,
white, yellow, green and dark green (Fig. 3). Nicotiana spectra
are displayed by spectral colour category in Fig. 4A, B,
Supplementary Data Fig. S2. The bee colour hexagon clustering
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resulted in 11 colour categories, which fell into the following
areas of bee colour space: saturated green, UV–blue, high UV,
UV–green, green, light green, blue–green, dark green, saturated
UV–blue, saturated UV–green and blue (the last four categories
were each represented by only a single accession;
Supplementary Data Fig. S3A). These groups are shown in the
bee colour hexagon (Fig. 4C). The hummingbird colour space
cluster analysis also produced 11 colour categories: saturated
green, green, UV–white, UV–green, pink, white, UV–pink,
dark green, light pink, red and saturated UV–pink (again the
last four categories include only a single accession;
Supplementary Data Fig. S3B). These groups are shown in the
hummingbird colour space (Fig. 4D), and the same graph is
provided as an animation to better display the 3D nature of the
colour space (Supplementary Data Video).

Evolution of spectral reflectance in polyploids and homoploid
hybrids

To assess the evolution of polyploid floral colour, polyploid
and homoploid hybrid accessions were compared with those of
their progenitors in spectral, bee and hummingbird colour cate-
gories as well as in the presence/absence of chlorophyll. The
diploid progenitors and approximate age of polyploids and
homoploid hybrids are found in Fig. 1 and Supplementary Data
Table S4, and the observed and expected floral colours of

polyploid and homoploid hybrids are found in Table 1. Most
polyploid and homoploid hybrids were similar to at least one
progenitor in spectral, bee and hummingbird colour categories,
but some fell into unexpected colour categories (Table 1,
Fig. 5, Supplementary Data Fig. S4, Supplementary Data Fig.
S5). Over half of the polyploids unexpectedly lacked chloro-
phyll (Table 1).

Evolution of colour characters in a phylogenetic context

Reconstructed character states are shown for spectral reflec-
tance colour categories (Fig. 6) and the presence/absence of
chlorophyll in petals (Supplementary Data Fig. S6). Bee and
hummingbird colour categories are also shown for extant spe-
cies on the plastid tree (Fig. 6). Although the deepest nodes
were largely equivocal, evolution of spectral reflectance colour
in Nicotiana seemed to be dynamic (Fig. 6). Green flowers
likely have three independent origins: (1) in sections
Paniculatae and Undulatae; (2) in N. langsdorffii; and (3) in
the homoploid hybrid N. glauca. UV–white flowers also seem
to have arisen three times independently: (1) in section
Trigonophyllae; (2) in N. pauciflora; and (3) in the homoploid
hybrid N. linearis. Most polyploid and homoploid hybrid spe-
cies exhibit a floral colour present in at least one of their pro-
genitors. However, N. tabacum 095-55 is red and N. glauca is
yellow and green, unlike their progenitors. UV–white flowers
seem to have evolved de novo in N. linearis. UV–white flowers
are also found in one of its progenitor sections (in N. pauci-
flora), but ancestral reconstructions indicate that the floral col-
our was most likely white at the ancestral nodes within the
section (Fig. 6). This suggests that the evolution of UV–white
flowers in N. pauciflora has occurred subsequent to the forma-
tion of N. linearis and that the two events are likely indepen-
dent. It is unclear whether UV–white flowers also evolved de
novo in N. nudicaulis because the ancestral node of section
Repandae is equivocal. The presence of chlorophyll, as inferred
by light absorption at 675 nm (Haardt and Maske, 1987), in
Nicotiana flowers is ancestral and has been lost three times in
N. sylvestris, N. noctiflora and the most recent common ances-
tor of N. acuminata and N. pauciflora (Supplementary Data
Fig. S6).

Results from Mantel tests of phylogenetic signal for
Nicotiana floral traits, for both genetic distance and the 36 000
post-burn-in Bayesian trees, are shown in Table 2. All floral
traits were significantly correlated with phylogenetic relation-
ships for the Bayesian trees at a significance level of P< 0�05.
Only spectral reflectance was significant for the genetic dis-
tance tests, whereas bee and hummingbird colour perception
were just above the P< 0�05 threshold. For the Bayesian trees,
90�1, 66�2 and 93�2 % of trees were significantly correlated
with the spectral reflectance, bee and hummingbird colour per-
ception datasets, respectively. These results suggest that these
floral traits are weakly constrained by phylogeny.

DISCUSSION

Nicotiana is remarkable in its range of spectral reflectance
flower colours (white, UV–white, pink, magenta, red, yellow,
green and dark green; Fig. 3) and in the variety of pollinators
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that visit the flowers (moth, bird, bee, bat; Knapp, 2010). The
perception of these spectral colours also changes with visual
system (bee or hummingbird). Here we describe a complex dy-
namic in the evolution of floral colour in Nicotiana. Spectral re-
flectance and bee and hummingbird colour perception are
correlated with phylogeny, but multiple independent origins of
various combinations of pigmentation suggest that the evolution
of floral colour is not entirely phylogenetically constrained.

Petal cell size evolution in polyploids

Cell size is expected to increase following polyploidization
due to the increase in genome size (Beaulieu et al., 2008). The
significantly larger petal cells of N. rustica (<0�2 million years
old; m.y.o.) and the intermediate cell size of section Repandae
(�4�5 m.y.o.) suggest that polyploids may revert to a diploid-
like cell size over time, similar to the genome downsizing ob-
served in polyploids (Leitch and Bennett, 2004). However,
petal cell size differences within section Repandae do not seem
to be linked to genome size; N. nudicaulis and N. repanda share
similar cell sizes, but have substantially different genome sizes
(Leitch et al., 2008). The concentration of pigment in floral
cells is controlled by both the amount of pigment present and
the cell size. Nicotiana rustica has significantly larger petal
cells than its progenitors (close to the sum; Fig. 2) and displays
an intermediate brightness (the area under the reflectance curve,
a proxy for pigment concentration) between its progenitors

(Supplementary Data Fig. S4D). This is expected if the poly-
ploid inherits the sum of both cell size and amount of pigment
present from its progenitors.

Polyploid divergence in floral colour

Many younger polyploids (<0�2 m.y.o.) display unexpected
floral colours, considering those of their diploid progenitors.
None of the natural and synthetic N. tabacum accessions pos-
sess chlorophyll, which is unexpected given its presence in at
least one progenitor species. Nicotiana tabacum 095-55 also
has unexpected spectral, bee and hummingbird colour, given
the colour categories of the progenitor species. Similarly, syn-
thetic N. tabacum QM has unexpected colours in bee and hum-
mingbird perception. Because this accession is synthetic, the
parents are known, and thus its unexpected phenotype can be
classified as transgressive, or outside the range of its progeni-
tors due solely to polyploidy and hybridization. Most N. rustica
accessions have unexpected bee colour (four of these are
synthetic, and are therefore also transgressive), and N. arentsii
has unexpected hummingbird colour (Table 1, Fig. 6). Despite
the divergence of floral spectra associated with polyploidy,
behavioural studies are needed to determine whether the bee
and hummingbird colour categories delineated here actually
elicit different responses in pollinators.

Most older polyploids (1–10 m.y.o.) are similar in floral col-
our category to at least one of their progenitors; N. clevelandii
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obtusTW, obtusifolia var. obtusifolia TW143; obtuspalm, obtusifolia var. palmeri; occhesp, occidentalis subsp. hesperis; otoph w, otophora white; otoph p, otophora
pink; pani, paniculata; pauc, pauciflora; petun, petunioides; plumba, plumbaginifolia; quad9047, quadrivalvis 904750042; quadTW18, quadrivalvis TW18; raim,
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Nicotiana spectral loci in hummingbird colour space. Vertices of the hummingbird colour space represent 50 % excitation of the photoreceptors; single photoreceptor
type vertices (red, green, blue and UV) are coloured red, green, blue and black, respectively, and all other vertices are grey. Red, green, blue and black arrows repre-
sent the vectors of these photoreceptors from the origin of the hummingbird colour space. Nicotiana loci are coloured according to hummingbird colour categories
(Supplementary Data Fig. S3B), but are labelled with the accession name if the category includes only one taxon. See Supplementary Data Video for an animation

of this graph.
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is the exception because it falls into an unexpected humming-
bird colour category, given the progenitor species (Fig. 6).
Section Repandae polyploids seem to have evolved to be either
like their maternal (Nicotiana nesophila, N. repanda and
N. stocktonii) or paternal (N. nudicaulis) progenitor (Fig. 6).
The maternal progenitor, N. sylvestris, is no longer sympatric
with any of the section Repandae polyploids; therefore, N.
nesophila, N. repanda and N. stocktonii can occupy the same
pollination niche as their maternal progenitor without competi-
tion. Similarly, section Suaveolentes is native to Australasia,
except for one species in Namibia, Africa, and is not sympatric
with its progenitor sections in South America (Goodspeed,
1954); these polyploids and their diploid progenitors display
similar floral colours, except N. pauciflora, which evolved
spectrally UV–white flowers after the formation of section
Suaveolentes (Fig. 6). It is possible that there is less competition
for pollinators and, therefore, reduced selective pressure to-
wards floral colour diversification when polyploid species are
not sympatric with their diploid progenitors, as is seen in

Iochrominae (Solanaceae), which have a broader range of floral
colours when species are sympatric (Muchhala et al., 2014).
However, floral colour evolution can also be driven by genetic
drift or selection on pleiotropic effects of floral genes (Chittka
et al., 2001; Rausher, 2008). Furthermore, anthocyanins and
flavonoids are important for UV protection, can defend against
fungi, act as signal molecules and play a role in male fertility in
some species in addition to their roles in signalling to pollina-
tors (Shirley, 1996).

Over half of polyploids have an unexpected inheritance pat-
tern for chlorophyll if it is assumed that the presence of chloro-
phyll is a dominant character. Those polyploids that deviate
from expectation span an age range of synthetic to 10 m.y.o.
and always lack chlorophyll in their petals, which is in line
with the direction of the shifts observed in the divergence of
diploid species (Supplementary Data Fig. S6). In carnation, the
difference in chlorophyll concentration between white and
green flowers is likely caused by downregulation of chlorophyll
biosynthesis genes in white flowers; genes involved in

TABLE 1. Polyploid and homoploid hybrid observed and expected floral colours

Species Spectral Bee Hummingbird Chlorophyll

Observed Expected Observed Expected Observed Expected Observed Expected

N. tabacum 095-55 R W, P UV-B B-G sUV-P W, P N C
N. tabacum 51789 P W, P B-G B-G P W, P N C
N. tabacum ‘Chulumani’ W W, P B-G B-G P W, P N C
syn N. tabacum QM P W, P B B-G LP W, P N C
syn N. tabacum TH37 P W, P B-G B-G P W, P N C
TH32 P W, P B-G B-G P W, P N C
N. rustica var. asiatica G G LG G, B-G G G, W C C
N. rustica var. pavonii G G G G, B-G G G, W C C
syn U�P (homoploid) G G UV-G G, B-G UV-G G, W C C
syn F1 (homoploid) G G LG G, B-G G G, W C C
syn N. rustica S0 G G LG G, B-G G G, W C C
syn N. rustica S1 G G LG G, B-G G G, W C C
N. arentsii W G, W B-G B-G P W C C
N. clevelandii W UV-W, W B-G UV, B-G P UV-W, W N C
N. quadrivalvis TW18 W UV-W, W B-G UV, B-G W UV-W, W C C
N. quadrivalvis 9047 W UV-W, W B-G UV, B-G W UV-W, W C C
N.� obtusiata line 1 W UV-W, W B-G UV, B-G W UV-W, W C C
N.� obtusiata line 2 W UV-W, W B-G UV, B-G W UV-W, W C C
N.� obtusiata line 5 W UV-W, W B-G UV, B-G W UV-W, W C C
N. repanda W W, UV-W B-G B-G, UV W W, UV-W N C
N. nesophila W W, UV-W B-G B-G, UV W W, UV-W N C
N. stocktonii W W, UV-W B-G B-G, UV W W, UV-W C C
N. nudicaulis UV-W W, UV-W UV B-G, UV UV-W W, UV-W C C
N. benthamiana W W – – – – N C
N. forsteri W W – – – – C C
N. gossei W W – – – – N C
N. megalosiphon W W – – – – N C
N. occidentalis W W – – – – N C
N. suaveolens W W – – – – N C

N. glauca 51725 Y W – – – – C C
N. glauca 51751 Y,G W – – – – C C
N. linearis TW77 UV-W W – – – – C C
N. linearis 9647 UV-W W – – – – C C
N. glutinosa P P, W, G – – – – C C

The top block consists of polyploid accessions and the bottom block includes homoploid hybrids.
Italic denotes an unexpected phenotype given the colour categories of the progenitors.
Progenitor bee and hummingbird colour categories are unknown for section Suaveolentes and natural homoploid hybrids (see text).
R, red; W, white; P, pink; G, green; UV-W, UV–white; Y, yellow; UV-B, UV–blue; B-G, blue–green; B, blue; LG, light green; UV, high UV; UV-G,

UV–green; sUV-P, saturated UV–pink; LP, light pink; N, no chlorophyll; C, chlorophyll; syn, synthetic; 9047 represents 904750042; 9647 represents
964750099.
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FIG. 5. (A, D, G) Reflectance spectra for polyploid and homoploid sections and their progenitors: (A) N. tabacum; (D) section Repandae; and (G)
Noctiflorae–Petunioides homoploid hybrids. Solid lines are used for diploid taxa, dashed lines for polyploid taxa and dotted lines for homoploid hybrid taxa. (B, E,
H) Hummingbird colour space for polyploid and homoploid sections and their progenitors: (B) N. tabacum; (E) section Repandae; and (H) Noctiflorae–Petunioides
homoploid hybrids. The vertices of the hummingbird colour space represent 25 % (B, E) or 50 % (H) excitation of the photoreceptors; single photoreceptor type ver-
tices (red, green, blue and UV) are coloured red, green, blue and black, respectively, and all other vertices are grey. Red, green, blue and black arrows represent the
vectors of these photoreceptors from the origin of the hummingbird colour space. (C, F, I) Bee colour hexagons for polyploid or homoploid sections and their progen-
itors: (C) N. tabacum; (F) section Repandae; and (I) Noctiflorae–Petunioides homoploid hybrids. Hexagons have been scaled so that vertices represent 40 % excita-
tion of photoreceptors. UV, ultraviolet; UV-B, UV–blue; B, blue; B-G, blue–green; G, green; UV-G, UV–green. For information regarding how to interpret colour
hexagons, see Supplementary Data Fig. S1. Female ($) and male (#) symbols mark maternal and paternal progenitors, respectively, in the hummingbird and bee col-

our spaces.
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chlorophyll degradation are equally expressed in both flower
types (Ohmiya et al., 2014). It is possible that it is advantageous
to limit the costs of chlorophyll production when it is unneces-
sary for photosynthesis, resulting in selection against the pres-
ence of chlorophyll in petal tissue. It is also possible that this
phenotype results from the silencing of the homeologues that
promote chlorophyll biosynthesis.

Transgressive flower colour in N. tabacum and the synthetic
polyploid TH32

Polyploids N. tabacum and synthetic TH32 are similar be-
cause they share a maternal progenitor, N. sylvestris, and their
paternal progenitors, Nicotiana tomentosiformis and N. oto-
phora, respectively, are both from section Tomentosae and
have similar reflectance spectra (Supplementary Data Fig.
S5G): the paternal progenitors possess anthocyanin pigmenta-
tion as well as chlorophyll, whereas the maternal progenitor
lacks both of these.

Genetic crosses in Nicotiana suggest that both green flower
colour and the ability to produce floral anthocyanins are domi-
nant and each may be determined by a single (likely multi-
genic) locus (Brieger, 1935). Nicotiana tabacum accessions and
TH32 possess anthocyanin pigmentation (two spectral peaks in
the blue and red portions of the spectrum), but not chlorophyll
(the lack of a reflectance minimum at 675 nm) as well as spec-
tral reflectance curve shapes that are distinct from those of their
progenitors (Fig. 5A, Supplementary Data Fig. S4A).
Therefore, N. tabacum and TH32 inherit anthocyanin floral pig-
mentation from their paternal progenitors, but a plastid pheno-
type (chlorophyll is only found in plastids) like that of their
maternal progenitor, which likely has colourless leucoplasts, as
is seen in Arabidopsis (Pyke and Page, 1998). Intriguingly,
both the N. tomentosiformis and N. sylvestris copies of the
bHLH transcription factor involved in regulation of the antho-
cyanin biosynthetic pathway are expressed and functional in N.
tabacum (Bai et al., 2011), suggesting that a maternal gene has
been co-opted into producing a paternal-type phenotype.

Polyploids typically inherit plastids from their maternal pro-
genitor; it may be unsurprising, therefore, that N. tabacum and
TH32 plastids have the maternal phenotype. However, it is
likely that the chloroplast-to-leucoplast transition in petal devel-
opment is regulated by nuclear genes. A study in Arabidopsis
indicated that petal homeotic genes APETALA3 and
PISTILLATA downregulate BANQUO genes, which are in-
volved in accumulation of chlorophyll, suggesting that the
breakdown of chloroplasts in petal development is linked to re-
pression of genes involved in chlorophyll biosynthesis by
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TABLE 2. Mantel test results

Trait Genetic
distance

Bayesian

P value Mean P value % significant
trees

Spectral reflectance 0�0229 0�0206 6 0�0215 90�1
Bee colour vision 0�0866 0�0410 6 0�0321 66�2
Hummingbird colour vision 0�0594 0�0198 6 0�0187 93�2
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nuclear-encoded petal identity genes (Mara et al., 2010).
Crosses in carnation and Nicotiana provide evidence that ma-
ternal plastid phenotype does not determine that of its offspring
(Brieger, 1935; Ohmiya et al., 2014), affirming that the plastid
phenotype seen in N. tabacum and TH32 polyploids is
unexpected.

Because this floral phenotype is unlike either progenitor and
divergent from the expected phenotype (i.e. the presence of
both chlorophyll and anthocyanin pigments from their paternal
progenitor) and because the phenotype is seen in synthetic poly-
ploids, it can be considered to be caused by polyploidy and hy-
bridization, and is thus a transgressive phenotype. Because all
three natural N. tabacum accessions examined show the same
phenotype as the synthetic polyploids, we can infer that this un-
expected floral phenotype is also transgressive in N. tabacum.
The observation of this phenotype in at least four independent
origins (three synthetic and the natural accessions) suggests that
the interplay between the inheritance of plastid and vacuolar
pigments yields a transgressive phenotype repeatedly in N.
tabacum and TH32 polyploids.

Nicotiana tabacum varies in spectral shape and bee and
hummingbird colour categories among the accessions exam-
ined here (Fig. 5A–C). Synthetic N. tabacum QM and N. taba-
cum 095-55 are unexpected in both bee and hummingbird
colour categories, suggesting that these accessions will be dis-
tinguishable from their progenitors by both bee (and likely
hawkmoth, due to similarities in photoreceptor sensitivities)
and hummingbird pollinators. The differences seen among the
N. tabacum spectra may be due to the presence of different
cyanidin derivatives, but vacuolar pH and the formation of het-
erodimers of anthocyanin and flavonol pigments can also cause
shifts in spectral reflectance (Grotewold, 2006; Andersen and
Jordheim, 2010).

Novel floral colour in homoploid hybrids

Over half of the homoploid hybrids examined show unex-
pected phenotypes in spectral colour categories. Without repro-
ductive isolation, homoploid hybrids often facilitate gene flow
between their progenitors instead of becoming established as
new species (Buerkle et al., 2000, 2003). In experimental field
plots of Nicotiana alata and Nicotiana forgetiana, pollinator fi-
delity decreased significantly in the presence of F1 hybrids, in-
creasing gene flow between the two progenitor species
(Ippolito et al., 2004). Homoploid hybrid N. glauca displays a
novel floral colour in spectral, bee and hummingbird colour cat-
egories (Fig. 6). Although it is the combination of the suite of
floral traits displayed that will influence what behaviour a polli-
nator exhibits, this change in floral colour may have played at
least some role in the establishment of reproductive isolation
between N. glauca and its progenitors.

Species of progenitor sections Noctiflorae and Petunioides
mostly have vespertine flowers and many have long corolla
tubes (Goodspeed, 1954), which suggests pollination by noctur-
nal hawkmoths. The only studies examining pollination in any
of these species have confirmed that N. attenuata is pollinated
by nocturnal hawkmoths but is also visited by hummingbirds
(Aigner and Scott, 2002; Kessler and Baldwin, 2006).
Nicotiana glauca is pollinated by hummingbirds in its native

range (Nattero and Cocucci, 2007). Selection can still occur in
the presence of generalist pollination based on differences in
pollinator assemblage (Gomez et al., 2009), so the floral colour
shift in N. glauca, accompanied by a shift in the predominant
pollinator, may have aided reproductive isolation and its estab-
lishment as a new species. Evolutionary shifts in characteristics
known to affect pollinator preferences often occur together. A
shift from insect to hummingbird pollination has occurred twice
within Mimulus section Erythranthe (Phrymaceae), and red
flowers, exserted stamens and pistils and reflexed upper petals
(characters associated with hummingbird pollination) seem to
have evolved at the same points on the phylogenetic tree as the
shift in pollination (Beardsley et al., 2003). In addition to a shift
to yellow flowers, N. glauca has a reduced floral limb, the part
of the corolla that opens (associated with hummingbird pollina-
tion), compared with many species in its progenitor sections,
suggesting the possibility of hummingbird-mediated selection
on N. glauca floral traits.

Concluding remarks

Floral colour shifts in polyploid and homoploid hybrids may
occur immediately after their formation, perhaps as a conse-
quence of novel cis–trans interactions between progenitor
genomes (Chen, 2007). Using genomic studies to examine
plant–pollinator interactions will shed light on the complex
interactions involved in successful pollination and pollinator-
mediated evolution (Clare et al., 2013). Transgressive and un-
expected floral colours may have aided hybrid speciation, but
pollination studies of hybrids and their progenitors are needed
to make these conclusions. Typically, synthetic and young
polyploids (<0�2 m.y.o.) have floral colour that is unexpected
considering the colour of their progenitors in the colour
perception of at least one pollinator type. Older polyploids
(1–10 m.y.o.) tend to have a floral colour similar to at least one
progenitor, perhaps due to the fact that the polyploids are no
longer sympatric with one or both progenitors and/or because
other floral traits were more important in the divergence from
their progenitors.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Table S1: Nicotiana
accessions used in the spectral reflectance dataset and in petal
cell area measurements. Table S2: floral colour characters for
all Nicotiana species examined. Table S3: Tukey’s honest sig-
nificance test results for cell areas. Table S4: polyploid and
homoploid hybrid origins. Figure S1: navigating the bee colour
hexagon. Figure S2: Nicotiana reflectance spectra from 300 to
700 nm by spectral colour category. Figure S3: dendrograms
based on distance cluster analyses for bee and hummingbird
colour categories. Figure S4: reflectance spectra, bee colour
hexagons and hummingbird colour space for TH32, N. rustica
and N. arentsii. Figure S5: reflectance spectra, bee colour hexa-
gons and hummingbird colour space for section Polydicliae,
section Suaveolentes and N. glutinosa. Figure S6: ancestral state
reconstruction of the presence/absence of chlorophyll in petals.
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Video: animation of Nicotiana spectra in 3-D hummingbird col-
our space.
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