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Abstract. We study the mixing time of the symmetric beta-binomial splitting process on finite weighted connected graphs G =
(V,E,{re}e∈E) with vertex set V , edge set E and positive edge-weights re > 0 for e ∈E. This is an interacting particle system with
a fixed number of particles that updates through vertex-pairwise interactions which redistribute particles. We show that the mixing time
of this process can be upper-bounded in terms of the maximal expected meeting time of two independent random walks on G. Our
techniques involve using a process similar to the chameleon process invented in [18] to bound the mixing time of the exclusion process.
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1. Introduction

In the field of econophysics, interacting particle systems have been widely used to analyse the dynamics of wealth held
by agents within a network, providing insights into the distribution and flow of money within the system [28]. These
are typically characterised by pairwise interactions between agents (represented by vertices in a graph) resulting in a
redistribution of the wealth they hold (represented by particles on the vertices).

One class of such systems which has found applications in econophysics are reshuffling models in which each agent in
an interacting pair receives a random fraction of the total wealth they hold. In the uniform reshuffling model introduced
in [12] and discussed rigorously in [17], the random fraction is chosen uniformly.

In this paper, we introduce and analyse the mixing time of the symmetric beta-binomial splitting process: a continuous-
time interacting particle system on a finite connected (weighted) graph with a conservation property. Informally, the
process updates by choosing randomly an edge from the graph, and redistributing the particles on the vertices of the edge
according to a beta-binomial distribution. This process is a generalisation of the uniform reshuffling model, is a discrete-
space version of a Gibbs sampler considered in [6] and is related to the binomial splitting process of [22] (sometimes
called the binomial reshuffling model [5]), and the KMP model of energy transport [16].

Our focus is to provide general upper bounds on the mixing time of the symmetric beta-binomial splitting process on
any connected graph. We achieve this through use of a chameleon process, a process which so far has only been used to
bound the mixing time of exclusion processes [11, 15, 18, 20]. We demonstrate how a chameleon process can be used
more generally to understand how systems of interacting particles mix; in particular we establish a connection between
the maximal expected meeting time of two independent random walks and the mixing time of the beta-binomial splitting
process. Despite giving the same name to this auxiliary process, our version of the chameleon process is substantially
different from those used previously; in particular it is engineered to deal with multiple particles occupying a single vertex
(an event which cannot happen in the exclusion process).

As is typical with proofs that use a chameleon process, the results we obtain are not optimal in the sense that the
multiplicative constants appearing in the statements are not optimized. On the other hand, the strength of this approach is
in allowing us to prove results for arbitrary graphs with arbitrary edge weights.

1.1. Model and main result

The m-particle symmetric beta-binomial splitting process with parameter s > 0 on a finite connected graph G =
(V,E, (re)e∈E) (with vertex set V , edge set E and (re)e∈E a collection of positive edge weights) is the continuous-
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time Markov process (ξt)t≥0 on state space

ΩG,m :=

{
ξ ∈NV

0 :
∑
v∈V

ξ(v) =m

}
,

with infinitesimal generator

LBB(G,s,m)f =
∑

{v,w}∈E

r{v,w}∑
e∈E re

(
PBB(G,s,m)
{v,w} − 1

)
f, f : ΩG,m →R,

where PBB(G,s,m)
{v,w} f(ξ) := EL[ξ′{v,w}]

[f ], and ξ′{v,w} is the random variable defined as

ξ′{v,w}(u) :=


X if u= v

ξ(v) + ξ(w)−X if u=w

ξ(u) otherwise,

with X ∼ BetaBin(ξ(u) + ξ(v), s, s).
We recover the uniform reshuffling model by setting s= 1. We remark that in the binomial splitting process of [22],

the random variable X is chosen instead according to a binomial distribution (recall we obtain a binomial with probability
parameter 1/2 by sending s→∞ in the above beta-binomial).

The symmetric beta-binomial splitting process (BBSP) on a connected graph with positive edge weights is irreducible
on ΩG,m and, by checking detailed balance, one can determine that the m-particle BBSP on G with parameter s (denoted
BB(G,s,m)) has unique equilibrium distribution

πBB(G,s,m)(ξ)∝
∏
v∈V

Γ(s+ ξ(v))

ξ(v)!
, ξ ∈ΩG,m.(1)

Recall that the total variation distance between two probability measures µ and ν defined on the same finite set Ω is

∥µ− ν∥TV :=
∑
ω∈Ω

(µ(ω)− ν(ω))+,

where for x ∈ R, x+ := max{x,0}. For any irreducible Markov process (ξt)t≥0 with state space Ω, and equilibrium
distribution π, the ε-total variation mixing time is

tmix(ε) := inf
{
t≥ 0 : max

ξ0∈Ω
∥L[ξt]− π∥TV ≤ ε

}
for any ε ∈ (0,1).

We write t
BB(G,s,m)
mix (ε) for the ε-total variation mixing time of BB(G,s,m). For i and j distinct vertices of G, we

also write M̂i,j(G) for the meeting time of two independent random walks started from vertices i and j, each moving as
BB(G,s,1), that is, the time that the two walks are on neighbouring vertices and the edge between them rings for one
of the walks. Recalling that BetaBin(1, s, s)∼Bernoulli(1/2), we see that M̂i,j(G) does not depend on s and is just the
meeting time of two independent random walks on the graph obtained from G by halving the edge weights.

We assume throughout that V = {1, . . . , n}. Our main result is as follows.

Theorem 1 (Symmetric beta-binomial splitting process mixing time bound). Fix s ∈Q positive. There exists a constant
C(s)> 0 such that for any size n connected graph G with positive edge weights, and any integer m≥ 2,

∀ε ∈ (0,1/4), t
BB(G,s,m)
mix (ε)≤C(s) log

(
n+m

ε

)
max
i,j

EM̂i,j(G).

Our methodology does not allow us to immediately deduce results in the case of s irrational.
Remark 1. For s= b/a with a and b coprime, the constant C(s) can be taken to be C ′a(p∗)−2 log(12a(p∗)−2) log(a+b),
for some universal constant C ′ > 0, where p∗ = (5/12)2s/(6B(s, s)) for s < 20, and p∗ = 1

6 (1−
20
s+1 ) for s≥ 20, with

B(·, ·) the beta function. Observe that p∗ → 1
6 as s→∞, whereas p∗ → 0 as s→ 0. The quantity 1/s can be seen as

measuring the strength that particles tend to “clump together”, with the strength increasing as 1/s→∞. Thus it is not
surprising to obtain an upper-bound which increases as s→ 0, as breaking apart clumps of particles takes longer.
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We recall (see, for example, [2, Corollary 14.7]) that maxi,j EM̂i,j(G) . τ0, where τ0 is the average hitting time,
defined as τ0 =

∑
i,j∈V πiπjEiTj with πi the equilibrium distribution at vertex i of a simple random walk and EiTj

the expected hitting time of vertex j by a simple random walk started from vertex i. [2, Section 5.2] provides a table
with orders of magnitude of τ0 for certain graphs when re ≡ 1 (note that for regular graphs we must multiply the values
displayed there by |E| to fit within our framework). For instance, on the cycle or line, τ0 =Θ(n3).

To complement Theorem 1, we demonstrate a lower bound on the mixing time for the line Ln := [1, n] ∩N, which is
of the same order (in n) for fixed s and ε, when logm=Θ(logn).

Proposition 2 (Mixing time lower bound for Ln). Let Ln denote the line graph on n vertices with edge weights of 1, i.e.
re ≡ 1. For any ε ∈ (0,1), there exists a constant Cε > 0 such that for all integers n,m≥ 2 and s > 0,

t
BB(Ln,s,m)
mix (ε)≥ n3

π2

(
logn− log

(
1 +

n

m
+

1

s

)
−Cε

)
.

1.2. Related work

The beta-binomial splitting process is closely related to the binomial splitting process (although our methods do not
obviously extend to this model). In [22], the authors show that the binomial splitting process (as well as a more gen-
eral version in which vertices have weights) exhibits total variation cutoff (abrupt convergence to equilibrium) at time
1
2 trel logm (with trel the relaxation time) for graphs satisfying a finite-dimensional geometry assumption provided the
number of particles m is at most order n2 (they also obtain a pre-cutoff result without this restriction on particle numbers).
For instance on the cycle their results show that the binomial splitting process mixes at time Θ(n2 logm) for m≤ n2. On
the other hand, for the beta-binomial splitting process on the cycle, our results give an upper bound of O(n2 log(n+m))
(with the implicit constant depending on the parameter s). The beta-binomial splitting process has, in a certain sense,
more dependency between the movement of the particles compared with the binomial splitting process, which in turn
means any analysis on the mixing time is more involved. To see this, consider that in the binomial splitting process,
when an edge rings each particle on the edge decides which vertex to jump to independently of the other particles; this
independence is not present in the beta-binomial splitting process.

There has been a flurry of activity in recent years analysing mixing times of continuous mass (rather than discrete
particles) redistribution processes [4, 7, 21, 23]. The uniform reshuffling model (when run on the complete graph) is the
discrete-space version of a Gibbs sampler on the n-simplex, the mixing time of which is analysed in [2, Example 13.3]
and [24]. In [2], the total variation mixing time of the Gibbs sampler is shown to be O(n2 logn); the argument can be
used (as noted by [24]) to obtain a mixing time of O(n2 logn) of the uniform reshuffling model on the complete graph
(in which edge weights are all 1/(n − 1)), provided the number of particles m is at least n5.5. The arguments in [24]
improve this result when m> n18.5, obtaining O(n logn) as the mixing time of the uniform reshuffling model on the
complete graph in this regime. Our results improve the best known bound on the mixing time of the uniform reshuffling
model on the complete graph to O(n2 logn) for m≤ n5.5.

More generally, the symmetric beta-binomial splitting process is a discrete-space version of a Gibbs sampler on the
n-simplex, in which mass is redistributed across the vertices of a ringing edge according to a symmetric beta random
variable. In [6], cutoff is demonstrated at time 1

π2n
2 logn for this model on the line, provided the beta parameter (which

we denote by s here) is at least 1. While our upper-bound for the discrete-space model holds also for some s ∈ (0,1), we
are restricted to s ∈ Q by the nature of our analysis. The proof of our lower bound (Proposition 2) for the line follows
closely the analogous argument in [6].

The beta-binomial splitting process is also related to the KMP model [16] of energy transport along a chain of os-
cillators, and its generalisation [9]. As described in [13], the dual of the generalised KMP process is identical to the
beta-binomial splitting process except for the existence of additional vertices which are absorbing for the particles.

A continuous-space version of the binomial splitting process is the averaging process (also known as the repeated
average model), introduced by [1, 3]. In this model, when an interaction occurs between two vertices, their mass is redis-
tributed equally between them. Mixing times for this process have been studied with total variation cutoff demonstrated
on the complete graph [10], and on the hypercube and complete bipartite graphs [8]. A general lower bound for the mixing
time of the averaging process on any connected graph is obtained by [19].

Lastly, a model similar in flavour to the beta-binomal splitting process and which also has applications in econophysics
is the immediate exchange process proposed in [14] and its generalisation [25]. In the discrete version of the generalised
immediate exchange process, when an edge updates, each vertex on the edge gives to the other vertex a random number
of its particles, chosen according to a beta-binomial distribution. Again, however, our methods do not obviously extend to
this model (for our methodology it is important that updates are distributionally symmetric over the vertices on a ringing
edge), and obtaining bounds on the mixing time of this process appears to be an open problem.
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1.3. Road map

To motivate the use of several auxiliary processes, we present a road map for the upper bound argument, highlighting key
propositions that combine to prove Theorem 1.

Firstly, in order to bound the total variation (TV) distance between the time-t states of two BB(G,s,m) processes
started from arbitrary configurations, we use the triangle inequality to reduce the problem to bounding the TV distance
between the time-t states of two BB(G,s,m) configurations which start from adjacent configurations, that is, configura-
tions which differ by the action of moving a single particle (from any vertex to any other).

Formally, we say that two BB(G,s,m) configurations ζ1 and ζ2 are adjacent and write ζ1 ∼ ζ2 if there exist vertices
v and w such that for all y /∈ {v,w}, ζ1(y) = ζ2(y) and |ζ1(v)− ζ2(v)| = |ζ1(w)− ζ2(w)| = 1, i.e. by moving just a
single particle we can obtain ζ2 from ζ1.

Proposition 3. Let ζt and ζ ′t be two realisations of BB(G,s,m) initialised at ζ and ζ ′ respectively. There exists a sequence
of configurations ζ0 ∼ ζ1 ∼ · · · ∼ ζr with r ≤m such that

∥L(ζt)−L(ζ ′t)∥TV ≤
r∑

i=1

∥L(ζi−1
t )−L(ζit)∥TV,(2)

where for each 0≤ i≤ r, ζit is a realisation of BB(G,s,m) started from configuration ζi.

Proof. We choose the sequence of BB(G,s,m) configurations {ζi}ri=0 to satisfy

ζ = ζ0 ∼ ζ1 ∼ · · · ∼ ζr = ζ ′.

The result then follows by the triangle inequality for total variation.

To bound the right-hand side of (2), we introduce a new process which is similar to a BB(G,s,m) process but has one
particle marked to distinguish it from the others.

Proposition 4. There exists a continuous-time Markov process (ξt, yt)t≥0 with state space Ω′
G,m := ΩG,m−1 × V with

the property that if we remove the marking so that all particles are identical, the process becomes BB(G,s,m), that is,
(ξt + δyt

)t≥0 is a realisation of BB(G,s,m), where δv is a unit vector with value 1 in co-ordinate v ∈ V .

We shall explicitly construct a process called a MaBB (marked beta-binomial splitting) process which satisfies the
requirements in Proposition 4 in Section 3.

To bound ∥L(ζi−1
t )−L(ζit)∥TV, suppose that ζi−1 and ζi differ on vertices v and w with ζi−1(v)− ζi(v) = 1. Define

a BB(G,s,m − 1) configuration ξ to be ξ(y) := ζi−1(y)− δv(y) = ζi(y)− δw(y) for all y ∈ V . As BB(G,s,m) is a
projection of MaBB (Proposition 4), we have by the triangle inequality

∥L(ζi−1
t )−L(ζit)∥TV ≤ ∥L((ξt,mt))−L((ξ′t,m′

t))∥TV,(3)

where (ξt,mt)t≥0 is a realisation of MaBB initialised at (ξ, v) and (ξ′t,m
′
t)t≥0 is a realisation of MaBB initialised at

(ξ,w). Next, define m̃t to be a random variable which, given ξt, has law πξt , and similarly m̃′
t to have law πξ′t

given ξ′t.
Since L((ξt, m̃t)) = L((ξ′t, m̃′

t)), we use the triangle inequality again to deduce

∥L((ξt,mt))−L((ξ′t,m′
t))∥TV ≤ ∥L((ξt,mt))−L((ξt, m̃t))∥TV + ∥L((ξ′t,m′

t))−L((ξ′t, m̃′
t))∥TV.(4)

The last stage is proving the following proposition, the proof of which uses a chameleon process adapted to this setting.

Proposition 5. Let (ξt,mt) denote the time-t configuration of a MaBB initialised at (ξ, v) ∈ Ω′
G,m. There exist positive

constants K0 and c= c(s) such that for any t > 0,

∥L((ξt,mt))−L((ξt, m̃t))∥TV ≤K0e
−ct/maxi,j EM̂i,j(G)

√
a(m− 1) + bn.(5)

Moreover, we can take c(s) = (4K log(12a(p∗)−2))−1 with K = 8a/(p∗)2.

Proof of Theorem 1. Combining (2)–(5),

max
ζ,ζ′

∥L(ζt)−L(ζ ′t)∥TV ≤ 2mK0e
−t/(4Kmaxi,j EM̂i,j(G) log(12a(p∗)−2))

√
a(m− 1) + bn.
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Thus we deduce that there exists a universal C > 0 such that if

t≥Ca(p∗)−2 log(12a(p∗)−2) log((am+ bn)/ε)max
i,j

EM̂i,j(G),

then the total variation distance between L(ζt) and L(ζ ′t) is at most ε for any initial configurations ζ and ζ ′, so the
statement of Theorem 1 holds.

1.4. Outline of the rest of the paper

The rest of the paper is structured as follows. In Section 2 we identify five key properties enjoyed by the BBSP, which
includes writing the equilibrium distribution (1) explicitly in terms of a and b (the coprime integers from Remark 1). In
Section 3, we give the construction of the MaBB process; firstly we present the dynamics of a single step, and then we
show how the MaBB can be constructed ‘graphically’.

The chameleon process is constructed in Section 4. We again give the dynamics of a single step, before showing
how the same graphical construction can be used to build the entire trajectory of the chameleon process. Properties of
the chameleon process, which allow us to make the connection to the MaBB and, ultimately, prove Proposition 5, are
presented in Sections 5 and 6.

We complete the proof of Theorem 1 in Section 7. We present the proof of Proposition 2 in Section 8. An appendix
follows, in which we collect some of the proofs requiring lengthy case analyses. Finally, we give a possible simulation of
the chameleon process over three time steps to illuminate the reader further on its evolution.

2. Key properties of the beta-binomial splitting process

We fix s ∈ Q positive (with s = b/a for a and b coprime), connected graph G of size n ∈ N, and integer m ≥ 2, and
demonstrate five properties of BB(G,s,m) needed to prove Theorem 1.

For e ∈E and ξ, ξ′ ∈ΩG,m, we denote by P
BB(G,s,m)
e (ξ, ξ′) the probability that, given the BB(G,s,m) configuration

is ξ and edge e rings, the new configuration is ξ′. Further, for v ∈ V , we also write Cξ,v for the BB(G,s,m + 1)
configuration which satisfies Cξ,v(u) = ξ(u) + δv(u), for u ∈ V .

Proposition 6. BB(G,s,m) satisfies the following properties:

A. BB(G,s,m) is irreducible on ΩG,m.
B. BB(G,s,m) is reversible with equilibrium distribution

πBB(G,s,m)(ξ)∝
∏
v∈V :
ξ(v)>0

1

ξ(v)!

ξ(v)−1∏
i=0

(ai+ b), ξ ∈ΩG,m.(6)

C. Updates are symmetric: if the configuration of BB(G,s,m) is ξ and edge e = {v,w} rings to give new configura-

tion ξ′, then ξ′(v)
d
= ξ′(w).

D. Updates have a chance to be near even split: There exists probability p∗ ∈ (0,1/3) such that

• if the configuration of BB(G,s,m) is ξ with ξ(v) + ξ(w) ≥ 2 and edge e = {v,w} rings, with probability at
least p∗, the new configuration ξ′ has

ξ′(v) ∈
[
1

3
(ξ(v) + ξ(w)),

2

3
(ξ(v) + ξ(w))

]
,

• if the configuration of BB(G,s,m) is ξ with ξ(v) + ξ(w) = 2 and edge e = {v,w} rings, the probability that
both particles will be on the same vertex in the new configuration is at least 2p∗.

Moreover, it suffices to take p∗ = (5/12)2s/(6B(s, s)) for s < 20 and p∗ = 1
6 (1−

20
s+1 ) for s≥ 20.

E. The heat kernel satisfies the following identity: for any ξ, ξ′ ∈ΩG,m, e= {v,w} ∈ E,

(ξ′(v) + 1)PBB(G,s,m+1)
e (Cξ,v,Cξ′,v) + (ξ′(w) + 1)PBB(G,s,m+1)

e (Cξ,v,Cξ′,w)

= (ξ(v) + ξ(w) + 1)PBB(G,s,m)
e (ξ, ξ′).

We defer the proof to Appendix A.
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3. An auxiliary process: MaBB

3.1. Initial MaBB construction

Recall that the MaBB must be constructed to satisfy the conditions of Proposition 4. In addition to this, we shall also
require that, given a particular edge e rings, the law which governs the movement of the non-marked particles does not
depend on the location of the marked particle (this will ensure that the uniform random variables in element 3 of the
graphical construction given in Section 3.2 can be taken to be independent). This is not to say that the locations of the
non-marked particles are independent of the location of the marked – indeed they are not – as the trajectory of the marked
particle depends on the trajectories of the non-marked particles.

The MaBB is coupled to the BBSP so that it updates at the same times. When an edge rings in the BBSP, if the marked
particle is absent from the vertices of the ringing edge, the update of the MaBB is as in the BBSP. If instead the marked
particle is on one of the vertices of the ringing edge, we first remove the marked particle, then move the remaining (i.e.
non-marked) particles as in the BBSP, and then add the marked particle back to one of the two vertices on the ringing edge
with a certain law. Specifically, if e= {v,w} is the ringing edge and the MaBB configuration before the update is (ξ, v)
and after the update the non-marked particles are in configuration ξ′, we place the marked particle on v with probability

Pe,ξ,ξ′(v, v) :=
ξ′(v) + 1

ξ(v) + ξ(w) + 1

P
BB(G,s,m)
e (Cξ,v,Cξ′,v)

P
BB(G,s,m−1)
e (ξ, ξ′)

,

and place it on w with probability

Pe,ξ,ξ′(v,w) :=
ξ′(w) + 1

ξ(v) + ξ(w) + 1

P
BB(G,s,m)
e (Cξ,v,Cξ′,w)

P
BB(G,s,m−1)
e (ξ, ξ′)

.

This exhausts all possibilities (i.e. Pe,ξ,ξ′(v, v) + Pe,ξ,ξ′(v,w) = 1) by Property E. Further, it is immediate from this
construction that the movement of non-marked particles does not depend on the location of the marked particle.

With this construction, we show that Proposition 4 holds.

Proof of Proposition 4. Recall Ω′
G,m denotes the set of configurations of the MaBB, and members of Ω′

G,m are of the
form (ξ, y) where ξ ∈ΩG,m−1 with ξ(v) denoting the number of non-marked particles at vertex v, and y ∈ V denotes the
location of the marked particle.

Let PMaBB
e ((ξ, v), (ξ′,w)) denote the probability that, given the MaBB configuration is (ξ, v) and edge e rings, the

new configuration is (ξ′,w). Then in order to ensure that if we forget the marking in the MaBB we obtain the BBSP, it
suffices that, for every edge e= {v,w} and ξ, ξ′ ∈ΩG,m−1,

PMaBB
e ((ξ, v), (ξ′, v)) + PMaBB

e ((ξ, v), (ζ,w)) = PBB(G,s,m)
e (Cξ,v,Cξ′,v)(7)

where ζ ∈ ΩG,m−1 satisfies ζ(y) = ξ′(y) + δv(y) − δw(y) for y ∈ V . The reason is that if we forget the marking in
either of MaBB configurations (ξ′, v) or (ζ,w), we obtain the same BBSP configuration Cξ′,v , and these are the only
configurations with this property which are obtainable from (ξ, v) when e rings.

We see that (7) holds as follows:

PMaBB
e ((ξ, v), (ξ′, v)) + PMaBB

e ((ξ, v), (ζ,w))

= Pe,ξ,ξ′(v, v)P
BB(G,s,m−1)
e (ξ, ξ′) + Pe,ξ,ζ(v,w)P

BB(G,s,m−1)
e (ξ, ζ)

=
ξ′(v) + 1

ξ(v) + ξ(w) + 1
PBB(G,s,m)
e (Cξ,v,Cξ′,v) +

ζ(w) + 1

ξ(v) + ξ(w) + 1
PBB(G,s,m)
e (Cξ,v,Cζ,w)

=
ξ′(v) + 1

ξ(v) + ξ(w) + 1
PBB(G,s,m)
e (Cξ,v,Cξ′,v) +

ξ′(w)

ξ(v) + ξ(w) + 1
PBB(G,s,m)
e (Cξ,v,Cζ,w)

= PBB(G,s,m)
e (Cξ,v,Cξ′,v),

where the last equality uses Cξ′,v =Cζ,w .
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This description for the MaBB is useful as it clearly demonstrates that the movement of the non-marked particles does
not depend on the location of the marked particle. There is an equivalent (distributionally-speaking) description of the
MaBB which is useful for proving some other properties. Note that for y ∈ {v,w}= e,

PMaBB
e ((ξ, v), (ξ′, y)) =

ξ′(y) + 1

ξ(v) + ξ(w) + 1
PBB(G,s,m)
e (Cξ,v,Cξ′,y).(8)

Thus an update of the MaBB from state (ξ, v) when edge e= {v,w} rings can be obtained by first removing the marking
on the marked particle (but leaving it on the vertex) to obtain the BBSP configuration Cξ,v , then updating according to
the BBSP, which gives BBSP configuration Cξ′,y with probability P

BB(G,s,m)
e (Cξ,v,Cξ′,y), and then choosing a particle

from edge e uniformly and applying a mark to it (so the marked particle will be on y with probability ξ′(y)+1
ξ(v)+ξ(w)+1 ). We

shall use this alternative description later in the paper (see the proof of Proposition 23).
For k ∈ N0, set χ(k) = ak + b with a and b the coprime integers from Property B. We call this the colour function.

The importance of the colour function becomes apparent from the following result.

Lemma 7. Fix vertices v and w with e= {v,w} an edge of the graph. For any ξ, ξ′ ∈ΩG,m−1,

χ(ξ(v))Pe,ξ,ξ′(v, v) + χ(ξ(w))Pe,ξ,ξ′(w,v) = χ(ξ′(v)).

The (yet to be defined) chameleon process will allow us to track possible locations of the marked particle in the MaBB,
given the location of the non-marked particles. If we run the MaBB for a long time, and then observe that the configuration
of non-marked particles is ξ, the probability the marked particle is on vertex v will be close to πξ(v) (defined in (10)). If
we scale πξ(v) by a(m− 1) + bn, we obtain χ(ξ(v)) (see (11)). Together with reversibility, this is essentially the reason
why Lemma 7 is true. Our goal in the chameleon process will be to have χ(ξ(v)) red particles on vertex v, for all v, as
this will signal that the marked particle is “mixed” (see Proposition 21). In fact, the chameleon process will always have
χ(ξ(v)) non-black particles on v (they will be either red, white, or pink), when there are ξ(v) black particles on v.

Proof of Lemma 7. Reversibility of the BBSP (Property B) gives that for any edge e and configurations ζ, ζ ′ ∈ΩG,m,

πBB(G,s,m)(ζ)PBB(G,s,m)
e (ζ, ζ ′) = πBB(G,s,m)(ζ ′)PBB(G,s,m)

e (ζ ′, ζ).(9)

For any v,w ∈ V and ξ and ξ′ which satisfy ξ(v) + ξ(w) = ξ′(v) + ξ′(w), we have∑
y∈{v,w}

Cξ,v(y) =
∑

y∈{v,w}

Cξ,w(y) =
∑

y∈{v,w}

Cξ′,v(y) =
∑

y∈{v,w}

Cξ′,w(y) = ξ(v) + ξ(w) + 1.

Observe that PMaBB
e ((ξ, v), (ξ′,w))> 0 is equivalent to PMaBB

e ((ξ′,w), (ξ, v))> 0 and implies ξ(v) + ξ(w) = ξ′(v) +
ξ′(w). Thus using (8) and (9), we have

πBB(G,s,m)(Cξ,v)(ξ(v) + 1)PMaBB
e ((ξ, v), (ξ′,w)) = π(Cξ′,w)(ξ

′(w) + 1)PMaBB
e ((ξ′,w), (ξ, v)).

By similar arguments we also have

πBB(G,s,m)(Cξ,w)(ξ(w) + 1)PMaBB
e ((ξ,w), (ξ′, v))

= πBB(G,s,m)(Cξ′,v)(ξ
′(v) + 1)PMaBB

e ((ξ′, v), (ξ,w)),

and

πBB(G,s,m)(Cξ,y)(ξ(y) + 1)PMaBB
e ((ξ, y), (ξ′, y))

= πBB(G,s,m)(Cξ′,y)(ξ
′(y) + 1)PMaBB

e ((ξ′, y), (ξ, y)), y ∈ {v,w}.

Hence the MaBB process is reversible with equilibrium distribution

πMaBB((ξ, v))∝ πBB(G,s,m)(Cξ,v)(ξ(v) + 1).



8

For each ξ ∈ΩG,m−1, we define

πξ(v) := πMaBB((ξ, v))/
∑
y

πMaBB((ξ, y)),(10)

so that

πξ(v) =
πBB(G,s,m)(Cξ,v)(ξ(v) + 1)∑
y π

BB(G,s,m)(Cξ,y)(ξ(y) + 1)
.

Property B gives that

πBB(G,s,m)(Cξ,v)∝
aξ(v) + b

ξ(v) + 1

∏
w∈V :
ξ(w)>0

1

ξ(w)!

ξ(w)−1∏
i=0

(ai+ b),

and hence

πξ(v) =
aξ(v) + b

a(m− 1) + bn
=

χ(ξ(v))

a(m− 1) + bn
.(11)

It follows that to prove the lemma, it suffices to show that

πξ(v)Pe,ξ,ξ′(v, v) + πξ(w)Pe,ξ,ξ′(w,v) = πξ′(v),

equivalently,

πMaBB((ξ, v))∑
y π

MaBB((ξ, y))
Pe,ξ,ξ′(v, v) +

πMaBB((ξ,w))∑
y π

MaBB((ξ, y))
Pe,ξ,ξ′(w,v) =

πMaBB((ξ′, v))∑
y π

MaBB((ξ′, y))
.(12)

Note that

Pe,ξ,ξ′(v, v) =
PMaBB
e ((ξ, v), (ξ′, v))∑

y∈{v,w}P
MaBB
e ((ξ, v), (ξ′, y))

=
PMaBB
e ((ξ, v), (ξ′, v))

P̂MaBB
e (ξ, ξ′)

,

where we define P̂MaBB
e (ξ, ξ′) :=

∑
y∈{v,w}P

MaBB
e ((ξ, v), (ξ′, y)) and note that this does not depend on v. Thus the

left-hand side of (12) can be written as

πMaBB((ξ, v))PMaBB
e ((ξ, v), (ξ′, v)) + πMaBB((ξ,w))PMaBB

e ((ξ,w), (ξ′, v))

P̂MaBB
e (ξ, ξ′)

∑
y π

MaBB((ξ, y))

=
P̂MaBB
e (ξ′, ξ)πMaBB((ξ′, v))

P̂MaBB
e (ξ, ξ′)

∑
y π

MaBB((ξ, y))

using the reversibility of MaBB. Thus showing (12) is equivalent to showing

P̂MaBB
e (ξ′, ξ)

∑
y

πMaBB((ξ′, y)) = P̂MaBB
e (ξ, ξ′)

∑
y

πMaBB((ξ, y)).(13)

We use reversibility to show this identity:

P̂MaBB
e (ξ′, ξ)

∑
y

πMaBB((ξ′, y))

= πMaBB((ξ′, v))P̂MaBB
e (ξ′, ξ) + πMaBB((ξ′,w))P̂MaBB

e (ξ′, ξ)

+
∑

y/∈{v,w}

πMaBB((ξ′, y))P̂MaBB
e (ξ′, ξ)

= πMaBB((ξ′, v))
∑

y∈{v,w}

PMaBB
e ((ξ′, v), (ξ, y)) + πMaBB((ξ′,w))

∑
y∈{v,w}

PMaBB
e ((ξ′,w), (ξ, y))
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+
∑

y/∈{v,w}

πMaBB((ξ′, y))
∑
z

PMaBB
e ((ξ′, z), (ξ, y))

=
∑

y∈{v,w}

πMaBB((ξ, y))
(
PMaBB
e ((ξ, y), (ξ′, v)) + PMaBB

e ((ξ, y), (ξ′,w))
)

+
∑

y/∈{v,w}

πMaBB((ξ′, y))PMaBB
e ((ξ′, y), (ξ, y))

= πMaBB((ξ, v))P̂MaBB
e (ξ, ξ′) + πMaBB((ξ,w))P̂MaBB

e (ξ, ξ′)

+
∑

y/∈{v,w}

πMaBB((ξ, y))PMaBB
e ((ξ, y), (ξ′, y))

= πMaBB((ξ, v))P̂MaBB
e (ξ, ξ′) + πMaBB((ξ,w))P̂MaBB

e (ξ, ξ′)

+
∑

y/∈{v,w}

πMaBB((ξ, y))
∑
z

PMaBB
e ((ξ, y), (ξ′, z))

= πMaBB((ξ, v))P̂MaBB
e (ξ, ξ′) + πMaBB((ξ,w))P̂MaBB

e (ξ, ξ′)

+
∑

y/∈{v,w}

πMaBB((ξ, y))P̂MaBB
e (ξ, ξ′)

= P̂MaBB
e (ξ, ξ′)

∑
y

πMaBB((ξ, y)).

3.2. Graphical construction of the MaBB

We present a ‘graphical construction’ of the MaBB, which will also be used for the chameleon process. The motivation
behind this construction is that it contains all of the random elements from which one can then deterministically construct
both the MaBB and the chameleon process. In particular, it allows us to construct the MaBB and the chameleon process
on the same probability space.

The graphical construction is comprised of the following elements:

1. A Poisson process of rate
∑

e re which gives the times {τ1, τ2, . . .} at which edges ring (we also set τ0 = 0).
2. A sequence of edges {er}r≥1 so that edge er is the edge which rings at the rth time τr of the Poisson process; for

each r ≥ 1 and e ∈E, P(er = e)∝ re.
3. For each r ≥ 1 an independent uniform random variable U b

r on [0,1] (which will be used to determine how non-
marked particles in the MaBB update at time τr when edge er rings), and an independent uniform random variable
U c
r on [0,1] (used for updating the location of the marked particle in MaBB).

4. A sequence of independent fair coin flips {dℓ}ℓ≥1 (Bernoulli(1/2) random variables). These are only used in the
chameleon process.

We now demonstrate how the graphical construction is used to build the MaBB of interest, given an initial configura-
tion.

Fix u ∈ [0,1], e = {v,w} ∈ E, and ξ ∈ ΩG,m−1. Without loss of generality, suppose v < w (recall V = [n]) and
suppose {ξ1, . . . , ξr} are the possible configurations of the non-marked particles that can be obtained from non-marked
configuration ξ when edge e rings. Without loss of generality suppose they are ordered so that

|ξi(v)−
1

2
(ξ(v) + ξ(w))| ≤ |ξj(v)−

1

2
(ξ(v) + ξ(w))| if and only if i≤ j,(14)

with any ties resolved by ordering earlier the configuration which places fewer particles on v.
We now define two deterministic functions MaBB : [0,1]× E × ΩG,m−1 → ΩG,m−1 and MaBB∗ : [0,1]× [0,1]×

E ×ΩG,m−1 × V → V .
Firstly, we define MaBB(u, e, ξ) to be the configuration of non-marked which satisfies, for each 1≤ i≤ r,

MaBB(u, e, ξ) = ξi if
∑
j<i

PBB(G,s,m−1)
e (ξ, ξj)< u≤

∑
j≤i

PBB(G,s,m−1)
e (ξ, ξj).
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When u is chosen according to a uniform on [0,1] this gives that MaBB(u, e, ξ) has the law of the new configuration of
non-marked particles (given e rings and the old configuration is ξ), i.e.for a uniform U on [0,1], MaBB(U,e, ξ) has law
P
BB(G,s,m−1)
e (ξ, ·).

By Property D, if ξ(v) + ξ(w)≥ 2, then

u≤ p∗ =⇒ MaBB(u, e, ξ)(v) ∈
[
1

3
(ξ(v) + ξ(w)),

2

3
(ξ(v) + ξ(w))

]
(15)

(this is the reason for choosing the ordering of the new configurations as described in (14), and is used in the proof of
Proposition 23).

Secondly, for m ∈ V and u,u′ ∈ [0,1] we set

MaBB∗(u,u′, e, ξ,m) =

{
m if m /∈ e or m ∈ e and u′ < Pe,ξ,MaBB(u,e,ξ)(m,m),

e \ {m} otherwise.
(16)

With this construction, we have that for U ′ ∼ Unif [0,1],

P(MaBB∗(u,U ′,{v,w}, ξ, v) =w) = P{v,w},ξ,MaBB(u,{v,w},ξ)(v,w),

P(MaBB∗(u,U ′,{v,w}, ξ, v) = v) = P{v,w},ξ,MaBB(u,{v,w},ξ)(v, v),

and so MaBB∗(U,U ′,{v,w}, ξ, v) has the law of the new location of the marked particle, when edge {v,w} updates
with the marked on v, the non-marked particles being in configuration ξ, and U, U ′ independent uniforms on [0,1].

We can now obtain a realisation of the MaBB as follows. Suppose we initialise at state (ξ0, x0). Given the state at time
τi, the MaBB remains constant until the next update at time τi+1, at which time

ξτi+1 =MaBB(U b
i+1, ei+1, ξτi), mτi+1 =MaBB∗(U b

i+1,U
c
i+1, ei+1, ξτi ,mτi).

4. The Chameleon process

4.1. Introduction to the chameleon process

We introduce a chameleon process in order to prove Proposition 5. In the chameleon process associated with a MaBB,
the non-marked particles are replaced with black particles (which are coupled to evolve identically to the non-marked
particles). The purpose of the chameleon process is to provide a way to track how quickly the marked particle in the
MaBB becomes mixed. We achieve this via the existence of red particles in the chameleon process, with each additional
red particle on a vertex corresponding to an increase in the probability that in the MaBB, the marked particle is on that
vertex. It turns out that bounding how long it takes the chameleon process to reach an all-red state (where there are
aξ(v) + b red particles on each vertex v when the black particles are in configuration ξ) when we condition on this
happening before reaching a no-red state (an event we call Fill) is key to proving Proposition 5. This calculation is carried
out in Section 6 with the proof of Proposition 5 in Section 7.

As stated previously, the chameleon process will be built using the graphical construction. The chameleon process is
an interacting particle system consisting of coloured particles moving on the vertices of a graph (the same graph as the
MaBB). Particles can be of four colours: black, red, pink and white. Each vertex v in the chameleon process is occupied
at a given time by a certain number, B(v), of black particles and χ(B(v)) non-black particles (recall χ is the colour
function).

Associated with each vertex is a notion of the amount of redness, called ink (this terminology is consistent with
previous works using a chameleon process). Specifically we write inkt(v) for the number of red particles plus half the
number of pink particles at vertex v at time t in the chameleon process. If there are B(v) black particles at vertex v at
time t then 0≤ inkt(v)≤ χ(B(v)), with the minimum (resp.maximum) attained when all non-black particles are white
(resp.red).

We use the initial configuration of the MaBB to initialise the chameleon process. Each non-marked particle on a vertex
in the MaBB configuration corresponds to a black particle at the same vertex in the chameleon process. The vertex with
the marked particle in the MaBB is initialised in the chameleon process with all non-black particles as red. Every other
vertex has all non-black particles as white.

The chameleon process consists of rounds of length T (a parameter of the process), and at the end of some rounds is a
depinking time. Whether we have a depinking time (at which we remove all pink particles, replacing them all with either
red or white particles) will depend on the numbers of red, pink and white particles in the graph at the end of that round.
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If at the start of the round there are fewer red than white particles then we shall assign to each red particle a unique
white particle; thus each red particle has a paired white particle. Later, our interest will be in determining how many red
particles ‘meet’ their paired white particle during a round, where two particles are said to meet if, at some moment in
time, they are both on the same ringing edge (unless they start on the same vertex, they will be on different vertices when
they meet). If there are fewer white than red particles at the start of the round we shall reverse roles so that each white
particle gets a unique paired red particle.

In the chameleon process we can only create new pink particles (by re-colouring red and white particles) at the meeting
times of paired particles. It is this restriction which will lead to us taking the round length to be the maximal expected
meeting time of two random walks.

In previous works using other versions of the chameleon process, the idea of using paired particles is not used (it is not
needed). It becomes useful here because a priori there is no constant (not depending on the number of particles or size of
the graph) bound on the number of particles which may occupy a vertex. As a result, without using pairing, it turns out
we would need to understand the movement of 3 coloured particles simultaneously, rather than the movement of one red
and one white until their meeting time.

4.2. A single step of the chameleon process

Our construction of the chameleon process is such that when an edge rings, we first observe how the non-marked particles
move in the MaBB and move the black particles in the same way. Given the new configuration of black particles, the
number of non-black particles on the vertices is determined by the colour function χ. After observing the movement of
the black particles, we shall then determine the movement of the red particles (and if we have to pinken any) then the
pre-existing pink particles (i.e.not any just-created pink particles) and finally the white particles.

To specify more precisely an update, we introduce some notation. We shall define a probability

θ(v) = θ(v, e,B(v),B(w),B′(v),B′(w),R(v),R(w), P (v), P (w))

which is a function of a vertex v, an edge containing that vertex e= {v,w}, and non-negative integers

B(v),B(w),B′(v),B′(w),R(v),R(w), P (v), P (w)

which satisfy B′(v) ≤ B(v) + B(w), B(v) + B(w) = B′(v) + B′(w), R(v) + P (v) ≤ χ(B(v)), R(w) + P (w) ≤
χ(B(w)). The integers B,R,P shall represent the numbers of black/red/pink on the vertices of the edge e just prior
to its ringing, and B′(v), B′(w) the number of black particles on v,w just after e rings.

For simplicity we write Rv,w for R(v) +R(w) and Pv,w for P (v) + P (w).
To define θ(v) we also define integers

ℓ(v) = ℓ(v,Rv,w,B
′(w)) := {Rv,w − χ(B′(w))} ∨ 0,

u(v) = u(v,Rv,w,B
′(v)) := χ(B′(v))∧Rv,w,

u(w) = u(w,Rv,w,B
′(w)) := χ(B′(w))∧Rv,w =Rv,w − ℓ(v),

ℓP (v) = ℓP (v,Rv,w, Pv,w,B
′(w)) := {Pv,w − χ(B′(w)) + u(w)} ∨ 0,

uP (v) = uP (v,Rv,w, Pv,w,B
′(w)) := {χ(B′(v))− u(v)} ∧ Pv,w.

We also set ℓ(w) =Rv,w−u(v). The idea behind these definitions is the following. The values of χ(B′(v)) and χ(B′(w))
impose restrictions on the number of non-black particles which can occupy vertices v and w after the update. For example,
the number of red particles on v cannot exceed χ(B′(v)); this gives an upper limit of u(v) for the number of red particles
that we can place onto v after the update. On the other hand, the number of red particles on w after the update cannot
exceed χ(B′(w)), which in turn means that the number of red particles on v has to be at least Rv,w −χ(B′(w)), giving a
lower limit of ℓ(v). The difference between these values, i.e.u(v)− ℓ(v) =Rv,w − ℓ(v)− ℓ(w) is the number of flexible
reds, that is, the number of red particles which can be either on v or w after the update. It is these flexible reds that we get
a chance to pinken, with pink particles representing particles which are half red and half white. Once the values of u(v)
and u(w) have been determined, based on how the black particles move, we can then place the pre-existing pink particles.
We again have to ensure that the number of non-black particles on v does not exceed χ(B′(v)), and now there could be
at most u(v) red particles, so we restrict to placing at most χ(B′(v))− u(v) pink particles; this gives uP (v). There is a
similar restriction on vertex w and through this we obtain a lower bound ℓP (v) on the number of pink particles to place
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onto v. The role of θ(v) is to give the probability of placing the lower limits on v, with 1− θ(v) then the probability of
placing the upper limits on v. We choose θ(v) to satisfy

(17)
θ(v)[ℓ(v) +

1

2
ℓP (v)] + (1− θ(v))[u(v) +

1

2
uP (v)]

= (R(v) +
1

2
P (v))Pe,B,B′(v, v) + (R(w) +

1

2
P (w))Pe,B,B′(w,v) =:m∗(v).

This particular choice of θ(v) is necessary to ensure that the expected amount of ink at a vertex (given numbers of black
particles on the vertices) matches the probability that the marked particle in the MaBB process is on that vertex (given
the location of non-marked particles), see Lemma 11.

The following lemmas shows that such a θ(v) exists and give bounds on its value.

Lemma 8 (Existence of θ(v)). For every e, v,w,B,B′,R,P ,

ℓ(v) +
1

2
ℓP (v)≤m∗(v)≤ u(v) +

1

2
uP (v),

and so in particular there exists θ(v) ∈ [0,1] satisfying (17).

Lemma 9 (Bounds on θ(v)). Fix e= {v,w}, B and η ∈ (0,1/2). If B′ satisfies

Pe,B,B′(v, v), Pe,B,B′(w,w) ∈ [η,1− η],

then θ(v) ∈ [η,1− η].

The proofs of these lemmas involve lengthy (but straightforward) case analyses and can be found in Appendix B.
We now describe in full detail the dynamics of a single step of the chameleon process, including the role of θ(v). We

show how this fits with the graphical construction in the next section. We assume that pairings of red and white particles
have already happened (these happen at the beginning of each round, more details are provided on this in the next section
on how this is achieved through “label configurations”).

As a preliminary step, we remove all non-black particles from the vertices of the ringing edge and place them into
a pooled pile. They will be redistributed to the vertices during the steps described below. We update the black particles
from B to B′ according to the law of the movement of the non-marked particles in the MaBB (recall that the movement
of non-marked particles does not depend on the location of the marked).

Step 1: [Place lower bounds]
If there are no red particles on v or w, skip straight to Step 4. Otherwise we proceed as follows. We introduce a notion
of reserving paired particles in this step and put the lower bounds ℓ(v) and ℓ(w) of red particles onto vertices v and w.
In choosing red particles to use for the lower bounds, it is important to avoid as much as possible the paired red particles
(i.e. those reds for which their paired white is also on the ringing edge) so that they can be reserved for the set of flexible
reds, as only reds which are both flexible and paired can actually be pinkened. Thus, when choosing from the pooled pile
for the ℓ(v) + ℓ(w) reds for the lower bounds, we shall first choose the non-paired reds (and the specific ones chosen –
i.e. the vertex they started from at this update step and the label if they have one (see the next section for a discussion on
when and how to label particles) – is made uniformly). If there are insufficient non-paired reds, then once they are placed
we choose from the paired reds (again uniformly).

Step 2: [A fork in the road]
With probability 2[θ(v)∧ (1− θ(v))] proceed to Step 3a; otherwise skip Step 3a and proceed to Step 3b.

Step 3a: [Create new pink particles]
Let k denote the number of paired red particles remaining in the pile after Step 1. Select (uniformly)

k ∧ {⌈[(|R| ∧ |W |) + |P |/2]/3⌉ − |P |/2}(18)

paired red particles from the pile1, where |R| :=
∑

v∈V R(v), and similarly for |W | and |P | (where W (v) denotes the
number of white particles on v). These are coloured pink and placed onto v. The paired white particles of these selected
red particles are also coloured pink and placed onto w. Any paired red and any non-paired red left in the pile are then
each independently placed onto v or w equally likely. Now proceed to Step 4.

Step 3b: [Place remaining red particles]
If θ(v)< 1/2 put any remaining red particles from the pile onto v. As a result there will now be u(v) red particles on v.

1By taking this minimum we ensure that the number of pink particles created won’t exceed a certain threshold.
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If instead θ(v) ≥ 1/2, put any remaining red particles from the pile onto w (and so there are u(w) red particles on w.)
Now proceed to Step 4.

Step 4: [Place old pink particles]
There may be some pink particles remaining in the pool (which were already pink at the start of the update). If not, skip
to Step 5; otherwise with probability θ(v), put ℓP (v) of these pink particles on v, and the rest (i.e.uP (w) of them) on w.
With the remaining probability, instead put uP (v) of them on v and the rest on w.

Step 5: [Place white particles]
The only possible particles left in the pile are white particles. These are placed onto v and w to ensure that the total
number of non-black particles now on v is χ(B′(v)) (which also ensures there are χ(B′(w)) non-black particles on w
since χ(B(v))+χ(B(w)) = χ(B′(v))+χ(B′(w)) and no particles are created or destroyed). The choice of which white
particles are put onto v is done uniformly.

The next result shows the usefulness of reserving in guaranteeing a certain number of reserved pairs remain in the pool
after Step 1.

Write Rp
v,w for the number of paired red particles on e= {v,w}, and set Rq

v,w =R(v) +R(w)−Rp
v,w .

Lemma 10. If there are k paired red particles on ringing edge e = {v,w} then the number that are left remaining in
the pooled pile after Step 1 above is at least k ∧χ(B′(v))∧χ(B′(w)). Further, on the event that χ(B′(v))/χ(B′(w)) ∈
[γ,1/γ] for some γ ∈ (0,1), the probability any particular paired red particle remains in the pool after Step 1 is at least
γ uniformly over B, Rq

v,w , Rp
v,w and P .

We defer the proof to Appendix B.
The next result gives the expected amount of ink after one step of using this algorithm. We state the result in terms of

the first update, given any initial conditions. Recall m∗(v) is defined in (17).

Lemma 11. For any v,w ∈ V , B,R,P initial configurations of black, red and pink particles, and B′ the configuration
of black particles just after the first update (at time τ1),

E[inkτ1(v) |B,B′,R,P,{e1 = {v,w}}] =m∗(v).

Proof. Recall that each red particle contributes 1 to the ink value of the vertex it occupies, and each pink particle con-
tributes 1/2.

We first consider the contribution to inkτ1(v) which comes from the particles placed onto v in Step 1. This is straight-
forward: we place ℓ(v) particles onto v from the pile and these are all red, thus the contribution to inkτ1(v) from Step 1
is simply ℓ(v).

At Step 2 we do not place any new particles onto the vertices, but we do decide whether to proceed with Step 3a or
Step 3b. If we do Step 3a then each red particle (paired or otherwise) in the pool will in expectation contribute a value
of 1/2 to inkτ1(v): either it gets coloured pink as does its paired white and one of them is placed onto v, or it stays red
and is placed onto v with probability 1/2. If we do Step 3b and θ(v)< 1/2 then we place the remaining red particles on
v which gives a total of u(v) red on v. If instead θ(v)≥ 1/2, we do not place any more red particles on v.

Finally at Step 4 we place the pre-existing pink particles, each contributing 1/2 to the ink of the vertex they are placed
on.

Putting these observations together we obtain

E[inkτ1(v) |B,B′,R,P,{e1 = {v,w}}]

= ℓ(v) + 2[θ(v)∧ (1− θ(v))]
u(v)− ℓ(v)

2
+ (1− 2[θ(v)∧ (1− θ(v))])1{θ(v)<1/2}(u(v)− ℓ(v))

+ θ(v)
ℓP (v)

2
+ (1− θ(v))

uP (v)

2

= ℓ(v) + 1{θ(v)<1/2}
{
θ(v)(u(v)− ℓ(v)) + (1− 2θ(v))(u(v)− ℓ(v))

}
+ 1{θ(v)≥1/2}

{
(1− θ(v))(u(v)− ℓ(v))

}
+ θ(v)

ℓP (v)

2
+ (1− θ(v))

uP (v)

2

= ℓ(v) + (1− θ(v))(u(v)− ℓ(v)) + θ(v)
ℓP (v)

2
+ (1− θ(v))

uP (v)

2

= θ(v)

(
ℓ(v) +

ℓP (v)

2

)
+ (1− θ(v))

(
u(v) +

uP (v)

2

)
=m∗(v).
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4.3. The evolution of the chameleon process

We define a “particle configuration” to be a function V →N0, which, in practice, will be the configuration of red, black,
pink or white particles. For S a particle configuration we define |S| :=

∑
v∈V S(v). We also define a “label configuration”

to be a function [a(m− 1) + bn]→ V ∪ {0}, which will give the vertex occupied by the labelled particle of a certain
colour (and which has value 0 if there is no particle of a given label). We discuss further this labelling now.

At the start of every round we shall pair some red particles with an equal number of white particles. The way we do
this, and how we track the movement of the paired particles, is by labelling paired red and white particles with a unique
number. Suppose there are r red particles at the start of the ℓth round, and this is less than the number of white particles
(otherwise, reverse roles of red and white in the following). We label the red particles with labels 1, . . . , r such that for
any pair of vertices v and w, the label of any red particle on vertex v is less than the label of any red particle on vertex
w if and only if v < w. In other words, we label red particles on vertex 1 first, then label red particles on 2, and continue
until we have labelled all r red particles. We similarly label r white particles with the (same) rule that for any pair of
vertices v and w, the label of any white particle on vertex v is less than the label of any white particle on vertex w if and
only if v < w. A labelled red particle and a labelled white particle are pairs if they have the same label.

For every time, we will have two label configurations: one for the red particles and one for the white. Suppose L is
such a label configuration for the red particles at a certain time. Then the number of labelled red particles at this time is
equal to

max{i : 1≤ i≤ a(m− 1) + bn,L(i) ̸= 0},

so in particular, L(i) = 0 for any i larger than the number of labelled red particles.
There are several aspects of the update rule which require external randomness: in Step 1, to choose which particles

make up the lower bounds, in Step 2 to determine whether we proceed with Step 3a or Step 3b, in Step 3a choosing which
paired red particles to pinken and how to place the remaining red particles in the pile, in Step 4 how to place the old
pink particles, and in Step 5 to place the white particles. To fit the chameleon process into the framework of the graphical
construction, we shall use random variables {U c

i }i≥1 as the source of the needed randomness with U c
i used at time τi

(and we shall not make it explicit how this is done). Further, and importantly, we shall do this in a way such that the
randomness used at Step 1 is independent of the randomness used at Step 2 (it is standard that this is possible, see for
example [26, Section 4.6]).

The random variables {U b
i }i≥1 are used to determine how the black particles move so that they move in the same way

as the non-marked particles in the MaBB.
For independent uniforms U , U ′ on [0,1], an edge e, particle configurations B of black particles, P of pink

particles, and R of red particles, and label configurations LR for red particles, LW for white particles, we define
C(U,U ′, e,B,R,P,LR,LW ) to be a quintuple with the first component equal to MaBB(U,e,B), the second (resp.third)
component denoting the configuration of red (resp. pink) particles, and the fourth (resp. fifth) component denoting the
label configuration of red (resp.white) particle just after edge e rings if before this edge rang the configuration of black,
red and pink was given by B, R and P , the label configuration of red particles was LR, and of white was LW , and we use
U ′ as the source of randomness for Steps 1–5 as described above (in practice we shall take U ′ to be U c

i for some i≥ 1).
Definition 2 (Chameleon process). The chameleon process with round length T > 0 and associated with a MaBB ini-
tialised at (ξ,x) is the quintuple (BC

t ,R
C
t , P

C
t ,LR

t ,L
W
t )t≥0 where BC

t ,R
C
t and PC

t are particle configurations and LR
t ,

LW
t are label configurations for each t≥ 0, with the following properties:

1. (Initial values) BC
0 (v) = ξ(v), RC

0 (v) = χ(ξ(x))δx(v), and PC
0 (v) = 0, for all v ∈ V ,

LR
0 (i) =

{
x for 1≤ i≤N0 := χ(ξ(x))∧ [a(m− 1) + bn− χ(ξ(x))],

0 otherwise,

and

LW
0 (i) =

min
{
ℓ ∈ {1, . . . , n} \ {x} :

∑
k∈[ℓ]:
k ̸=x

χ(ξ(k))≥ i
}

for 1≤ i≤N0,

0 otherwise.

2. (Updates during rounds) For each i≥ 1,

(BC
τi ,R

C
τi , P

C
τi ,L

R
τi ,L

W
τi ) = C(U b

i ,U
c
i , ei,B

C
τi−,R

C
τi−, P

C
τi−).
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3. (Particle configuration updates at end of rounds) For each i≥ 1 such that

∑
v∈V

PC
iT−(v)≥min

{∑
v∈V

RC
iT−(v),

∑
v∈V

(
χ(BC

iT−(v))−RC
iT−(v)− PC

iT−(v)
)}

,(19)

we set

BC
iT (v) =BC

iT−(v), R
C
iT (v) =RC

iT−(v) + diP
C
iT−(v), P

C
iT (v) = 0 for all v ∈ V ;

and if i does not satisfy (19) then we set

BC
iT (v) =BC

iT−(v), R
C
iT (v) =RC

iT−(v), P
C
iT (v) = PC

iT−(v) for all v ∈ V.

4. (Label configuration updates at end of rounds) For each i≥ 1 we define

Ni :=
∑
v

RC
iT (v)∧

[
a(m− 1) + bn−

∑
v

(
RC

iT (v) + PC
iT (v)

)]
and set

LR
iT (j) =

{
min

{
ℓ ∈ [n] :

∑ℓ
k=1R

C
iT (k)≥ j

}
for 1≤ j ≤Ni,

0 otherwise,

LW
iT (j) =

{
min

{
ℓ ∈ [n] :

∑ℓ
k=1

(
χ(BC

iT (k))−RC
iT (k)− PC

iT (k)
)
≥ j
}

for 1≤ j ≤Ni,

0 otherwise.

We can obtain the number of white particles WC
t (v) at time t on a vertex v using WC

t (v) + RC
t (v) + PC

t (v) =
χ(BC

t (v)).
We write C(m) for the space of possible configurations of the chameleon process in which the underlying MaBB has

m− 1 non-marked particles.
We note from this definition that the process also updates at the ends of rounds, i.e.at times of the form iT for i≥ 1.

At these times if the number of pink particles is at least the number of red or white particles (i.e. if (19) holds), then we
have a depinking (and call this time a depinking time) in which all pink particles are removed from the system. To do
this, we use the coin flips di given in the graphical construction. If time iT is a depinking time then we re-colour all pink
particles red simultaneously if di = 1, otherwise if di = 0 we re-colour them all white.

A simulation of the chameleon process for the first few update times appears in Appendix C.

5. Properties of the chameleon process

5.1. Evolution of ink

In this section we suppose that the chameleon process considered is associated with a MaBB initialised at (ξ,x).

Lemma 12. The total ink in the system only changes at depinking times.

Proof. This is a straightforward observation as the only particles that change colour at an update time that is not a
depinking are paired red and white particles. But since we colour each in the pair pink, the total ink does not change.

Let înkj denote the ink in the system just after the jth depinking time and Dj the time of the jth depinking. The
process {înkj}j≥1 evolves as a Markov chain; the following result gives its transition probabilities. This result is similar
to [20, Proposition 7.3] for the chameleon process used there.

Lemma 13. For j ∈N, înkj+1 ∈ {înkj −∆(înkj), înkj +∆(înkj)} a.s., where for each r ∈N,

∆(r) :=

⌈
min{r, a(m− 1) + bn− r}

3

⌉
.

Moreover, conditionally on {înkℓ}jℓ=0, each possibility has probability 1/2.
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Proof. Fix j ∈ N. After each depinking is performed there are no pink left in the system, and so înkj is equal to the
number of red particles at time Dj , |RC

Dj
|=
∑

v R
C
Dj

(v). As the number of non-black particles is fixed at a(m− 1)+ bn,

it follows that the number of white particles at time Dj is |WC
Dj

|=
∑

v W
C
Dj

(v) = a(m− 1) + bn− înkj .
Observe that every time a red and white particle pair are pinkened, we lose one red and one white, and gain two pink

particles.
It can be easily checked that for p and q positive integers with p even,

p < q⇔⌈(q+ p/2)/3⌉ − p/2> 0.

In other words, while the number of pink particles remains less than the minimum of the number of red and white,
the chameleon process will still create new pink particles (recall the number of pink particles created in Step 3a of the
chameleon process); conversely, the chameleon process will stop producing new pink particles as soon as the number of
pink particles is at least the minimum of the number of red and white particles. Moreover, once it stops producing new
pink particles, the number of pink created is the smallest number which ensures that the number of pink is at least the
number of red or white; we can see this by observing that

p+ 2(⌈(q+ p/2)/3⌉ − p/2) = 2⌈(q+ p/2)/3⌉

is the smallest even integer which is at least

q− (⌈(q+ p/2)/3⌉ − p/2) = (q+ p/2)− ⌈(q+ p/2)/3⌉.

Thus the number of pink particles created just before the next depinking time (at time Dj+1) is the smallest p even
satisfying p≥ |WC

Dj
| − p/2 or p≥ |RC

Dj
| − p/2, which is p= 2∆(înkj).

At the depinking time Dj+1, the pink particles either all become white (and înkj+1 = înkj −∆(înkj)) or they all
become red (and înkj+1 = înkj +∆(înkj)). Which event happens depends just on the outcome of the independent fair
coin flip dj+1.

Lemma 14. The total ink in the system is a martingale and is absorbed in finite time in either 0 or a(m − 1) + bn.
Further, the event

Fill :=
{
lim
t→∞

inkt = a(m− 1) + bn
}

has probability χ(ξ(x))/(a(m− 1) + bn).

Proof. The fact that total ink is a martingale follows from Lemma 13 and the behaviour of the chameleon process at
depinking times. The probability of event Fill then follows by the martingale property and the dominated convergence
theorem (total ink is bounded by a(m− 1) + bn), as in the proof of Lemma 7.1 of [20].

Corollary 15. For ζ ∈ΩG,m−1 and t≥ 0,

P({BC
t = ζ} ∩Fill) = P(BC

t = ζ)P(Fill) = P(BC
t = ζ)

χ(ξ(x))

a(m− 1) + bn
.

Proof. This follows from Lemma 14 and the fact that event Fill only depends on the outcomes of the coin flips {di}i
whereas the movement of the black particles is independent of these coin flips.

Lemma 16. For all t≥ 0 and v ∈ V , inkt(v)≤ χ(BC
t (v)).

Proof. This follows simply from the fact that the number of non-black particles on a vertex with B black particles is
always χ(B). This is true at time 0, and Steps 1 to 5 guarantee this at update times which are not depinkings. Finally,
at depinking times we do not change the number of particles on vertices, only their colour. Observe also that inkt(v) =
χ(BC

t (v)) if at time t all non-black particles on v are red.

The next result shows that, during a single round and until they meet, a pair of paired red-white particles move
(marginally) as independent random walks on the graph, which stay in place with probability 1/2 when an incident edge
rings. For two independent random walks X,Y on a graph G (each of which move by jumping from their current vertex v
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to a neighbour w when edge {v,w} rings), we write MX,Y for their meeting time – the first time they are on neighbouring
vertices, and the edge between them rings for one of the walks (they each have their own independent sequence of edge-
rings). If the walks start on the same vertex, we say their meeting time is 0. We let Ĝ denote the graph (V,E,{re/2}e∈E),
that is, we halve the rates on the edges of graph G.

Lemma 17. Fix u, v ∈ V , u ̸= v, and i ∈N0. Let X and Y be independent random walks on Ĝ with X0 = u, Y0 = v. For
any 1≤ j ≤

∑
v R

C
iT (v)∧

∑
v W

C
iT (v), conditionally on LR

iT (j) = u and LW
iT (j) = v, for all t ∈ [iT, iT +{T ∧MX,Y }),

we have

(LR
t (j),L

W
t (j))

d
= (Xt−iT , Yt−iT ).

Proof. We make use of Property C. Suppose edge e = {v,w} rings during time interval [iT, (i + 1)T ) and the black
particles update from configuration B. Suppose B′ is a possible configuration of the black particles as a result of the
update. Let B̃ be the configuration of black particles with B̃(v) =B′(w), B̃(w) =B′(v) and for z /∈ e, B̃(z) =B′(z) =
B(z). As black particles update as non-marked particles in MaBB, B′ and B̃ are equally likely to be the configuration of
black particles after the update, by Property C. We claim that the probability that a labelled red particle (similarly labelled
white particle) will be on v after the update if configuration B′ is chosen as the new black configuration is the same as the
probability the same labelled red particle (respectively, labelled white particle) will be on w if configuration B̃ is chosen.
This will suffice since prior to meeting, a paired red and white particle will never be on the same ringing edge.

This claim will follow from showing that ℓ(v) = ℓ̃(w), ℓP (v) = ℓ̃P (w), u(v) = ũ(w), uP (v) = ũP (w) and θ(v) =
θ̃(w), where the notation with tilde refers to the update in which B̃ is chosen, and notation without the tilde to the update
in which B′ is chosen. The identities regarding the lower and upper values are immediate from their definitions. To show
θ(v) = θ̃(w), observe that

(20)
θ̃(v)[ℓ̃(v) +

1

2
ℓ̃P (v)] + (1− θ̃(v))[ũ(v) +

1

2
ũP (v)]

= (R(v) +
1

2
P (v))Pe,B,B̃(v, v) + (R(w) +

1

2
P (w))Pe,B,B̃(w,v).

But by Property C, we have

Pe,B,B̃(v, v) =
B̃(v) + 1

B(v) +B(w) + 1

P
BB(G,s,m)
e (CB,v,CB̃,v)

P
BB(G,s,m)
e (B, B̃)

=
B′(w) + 1

B(v) +B(w) + 1

P
BB(G,s,m)
e (CB,v,CB′,w)

P
BB(G,s,m)
e (B,B′)

= Pe,B,B′(v,w),

and similarly Pe,B,B̃(w,v) = Pe,B,B′(w,w). Plugging these into (20) shows that θ̃(v) solves the same equation as θ(w),
hence they are equal; similarly θ(v) = θ̃(w).

5.2. From ink to total variation

In this section we show a crucial connection between the MaBB initialised at (ξ,x) and its associated chameleon process.
To emphasise the dependence of inkt on the initial configuration of the MaBB, we shall sometimes write it as ink(ξ,x)t .

Proposition 18. Let (ξt,mt) denote the time-t configuration of a MaBB initialised at (ξ,x) ∈Ω′
G,m. For every t≥ 0 and

(ζ, y) ∈Ω′
G,m,

P
(
(ξt,mt) = (ζ, y)

)
= E

[
ink

(ξ,x)
t (y)

χ(ξ(x))
1{BC

t =ζ}

]
.

The proof of Proposition 18 is similar in spirit to the proof of Lemma 1 of [18]. We introduce a new process M∗ which
will also be constructed using the graphical construction. This process is similar to the chameleon process in that vertices
are occupied by particles of various colours (black, red, pink and white). Like in the chameleon process, if there are B
black particles on a vertex, then there are χ(B) non-black particles. The process M∗ evolves exactly as the chameleon
process except we replace Step 3a with Step 3a′, described below. Further, M∗ does not have any updates at the ends of
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rounds (so in particular no depinking times). As a result the number of red, white and pink particles remain constant over
time. We use the same terminology (e.g.ink) for process M∗.

Step 3a′: Any red particles left in the pile are each independently placed onto v or w equally likely.
It can be shown (following the same proof) that Lemma 11 holds also for M∗:

Lemma 19. For any v,w ∈ V , B,R,P initial configurations of black, red and pink particles, and B′ the configuration
of black particles just after the first update (at time τ1),

EM∗
[inkτ1(v) |B,B′,R,P,{e1 = {v,w}}] =m∗(v).

Lemma 20. Fix (ξ,x) ∈ Ω′
G,m, random variable ink0(y) taking values in [0, χ(ξ(y))] ∩ (N0/2) for each y ∈ V , and

denote by (ξt,mt) the time-t configuration of a MaBB which starts from a random configuration (ξ0,m0) satisfying
almost surely

∀y ∈ V P(m0 = y | ξ0) = EM∗
[
ink0(y)

χ(ξ(x))

∣∣BC
0

]
,

where M∗ starts with configuration of black particles BC
0 = ξ0 and with initial ink value of ink0(y) at each y ∈ V . Then

for all t≥ 0, almost surely

∀y ∈ V P(mt = y | (ξs)0≤s≤t) = EM∗
[
inkt(y)

χ(ξ(x))

∣∣ (BC
s )0≤s≤t

]
.

Proof. As (ξs)s≥0 and (BC
s )s≥0 are constructed using the same (U b

r )
∞
r=1, they are equal almost surely.

It suffices to show the statement at the update times. We shall use induction. The base case (time τ0 = 0) follows from
the assumption. Fix r ∈N and suppose the result holds up to (and including) time τr−1.

Observe that by the strong Markov property and Lemma 19 (and recall the choice of θ from (17) and also that BC
τr =

MaBB(U b
r , er,B

C
τr−1

)), for any y ∈ V , almost surely

EM∗
[inkτr (y) | U b

r , er,B
C
τr−1

,RC
τr−1

, PC
τr−1

]

= 1{y∈er}

{[
RC

τr−1
(y) +

1

2
PC
τr−1

(y)

]
Per,BC

τr−1
,BC

τr
(y, y)

+

[
RC

τr−1
(er \ {y}) +

1

2
PC
τr−1

(er \ {y})
]
Per,BC

τr−1
,BC

τr
(er \ {y}, y)

}
+ 1{y/∈er} inkτr−1

(y)

= 1{y∈er}

{
inkτr−1

(y)Per,BC
τr−1

,BC
τr
(y, y) + inkτr−1

(er \ {y})Per,BC
τr−1

,BC
τr
(er \ {y}, y)

}
+ 1{y/∈er} inkτr−1(y).

Taking an expectation, the first half of the first term above becomes

EM∗
[
1{y∈er} inkτr−1(y)Per,BC

τr−1
,BC

τr
(y, y)

∣∣ (BC
s )s≤τr

]
= EM∗

[
EM∗

[
1{y∈er} inkτr−1

(y)Per,BC
τr−1

,BC
τr
(y, y)

∣∣ er, (BC
s )s≤τr

] ∣∣∣ (BC
s )s≤τr

]
= EM∗

[
1{y∈er}Per,BC

τr−1
,BC

τr
(y, y)EM∗ [

inkτr−1
(y)
∣∣ (BC

s )s≤τr−1

] ∣∣∣ (BC
s )s≤τr

]
= EM∗

[
χ(ξ(x))P(mτr−1

= y | (ξs)s≤τr−1
)1{y∈er}Per,BC

τr−1
,BC

τr
(y, y)

∣∣∣ (BC
s )s≤τr

]
,

using in the penultimate step that almost surely

EM∗ [
inkτr−1

(y)
∣∣ er, (BC

s )s≤τr

]
= EM∗ [

inkτr−1
(y)
∣∣ (BC

s )s≤τr−1

]
,

since BC
τr =MaBB(U b

r , er,B
C
τr−1

) and inkτr−1
(y) is independent of er and U b

r ; and using the induction hypothesis in
the last step. Similarly,

EM∗
[
1{y∈er} inkτr−1(er \ {y})Per,BC

τr−1
,BC

τr
(er \ {y}, y)

∣∣ (BC
s )s≤τr

]
= EM∗

[
χ(ξ(x))P(mτr−1 = er \ {y} | (ξs)s≤τr−1 , er)1{y∈er}Per,BC

τr−1
,BC

τr
(er \ {y}, y)

∣∣∣ (BC
s )s≤τr

]
,
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and thus

EM∗
[
inkτr (y)

χ(ξ(x))

∣∣ (BC
s )s≤τr

]
(21)

= EM∗
[
P(mτr−1

= y | (ξs)s≤τr−1
)
[
1{y∈er}Per,ξτr−1

,ξτr
(y, y) + 1{y/∈er}

]
+ 1{y∈er}P(mτr−1 = er \ {y} | (ξs)s≤τr−1 , er)Per,ξτr−1

,ξτr
(er \ {y}, y)

∣∣∣ (ξs)s≤τr

]
.

On the other hand, using the definition of MaBB∗ from (16),

P(mτr = y | (ξs)s≤τr )

= P(MaBB∗(U b
r ,U

c
r , er, ξτr−1

,mτr−1
) = y | (ξs)s≤τr )

= P
(
mτr−1

[
1{mτr−1

/∈er} + 1{mτr−1
∈er}1

{
Uc

r<Per,ξτr−1
,ξτr

(mτr−1
,mτr−1

)
}]

+ (er \ {mτr−1})1{mτr−1
∈er}1

{
Uc

r≥Per,ξτr−1
,ξτr

(mτr−1
,mτr−1

)
} = y

∣∣∣ (ξs)s≤τr

)
= P

(
{mτr−1

= y ∈ er} ∩ {U c
r < Per,ξτr−1

,ξτr
(y, y)} | (ξs)s≤τr

)
+ P

(
{mτr−1

= er \ {y}, y ∈ er} ∩ {U c
r < Per,ξτr−1

,ξτr
(er \ {y}, y)} | (ξs)s≤τr

)
+ P

(
{mτr−1

= y /∈ er} | (ξs)s≤τr

)
.

Using the tower property of conditional expectation we condition further on er , and then use that given er and (ξs)s≤τr ,
the event {U c

r < Per,ξτr−1
,ξτr

(y, y)} is independent of the event {mτr−1
= y} ∩ {y ∈ er}, to obtain

P(mτr = y | (ξs)s≤τr )

= E
[
E
[
1{mτr−1

=y}
(
1{y∈er}1

{
Uc

r<Per,ξτr−1
,ξτr

(y,y)
} + 1{y/∈er}

)
| (ξs)s≤τr , er

] ∣∣∣ (ξs)s≤τr

]
+E

[
E
[
1{y∈er}1{mτr−1

=er\{y}}1
{
Uc

r<Per,ξτr−1
,ξτr

(er\{y},y)
} | (ξs)s≤τr , er

] ∣∣∣ (ξs)s≤τr

]
= E

[
E
[
1{mτr−1

=y}
[
1{y∈er}Per,ξτr−1

,ξτr
(y, y) + 1{y/∈er}

]
| (ξs)s≤τr , er

] ∣∣∣ (ξs)s≤τr

]
+E

[
E
[
1{y∈er}1{mτr−1

=er\{y}}Per,ξτr−1
,ξτr (er \ {y}, y) | (ξs)s≤τr , er

] ∣∣∣ (ξs)s≤τr

]
= E

[
PMaBB(mτr−1

= y | (ξs)s≤τr−1
)
[
1{y∈er}Per,ξτr−1

,ξτr
(y, y) + 1{y/∈er}

]
+ 1{y∈er}P

MaBB(mτr−1
= er \ {y} | (ξs)s≤τr−1

, er)Per,ξτr−1
,ξτr

(er \ {y}, y)
∣∣∣ (ξs)s≤τr

]
.

which agrees with (21) and so completes the inductive step.

We now turn to the proof of Proposition 18.

Proof of Proposition 18. We shall need a list of times at which updates occur for the chameleon process; recall that the
chameleon process updates at times {τr}r≥1 but also at depinking times. To this end, we set τ̂0 = 0 and for each r ≥ 1,
we set

τ̂r = (min{τm : τm > τ̂r−1})∧ (min{Di : Di > τ̂r−1, i ∈N}).

Similarly a hat placed on notation (e.g. êr) refers to the (in this example) edge chosen at time τ̂r . If this is a depinking
time then we set êr = V .

Next, for each r ≥ 1 we introduce process (Mr
t )t≥0 which is constructed using the graphical construction. Each of

these processes is a process in which vertices are occupied by particles of various colours, and we initialise them all with
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the initial configuration of the chameleon process. Prior to time τ̂r , process Mr evolves exactly as the chameleon process;
at and after time τ̂r it evolves as M∗ (so in particular there are no more changes to the colours of particles). Note that in
all these processes the black particles have the same trajectory and this matches the trajectory of the non-marked particles
in the MaBB. Note also that M1 is identical to M∗. We shall prove by induction on r that for all r ≥ 1,

∀ t > 0, y ∈ V P(mt = y | ξt) = EMr

[
ink

(ξ,x)
t (y)

χ(ξ(x))

∣∣BC
t

]
a.s.(22)

This will prove the proposition since the chameleon process is the almost sure limit of Mr as r→∞.
The case r = 1 follows from Lemma 20 since ink

(ξ,x)
0 (y) = χ(ξ(x)) if y = x and otherwise ink

(ξ,x)
0 (y) = 0 (thus the

assumption of the lemma holds).
We fix r′ ∈N0, assume (22) holds for r = r′ and show it holds for r = r′ + 1. Observe that before time τ̂r′ , Mr′+1 =

Mr′ so for t < τ̂r′ , for all y, almost surely

P(mt = y | ξt) = EMr′
[
ink

(ξ,x)
t (y)

χ(ξ(x))

∣∣BC
t

]
= EMr′+1

[
ink

(ξ,x)
t (y)

χ(ξ(x))

∣∣BC
t

]
.

After time τ̂r′ , Mr′+1 evolves as M∗; so assuming that for all y ∈ V ,

a.s. P(mτ̂r′ = y | ξτ̂r′ ) = EMr′+1

 ink(ξ,x)τ̂ ′
r

(y)

χ(ξ(x))

∣∣BC
τ̂r′

 ,(23)

then by Lemma 20 we have that for all t > τ̂r′ , for all y ∈ V ,

a.s. P(mt = y | (ξs)τ̂r′≤s≤t) = EMr′+1

[
ink

(ξ,x)
t (y)

χ(ξ(x))

∣∣ (BC
s )τ̂r′≤s≤t

]
.

The inductive step is then complete by taking an expectation and using that black particles have the same trajectory as the
non-marked, almost surely. Thus it remains to prove (23). We fix y ∈ V and decompose according to three events, which
partition the probability space:

• E1 :=
⋃

i≥1{y /∈ êr′} ∩ {τ̂r′ = τi} (the update is not a depinking time and y is not on the ringing edge)
• E2 :=

⋃
i≥1{y ∈ êr′} ∩ {τ̂r′ = τi} (the update is not a depinking time but y is on the ringing edge)

• E3 :=
⋃

i≥1{τ̂r =Di} (the update is a depinking time)

On event E1, as y is not on a ringing edge at time τ̂r′ , the value of ink(ξ,x)t (y) does not change at time τ̂r′ in either of the
processes Mr′ or Mr′+1; since they agree prior to this time, we deduce that almost surely

EMr′+1

 ink(ξ,x)τ̂r′
(y)

χ(ξ(x))
1{E1}

∣∣BC
τ̂r′

= EMr′

 ink(ξ,x)τ̂r′
(y)

χ(ξ(x))
1{E1}

∣∣BC
τ̂r′

 .(24)

On event E2, we may pinken some particles at time τ̂r′ in process Mr′+1. Nevertheless, by Lemmas 11 and 19 (and again
since the processes agree prior to this time), we see that their expected ink values agree, i.e.

EMr′+1

[
inkτ̂r′ (y)

χ(ξ(x))
1{E2}

∣∣BC
τ̂r′

]
= EMr′

[
inkτ̂r′ (y)

χ(ξ(x))
1{E2}

∣∣BC
τ̂r′

]
.(25)

Finally, on event E3, Mr′ does not update. On the other hand, almost surely

EMr′+1

[
inkτ̂r′ (y)

χ(ξ(x))
1{E3}

∣∣BC
τ̂r′

]

=

∞∑
i=1

EMr′+1

[
inkτ̂r′ (y)

χ(ξ(x))
1{τ̂r′=Di}

∣∣BC
τ̂r′

]
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=

∞∑
i=1

EMr′+1

[{
1{di=1}

(
RC

τ̂r′−1
(y) + PC

τ̂r′−1
(y)

χ(ξ(x))

)
+ 1{di=0}

RC
τ̂r′−1

(y)

χ(ξ(x))

}
1{τ̂r′=Di}

∣∣BC
τ̂r′

]

=

∞∑
i=1

EMr′+1

[
RC

τ̂r′−1
(y) + 1

2P
C
τ̂r′−1

(y)

χ(ξ(x))
1{τ̂r′=Di}

∣∣BC
τ̂r′

]

= EMr′+1

[
RC

τ̂r′−1
(y) + 1

2P
C
τ̂r′−1

(y)

χ(ξ(x))
1{E3}

∣∣BC
τ̂r′

]

= EMr′+1

[
inkτ̂r′−1

(y)

χ(ξ(x))
1{E3}

∣∣BC
τ̂r′

]
= EMr′

[
inkτ̂r′ (y)

χ(ξ(x))
1{E3}

∣∣BC
τ̂r′

]
.(26)

Putting together equations (24)–(26) and using that E1,E2,E3 form a partition, we obtain that for each y ∈ V ,

a.s. EMr′+1

[
inkτ̂r′ (y)

χ(ξ(x))

∣∣BC
τ̂r′

]
= EMr′

[
inkτ̂r′ (y)

χ(ξ(x))

∣∣BC
τ̂r′

]
,

and thus by the inductive hypothesis, we have shown (23).

Next, we show how Proposition 18 can be used to bound the total variation distance between two MaBB configurations
in terms of the total amount of ink in the chameleon process.

Recall from (10) the law πζ for ζ ∈ΩG,m−1 and denote by m̃t a random variable which, conditionally on ξt = ζ , has
law πζ . Recall also the definition of event Fill from Lemma 14.

Proposition 21. Let (ξt,mt) denote the time-t configuration of a MaBB initialised at (ξ,x) ∈Ω′
G,m. For any t > 0,

∥L((ξt,mt))−L((ξt, m̃t))∥TV ≤ 1− E

[
ink

(ξ,x)
t

a(m− 1) + bn
| Fill

]
.

Proof. This is similar to the proof of Lemma 8.1 of [20].
Recall from (10) the law πζ for ζ ∈ΩG,m−1 and denote by m̃t a random variable which, conditionally on ξt = ζ , has

law πζ . Recall also the definition of event Fill from Lemma 14.
By Proposition 18, for any (ζ, y) ∈Ω′

G,m,

P(ξt = ζ,mt = y) = E

[
ink

(ξ,x)
t (y)

χ(ξ(x))
1{BC

t =ζ}

]
≥ E

[
ink

(ξ,x)
t (y)

χ(ξ(x))
1{{BC

t =ζ}∩Fill}

]
.

On the other hand, using that BC
t and ξt have the same distribution and Corollary 15,

P(ξt = ζ, m̃t = y) = πζ(y)P(ξt = ζ) =
πζ(y)

P(Fill)
P({BC

t = ζ} ∩ Fill).

We deduce that

(27)

(P(ξt = ζ, m̃t = y)− P(ξt = ζ, mt = y))+

≤

(
E

[
1{{BC

t =ζ}∩Fill}

(
πζ(y)

P(Fill)
− ink

(ξ,x)
t (y)

χ(ξ(x))

)])
+

.

Observe that on event {BC
t = ζ}, we have ink

(ξ,x)
t (y)≤ χ(ζ(y)) by Lemma 16, and so (on this event),

ink
(ξ,x)
t (y)

χ(ξ(x))
≤ χ(ζ(y))

χ(ξ(x))
=

χ(ζ(y))

(a(m− 1) + bn)P(Fill)
=

πζ(y)

P(Fill)
,
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where the first equality is due to Corollary 15 and the second from the definition of the colour function χ. As a result we
deduce from (27) that

(P(ξt = ζ, m̃t = y)− P(ξt = ζ, mt = y))+ ≤ E

[
1{{BC

t =ζ}∩Fill}

(
πζ(y)

P(Fill)
− ink

(ξ,x)
t (y)

χ(ξ(x))

)]
.

We take a sum over y followed by ζ to obtain

∥L((ξt,mt))−L((ξt, m̃t))∥TV ≤ E

[
1{Fill}

(
1

P(Fill)
− ink

(ξ,x)
t

χ(ξ(x))

)]

= 1− P(Fill)E

[
ink

(ξ,x)
t

χ(ξ(x))
| Fill

]

= 1− E

[
ink

(ξ,x)
t

a(m− 1) + bn
| Fill

]
,

using Lemma 14 in the last step.

Recall from Section 5.1 that for each ℓ ∈ N, înkℓ denotes the value of ink just after the ℓth depinking time. We write

înk
(ξ,x)

ℓ to emphasise the dependence on the initial configuration of the corresponding MaBB.

Lemma 22. Fix (ξ,x) ∈Ω′
G,m. For each ℓ≥ 1,

1−E

 înk
(ξ,x)

ℓ

a(m− 1) + bn
| Fill

≤ (71/72)ℓ
√

a(m− 1) + bn.

We omit the proof (which uses Lemma 13) of this result since it is identical to the proof of Proposition 6.1 in [20],
except that here ink can take values in {0, . . . , a(m− 1) + bn} (in contrast with [20] in which ink ∈ {0, . . . , n}).

6. Expected loss of red in a round

In this section we show that during a single round (which starts with fewer red particles than white) the number of red
particles decreases in expectation by a constant factor.

Let Mi,j(G) denote the meeting time of two independent random walks started from vertices i and j on G and recall
that M̂i,j(G) denotes the meeting time of two independent random walks started from vertices i and j on the graph
obtained from G by halving the edge-weights, that is, M̂i,j(G) =Mi,j(Ĝ).

Consider a slight modification to the chameleon process in which we replace the number of selected particles (18) in
Step 2 with k, that is, we allow all paired reds particles to be pinkened. We call this the modified chameleon process.

Proposition 23. Suppose the modified chameleon process starts a round with red configuration R, white configuration W
and black configuration B such that |R| ≤ |W |. If the round length T satisfies T ≥ 2maxi,j EM̂i,j(G) then E[|RC

T−|]≤
(1− c)|R|, with c= (p∗)2

4a .

Remark 3. If instead |W | ≤ |R| then we have an equivalent result: E[|WC
T−|]≤ (1− c)|W |.

Proof. We shall only count pinkenings between paired red and white particles which get coloured pink the first time they
meet (if they do) during the round. (This means that we do not have to worry about how the particles move after their first
meeting time – they no longer move independently once they meet.)

Since we assume |R| ≤ |W |, all red particles will have a label in {1, . . . , |R|}. Let Mr denote the meeting time of red
particle with label r with its paired white particle; this is the first time the two particles are on the same ringing edge. If
two paired particles start the round on the same vertex we set their meeting time to be the first time this vertex is on a
ringing edge. For each s ∈N write Fs(r) for the event that a red particle with label r remains in the pooled pile after Step
1 of the update at time τs (if red particle with label r is not on edge er at time τr−, we set Fr(s) =∅), and write Gs for
the event that we do Step 3a (rather than Step 3b) at the update at time τs.
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We also write e1s, e
2
s for the two vertices on edge es (in an arbitrary order), us(e

1
s) and ℓs(e

1
s) for the values of u(e1s)

and ℓ(e2s) at the update at time τs, and θs(e
1
s) for the probability θ(e1s) at the update time τs.

We lower-bound the expected number of pink particles created during a single round (which has length T ) of the
modified chameleon process in which at the start of the round the configuration of red particles is R by

2E

 |R|∑
r=1

∞∑
s=1

1{Mr=τs<T}1{Fs(r)}1{Gs}

= 2

|R|∑
r=1

∞∑
s=1

E
[
1{Mr=τs<T}P(Fs(r)∩Gs | τs,Mr)

]
.

Observe that conditionally on the configuration of the chameleon process at time τs− and the configuration of black
particles at time τr , Fs(r) and Gs are independent since Fs(r) depends further only on the randomness at Step 1, and Gs

the randomness at Step 2 (and we have constructed the chameleon process so that these are independent). Therefore we
have almost surely

P(Fs(r)∩Gs | τs,Mr) = E[2(θs(e1s)∧ (1− θs(e
1
s))1{Fs(r)} | τs,M

r].(28)

Next, for each s ∈N, we introduce an event As which:

1. has probability p∗ (recall this constant comes from Property D),
2. prescribes only the value that U b

s takes,
3. on event As, for each i ∈ {1,2}, given es and BC

τs−, configuration BC
τs satisfies almost surely

(a) Pes,BC
τs−,BC

τs
(eis, e

i
s) ∈ [p∗ ∧ 2

9 , (1− p∗)∨ 7
9 ],

(b) χ(BC
τs(e

1
s))/χ(B

C
τs(e

2
s)) ∈ [1/(2a),2a].

We suppose for now that such an event exists. As As only prescribes U b
s , it is independent of events {Mr = τs} and

{τs < T} (which do not depend on U b
s ). Thus from (28) and by Lemma 9 we have

P(Fs(r)∩Gs | τs,Mr)≥ 2(
2

9
∧ p∗)p∗ P(Fs(r) | τs,Mr,As)≥

4

3
(p∗)2 P(Fs(r) | τs,Mr,As),

using p∗ < 1/3. We also have that P(Fs(r) | τs,Mr,As)≥ 1/(2a) almost surely. This follows from Lemma 10 by first
conditioning on the configuration of the chameleon process at time τs−, since given this, 1{Fs(r)} is independent of Mr

and τs. Thus our lower-bound on the expected number of pink particles created becomes

4

3a
(p∗)2

|R|∑
r=1

∞∑
s=1

P (Mr = τs < T )≥ (p∗)2

a
|R|min

r
P(Mr < T ).

For a red and white pair (with label r) on the same vertex v, say, at the start of the round, Mr is the first time v
is on a ringing edge. Suppose w is a neighbour of v (chosen arbitrarily) and recall Mv,w(Ĝ) is the meeting time of
two random walks on Ĝ started from vertices v and w respectively. Then P(Mr < T ) ≥ 1

2P(Mv,w < T ), since for the
random walks to meet, vertex v must be on a ringing edge for at least one of the two random walk processes. Then
by Markov’s inequality, we have in this case that P(Mr < T ) ≥ 1

2 (1 −maxi,j EMi,j(Ĝ)/T ). On the other hand, for
a red and white pair which start the round on different vertices, we can directly apply Markov’s inequality to obtain
P(Mr < T )≥ 1−maxi,j EMi,j(Ĝ)/T .

Thus if T ≥ 2maxi,j EM̂i,j(G) then for any r, P(Mr < T )≥ 1/4, which shows that statement of the proposition with
c= (p∗)2

4a .
It remains to demonstrate the existence of the event As for each s ∈ N. We set As = {U b

s ≤ p∗}, which clearly has
probability p∗ and only prescribes the value that U b

s takes. Recall from the discussion in Section 3.2 (in particular (15))
that U b

s ≤ p∗ implies that if there are at least two non-marked particles on es then a proportion in [1/3,2/3] of the
non-marked particles on the edge end up on each vertex on es (at time τs).

Thus on event As (and as black particles in the chameleon process move as non-marked particles in MaBB), almost
surely,

BC
τs(e

1
s)≥

1

3
1{∑2

i=1 BC
τs−(eis)≥2}

2∑
i=1

BC
τs−(e

i
s),

BC
τs(e

2
s)≤

2

3
1{∑2

i=1 BC
τs−(eis)≥2}

2∑
i=1

BC
τs−(e

i
s) + 1{∑2

i=1 BC
τs−(eis)=1}
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≤ 2

3
1{∑2

i=1 BC
τs−(eis)≥2}

2∑
i=1

BC
τs−(e

i
s) + 1.

Thus on event As, almost surely,

χ(BC
τs(e

1
s))

χ(BC
τs(e

2
s))

≥ γ +
b(1− γ)− aγ

2a
3 1{∑2

i=1 BC
τs−(eis)≥2}

∑2
i=1B

C
τs−(e

i
s) + a+ b

≥ γ,

for any γ ≤ 1/2 provided b(1− γ)≥ aγ. We similarly have
χ(BC

τs
(e2s))

χ(BC
τs

(e1s))
≥ γ under the same condition. This condition is

satisfied taking γ = 1/(2a) (and this is indeed ≤ 1/2 as a≥ 1).
Finally, it remains to show that for each i ∈ {1,2} we have Pes,BC

τs−,BC
τs
(eis, e

i
s) ∈ [p∗ ∧ 2

9 , (1− p∗)∨ 7
9 ] on event As,

almost surely. This is the probability that in the MaBB process, if the marked particle is on vertex eis, it remains on vertex
eis given the non-marked particles update from configuration BC

τs− to BC
τs when edge es rings.

Suppose
∑2

j=1B
C
τs−(e

j
s)≥ 2, i.e.before the update there are at least 2 black particles on es. For y ∈ es, write ms(y) ∈

{0,1} for the number of marked particles on y after the update at time τs. On event As, for each i ∈ {1,2} we have
BC

τs(e
i
s) ∈ [ 13

∑2
j=1B

C
τs−(e

j
s),

2
3

∑2
j=1B

C
τs−(e

j
s)] and thus

BC
τs(e

i
s) +ms(e

i
s) ∈

[1
3

2∑
j=1

BC
τs−(e

j
s),

2

3

2∑
j=1

BC
τs−(e

j
s) + 1

]

=
[1
3

( 2∑
j=1

BC
τs−(e

j
s) + 1

)
− 1

3
,
2

3

( 2∑
j=1

BC
τs−(e

j
s) + 1

)
+

1

3

]

⊆
[2
9

( 2∑
j=1

BC
τs−(e

j
s) + 1

)
,
7

9

( 2∑
j=1

BC
τs−(e

j
s) + 1

)]
.

Now recall (from the discussion after (8)) the description of the MaBB process in which we remove the mark on the
marked particle, then update as the BBSP, and then choose a uniform particle on the edge on which to apply the mark.
Together with the just-determined bound on the number of particles on eis, this tells us that the probability the marked
particle is on eis after the update is in [ 29 ,

7
9 ].

Suppose now that
∑2

j=1B
C
τs−(e

j
s) = 1. Recall the definition of Pe,BC

τs−,BC
τs
(eis, e

i
s) as

Pe,BC
τs−,BC

τs
(eis, e

i
s) :=

BC
τs(e

i
s) + 1

BC
τs(e

1
s) +BC

τs(e
2
s) + 1

P
BB(G,s,m)
e (CBC

τs−,eis
,CBC

τs
,eis

)

P
BB(G,s,m−1)
e (BC

τs−,B
C
τs)

=
BC

τs(e
i
s) + 1

2

P
BB(G,s,m)
e (CBC

τs−,eis
,CBC

τs
,eis

)

1
2

= (BC
τs(e

i
s) + 1)PBB(G,s,m)

e (CBC
τs−,eis

,CBC
τs

,eis
),

where we have used Property C to obtain P
BB(G,s,m−1)
e (BC

τs−,B
C
τs) = 1/2. BBSP configuration CBC

τs−,eis
has two

particles, thus by Property C and the second part of Property D, P
BB(G,s,m)
e (CBC

τs−,eis
,CBC

τs
,eis

) ≥ p∗, and so
Pe,BC

τs−,BC
τs
(eis, e

i
s) ≥ p∗. If BC

τs(e
i
s) = 0 (so that the non-marked particle and the marked particle end up on differ-

ent vertices) we have (again by Property D) Pe,BC
τs−,BC

τs
(eis, e

i
s)≤ 1− 2p∗, whereas if BC

τs(e
i
s) = 1, then by Properties C

and D, Pe,BC
τs−,BC

τs
(eis, e

i
s)≤ (BC

τs(e
i
s) + 1) 1−p∗

2 = 1− p∗.
Finally, if BC

τs−(e
i
s) = 0, then a marked particle on eis stays on eis at the update time τs with probability 1/2 by

Property C.
Thus in all cases we have that on event As, almost surely Pes,BC

τs−,BC
τs
(eis, e

i
s) ∈ [p∗ ∧ 2

9 , (1− p∗)∨ 7
9 ].
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7. Proof of Proposition 5

We can now put together the results obtained so far and complete the proof of Proposition 5. These arguments are similar
to those in previous works using a chameleon process.

The next result bounds the first depinking time D1. We wish to apply this result for any of the depinking times, and
so we present the result in terms of a chameleon process started from any configuration in C(m). In reality, a chameleon
process at time 0 will always have all red particles on a single vertex, as is apparent from Definition 2.

Lemma 24. If the round length T satisfies T ≥ 2maxi,j EM̂i,j(G), then from any initial configuration in C(m) of the
(non-modified) chameleon process, the first depinking time has an exponential moment:

E[eD1/(KT )]≤ 12a

(p∗)2
,

where K = 8a/(p∗)2.

Proof. This proof follows closely the proof of [20, Lemma 9.2]. By the same arguments as there, we obtain

P(D1 > iT )≤ 3

2
(1− c)i,

for any integer i≥ 1, with c= (p∗)2/(4a) the constant from Proposition 23.
To obtain the bound on the exponential moment, observe that for any K > 0,

E[eD1/(KT )] =

∞∑
i=1

E[eD1/(KT )1{iT<D1<(i+1)T}]

≤
∞∑
i=1

E[e(i+1)/K1{D1>iT}] =

∞∑
i=1

e(i+1)/KP(D1 > iT )

≤
∞∑
i=1

3

2
e1/K exp

(
i

K
+ i log(1− c)

)
.

Set K = 2/c≥−2/ log(1− c); then i/K + i log(1− c)≤ i
2 log(1− c)< 0, and

E[eD1/(KT )]≤ 3

2(1−
√
1− c)

≤ 3

c
.

We now show a result which bounds the exponential moment of the jth depinking time. In order to emphasise the
initial configuration on the underlying MaBB we shall write Dj((ξ,x)) for the jth depinking time of a chameleon process
corresponding to a MaBB which at time 0 is in configuration (ξ,x) ∈Ω′

G,m.

Lemma 25. If the round length T satisfies T ≥ 2maxi,j EM̂i,j(G), then for any (ξ,x) ∈Ω′
G,m, for all j ∈N,

E[eDj((ξ,x))/(KT ) | Fill]≤
(

12a

(p∗)2

)j

,

where K = 8a/(p∗)2.

Proof. This proof follows identically to the proof of Lemma 6.2 from [20] and uses Lemma 24.

Proof of Proposition 5. We apply Proposition 21 to obtain

∥L((ξt,mt))−L((ξt, m̃t))∥TV ≤ max
(ξ,x)∈Ω′

G,m

E

[
1− ink

(ξ,x)
t

a(m− 1) + bn
| Fill

]
.(29)
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Lemma 12 says that the total ink can only change at depinking times, thus (recalling the definition of înkj ), ink(ξ,x)t =

χ(ξ(x)) if t < D1((ξ,x)) and ink
(ξ,x)
t = înk

(ξ,x)

j if Dj((ξ,x)) ≤ t < Dj+1((ξ,x)) for some j. Hence we have that for
any j ≥ 1,

1− ink
(ξ,x)
t

a(m− 1) + bn
≤max

ℓ≥j

1− înk
(ξ,x)

ℓ

a(m− 1) + bn

+ 1{t<Dj((ξ,x))}

≤
∑
ℓ≥j

1− înk
(ξ,x)

ℓ

a(m− 1) + bn

+ 1{t<Dj((ξ,x))}.

Taking expectations (given Fill) on both sides and using (29) we obtain for any j ≥ 1,

∥L((ξt,mt))−L((ξt, m̃t))∥TV

≤ max
(ξ,x)∈Ω′

G,m

∑
ℓ≥j

E

1− înk
(ξ,x)

ℓ

a(m− 1) + bn
| Fill

+ P(Dj((ξ,x))> t | Fill)

 .

We bound the first term using Lemma 22 to obtain

∥L((ξt,mt))−L((ξt, m̃t))∥TV

≤ max
(ξ,x)∈Ω′

G,m

∑
ℓ≥j

(71/72)ℓ
√
a(m− 1) + bn+ P(Dj((ξ,x))> t | Fill)


≤ 100e−j log(72/71)

√
a(m− 1) + bn+ 2m max

(ξ,x)∈Ω′
G,m

P(Dj((ξ,x))> t | Fill),

and then by a Chernoff bound and Lemma 25 (recall constant K = 8a/(p∗)2) we have that

∥L((ξt,mt))−L((ξt, m̃t))∥TV

≤ 100e−j log(72/71)
√
a(m− 1) + bn+ 2mej log(12a(p

∗)−2)−t/(2Kmaxi,j EM̂i,j(G)).

This holds for all j ≥ 1 so if we apply it with j =
⌊

t
4Kmaxi,j EM̂i,j(G) log(12a(p∗)−2)

⌋
we obtain

∥L((ξt,mt))−L((ξt, m̃t))∥TV ≤K0e
−t/(4Kmaxi,j EM̂i,j(G) log(12a(p∗)−2))

√
a(m− 1) + bn

for some universal constant K0 > 0.

8. Lower bound for the line

In this section we prove Proposition 2, our mixing time lower bound for the line. Our argument is essentially a discretiza-
tion of an argument from [6] for a continuous-mass redistribution model on the line, but we include the details here for
completeness.

The first step establishes a coupling between two realisations of the beta-binomial splitting process on the line in
which we remove the restriction on the number of particles so that the state space of the processes is NLn

0 . We write such
a process as BB(Ln, s) and by detailed balance considerations it is immediate that reversible measures for this process
are those for which ξ(k) are i.i.d.Negative Binomial random variables with parameters s and any p ∈ [0,1]. The coupling
has a certain monotonicity property as demonstrated by the following result.

Lemma 26. Let (ξt)t≥0 and (ξ′t)t≥0 be realisations of BB(Ln, s) such that ξ0(k)≤ ξ′0(k) for all k ∈ Ln. There exists a
coupling of these realisations such that for all t≥ 0 and k ∈ Ln, ξt(k)≤ ξ′t(k).

Proof. We use the same edge ringing times in the two processes. Suppose edge e = {k, k + 1} rings at time s and
ξ′s−(k) + ξ′s−(k+ 1)≥ ξs−(k) + ξs−(k+ 1). It is then immediate that we can couple the two processes so that ξ′s(k)≥
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ξs(k) and ξ′s(k+1)≥ ξs(k+1) (for instance we can generate a Beta Binomial(r, s, s) random variable by first sampling
p∼Beta(s, s) and then sampling a Bin(r, p); we can couple the updates by choosing the same p for the two processes).
The proof is then complete by induction on the update times.

The next step is the identification of an eigenfunction of the generator LBB(Ln,s,m).

Lemma 27. The map

f(ξ) :=

n−1∑
k=1

sin

(
πk

n

)( k∑
i=1

ξ(i)− mk

n

)
is an eigenfunction of LBB(Ln,s,m) with eigenvalue λ := 1

n−1 (cos(π/n)− 1).

Proof. Since
∑k

i=1 ξ(i) only updates when edge {k, k + 1} rings, the action of the generator on the map xk(ξ) :=∑k
i=1 ξ(i), k = 1, . . . , n− 1, ξ ∈ΩLn,m (and set x0 ≡ 0), is given by

(LBB(Ln,s,m)xk)(ξ) =
n− 2

n− 1
xk(ξ) +

1

n− 1

(
1

2
xk−1(ξ) +

1

2
xk+1(ξ)

)
− xk(ξ)

=
1

2(n− 1)
(xk−1(ξ) + xk+1(ξ)− 2xk(ξ)) .

It then follows by summation by parts that

f(ξ) =

n−1∑
k=1

sin

(
πk

n

)(
xk −

mk

n

)
is an eigenfunction of LBB(Ln,s,m) with eigenvalue 1

n−1 (cos(π/n)− 1).

The argument proceeds by using Wilson’s method [27] applied to the eigenfunction f from Lemma 27. In particular,
with (ξt)t≥0 a realisation of BB(Ln, s,m), we show that f(ξt) is far from the equilibrium value

∑
ξ f(ξ)π

BB(Ln,s,m)(ξ)

with high probability at time t = n3

π2

(
logn− log

(
1 + n

m + 1
s

)
−Cε

)
. The initial value ξ0 is chosen explicitly in terms

of Negative Binomial random variables; precisely, we let ξ0(1), . . . , ξ0(⌊n/2⌋) be i.i.d. NegBin(s, ⌊n/2⌋s
m+⌊n/2⌋s ) random

variables conditioned on ξ0(1) + · · ·+ ξ0(⌊n/2⌋) =m, and ξ0(k) = 0 for k ∈ {⌊n/2⌋+ 1, . . . , n}.

Lemma 28. For the realisation (ξt)t≥0 of BB(Ln, s,m) described above, there exists a constant c > 0 such that for all
t≥ 0 and n sufficiently large,

E[f(ξt)]≥ c−1nmeλt, Var(f(ξt))≤ cnm2

(
1 +

n

m
+

1

s

)
.

Proof. We make appropriate modifications to the proof of [6, Lemma 12]. Fix time t ≥ 0. As f is an eigenfunction of
LBB(Ln,s,m) we have

E[f(ξt)] = E[f(ξ0)]eλt = eλt
n−1∑
k=1

sin

(
πk

n

)(
min

{
mk

⌊n/2⌋
,m

}
− mk

n

)
≥ eλtnm/20

for n sufficiently large.
For the variance bound, observe that for u ∈ [0, t], process Mu := eλ(t−u)f(ξu) is a martingale. Thus Var(f(ξt)) =

E[⟨M⟩t], where ⟨M⟩u, u ∈ [0, t], is the angle bracket process. If edge {k, k + 1} rings at time u, f(ξu) changes by at
most ξu(k) + ξu(k+ 1), and thus

∂uE[⟨M⟩u]≤ e2λ(t−u)
n−1∑
k=1

1

n− 1
E[(ξu(k) + ξu(k+ 1))2]≤ 4e2λ(t−u)

n− 1

n∑
k=1

E[(ξu(k))2].

It follows that

Var(f(ξt))≤
8

n

∫ t

0

e2λ(t−u)
n∑

k=1

E[(ξu(k))2] du.
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We can now bound
∑n

k=1(ξu(k))
2 using the monotone coupling of Lemma 26. Consider a realisation (ξ′t)t≥0 of

BB(Ln, s) with initial values {ξ′0(k)}k∈Ln
being i.i.d. NegBin(s, ⌊n/2⌋s

m+⌊n/2⌋s ) random variables conditioned on ξ′0(1) +

· · ·+ ξ′0(⌊n/2⌋)≥m. Further, these initial values can be coupled to {ξ0(k)}k∈Ln
so that ξ0(k)≤ ξ′0(k) for all k ∈ Ln.

Lemma 26 thus gives that ξu(k)≤ ξ′u(k) for all k ∈ Ln and u≥ 0. In particular we have E[(ξu(k))2]≤ E[(ξ′u(k))2] for
all k ∈ Ln and u ∈ [0, t].

Finally we consider a realisation (ξ′′t )t≥0 of BB(Ln, s) with initial values {ξ′′0 (k)}k∈Ln
being i.i.d.NegBin(s, ⌊n/2⌋s

m+⌊n/2⌋s )

random variables (without any conditioning). Then for each k ∈ Ln and u ∈ [0, t],

E[(ξ′u(k))2] = E

(ξ′′u(k))2 ∣∣∣∣ ⌊n/2⌋∑
i=1

ξ′′0 (i)≥m

≤
E
[
(ξ′′u(k))

2
]

P(
∑⌊n/2⌋

i=1 ξ′′0 (i)≥m)
.

As ξ′′u is stationary for BB(Ln, s), we have

E[(ξ′′u(k))2] =
(

m

⌊n/2⌋

)2(
1 +

⌊n/2⌋
m

+
1

s

)
.

Furthermore, E[ξ′′u(k)] =m/⌊n/2⌋, and so P(
∑⌊n/2⌋

i=1 ξ′′0 (i)≥m)≥ 1/3 by the central limit theorem, for n sufficiently
large. Putting things together, we deduce that for n sufficiently large,

Var(f(ξt))≤ 24

∫ t

0

e2λ(t−u)

(
m

⌊n/2⌋

)2(
1 +

⌊n/2⌋
m

+
1

s

)
du

≤ 24

(
− 1

2λ

)(
m

⌊n/2⌋

)2(
1 +

⌊n/2⌋
m

+
1

s

)
≤ 100nm2

(
1 +

n

m
+

1

s

)
,

uniformly in t≥ 0.

Proof of Proposition 2. We follow the proof of [6, Proposition 11]. For each t≥ 0, define a set

Et := {ξ ∈ΩLn,m : f(ξ)≥ 1

2
E[f(ξt)]},

where ξ0 is chosen as described in the paragraph before Lemma 28. For all t≥ 0, we have

∥L(ξt)− πBB(Ln,s,m)∥TV ≥ P(ξt ∈Et)− πBB(Ln,s,m)(Et).

By Lemma 28 and Chebyshev’s inequality,

P(ξt ∈Et)≥ 1− 4Var(f(ξt))

(E[f(ξt)])2
≥ 1− 4c3n−1e−2λt

(
1 +

n

m
+

1

s

)
.

On the other hand, as πBB(Ln,s,m)(f) = 0, we have

πBB(Ln,s,m)(f2) = VarπBB(Ln,s,m)(f) = lim
t→∞

Var(f(ξt))≤ cnm2

(
1 +

n

m
+

1

s

)
,

so by Markov’s inequality,

πBB(Ln,s,m)(Et)≤
4πBB(Ln,s,m)(f2)

(E[f(ξt)])2
≤ 4c3e−2λt

(
1 +

n

m
+

1

s

)
.

Thus

∥L(ξt)− πBB(Ln,s,m)∥TV ≥ 1− 8c3n−1e−2λt

(
1 +

n

m
+

1

s

)
.

It follows that a lower bound on the ε-total variation mixing time is n3

π2

(
log
(

n
1+ n

m+ 1
s

)
−Cε

)
for some constant Cε

depending on ε.
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Appendix A: Proof of Proposition 6

Proof of Proposition 6. Property A is immediate. Recall the process has equilibrium distribution

πBB(G,s,m)(ξ)∝
∏
v∈V

Γ(s+ ξ(v))

ξ(v)!
, ξ ∈ΩG,m.

Since s= b/a with a and b coprime, this is of the form (6):

πBB(G,s,m)(ξ)∝
∏
v∈V :
ξ(v)>0

1

ξ(v)!

ξ(v)−1∏
i=0

(i+ s)

=
∏
ξ∈V :
ξ(v)>0

1

ξ(v)!

ξ(v)−1∏
i=0

(
i+

b

a

)
∝
∏
v∈V :
ξ(v)>0

1

ξ(v)!

ξ(v)−1∏
i=0

(ai+ b) .

Thus Property B holds. Property C holds as a beta-binomial X with parameters (k, s, s) has the same distribution as
k−X , for any k ∈N.

To show Property D holds (with p∗ = (5/12)2s/(6B(s, s))), we first show that with positive probability, if
ξ(v) + ξ(w) ≥ 2 then X/(ξ(v) + ξ(w)) ∈ [1/3,2/3] where X ∼ BetaBin(ξ(v) + ξ(w), s, s). Recall that to sample a
BetaBin(ξ(v) + ξ(w), s, s), we can first sample Y ∼ Beta(s, s) and then given Y , sample Bin(ξ(v) + ξ(w), Y ). We
first observe that if s ≥ 1, for such random variable Y , with probability at least (5/12)2s/(2B(s, s)) (where B(s, t)
is the beta function), Y will be in the interval [5/12,7/12]. This can be seen by noting that the density function
of Y in the interval [5/12,7/12] is minimised on the boundary. If instead s < 1, then Y will be in [5/12,7/12]
with probability at least (1/2)2s/(2B(s, s)). Further, if s ≥ 20 then we can use Chebyshev’s inequality to obtain
P(Y ∈ [ 5

12 ,
7
12 ])≥ 1− 36

2s+1 ≥ 1
2 (1−

20
s+1 ).

Fix y ∈ [5/12,7/12] and let Z ∼ Bin(ξ(v) + ξ(w), y). We observe that P(Z ∈ [(ξ(v) + ξ(w))/3,2(ξ(v) + ξ(w))/3])
is minimized (over ξ(v) + ξ(w) ≥ 2 and y ∈ [5/12,7/12]) when ξ(v) + ξ(w) = 4 and y = 7/12, with a value of
1225/3456 > 1/3. Combining, we obtain that we can take p∗ = (5/12)2s/(6B(s, s)), and when s ≥ 20 we can take
p∗ = 1

6 (1−
20
s+1 ).

For the second part of Property D, if ξ(v)+ ξ(w) = 2 then the probability that both particles end up on the same vertex
is 1− s

1+2s , which is larger than 2p∗ for our choice of p∗.
For Property E, observe that

PBB(G,s,m+1)
e (Cξ,v,Cξ′,v) =

(
ξ(v) + ξ(w) + 1

ξ′(v) + 1

)
B(ξ′(v) + 1+ s, ξ′(w) + s)

B(s, s)
,

PBB(G,s,m+1)
e (Cξ,v,Cξ′,w) =

(
ξ(v) + ξ(w) + 1

ξ′(v)

)
B(ξ′(v) + s, ξ′(w) + 1+ s)

B(s, s)
,

PBB(G,s,m)
e (ξ, ξ′) =

(
ξ(v) + ξ(w)

ξ′(v)

)
B(ξ′(v) + s, ξ′(w) + s)

B(s, s)
.

Thus

(ξ′(v) + 1)PBB(G,s,m+1)
e (Cξ,v,Cξ′,v) =

(ξ(v) + ξ(w) + 1)!

ξ′(w)!ξ′(v)!

B(ξ′(v) + 1+ s, ξ′(w) + s)

B(s, s)
,

(ξ′(w) + 1)PBB(G,s,m+1)
e (Cξ,v,Cξ′,w) =

(ξ(v) + ξ(w) + 1)!

ξ′(w)!ξ′(v)!

B(ξ′(v) + s, ξ′(w) + 1+ s)

B(s, s)
.

Adding these and using that B(x, y) =B(x+ 1, y) +B(x, y+ 1), we obtain

(ξ′(v) + 1)PBB(G,s,m+1)
e (Cξ,v,Cξ′,v) + (ξ′(w) + 1)PBB(G,s,m+1)

e (Cξ,v,Cξ′,w)

=
(ξ(v) + ξ(w) + 1)!

ξ′(w)!ξ′(v)!

B(ξ′(v) + s, ξ′(w) + s)

B(s, s)

= (ξ(v) + ξ(w) + 1)PBB(G,s,m)
e (ξ, ξ′).
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Appendix B: Proofs of Lemmas 8–10

For ease of notation in this section we write P(v, v) for Pe,B,B′(v, v) and similarly for other probabilities. We shall use
throughout (sometimes without reference) that, by Lemma 7,

χ(B(v))P(v, v) + χ(B(w))P(w,v) = χ(B′(v)),(30)

χ(B(v))P(v,w) + χ(B(w))P(w,w) = χ(B′(w)).(31)

We write Rv,w for R(v) +R(w), Pv,w for P (v) + P (w) and Bv,w for B(v) +B(w).

Proof of Lemma 8. We first show m∗(v)≤ u(v) + 1
2u

P (v). Recall

u(v) +
1

2
uP (v) = χ(B′(v))∧Rv,w +

1

2
({χ(B′(v))− χ(B′(v))∧Rv,w} ∧ Pv,w) .

Hence if Rv,w >χ(B′(v)) then u(v) + 1
2u

P (v) = χ(B′(v)). On the other hand in this case (using (30)),

m∗(v) = χ(B′(v))− [χ(B(v)−R(v)− 1

2
P (v)]P(v, v)− [χ(B(w)−R(w)− 1

2
P (w)]P(w,v)

and thus as R(v)+P (v)≤ χ(B(v)) and R(w)+P (w)≤ χ(B(w)), we have m∗(v)≤ χ(B′(v)), i.e.in this case m∗(v)≤
u(v) + 1

2u
P (v).

If instead Rv,w ≤ χ(B′(v)), then u(v)+ 1
2u

P (v) =Rv,w+ 1
2 ({χ(B

′(v))−Rv,w}∧Pv,w). If Pv,w >χ(B′(v))−Rv,w

then u(v) + 1
2u

P (v) =Rv,w + 1
2 (χ(B

′(v))−Rv,w) =
1
2 (χ(B

′(v)) +Rv,w). But

m∗(v) =
1

2
R(v)P(v, v) +

1

2
R(w)P(w,v)

+
1

2
{(R(v) + P (v))P(v, v) + (R(w) + P (w))P(w,v)}

≤ 1

2
Rv,w +

1

2
χ(B(v))P(v, v) +

1

2
χ(B(w))P(w,v)

=
1

2
(χ(B′(v)) +Rv,w),

using (30) in the last step. If instead Pv,w ≤ χ(B′(v))−Rv,w then u(v) + 1
2u

P (v) =Rv,w + 1
2Pv,w and it is clear that

this is an upper bound on m∗(v) by bounding P(v, v) and P(w,v) by 1.
Now we turn to the lower bound, i.e.we want m∗(v)≥ ℓ(v) + 1

2ℓ
P (v). Recall

ℓ(v) +
1

2
ℓP (v) = {Rv,w − χ(B′(w))} ∨ 0 +

1

2
[{Pv,w − χ(B′(w)) +R ∧ χ(B′(w))} ∨ 0] .

If Rv,w >χ(B′(w)), then ℓ(v) + 1
2ℓ

P (v) =Rv,w − χ(B′(w)) + 1
2Pv,w. But in this case

m∗(v) = (R(v) +
1

2
P (v))P(v, v) + (R(w) +

1

2
P (w))P(w,v)

=Rv,w +
1

2
Pv,w − (R(v) +

1

2
P (v))P(v,w)− (R(w) +

1

2
P (w))P(w,w)

=Rv,w +
1

2
Pv,w − χ(B′(w)) + (χ(B(v))−R(v)− 1

2
P (v))P(v,w)

+ (χ(B(w))−R(w)− 1

2
P (w))P(w,w)

≥Rv,w +
1

2
Pv,w − χ(B′(w)).

Finally suppose R≤ χ(B′(v)), then ℓ(v) + ℓP (v) = 1
2 [{Pv,w − χ(B′(w)) +Rv,w} ∨ 0]. If further Pv,w > χ(B′(w))−

Rv,w then ℓ(v) + ℓP (v) = 1
2 (Pv,w +Rv,w − χ(B′(w))). But in this case

m∗(v)≥ 1

2
[(R(v) + P (v))P(v, v) + (R(w) + P (w))P(w,v)]
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=
1

2

[
Rv,w + Pv,w − χ(B′(w)) + (χ(B(v))−R(v)− P (v))P(v,w)

+ (χ(B(w))−R(w)− P (w))P(w,w)
]

≥ 1

2
[Rv,w + Pv,w − χ(B′(w))].

If instead Pv,w ≤ χ(B′(w))−Rv,w , then ℓ(v) + ℓP (v) = 0≤m∗(v).

Proof of Lemma 9. Recall that we suppose P(v, v), P(w,v) ∈ [η,1− η] and that θ(v) is defined in (17) which gives

θ(v) =
u(v) + 1

2u
P (v)−m∗(v)

u(v) + 1
2u

P (v)− ℓ(v)− 1
2ℓ

P (v)
.

There are numerous cases to consider which we detail below. Our goal is to show that in each case θ(v) ∈ [η,1 − η].
Recall that χ(B(v)) + χ(B(w)) = χ(B′(v)) + χ(B′(w)) = aBv,w + 2b.

Case 1: Rv,w >χ(B′(v))∨ χ(B′(w))

In this case u(v) + 1
2u

P (v) = χ(B′(v)) and

u(v) +
1

2
uP (v)− ℓ(v)− 1

2
ℓP (v) = χ(B′(v))− (Rv,w − χ(B′(w)))− 1

2
Pv,w.

But

m∗(v) = χ(B′(v))− (χ(B(v))−R(v)− 1

2
P (v))P(v, v)− (χ(B(w))−R(w)− 1

2
P (w))P(w,v)

≤ χ(B′(v))− η(aBv,w + 2b−Rv,w − 1

2
Pv,w)

= u+
1

2
uP (v)− η(u(v) +

1

2
uP (v)− ℓ(v)− 1

2
ℓP (v)),

thus θ(v)≥ η.
On the other hand

m∗(v) =Rv,w +
1

2
Pv,w − (R(v) +

1

2
P (v))P(v,w)− (R(w) +

1

2
P (w))P(w,w)

=Rv,w +
1

2
Pv,w − χ(B′(w)) + (χ(B(v))−R(v)− 1

2
P (v))P(v,w)

+ (χ(B(w))−R(w)− 1

2
P (w))P(w,w)

≥Rv,w +
1

2
Pv,w − χ(B′(w)) + η(aB + 2b−Rv,w − 1

2
Pv,w)

= ℓ(v) + ℓP (v) + η(u(v) +
1

2
uP (v)− ℓ(v)− 1

2
ℓP (v)),

thus 1− θ(v)≥ η.
Case 2: Rv,w ≤ χ(B′(v))∧ χ(B′(w))

We consider sub-cases.
Case 2a: Pv,w ≤ (χ(B′(v))−Rv,w)∧ (χ(B′(w))−Rv,w)

In this case u(v)+ 1
2u

P (v) =Rv,w+ 1
2Pv,w and ℓ(v)+ 1

2ℓ
P (v) = 0. But m∗(v)≥ η(Rv,w+ 1

2Pv,w) and so θ(v)≤ 1−η.
We also have m∗(v)≤ (1− η)(Rv,w + 1

2Pv,w) and so θ ≥ η.
Case 2b: Pv,w ≥ (χ(B′(v))−Rv,w)∨ (χ(B′(w))−Rv,w)

In this case u(v) + 1
2u

P (v) = 1
2 (χ(B

′(v)) +Rv,w) and ℓ(v) + 1
2ℓ

P (v) = 1
2 (Pv,w +Rv,w − χ(B′(w))). Hence

u(v) +
1

2
uP (v)− ℓ(v)− 1

2
ℓP (v) =

1

2
(aBv,w + 2b− Pv,w).
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On the one hand

m∗(v) =
1

2
R(v)P(v, v) +

1

2
R(w)P(w,v) +

1

2
{(R(v) + P (v))P(v, v) + (R(w) + P (w))P(w,v)}

≥ 1

2
ηRv,w +

1

2
{Rv,w + Pv,w − (R(v) + P (v))P(v,w)− (R(w) + P (w))P(w,w)}

=
1

2
ηRv,w +

1

2

{
Rv,w + Pv,w − χ(B′(w)) + (χ(B(v))−R(v)− P (v))P(v,w)

+ (χ(B(w))−R(w)− P (w))P(w,w)
}

≥ 1

2
ηRv,w +

1

2
(Rv,w + Pv,w − χ(B′(w))) +

1

2
η(aBv,w + 2b−Rv,w − Pv,w).(32)

Thus m∗(v)− ℓ(v)− 1
2ℓ

P (v)≥ 1
2η(aBv,w + 2b− Pv,w), and so 1− θ(v)≥ η. On the other hand,

m∗(v) =
1

2
R(v)P(v, v) +

1

2
R(w)P(w,v) +

1

2
χ(B′(v))

− 1

2

{
(χ(B(v))−R(v)− P (v))P(v, v) + (χ(B(w))−R(w)− P (w))P(w,v)

}
≤ 1

2
ηRv,w +

1

2
χ(B′(v))− 1

2
η(aBv,w + 2b−Rv,w − Pv,w)

Thus

u(v) +
1

2
uP (v)−m∗(v)≥ 1

2
(1− η)Rv,w +

1

2
η(aBv,w + 2b−Rv,w − Pv,w)

≥ 1

2
η(aBv,w + 2b− Pv,w)(33)

where we use η < 1/2 in the last inequality. This gives θ(v)≥ η.
Case 2c: χ(B′(v))−Rv,w ≤ Pv,w ≤ χ(B′(w))−Rv,w

We have u(v) + 1
2u

P (v) = 1
2 (χ(B

′(v)) +Rv,w) and ℓ(v) + 1
2ℓ

P (v) = 0. On the one hand m∗(v)≥ η(Rv,w + 1
2Pv,w) =

1
2ηRv,w + 1

2η(Rv,w +Pv,w)≥ 1
2ηRv,w + 1

2ηχ(B
′(v)) = 1

2η(Rv,w +χ(B′(v))). Hence θ(v)≤ 1− η. On the other hand,
as in (33) we have u(v) + 1

2u
P (v)−m∗(v) ≥ 1

2η(aBv,w + 2b− Pv,w) which in this case becomes u(v) + 1
2u

P (v)−
m∗(v)≥ 1

2η(χ(B
′(v)) +Rv,w). This gives θ(v)≥ η.

Case 2d: χ(B′(w))−Rv,w ≤ Pv,w ≤ χ(B′(v))−Rv,w

We have u(v)+ 1
2u

P (v) =Rv,w+ 1
2Pv,w and ℓ(v)+ 1

2ℓ
P (v) = 1

2 (Rv,w+Pv,w−χ(B′(w))). As in (33), u(v)+ 1
2u

P (v)−
m∗(v)≥ 1

2η(aBv,w+2b−Pv,w) which gives u(v)+ 1
2u

P (v)−m∗(v)≥ 1
2η(Rv,w+χ(B′(w))), so 1−θ(v)≥ η. On the

other hand, m∗(v)≤ (1−η)(Rv,w+ 1
2Pv,w), but Rv,w+ 1

2Pv,w ≥Rv,w+ 1
2 (χ(B

′(w))− 1
2Rv,w) =

1
2 (Rv,w+χ(B′(w)))

and so m∗(v)≤Rv,w + 1
2Pv,w − η

2 (Rv,w + χ(B′(w))) which gives θ(v)≥ η.
Case 3: χ(B′(v))≤Rv,w ≤ χ(B′(w))

In this case u(v) + 1
2u

P (v) = χ(B′(v)). We again consider sub-cases depending on the value of Pv,w .
Case 3a: Pv,w ≥ χ(B′(w))−Rv,w

Then ℓ(v) + 1
2ℓ

P (v) = 1
2 (Rv,w + Pv,w − χ(B′(w))) and so u(v) + 1

2u
P (v)− ℓ(v)− 1

2ℓ
P (v) = χ(B′(v))− 1

2 (Rv,w +
Pv,w − χ(B′(w))). To show 1− θ(v)≥ η, we wish to show that m∗(v)≥ ℓ(v) + 1

2ℓ
P (v) + η(u(v) + 1

2u
P (v)− ℓ(v)−

1
2ℓ

P (v)), i.e.that m∗(v)≥ ηχ(B′(v)) + 1
2 (1− η)(Rv,w + Pv,w − χ(B′(w))). As in (32) we have

m∗(v)≥ 1

2
ηRv,w +

1

2
{Rv,w + Pv,w − χ(B′(w)) + η(aBv,w + 2b−Rv,w − Pv,w)}

=
1

2
(1− η)(Rv,w + Pv,w − χ(B′(w))) +

1

2
η {Rv,w + Pv,w − χ(B′(w)) + aBv,w + 2b− Pv,w} .

But Rv,w−χ(B′(w))+aBv,w+2b=Rv,w+χ(B′(v))≥ 2χ(B′(v)), so m∗(v)≥ ηχ(B′(v))+ 1
2 (1−η)(Rv,w+Pv,w−

χ(B′(w))) as needed. On the other hand, to show θ(v)≥ η, we need to show that m∗(v)≤ (1− η)χ(B′(v))+ η
2 (Pv,w +

Rv,w − χ(B′(w))). We have

m∗(v)
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= (1− η)
{
(R(v) +

1

2
P (v))P(v, v) + (R(w) +

1

2
P (w))P(w,v)

}
+ η
{
(R(v) +

1

2
P (v))P(v, v) + (R(w) +

1

2
P (w))P(w,v)

}
= (1− η)

{
χ(B′(v))− (χ(B(v))−R(v)− 1

2
P (v))P(v, v)− (χ(B(w))−R(w)− 1

2
P (w))P(w,v))

}
+ η
{
Rv,w +

1

2
Pv,w − (R(v) +

1

2
P (v))P(w,v)− (R(w) +

1

2
P (w))P(w,w)

}
≤ (1− η)χ(B′(v))

+ η
{
Rv,w +

1

2
Pv,w − χ(B′(w))− (χ(B(v))−R(v)− 1

2
P (v))P(w,v)

− (χ(B(w))−R(w)− 1

2
P (w))P(w,w)

}
≤ (1− η)χ(B′(v)) + η(Rv,w +

1

2
Pv,w − χ(B′(w)))

≤ (1− η)χ(B′(v)) +
η

2
(Rv,w + Pv,w − χ(B′(w))),

as needed.
Case 3b: Pv,w ≤ χ(B′(w))−Rv,w

Here u(v) + 1
2u

P (v) = χ(B′(v)) and ℓ(v) + 1
2ℓ

P (v) = 0. On the one hand we have m∗(v) ≥ η(Rv,w + 1
2Pv,w) ≥

ηRv,w ≥ ηχ(B′(v)). This gives θ(v)≤ 1− η. On the other hand, we have

m∗(v) = χ(B′(v))− (χ(B(v))−R(v)− P (v))P(v, v)− 1

2
P (v)P(v, v)

− (χ(B(w))−R(w)− P (w))P(w,v)− 1

2
P (w)P(w,v)

≤ χ(B′(v))− η(aBv,w + 2b−Rv,w − 1

2
Pv,w)−

1

2
ηPv,w

≤ χ(B′(v))− ηχ(B′(v))

= (1− η)χ(B′(v)).

Thus it follows that θ(v)≥ η.
Case 4: χ(B′(w))≤Rv,w ≤ χ(B′(v))

This is the final main case, and it has two sub-cases.
Case 4a: Pv,w ≥ χ(B′(v))−Rv,w

Here u(v) + 1
2u

P (v) = 1
2 (χ(B

′(v)) +Rv,w) and ℓ(v) + 1
2ℓ

P (v) =Rv,w − χ(B′(w)) + 1
2Pv,w . Thus u(v) + 1

2u
P (v)−

ℓ(v)− 1
2ℓ

P (v) = χ(B′(w)) + 1
2 (χ(B

′(v))−Rv,w − Pv,w).
On the one hand we want θ(v) ≤ 1 − η, which in this case is equivalent to m∗(v) ≥ (1 − η

2 )Rv,w + η
2χ(B

′(v)) +
1−η
2 Pv,w − (1− η)χ(B′(w)). We can obtain this bound since

m∗(v) =Rv,w +
1

2
Pv,w − χ(B′(w)) + (χ(B(v))−R(v)− 1

2
P (v))P(v,w)

+ (χ(B(w))−R(w)− 1

2
P (w))P(w,w)

≥Rv,w +
1

2
Pv,w − χ(B′(w)) + η(aBv,w + 2b−Rv,w − 1

2
Pv,w)

=Rv,w +
1

2
Pv,w − χ(B′(w)) + η(χ(B′(v)) + χ(B′(w))−Rv,w − 1

2
Pv,w)

= (1− η

2
)Rv,w +

1− η

2
Pv,w +

η

2
χ(B′(v))− (1− η)χ(B′(w)) +

η

2
(χ(B′(v))−Rv,w),

and we obtain the desired bound using that Rv,w ≤ χ(B′(v)).



34

On the other hand, we also need to show θ(v)≤ η, i.e.we need to show m∗(v)≤ 1+η
2 Rv,w+ η

2Pv,w+ 1−η
2 χ(B′(v))−

ηχ(B′(w)). We have

m∗(v) =
1

2
R(v)P(v, v) +

1

2
R(w)P(w,v) +

1

2
{(R(v) + P (v))P(v, v) + (R(w) + P (w))P(w,v)}

≤ 1− η

2
Rv,w +

1

2

{
χ(B′(v))− (χ(B(v))−R(v)− P (v))P(v, v)

− (χ(B(w))−R(w)− P (w))P(w,v)
}

≤ 1− η

2
Rv,w +

1

2

{
χ(B′(v))− η(aBv,w + 2b−Rv,w − Pv,w)

}
=

1− η

2
Rv,w +

η

2
Pv,w +

1− η

2
χ(B′(v))− η

2
χ(B′(w))

=
1+ η

2
Rv,w +

η

2
Pv,w +

1− η

2
χ(B′(v))− ηχ(B′(w))− ηRv,w +

η

2
χ(B′(w))

≤ 1 + η

2
Rv,w +

η

2
Pv,w +

1− η

2
χ(B′(v))− ηχ(B′(w)),

using that Rv,w ≥ χ(B′(w)) in the last inequality.
Case 4b: Pv,w ≤ χ(B′(v))−Rv,w

Here u(v) + 1
2u

P (v) =Rv,w + 1
2Pv,w and ℓ(v) + 1

2ℓ
P (v) =Rv,w − χ(B′(w)) + 1

2Pv,w , thus u(v) + 1
2u

P (v)− ℓ(v)−
1
2ℓ

P (v) = χ(B′(w)). Showing θ(v)≤ 1− η is equivalent to showing m∗(v)≥ Rv,w + 1
2Pv,w − (1− η)χ(B′(w)). We

have

m∗(v) = χ(B′(v))− (χ(B(v))−R(v)− P (v))P(v, v)− 1

2
P (v)P(v, v)

− (χ(B(w))−R(w)− P (w))P(w,v)− 1

2
P (w)P(w,v)

≥ χ(B′(v))− (1− η)(aBv,w + 2b−Rv,w − Pv,w)−
1− η

2
Pv,w

=Rv,w +
1

2
Pv,w − (1− η)χ(B′(w)) + η(χ(B′(v))−Rv,w),

and this shows the desired bound since Rv,w ≤ χ(B′(v)). Showing θ(v)≥ η is equivalent to showing m∗(v)≤Rv,w +
1
2Pv,w − ηχ(B′(w)). This holds since we have m∗(v) ≤ (1− η)(Rv,w + 1

2Pv,w) ≤ Rv,w + 1
2Pv,w − ηRv,w and since

Rv,w ≥ χ(B′(w)) this gives m∗(v)≤Rv,w + 1
2Pv,w − ηχ(B′(w)) as needed.

Proof of Lemma 10. We fix the configurations of black, red, and pink particles B, R, P just before an update on e =
{v,w} and also the number of paired red Rp

v,w . Let x = ℓ(v) + ℓ(w)−Rq
v,w , where Rq

v,w is the number of non-paired
red particles on e. Then x ∨ 0 is the number of paired red particles needed for the lower bounds in Step 1 and so any
particular paired red particle will be remaining in the pool after Step 1 with probability 1− (x ∨ 0)/Rp

v,w . Observe that
χ(B′(v)) + χ(B′(w))≥Rv,w +Rp

v,w (since each paired red particle on e implies the existence of a unique paired white
particle also on e). We consider four cases.

Case 1: Rv,w >χ(B′(v))∨ χ(B′(w))

Then x= 2Rv,w − χ(B′(v))− χ(B′(w))−Rq
v,w ≤ 2Rv,w − (Rv,w +Rp

v,w)−Rq
v,w = 0, i.e.no paired red particles are

needed for the lower bounds and they all remain in the pool after Step 1.
Case 2: Rv,w ≤ χ(B′(v))∧ χ(B′(w))

In this case x=−Rq
v,w so all paired red particles remain in the pool.

Case 3: χ(B′(v))≤Rv,w ≤ χ(B′(w))

Then x = Rv,w − χ(B′(v)) − Rq
v,w = Rp

v,w − χ(B′(v)). We need to show that this is at most (1 − γ)Rp
v,w . We

are assuming that χ(B′(w)) ≤ χ(B′(v))/γ. We also have that χ(B′(v)) + χ(B′(w)) ≥ 2Rp
v,w and thus χ(B′(v)) ≥

2Rp
v,w/(1 + 1/γ)≥ γRp

v,w since γ < 1. This gives the desired bound on x.
Case 4: χ(B′(w))≤Rv,w ≤ χ(B′(v))

This case follows similarly to Case 3, switching the roles of v and w.
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Appendix C: Simulation

For purposes of further elucidating the evolution of the chameleon process and its relationship to the MaBB, we present a
possible trajectory of the two processes for two updates (for simplicity we suppose the first two edge-rings occur at times
1 and 2). In this example, the graph is the line on 7 vertices and a= b= 1.

MaBB time 0
1 2 3 4 5 6 7

chameleon time 0
1 2 3 4 5 6 7
1

2

1

2

FIG 1. The initial configurations are shown as above. Observe that the non-marked particles in the MaBB are in the same configuration as the black
particles in the chameleon and vertex 3 (which has the marked particle in the MaBB) has all its non-black particles in the chameleon configuration as
red. As it is the start of a round, and as there are fewer red particles than white, we pair up each red particle with a unique white particle and label the
paired particles (with the same label) to track the pairings.

MaBB time 1
1 2 3 4 5 6 7

chameleon time 1
1 2 3 4 5 6 7
2 1 1

2

FIG 2. At time 1 edge {1,2} rings and although this does not lead to a change in the non-marked particles, one of the labelled white particles moves as
indicated.
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MaBB time 2
1 2 3 4 5 6 7

chameleon time 2
1 2 3 4 5 6 7
2

2

FIG 3. At time 2 edge {2,3} rings and the marked particle ends up on vertex 2 in the MaBB. In the chameleon process there is a red-white pair of
particles (with label 1) on the ringing edge, thus an opportunity for pink particles to be created which we see happen in this simulation. One pink particle
is created on vertex 2 and the other on vertex 3. At the next depinking time these pink particles will either both become red or both become white.
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